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Adaptive estimation on anisotropic

Hölder spaces

Part II. Partially adaptive case

Nicolas Klutchnikoff∗

March 18, 2006

Abstract

In this paper, we consider a particular case of adaptation. Let us re-

call that, in the first paper “Fully case”, a large collecton of anisotropic

Hölder spaces is fixed and the goal is to construct an adaptive estimator

with respect to the absolutely unknown smoothness parameter. Here

the problem is quite different: an additionnal information is known,

the effective smoothness of the signal. We prove a minimax result

which demonstrates that a knowledge of is type is useful because the

rate of convergence is better than that obtained without knowledge

of the effective smothness. Moreover we linked this problem with the

maxiset theory.

1 Introduction

1.1 Statistical model

This paper is the second part of our paper “Fully adaptive case”. Further,
we will refer to this paper as (Part I). We consider the same model. Our
observations X (ε) = (Xε(u))u∈[0,1]d satisfies the same SDE:

Xε(du) = f(u)du + εW (du), ∀u ∈ [0, 1]d,

where f : R
d → R is an unknown signal to be estimated, W is a standartd

Gaussian white noise from R
d to R and ε is the noise level.

Our main goal is to estimate f at a fixed point t ∈ (0, 1)d.

∗Université de Provence, LATP, UMR CNRS 6632. Mail: klutchni@cmi.univ-mrs.fr
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1.2 Our goal

In this second part of our article, we study the “Partially adaptive case”.
Let us recall that we are interrested in pointwise estimation among the class
of anisotropic Hölder spaces. Let us recall some notations: l∗ < l∗ and
b = (b1, . . . , bd) are given. Moreover, we consider only Hölder spaces H(β, L)
(defined in Part I) such that

β ∈ B =

d
∏

i=1

(0; bi] and L ∈ I = [l∗; l
∗].

Remark 1. Let us just recall that β = (β1, . . . , βd) can be viewed as the
smoothness parameter. Each βi represents the smoothness of a function in
direction i. Moreover, L is a Lipschitz constant.

We denote Σ =
⋃

B×I H(β, L). Our goal is to answer this questions: Is it
possible to guarantee a quality of estimation? On which space (included in
Σ)? With which procedure of estimation?

For example, if we consider η̃ε(γ) = ε2γ/(2γ+1), it is well known that we
can guarantee this quality on each space H(β, L) such that β̄ = γ (because
it is the minimax rate of convergence on this space) using the minimax on
this space estimator. But one of our results implies that we cannot guarantee
this quality simultaneousely on each such space.

Now, we fix 0 < γ < b̄, and we consider

ηε(γ) = (l∗)
1

2γ+1

(

‖K‖ε
√

ln ln
1

ε

)
2γ

2γ+1

.

Our result is that there exists an estimator, namely fγ
ε (·), such that ηε(γ) is

the minimax rate of convergence of this estimator on Σ(γ) defined by

Σ(γ) =
⋃

(β,L)∈B(γ)×I

H(β, L) =
⋃

β∈B(γ)

H(β, l∗)

where
B(γ) =

{

β ∈ B : β̄ = γ
}

.

Thus, using fγ
ε as procedure of estimation, we can guarantee that the

quality is ηε(γ), at least on Σ(γ).
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1.3 Result

Theorem 1. Our result consists in two inequalities:

lim sup
ε→0

sup
f∈Σ(γ)

Ef

[(

ηε(γ)−1|fγ
ε (t) − f(t)|

)q]
< +∞. (U.B.)

lim inf
ε→0

inf
f̃

sup
f∈Σ(γ)

Ef

[(

ηε(γ)−1|f̃(t) − f(t)|
)q]

> 0, (L.B.)

where the infimum is taken over all possible estimators.
In words, fγ

ε is a minimax on Σ(γ) estimator.

This paper consists in the proof of this assertion. First, we construct the
estimator fγ

ε . Next, we prove the corresponding lower bound.

Remark 2. Let us remark that this result can be viewed as an adaptive
result. Indeed, let us consider Σ(γ) as a family —instead of an union— of
Hölder spaces H(β, L) such that β̄ = γ. It is well known that on each H(β, L)
there exists a minimax on this space estimator which depends explicitely on
(β, L) at least trough its bandwidth. Thus, question of adaptation arrizes
naturally.

Our lower bound proves that an optimal adaptive estimator f ∗(·) such
that

lim sup
ε→0

sup
(β,L)∈B(γ)×I

sup
f∈H(β,L)

Ef

[(

ε−
2γ

2γ+1 |f ∗(t) − f(t)|
)q]

< +∞

does not exist.
Our upper bound proves that fγ

ε (·) is an adaptive estimator. Moreover
the price to pay is only

√

ln ln 1/ε which is to be compared with the classical

loss
√

ln 1/ε in other adaptive problems.
Moreover we prove that our estimator is optimal in a minimax sense.

2 Procedure

2.1 Collection of kernel estimators

Let us recall that kernels were defined in the first part of this paper: “fully
adaptive case”. Here we have just to chose a good collection of kernel esti-
mators.

Let us define

nε(γ) =

⌊

1

ln 2

(

4(b̄ − γ)

(2b̄ + 1)(2γ + 1)
ln

l∗

‖K‖ε − 1

2γ + 1
ln ln ln

1

ε

)⌋

.
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Let us denote
Zε

γ = Z(nε(γ)).

Let us recall the definition of this set:

Z(n) =

{

k =∈ Z
d :

d
∑

i=1

(ki + 1) = n and ∀i, |ki| ≤ C(b)n + 1

}

,

where

C(b) =
2b̄ + 1

2b̄
× ln 2 +

√
2 ln 2

ln 2
.

Finally, we consider the following collection {f̂k(·)}k∈Zε
γ
.

2.2 Notations

Let us recall the following notation: for all k ∈ Zε
γ , we have

σε(k) =
ε‖K‖

(

∏d
i=1 h

(k)
i

)1/2
,

where h(k) = (h
(k)
1 , . . . , h

(k)
d ) is defined by:

h
(k)
i = (‖K‖ε)

2b̄
2b̄+1

1
bi 2−(ki+1).

It is clear that for all k and l in Zε
γ , σε(k) = σε(l) , σε(γ) and moreover

that:

σε(γ)

√

ln ln
1

ε
≍ ηε(γ).

Following the same strategy as in the first part of our paper, let us define
the set A as follows: an index k ∈ Zε

γ belongs to A if it satisfies:

∣

∣

∣
f̂k∧l(t) − f̂l(t)

∣

∣

∣
≤ Cσε(γ)

√

ln ln
1

ε
, ∀l 6= k, l ∈ Zε

γ ,

where k ∧ l denote the index (ki ∧ li)i=1,...,d.

2.3 Definition of our procedure

First of all, let us reformulate one of our result obtained in the first part of
this paper: there exists an estimator, namely fΦ

ε (·), sucht that

lim sup
ε→0

sup
β∈B

sup
f∈H(β,l∗)

Ef











(

ε

√

ln
1

ε

)− 2β̄
2β̄+1

|fΦ
ε (t) − f(t)|





2q





< +∞.
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Now, let us define our new estimator: If the random set A is non-empty,
we chose arbitrary any index which belongs to this set. We denote k̂ a such
index. Then we construct:

fγ
ε (·) = f̂k̂(·).

On the other hand, if A is empty, we define

fγ
ε (·) = fΦ

ε (·).

Remark 3. This procedure is closed to the adaptive one. The main differ-
ence consists in the following: when the set A is empty, we estimate using a
best estimator than 0. In fact the probability Pf [A = ∅] is too large to use a
trivial estimator.

3 Proof of (U.B)

3.1 Method

First of all, let us recall that our minimax on Σγ estimator is in fact an
“adaptive procedure of estimation” because the real smoothness parameter is
unknown.

Thus, the mechanism of the proof is very closed to the previous one. We
will compare the estimator chosen by our procedure with respect to the “best”
estimator among our class but depending on the unknown parameter.

First, we have to define correctly all indexes we need. Next, we will be
able to prove the result. Moreover, as the class Σγ depends only in L though
l∗ (because H(β, L) ⊂ H(β, l∗)), we will assume that l∗ = l∗ = 1 to make the
proof simpler. Consequently we will denote H(β) instead of H(β, 1).

3.2 Indexes

Let us suppose that our unknown signal in Σγ belongs to H(β) with β̄ = γ.
Clearly, if we consider the kernel estimator defined using bandwidth



hi(β, ε) =

(

‖K‖ε
√

ln ln
1

ε

)
2γ

2γ+1
1
βi





i=1,...,d

,

it achieves the expected rate ηε(γ).
We consider the bandwidth

h∗(ε) =
(

h∗
i (ε) = (‖K‖ε)

2b̄
2b̄+1

1
bi

)

i=1,...,d
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and define the following indexes: for all i ∈ [[1; d ]] and β ∈ B such that b̄ = γ,
we construct

k̃i(β, ε) =

⌊

1

ln 2
ln

h∗
i (ε)

hi(β, ε)

⌋

.

If h(k) = (h
(k)
i )i denote the bandwidth defined by

h
(k)
i = h∗

i (ε)2
−(ki+1),

we obtain clearly that the kernel estimator defined using bandwidth h(k̃(β,ε))

is asymptotically as good as that one defined using h(β, ε).
Now, let us define:

ki(β, ε) =

{

k̃i(β, ε) if i = 1, . . . , d − 1

nε(γ) − 1 −∑d1

i=1(k̃i(β, ε) + 1) otherwise

It is easy to prove that
∣

∣

∣
k̃d(β, ε) − kd(β, ε)

∣

∣

∣
≤ d.

Thus, asymptotically, estimator defined using h(k(β,ε)) is as good as that one
defined using h(k̃(β,ε)) and thus as good as that one defined by h(β, ε).

Moreover it is simple, by producing similar arguments than in the first
part of this paper, to obtain that k(β, ε) belongs to Z(nε(γ)).

3.3 Proof

We want to prove that, for all ε < 1:

sup
β∈B(γ)

sup
f∈H(β)

Ef

[(

η−1
ε (γ) |fγ

ε (t) − f(t)|
)q]

< Mq(γ)

where Mq(γ) is an explicit constant given in the proof.
Set ε < 1 and β ∈ B such that β̄ = γ. Let us suppose that f ∈ H(β) ⊂

Σγ . Set q a fixed parameter.
First, let us suppose that A is non empty.

A) A is non empty
Let us denote κ = k(β, ε). Our goal is to majorate the following quatiy:

(∗) = Ef

[

|f̂k̂(t) − f(t)|q
]

.

Let us consider






I1 = |f̂k̂(t) − f̂k̂∧κ|
I2 = |f̂k̂∧κ(t) − f̂κ(t)|
I3 = |f̂κ(t) − f(t)|
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Let us remark that, if k̂ = κ, then I1 = I2 = 0. Thus we can suppose
that k̂ 6= κ.
a) Let us control of Ef [I

q
3 ]. Using lemma ??, we have:

Ef [I
q
3 ] = Ef

[

|f̂κ(t) − f(t)|q
]

≤ Ef [(|bκ(t) − f(t)| + σε(γ)|ξ(κ)|)q]

≤ Ef

[(

Bβ(κ) + σε(γ)|ξ(κ)|
)q]

≤ Ef [(C
∗Sε(κ) + σε(γ)|ξ(κ)|)q]

≤
(

σε(γ)

√

ln ln
1

ε

)q

Ef







C∗ +
|ξ(κ)|
√

ln ln 1
ε





q



b) Let us control Ef [I
q
2 ]. Our procedure control itself this expectation. We

have:

Ef [I
q
2 ] ≤ Cq

(

σε(γ)

√

ln ln
1

ε

)q

.

Let us remark that we use the fact that κ belongs to Zε
γ .

c) Finally, let us control Ef [I
q
1 ]. Using lemma ??, we ontain:

Ef [I
q
1 ] = Ef

[

|f̂k̂(t) − f̂k̂∧κ|q
]

≤ Ef

[(

2C∗Sε(κ) + σε(k̂)|ξ(k̂)| + σε(k̂ ∧ κ)|ξ(k̂ ∧ κ)|
)q]

≤ Sε(κ)q
Ef







2C∗ +
|ξ(k̂)| + |ξ(k̂ ∧ κ)|

√

ln ln 1
ε





q



≤ Ef







2C∗ +
|ξ(k̂)| + |ξ(k̂ ∧ κ)|

√

ln ln 1
ε





q



(

σε(γ)

√

ln ln
1

ε

)q

Finally, we obtain the following inequelity:

(∗) ≤ (3q−1 ∨ 1) (Ef [I
q
1 ] + Ef [I

q
2 ] + Ef [I

q
3 ])

≤ (3q−1 ∨ 1) {Cq + (2q + 1)(C∗)q + o(1/ε)}
(

σε(γ)

√

ln ln
1

ε

)q

,

where o(1/ε) tends to 0 where ε tends to 0. It is clear by applying Lebesgue’s
theorem.
B) A is empty
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As A is empty, in particular κ does not belong to this set. Thus, we
obtain:

Ef [|fγ
ε (t) − f(t)|q] ≤ Ef

[

|fΦ
ε (t) − f(t)|q1{κ/∈A}

]

≤
√

Ef [|fΦ
ε (t) − f(t)|2q]Pf [κ /∈ A]

Using the upper bound of the first part of this paper we obtain:

√

Ef [|fΦ
ε (t) − f(t)|2q] ≤ Cte

(

ε

√

ln
1

ε

)
2γ

2γ+1
q

.

Thus, we have to control Pf [κ /∈ A]. If κ /∈ A, there exists l ∈ Zγ
ε , l 6= κ,

such that:

|f̂κ∧l(t) − f̂l(t)| > Cσε(γ)

√

ln ln
1

ε
.

And, consequently, we obtain that:

Pf [κ /∈ A] ≤
∑

l 6=κ

Pf

[

|f̂κ∧l(t) − f̂l(t)| > Cσε(γ)

√

ln ln
1

ε

]

≤ 2
∑

κ 6=l

(

1

ln 1
ε

)
(C−2C∗)2

8

≤ 2(#Zε
γ)

(

1

ln 1
ε

)
(C−2C∗)2

8

.

Moreover, it is easy to prove that there exists a constant Cb depending
only on b such that:

#Zε
γ ≤ Cb

(

ln
1

ε

)d

.

On the other hand our choice of C implies that

(C − 2C∗)2

8
= d +

2γ

2γ + 1
(2q).

Thus, we obtain:

Ef [|fγ
ε (t) − f(t)|q] ≤ Cte ε

2γ
2γ+1

q

8



4 Proof of (L.B.)

4.1 Method

The method is classical. Our goal is to minorate the minimax risk by a
bayesian risk taken on a large number (

√

ln 1/ε)of functions. In our mind,
these functions are chosen because they represent the most difficult func-
tions to be estimated in the considered class. This assertion is explained by
lemma 2

4.2 Notations

Let us intoduce some basic notations. Let us fix 0 < γ < b̄. We say that a
function g : R

d → R belongs to G(γ) if it satisfies:















g(0) > 0.
‖g‖ < +∞
g ∈ ⋂β∈B(γ) H(β)

supp g ⊂ [−a; a]d.

Here and later, we fix g ∈ G(γ).
Let us denote

δ =

∏d
i=2 bi

∑d
i=2

∏

j 6=i bj

=
1

1/β2 + · · ·+ 1/βd

.

We consider

a =

(

1

γ
− 1

δ

)−1

< b1,

and we denote nε =
√

ln 1/ε.
Now, let us consider a family of vectors {β(k)}k indexed by k = 0, . . . , nε

and defined as follows:

β
(k)
1 = a + k

b1 − a

nε
(1)

β
(k)
i =

bi

δ

(

1

γ
− 1

β
(k)
1

)−1

∀i = 2, . . . , d. (2)

Lemma 1. For all k = 0, . . . , nε the vector β(k) belongs to B(γ).

This lemma will be proved later.
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Finally, let us introduce some functions. First of all, let us consider:

∀i = 1, . . . , d, ∀k = 0, . . . , nε, h
(k)
i =

(

κε

√

ln ln
1

ε

)
2γ

2γ+1
1

β
(k)
i

where κ < 1/(
√

2‖g‖). Then, we can define:







f0 ≡ 0

fk(x) = κ

2γ
2γ+1 ηε(γ)g

(

x1−t1

h
(k)
1

, . . . , xd−td

h
(k)
d

)

, k ≥ 1.

4.3 Proof

Now, let us prove our result. We will denote Pk instead of Pfk
and we

consider the likelyhood ratio:

Zε =
1

nε

nε
∑

k=1

dPk

dP0

(X (ε)).

This ratio satisfies the following lemma which will be proved further:

Lemma 2. For all 0 < α < 1, we have:

lim sup
ε→0

P0[|Zε − 1| > α] = 0.

Let us consider for any arbitrary estimator f̃ , the following quantiy:

Rε(f̃) = sup
f∈Σγ

Ef









(

κε

√

ln ln
1

ε

)− 2γ
2γ+1

|f̃(t) − f(t)|





q

 .

It is a well known result that, using bayesian method, for all 0 < α < 1 we
obtain:

Rε(f̃) ≥ (1 − α)

(

g(0)

2

)q

(1 − P0[|Zε − 1| > α]) .

Thus, we have:

lim inf
ε→0

Rε(f̃) ≥ (1 − α)

(

g(0)

2

)q

.

This inequality is equivalent to the following:

lim inf
ε→0

sup
f∈Σγ

Ef

[(

η−1
ε (γ)|f̃(t) − f(t)|

)q]

≥ (1 − α)

(

κ

2γ
2γ+1

g(0)

2

)q

.
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Now, if κ tends to (
√

2‖g‖)−1 and α tends to 1 we obtain the lower bound:

lim inf
ε→0

sup
f∈Σγ

Ef

[(

η−1
ε (γ)|f̃(t) − f(t)|

)q]

≥
(

2−(1+γ/(2γ+1)) sup
g∈G(γ)

g(0)

‖g‖

)q

.

A Proof of lemma 1

First of all, let us prove that a < b1. In fact:

a < b1 ⇐⇒ 1

b1

<
1

γ
− 1

δ
.

But it is clear that
1

b1
+

1

δ
=

1

b̄
<

1

γ
.

Result follows.
Let us fix β ∈ {β(k)}k.

Step 1. Let us calculate:

d
∑

i=1

1

βi
=

1

β1
+

d
∑

i=2

δ

bi

(

1

γ
− 1

β1

)

=
1

γ
.

Step 2. Let us prove that, for all i, βi > 0. First, we have β1 > a > 0. Next,
for i ≥ 2, βi > 0 if 1/γ > 1β1. But clearly we have β1 > a > γ. Result
follows.
Step 3. Let us prove that, for all i, βi ≤ bi. This inequality is equivalent to:

δ

(

1

γ
− 1

β1

)

≥ 1,

i.e. β1 ≥ a. Finally, β ∈ B(γ).

B Proof of lemma 2

First, let us remark that:

P0[|Zε − 1| > α] ≤ α−2
E0

[

(Zε − 1)2
]

11



and, if 〈·, ·〉 denotes the scalar product in L
2,

E0

[

(Zε − 1)2
]

=
1

n2
ε

nε
∑

k,l=1

exp

(〈fk, fl〉
ε2

)

− 1.

It is enough to prove the following assertions:

1

n2
ε

nε
∑

k=1

exp

(‖fk‖
ε2

)

−−→
ε→0

0, (3)

and

lim sup
ε→0

1

n2
ε

nε
∑

k 6=l

exp

(〈fk, fl〉
ε2

)

≤ 1 (4)

First, let us prove Equation (3).
Let us calculate ‖fk‖2 for all k. We have:

‖fk‖2 = ‖g‖2
κ

2ε2 ln ln
1

ε
= 2‖g‖2

κ
2ε2 ln nε.

Thus, we obtain:
1

n2
ε

nε
∑

k=1

exp

(‖fk‖
ε2

)

= n2‖g‖2
κ

2−1
ε .

Thus, the choice of κ implies the result because 2‖g‖2
κ

2 − 1 < 0.
Now, let us prove Equation (4).
Let us fix 1 ≤ k < l ≤ nε. By an easy computation we obtain:

〈fk, fl〉 ≤ κ

4γ
2γ+1 η2

ε(γ)‖g‖2
∞Vol(Ck ∩ Cl),

where Vol is the standard volume in R
d and Ck denotes the support of fk:

Ck =
d
∏

i=1

[−ah
(k)
i ; ah

(k)
i ].

Clearly, h
(k)
1 < h

(l)
1 and, for any i ≥ 2, we have h

(k)
i > h

(l)
i . Thus,w e can

conclude that:

Vol(Ck ∩ Cl) = (2a)dh
(k)
1

h
(l)
1

(

d
∏

i=1

h
(l)
i

)

≤ (2a)d h
(k)
1

h
(k+1)
1

(

d
∏

i=1

h
(l)
i

)

.
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Let us calculate h
(k)
1 /h

(k+1)
1 :

h
(k)
1

h
(k+1)
1

=
(

κ

2γ
2γ+1 ηε(γ)

)1/β
(k)
1 −1/β

(k+1)
1

=
(

κ

2γ
2γ+1 ηε(γ)

)

1/nε

β
(k)
1

β
(k+1)
1

≤
(

κ

2γ
2γ+1 ηε(γ)

)
1

b2
1

nε .

Moreover, let us remark that:

d
∏

i=1

h
(l)
i = κ

2
2γ+1 η1/γ

ε (γ).

Then, by an easy computation, we deduce that:

〈fk, fl〉 ≤ (2a)d(κ1+ Γ
nε ‖g‖∞)2 (ηε(γ))

2γ+1
γ (1+ Γ

nε
) ,

where
Γ =

γ

b2
1(2γ + 1)

.

Let us recall that ηε(γ) = (ε
√

ln ln 1/ε)2γ/(2γ+1). Thus we obtain:

〈fk, fl〉
ε2

≤ (2a)d(κ1+ Γ
nε ‖g‖∞)2Mε,

where

Mε =

(

ln ln
1

ε

)(

ε2 ln ln
1

ε

)
Γ

nε

teds to 0 when ε tends to 0 (it is easy to see that lnMε → −∞).
Now, let us back to Equation (4):

1

n2
ε

nε
∑

k 6=l

exp

(〈fk, fl〉
ε2

)

≤ nε − 1

nε

exp
(

(2a)d(κ1+ Γ
nε ‖g‖∞)2Mε

)

−−→
ε→0

1.

And Lemma is proved.
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