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Abstract

In this paper it is assumed that a noisy multidimensionnal signal
is observed (for example an image in dimension 2) and our goal is to
reconstruct it as best as possible.

In order to achieve this goal, we consider the well known theory of
adaptation on a minimax sense : we want to construct a single estima-
tor which achieves on each fuctionnal space of a given collection the
“best possible rate”. We introduce a new criterion in order to chose an
optimal family of normalizations. This criterion is more sophisticated
than criteria given by Lepski (1991) and Tsybakov (1998) and well
adapted to multidimensionnal case.

Then, we prove a result of adaptation with respect to a collection
of anisotropic Hölder spaces. We construct a procedure (based on
comparison of kernel estimators in order to chose, according to the
observations, the best among a family) which is proved to be optimal
in our sense.

1 Introduction

1.1 Model

In this paper, it is supposed that we observe the “trajectory” X (ε) = {Xε(u)}u∈D
of a noisy signal which satisfies, on [0, 1]d the following SDE:

Xε(du) = f(u)du+ εW (du)

∗Université de Provence, LATP, UMR CNRS 6632. Mail: klutchni@cmi.univ-mrs.fr
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where ε > 0 is a small parameter which represents the noise level, W is a
Gaussian white noise on [0, 1]d and f is the unknown signal to be estimated.
It is assumed that f belongs to a given functional space Σ(κ) defined by a
parameter κ which belongs to J ⊂ Rm.

Let us note that all results obtained in the paper remains valid if one
replaces [0, 1]d by an open set in Rd.

Further, we will consider a particular case of this general framework where
the functional space Σ(κ) is an anisotropic Hölder space H(β, L). The exact
definition of this space will be done later. Here, we mention only that β =
(β1, . . . , βd) is an anisotropic (different in different directions) smoothness i.e.
βi > 0 represents the smoothness of the signal in the ith direction and L > 0
is a Lipschitz constant. In this case κ = (β, L) and m = d+ 1.

1.2 Quality of estimation. Minimax approach

Our goal is to estimate f at a given point t ∈ (0, 1)d. First, let us suppose
that the “nuisance” parameter κ is known. To measure the quality of an
arbitrary estimator f̃ε(·) = f̃(· ;X (ε)), we introduce its maximal risk on Σ(κ)
as follows:

∀q > 0, R(q)
ε

[

f̃ε,Σ(κ)
]

= sup
f∈Σ(κ)

Ef

[∣

∣

∣
f̃ε(t) − f(t)

∣

∣

∣

q]

.

We are interested in finding the asymptotic of the minimax risk (minimax
rate of convergence):

N q
ε (κ) ≍ inf

f̃ε

R(q)
ε

[

f̃ε,Σ(κ)
]

,

where the infimum is taken over all possible estimators.
Besides the finding Nε(κ), we seek an estimator f̂ε(·) which achieves this

rate i.e.
R(q)
ε

[

f̂ε,Σ(κ)
]

≍ N q
ε (κ) (U.B)

Any such estimator is called minimax.
Let us return to the anisotropic Hölder spaces. The solution of minimax

problem was found in []. The minimax rate Nε(β, L) is given by the formula:

Nε(β, L) = L1/(2β̄+1)ε2β̄/(2β̄+1) where 1/β̄ =
d
∑

i=1

1/βi.

This rate is achieved by a kernel estimator with properly chosen kernel K
and bandwidth η = (η1, . . . , ηd). This estimator depends explicitly on (β, L)
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at least through its bandwidth defined by

ηi =

(

ε‖K‖
L

)
2β̄

2β̄+1

1

βi

.

This is the typical situation: the solution of the minimax problem (rate
of convergence, estimator) usually depends on the space where the minimax
risk is defined.

1.3 Adaptive point of view

In practice, this dependence can be awkward. For instance, it is difficult to
imagine that the smoothness β is exactly known. Usually, only the informa-
tion on the belonging of the nuisance parameter to some set is available.

Formally, it is supposed that κ ∈ I ⊆ J or, in other words, f belongs to
a known union of functional spaces.

Of course, we can adopt the minimax strategy: Σ(I) =
⋃

κ∈I Σ(κ) can
be viewed as a new functional space. It is clear that the minimax on Σ(I)
estimator is independent on κ. Let us note, nevertheless, that the minimax
rate on this space, in other words the accuracy of minimax estimator, is
not better than the “worse rate” sup

κ∈I Nε(κ). Therefore, if {Nε(κ)}
κ∈I

does not depend on κ, this approach seems to be reasonable. For example,
let us consider the family of anisotropic Hölder spaces H(β, L), (β, L) such
that β̄ = γ, then we have Nε(β, L) ≍ ε2γ/(2γ+1) which is independent on
β. On the other hand, in general situation, it is possible that for some κ,
Nε(κ) 9 0, ε → 0 or tends to 0 very slowly (in the previous example, it
corresponds to the small values of the anisotropic smoothness β). Therefore,
if Nε(κ) is different (in order) for different values of κ, this approach is not
satisfactory.

Thus, we still seek a single estimator, but its accuracy should depend on
the nuisance parameter κ. Evidently we would like to have an estimator
“as precise as possible” for each value of κ. It leads to the first question
arising in adaptive estimation. Does whether exist a single estimator that
attains the minimax rate of convergence Nε(κ) simultaneously on each space
Σ(κ)? Such estimator, if exists, is called optimal adaptive []. Note that the
accuracy given by this estimator cannot be improved for each value of κ.

Unfortunately, optimal adaptive estimators do not always exist (Law,
Tsybakov, Lepski). In this case we need a criterion of optimality in order
to determine “the best estimator”. To do it, we will follow the adaptive
approach which consists in the following.
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1. For any estimator f̃ε(·), we consider the family of the normalized risks
indexed by κ

R(q)
ε

[

f̃ε,Σ(κ), ψε(κ)
]

= sup
f∈Σ(κ)

Ef

[(

ψ−1
ε (κ)

∣

∣

∣
f̃ε(t) − f(t)

∣

∣

∣

)q]

, κ ∈ I,

and let the family of normalizations Ψ = (ψε(κ))
κ∈I and the estimator

fΨ
ε (·) be such that

lim sup
ε→0

sup
κ∈I

R(q)
ε

[

f̃Ψ
ε ,Σ(κ), ψε(κ)

]

< +∞. (A.U.B)

The family Ψ is called admissible.

2. We propose the criterion allowing to define the best admissible family
of normalizations Φ = (ϕε(κ))

κ∈I .

3. We construct an estimator fΦ
ε satisfying (A.U.B) with Ψ = Φ. This

estimator will be called adaptive estimator.

Remark 1. The main difficulty in realization of this program consists in
finding a suitable criterion of optimality.

• The first attempt to give a satisfactory definition was undertaken in [].
Then, it has been refined in []. In spite of the fact that these criteria can
be applied to any statistical model, both of them are too rough in order
to treat multidimensional problems. Below we present the criterion of
optimality which generalizes the previous ones.

• The existence of an optimal adaptive estimator means that (A.U.B) is
satisfied with Ψ = N , (Nε(κ))

κ∈I , i.e. N is admissible. In this case,
any optimality criterion should guarantee that this family is optimal
because it is impossible to improve Nε(κ) for all κ.

1.4 Our results

In the present paper we study two different problems of adaptive estimation
with respect to the collection of anisotropic Hölder spaces.

First, we consider the case when the nuisance parameter κ = (β, L) is
completely unknown. In this case we find the optimal family of normal-
izations (in view of new criterion of optimality) and construct the adaptive
estimator associated with this family (satisfying (A.U.B)). In particular, our
result implies
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• the optimal adaptive estimator does not exist for this estimation prob-
lem;

• the optimal family of normalization differs from the family of minimax
rates of convergence Nε(β, L), (β, L) ∈ I, by a

√

ln(1/ε)-factor that
can be viewed as the price to pay for adaptation.

In dimension 1 the similar result was obtained in [] using another criterion
of optimality. We replace it by finer criterion which is more suitable for
multidimensional case.

It is worth to mention that our adaptive procedure is quite different from
the estimator proposed in []. As in [], our estimator is a measurable choice
from the collection of the kernel estimators but the strategy of the choice is
much more sophisticated due to the dimension. Similar strategy was used
in [].

Let us also note that proposed method is absolutely parameter free, and
it is applied in the situation which we treat as “fully adaptive case”.

The results discussed above form the first part of this paper.
Next, we suppose that the following additional information is available.

The nuisance parameter κ = (β, L) is such that 1/β̄ = 1/γ where γ is given
number. Let us make several remarks:

1. In this case the minimax rate of convergence on H(β, L) does not de-
pend on β and given by ε2γ/(2γ+1). This additional information can be
treated as follows. We fix the desirable accuracy of estimation (choos-
ing parameter γ) and look for an estimator providing it for any values
of nuisance parameter (β, L). The important remark, here, is that the
estimator attaining the rate ε2γ/(2γ+1) on H(β, L) does not achieve it
on H(α, L) for all α 6= β, 1/ᾱ = 1/γ. As, minimax rates do not depend
on values of β, we can adopt the minimax strategy on the union of the
anisotropic Hölder spaces H(β, L) such that 1/β̄ = 1/γ.

We show that the minimax rate is asymptotically equivalent to

(

ε
√

ln ln(1/ε)
)2γ/(2γ+1)

and construct the minimax estimator.

2. The construction of the minimax estimator (for given γ) uses the adap-
tive estimator obtained in the first part of the paper. This estimator
could be called “partially adaptive” because the nuisance parameter
(β, L) is unknown but not completely.
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3. Note that found asymptotics differs from the minimax rate of conver-
gence on H(β, L), 1/β = 1/γ by the

√

ln ln(1/ε)-factor. It implies
immediately that optimal adaptive estimators do not exist.

4. Finally, let us note that the additional information allows to minimize
the price to pay for adaptation. As we mentioned before, this pay-
ment is

√

ln(1/ε) in the “fully adaptive case” and
√

ln ln(1/ε) in the
“partially adaptive case”.

The partially adaptive problem forms the second part of this paper.

2 Basic definitions

2.1 Definition of the optimality

2.1.1 Motivations

As we already mentioned the first problem appearing in adaptive estimation
is the existence of an optimal adaptive estimator (OAE). We will show that
OAE with respect to the family of anisotropic Hölder spaces {H(β, L)}(β,L)

does not exist. More precisely, we show that, for any estimator f̃ε there exists
a value of the nuisance parameter, (β0, L0) ∈ J:

lim sup
ε→0

sup
f∈H(β0,L0)

Ef

[(

ε
−

2β̄0
2β̄0+1

∣

∣

∣
f̃ε(t) − f(t)

∣

∣

∣

)q]

= +∞

Formally, this result means that the family of rates of convergence is not
admissible.

In general case the non existence of an OAE can be formulated as follows:
for any admissible family Ψ, there exists a nuisance parameter κ0 such that

ψε(κ0)

Nε(κ0)
−−→
ε→0

+∞. (1)

Clearly, it implies that any admissible family Ψ can be “improved”, at least,
in this point. In particular, one can use a minimax on Σ(κ0) estimator for
all values of nuisance parameter κ. This estimator, which could be very bad
for all κ 6= κ0, would outperform any estimator satisfying (AUB) with Ψ
verifying (1).

As we see, the set of points where an admissible family can be improved
is non empty. In this in mind, we will use the following principle in order to
give the notion of optimality:

the “best admissible family” of normalizations should have “small number
of points” where it can be improved.
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2.1.2 Definition

Now, let us consider a general statistical experience (V ε,Aε, {Pε
f}f∈Σ) gener-

ated by the observation X (ε), and let us suppose that Σ =
⋃

κ∈J Σ(κ) where
J ⊂ Rm (m ≥ 1).

The goal is to estimate a functional G(f) where G : Σ → (Λ, ‖ · ‖) where
(Λ, ‖ · ‖) is a Banach space.

In our particular case, let us recall that (Λ, ‖ · ‖) = (R, | · |) and G(f) =
f(t). The maximal risk of an estimator f̃ε(·) over the class Σ(κ) normalized
by ψε(κ) is defined by the formula

R(q)
ε

(

f̃ε,Σ(κ), ψε(κ)
)

= sup
f∈Σ(κ)

Ef

[(

ψ−1
ε (κ)‖G(f̃ε) −G(f)‖

)q]

.

This risk can be defined with a general loss function w satisfying usual as-
sumptions and such that w(u) → +∞, u→ +∞.

Let us introduce some definitions.
A family of normalizations Ψ = (ψε(κ))

κ∈I is called admissible if there
exists an estimator fΨ

ε such that the following inequality holds:

lim sup
ε→0

sup
κ∈I

R(q)
ε

(

fψε ,Σ(κ), ψε(κ)
)

< +∞.

For two admissible families Ψ and Ψ̃, we introduce two sets

I0(Ψ/Ψ̃) =

{

κ ∈ I :
ψε(κ)

ψ̃ε(κ)
−−→
ε→0

0

}

;

I∞(Ψ/Ψ̃) =

{

κ ∈ I :
ψε(κ)

ψ̃ε(κ)
× ψε(κ)

ψ̃ε(κ)
−−→
ε→0

+∞, ∀κ ∈ I0(Ψ/Ψ̃)

}

.

The set I0(Ψ/Ψ̃) consists of all points where Ψ is “better”, in order, than
Ψ̃. One can say that Ψ̃ is “dominated” by Ψ on I0(Ψ/Ψ̃).

On the contrary, the set I∞(Ψ/Ψ̃) consists of the points where Ψ̃ “domi-
nates” Ψ and, moreover, the loss of Ψ̃ w.r.t. Ψ on I0(Ψ/Ψ̃) is “compensated”.

Our principle of the choice between two admissible families Ψ and Ψ̃
consists in comparing of “massivities” of I0(Ψ/Ψ̃) and I∞(Ψ/Ψ̃):

Ψ̃ is “better” than Ψ if I∞(Ψ/Ψ̃) is much more “massive” than I0(Ψ/Ψ̃).

This idea leads to the following definition of an optimal family of normal-
izations.

Not to give the additional definitions, here and later, we will suppose that
I contains an open set of Rm.
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Definition 1. I) A family of normalizations Φ = (ϕε(κ))
κ∈I is called “op-

timal” if:

i) Φ is an “admissible” family.

ii) If Ψ = (ψε(κ))
κ∈I is another admissible family of normalizations we

have:

– I0(Ψ/Φ) is contained in a (m− 1)-manyfold,

– I∞(Ψ/Φ) contains an open set of Rm.

II) The estimator fΦ
ε (·) is called an adaptive estimator.

Let us comment this criterion.

Remark 2. 1. This definition is correct in the following sense:

• if Φ and Φ̃ are two optimal families, then:

ϕε(κ) ≍ ϕ̃ε(κ), ∀κ ∈ I.

• If N is an admissible family (i.e. there exists an OAE), then it
satisfies Definition 1. Indeed, in this case, I0(Ψ/N) is empty, for
any Ψ.

2. Note that we well followed our principle: the set of points where the
optimal family Φ can be improved is really “small”. Indeed the “dimen-
sion” of the set I0(Ψ/Φ) is strictly less than the dimension of I for
any Ψ.

3. Let us also note that, the non existence of OAE implies that there exists
Ψ such that I0(Ψ/Φ) 6= ∅ i.e. there exists normalization (may be not
unique) which “dominates” Φ on I0(·/Φ). Let us denote N the set of
all normaliszations dominating Φ.

The message we would like to address is that the estimator fΦ
ε (satisfy-

ing (AUB) with Φ) “outperforms” any estimator fΨ
ε satisfying (AUB)

with Ψ belonging to N.

Indeed, the estimator fΨ
ε is more precise than fΦ

ε on I0(Ψ/Φ), which,
let us remind is “very small set” for any Ψ ∈ N. The loss of fΦ

ε w.r.t.
fΨ
ε is given by

{ϕε(κ)/ψε(κ) : κ ∈ I0(Ψ/Φ)}.
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On the other hand, the estimator fΦ
ε is more precise than fΨ

ε at least
on I∞(Ψ/Φ), which, in view of Definition 1, is very large. The gain of
fΦ
ε w.r.t. fΨ

ε is given, at least, by

{ϕε(κ)/ψε(κ) : κ ∈ I∞(Ψ/Φ)}.

In view of the definition of I∞(·/Φ), we can conclude that the gain of
fΦ
ε w.r.t. fΨ

ε (for any Ψ ∈ N!), is much bigger on the larger set than
its loss on the smaller set.

2.2 Anisotropic Hölder spaces

To define the class of Hölder spaces let us introduce some notations. A
function f belongs to CD if f is from Rd to R and it is compactly supported
on D. For a such function f , i ∈ [[1; d ]] and x ∈ Rd we define:

fi(·|x) : R → R
y 7→ f(x1, . . . , xi−1 , xi + y, xi+1, . . . , xd)

Let us denote mi(β) = sup{n ∈ N;n < βi} and αi(β) = βi −mi(β).

Definition 2. Set (β, L) ∈ J. A function f ∈ CD belongs to the anisotropic
Hölder space H(β, L) if:

• The following property holds:

sup
i=1,...,n

sup
x∈Rd

mi
∑

s=0

∥

∥

∥
f

(s)
i (·|x)

∥

∥

∥

∞
≤ L,

• for all y ∈ R and all i ∈ [[1; d ]], the following inequality holds:

sup
x∈Rd

∣

∣

∣
f

(mi)
i (y|x) − f

(mi)
i (0|x)

∣

∣

∣
≤ L|y|αi,

where mi = mi(β) and αi = αi(β).

In words, on the ith direction of the canonical base of Rd the Hölder
regularity (in the classical sense) of f is (βi, L).
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3 Our goal

Here and later, we consider the “fully adaptive problem”.
Set b = (b1, . . . , bd) ∈ (R∗

+)d and l∗ > 0. Let us define, for all (β, L) such
that β̄ ≤ b̄ and L ≥ l∗, the following quantities:

ρε(β, L) =

√

1 +
4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
ln

L

‖K‖ε +
2

2b̄+ 1
ln
L

l∗

and
ϕε(β, L) = L1/(2β̄+1) (‖K‖ερε(β, L))2β̄/(2β̄+1) .

Here and later, it is assumed that ε < l∗/‖K‖. This assumption guarantees
that ρε(β, L) (which will be viewed as the price to pay for adaptation) is
greater than 1.

Let us denote Φ = (ϕε(β, L)). Our goal is to prove that Φ is the optimal
family of normalizations w.r.t our criterion and, moreover, to construct an
adaptive estimator, namely fΦ

ε (·), which satisfies (A.U.B) with Φ.

Remark 3. At point (b, l∗), it is impossible to improve ϕε since it corresponds
at the minimax rate of convergence Nε(b, l

∗). Let us also note that:

ρε(β, L) =

√

1 + 2 ln
Nε(β, L)

Nε(b, l∗)

4 Adaptive procedure

In this section, we describe the adaptive procedure. Let us recall that this
procedure is constructed by the choice (data dependent) from the collection
of† kernel estimators.

4.1 Kernels

A kernel is a function from Rd to R with some additional properties. We
will denote K the class of kernel we will use. A kernel K belongs to K if it
belongs to L1(Rd) ∩ L2(Rd) and satisfies the following properties:

∫

Rd

K(u)du = 1 (K1)

∀i ∈ [[1; d ]],

∫

Rd

|K(u)|(1 + |ui|)bidu < +∞ (K2)

10



∀i ∈ [[1; d ]],

∫

[−1,1]d
|K(u)|du > 0. (K3)

∀i ∈ [[1; d ]], ∀l ∈ [[1; bi ]],

∫

Rd

K(u)ulidu = 0. (K4)

Further, “K is a kernel” will signify “K is a kernel belonging to K”. Then
we will denote

‖K‖ =

(∫

Rd

|K(u)|2du
)1/2

.

Remark 4. Condition (K3) is a technical one. Other assumptions are clas-
sical.

4.2 Collection of kernel estimators

First, for each k ∈ Zd we define a bandwidth h(k) = (h
(k)
1 , . . . , h

(k)
d ) in the

following way. We introduce

h(b, l∗, ε) =

(‖K‖ε
l∗

)
2b̄

2b̄+1

1

bi

,

and, therefore
∀i ∈ [[1; d ]], h

(k)
i = h(b, l∗, ε)2

−(ki+1).

Then, we can introduce, for all k ∈ Zd the normalized kernel

Kk(u) =

(

d
∏

i=1

h
(k)
i

)−1

K

(

u1

h
(k)
1

, . . . ,
ud

h
(k)
d

)

,

and the associated kernel estimator:

f̂k(t) =

∫

Rd

Kk(t− u)Xε(du).

Then, let us define

Nε =

⌊

2

(

2b̄

2b̄+ 1
ln

l∗
‖K‖ε + ln

l∗

l∗

)⌋

+ 1

and

C(b) =
2b̄+ 1

2b̄
× ln 2 +

√
2 ln 2

ln 2
.
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For all n ∈ [[0;Nε ]], we consider the set

Z(n) =

{

k =∈ Zd :
d
∑

i=1

(ki + 1) = n and ∀i, |ki| ≤ C(b)n + 1

}

(2)

where k = (k1, . . . , kd). This enables us to define

Zε =
Nε
⋃

n=0

Z(n).

Finaly, we define the collection of estimators {f̂k(·)}k∈Zε.

4.3 Procedure

4.3.1 Useful notations

Set














λ∗ = min
i∈[[1;d ]]

∫

[−1,1]d
|K(u)| |ui|

bi

mi(b)!
du

λ∗ = max
i∈[[1;d ]]

∫

Rd

|K(u)|(1 + |ui|)bi

and let

C =
4

λ∗d
+ 2
√

6q + 4.

Let us define a “partial ordering” on Zε. We say that k � l if:

d
∑

i=1

(ki + 1) , |k| ≤ |l| ,

d
∑

i=1

(li + 1).

Let us also define, for all k and l in Zε, k ∧ l ∈ Zd by the formula:

k ∧ l = (k1 ∧ l1, . . . , kd ∧ ld).
The following quantities will be used throughout this paper.

σε(l) =
ε‖K‖

(

∏d
i=1 h

(l)
i

)1/2
, (3)

and
Sε(l) = σε(l)

√

1 + |l| ln 2.

Remark 5. Let us note that:

σε(l) =

√

Var
(

f̂l

)

.
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4.3.2 Adaptive estimator

Now, let us explain how the procedure chose an estimator. We introduce the
random set A of all indexes defined by:

A =
{

k ∈ Zε :
∣

∣

∣
f̂k∧l(t) − f̂l(t)

∣

∣

∣
≤ CSε(l), ∀l ∈ Zε, l � k

}

.

If A is non empty, one can chose k̂ (may be not unique) such that:

k̂ = arg min
k∈A

σε(k).

Remark that this choice of k̂ is measurable because A is a finite set (A ⊆ Zε,
Zε finite). Now, we can construct explicitly our estimator fΦ

ε in the following
way:

fΦ
ε (t) =

{

f̂k̂(t) if A 6= ∅
0 otherwise.

4.4 Comments

Let us make several comments about this procedure.

• Our procedure is quite different to that introduced in [] to solve the
similar one-dimensional problem. The main difference is connected
with the manner of choosing a random index k̂. Here, we compare
pairwise the estimators by introducing the “artificial” estimator f̂k∧l(·)
in definition of A. Then, we chose an estimator of minimal variance
estimators {f̂k}k∈A.

In dimension 1, it is useless to introduce these artificial estimators. Un-
fortunately, a such procedure is not adapted to solve multidimensional
problems (if one deals with anisotropic regularities) and fails.

• Our procedure is inspired by the method proposed in [], well adapted
to multidimensional problems. Let us mention however, that it is not
possible to use this method directly. The main difference is the choice
of set of indexes. In our case, we have to consider (it will be explained
further in this paper) indexes belonging to Zd — instead of Nd consid-
ered in []. First of all, let us remind that our set of indexes is

Zε =
Nε
⋃

n=0

Z(n) ⊆ Zd.

13



The set used in [] is Nε =
⋃

nN (n) where:

N (n) =

{

k = (k1, . . . , kd) ∈ Nd :
d
∑

i=1

(ki + 1) = n

}

.

Both procedures require the following properties of indexes:


















∞
∑

n=0

2−n#Z(n) < ∞
∞
∑

n=0

2−n#N (n) < ∞.

(4)

Second property is evidently fulfilled. The first one requires a special
construction given by (2).

Let us also note that not to pay an additional price at final point (b, l∗),
we need Z(0) is bounded independently on ε which follows immediately
from 4 otherwise we need to pay

√

1 + lnZ(0).

Remark 6. Figure 1 represents Zε in dimension 2. Here, Z(i), i = 0, 1, 2
and Z(n+ 2) are drawn.The black points belong to Zε.

4.5 Upper bound

Let us introduce some basic notations: b = (b1, . . . , bd) is a vector of positive
numbers and 0 < l∗ < l∗ < +∞ are given. Set

B =
d
∏

i=1

(0, bi] and L = [l∗, l
∗].

Moreover, for all γ ∈ (0, b̄], let us consider

B(γ) =
{

β ∈ B; 1/β̄ = 1/γ
}

.

Let us denote
J = B × L and I(γ) = B(γ) ×L.

Theorem 1. Set ε < l∗/‖K‖ and q > 0. Then

sup
(β,L)∈J

R(q)
ε

(

fΦ
ε (t), H(β, L), ϕε(β, L)

)

≤Mq

where Mq is an absolute constant which does not depend on ε. The explicit
expression of Mq = Mq(l∗, l

∗, b) is given in the proof.

Remark 7. This result implies clearly that fΦ
ε satisfies (A.U.B) with Φ but

it is stronger: in fact, we obtain a non-asymptotical upper bound for all ε
small enough.
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Figure 1: Zε.

(n, 0)

Z(n+ 2)

Z(0)

5 Optimality of Φ

5.1 Result

Theorem 2. Set ψ = (ψε(β, L))(β,L)∈J an admissible family of normaliza-
tions such that ∃β0 ∈ I0(Ψ/Φ), then:

1. I0(Ψ/Φ) ⊆ I(β̄0);

2. I∞(Ψ/Φ) ⊇ ⋃γ>β̄0
I(γ).

Remark 8. This result implies that Φ is the optimal family w.r.t to our
criterion. Indeed, dim(I(β̄0)) = d < d + 1 = dim(J) and it is clear that
⋃

γ>β̄0
I(γ) contains an open set of J.

5.2 Comments

Let us briefly discuss an interesting point which “shows” that our criterion
of optimality is well adapted to our problem. One of our idea, by introducing
this criterion, was to minimize I0(Ψ/Φ) (in term of massivity). Theorem 2
says that this set is always contained in I(γ) for a given γ. Can we improve

15



this result (by proving that I0(Ψ/Φ) is essentially smaller than I(γ))? The
answer is no!

Indeed, let us suppose that the result concerning the “partially adaptive
problem” is proved. Thus, for all 0 < γ < b̄, the minimax rate of convergence
on

F(γ) =
⋃

(β,L)∈I(γ)

H(β, L)

is given by

φε(γ) ≍
(

ε

√

ln ln
1

ε

)
2γ

2γ+1

.

It is evident that any estimator which achieves this rate on F(γ) outper-
form fΦ

ε at least on I(γ). The loss is about:

(

ln 1/ε

ln ln 1/ε

)
γ

2γ+1

Combining this result with Theorem 2, we obtain

I0(Ψ
γ/Φ) = I(γ).

where Ψγ = (ψγε (β, L))(β,L) is defined by

ψγε (β, L) =

{

φε(γ) if β̄ = γ
1 otherwise.

6 Proof of theorem 1

6.1 Introduction

Let us explain, briefly, the main ideas to prove our result.
First, let us suppose that the smoothness parameter (β, L) of the signal

(to be estimated) is well known. Thus, it is easy to construct an estimator
(depending on (β, L)) witch achieves the expected rate ϕε(β, L).

To do that, we have to chose h̃(β, L, ε) = (h̃1(β, L, ε), . . . , h̃d(β, L, ε))
(bandwidth of this estimator) on the following way:

h̃i(β, L, ε) = γi(β)

(‖K‖Γ(β)

2L
ερε(β, L)

)
2β̄

2β̄+1

1

βi

, ∀i,

16



where














γi(β) = (λi(β)βi)
−1/βi

Γ(β) =

(

d
∏

i=1

γi(β)

)−1/2

.

This formula is obtained as the solution of the following minimization
problem:

h̃(β, L, ε) = arg min
h∈H

(

bβ,L + sβ,Lε
)

(h) (5)

where

bβ,L(h) = L
d
∑

i=1

λi(β)hβi

i

is a bias term and

sβ,Lε (h) =
‖K‖ε

√

∏d
i=1 hi

ρε(β, L)

can be viewed as a penalized standard deviation term.

Remark 9. Using these notations we obtain

bβ,L(h̃(β, L, ε)) ≍ sβ,Lε (h̃(β, L, ε)) ≍ ϕε(β, L), ∀(β, L).

Next, if (β, L) is unknown, we want that our procedure choses a kernel
estimator as good as the optimal one, constructed using bandwidth h̃(β, L, ε).
In order to do that, our procedure compare a large number of estimators. In
particular, for each (β, L) ∈ J, the estimator constructed using bandwidth
h̃(β, L, ε) should be “viewed” by the procedure. This implies that set Zε is
large enough.

6.2 Lemmas

Here, we give some lemmas witch will be proved in Appendix. They are used
further in the proof.

Lemma 1. Set (β, L).
Bandwidth h̃(β, L, ε) is the unique bandwidth η̃ such that:

η̃ = arg min
h∈H

(

bβ,L + sβ,Lε
)

(h).

17



For simplicity, let us denote h(β, L, ε) = (h1(β, L, ε), . . . , hd(β, L, ε)) de-
fined by:

hi(β, L, ε) =

(‖K‖
L

ερε(β, L)

)
2β̄

2β̄+1

1

βi

.

It is clear that, the estimator defined using bandwidth h(β, L, ε) is asymp-
toticaly as good as the estimator defined using bandwidth h̃(β, L, ε). Indeed,
for all (β, L) we have:

hi(β, L, ε) ≍ h̃i(β, L, ε), ∀i.

Now, let us consider

ki(β, L, ε) =

⌊

1

ln 2
ln

(

h∗i (ε)

hi(β, L, ε)

)⌋

where ⌊x⌋ = sup{n ∈ N : n ≤ x}. And let us consider the index k(β, L, ε) =
(k1(β, L, ε), . . . , kd(β, L, ε)) in Zd.

It is easy to see that the estimator defined by the bandwidth h(k(β,L,ε))

is asymptoticaly as good as the estimator defined by h(β, L, ε) and, thus, as
good as that one defined by h̃(β, L, ε).

Lemma 2. Set (β, L). Index k(β, L, ε) belongs to Zε.

Remark 10. Set Zε was constructed such that this lemma is satisfied and
moreover such that inequality (4) holds.

Let us give an improtant lemma concerning the canonical decomposition
of the estimator f̂k.

Lemma 3. Let us fix f ∈ ⋃(β,L)∈B×I H(β, L), and let us calculate under the
law Pf . We have, for k ∈ Zε:

f̂k(t) = f(t) + bk(t) + σε(k)ξ(k),

where:


























bk(t) =

∫

Rd

K(u)
(

f(t− h(k).u) − f(t)
)

du

σε(k) =
‖K‖ε

(

∏d
i=1 h

∗
i (ε)

)1/2
2

|k|
2

ξ(k) ∼ N (0, 1),

where h.u denotes the following vector: (h1u1, . . . , hdud). Moreover, let us
remark that, if k � l, then σε(k) ≤ σε(l).
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Now, let us give the most important lemma about the control of bias
terms. More precisely:

Lemma 4. Set (β, L) ∈ B × I and f ∈ H(β, L). Under Pf we have:

∀k ∈ Zε, |bk(t)| ≤ Bβ,L(k)

and
∀(k, l) ∈ Z2

ε , |bk∧l(t) − bl(t)| ≤ 2Bβ,L(k),

where Bβ,L(k) = bβ,L(h(k)).

Now, let us give a lemma concerning the link beetwen the bias and the
penalized standard deviation of the estiamtor f̂k(β,L,ε). First of all let us recall
that Sε(k) was define by equation (3).

Lemma 5. For all (β, L) ∈ B × I we have:

Bβ,L(k(β, L, ε)) ≤ C∗Sε(k(β, L, ε)),

where C∗ = (dλ∗)
√

2 ∨ (b̄+ 1)/b̄.

Finally, let us give a lemma which explain a link beetwen Sε(k(β, L, ε))
and the rate of convergence ϕε(β, L). It is very important, because this
lemma proves that it is enough to control (up to a constant) the quality of
the estimator fΦ

ε by Sε(k(β, L, ε)).

Lemma 6. For all (β, L) ∈ B × I, we have:

Sε(k(β, L, ε)) ≤ ϕε(β, L).

Lemma 3 is evident. All the others will be proved in Apendix.

6.3 Proof

Let us consider ε < l∗/‖K‖ and q > 0.
We want to prove that

sup
(β,L)∈J

sup
f∈H(β,L)

Ef

[(

ϕ−1
ε (β, L)

∣

∣fΦ
ε (t) − f(t)

∣

∣

)q]
< +∞.

Thus, we fix (β, L) ∈ J and f ∈ H(β, L). Let us denote κ = k(β, L, ε). Let us
recall that k(β, L, ε) is the index correponding to the bandwidth h(β, L, ε).

Now, we have to distinguish two cases: First A is empty. Next, it is non
empty.
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A) A is non empty

In this case, the procedure chose an index k̂. Main idea is the following: we
have to compare f̂k̂ and f̂κ. To do that, let us introduce the following sets,
for all s ∈ N:

{

B1(s) = {k ∈ Zε : |k| ≤ |κ| + sd}
B2(s) = {k ∈ Zε : |k| > |κ| + (s− 1)d}

Using these notations we obtain:

Zε = B1(0) ∪
(

⋃

s≥1

B1(s) ∩ B2(s)

)

.

Thus, we have:

Ef

[(∣

∣fΦ
ε (t) − f(t)

∣

∣

)q] ≤ Ef

[∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣

q

1{k̂∈B1(0)}

]

+
∑

s≥1

Ef

[∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣

q

1{k̂∈B1(s)}1{k̂∈B2(s)}

]

≤ R(0, q) +
∑

s≥1

√

R(s, 2q)D(s),

where






R(s, p) = Ef

[∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣

p

1{k̂∈B1(s)}

]

D(s) = Pf

[

k̂ ∈ B2(s)
]

.

Thus we have to control these quantities.
Control of D(s). Let us denote κ(s) = (κ1 + s, . . . , κd + s) and let us
consider smax = max{s ∈ N : B2(s) 6= ∅}. Clearly smax ≤ Nε + 1. Thus
we have D(s) = 0 for any s > smax. Let us consider s ≤ smax. It is easy to
see that k̂ ∈ B2(s) ⇒ κ(s − 1) /∈ A. Thus, if k̂ ∈ B2(s), then there exists
l ∈ Zε, l � κ(s− 1), such that

∣

∣

∣
f̂κ(s−1)∧l(t) − f̂l(t)

∣

∣

∣
> CSε(l).

Let us denote

Dl(s) = Pf

[∣

∣

∣
f̂κ(s−1)∧l(t) − f̂l(t)

∣

∣

∣
> CSε(l)

]

.

Using this notation it follows:

D(s) ≤
∑

l∈Zε,l�κ(s−1)

Dl(s).

20



Now, we have to control Dl(s). Set l � κ(s−1). We have, using lemmas (3),
(4) and (5):

Dl(s) ≤ Pf
[

|bκ(s−1)∧l(t) − bl(t)|
+σε(κ(s− 1) ∧ l)|ξ(κ(s− 1) ∧ l)|
+σε(l)|ξ(l)| > CSε(l)

]

≤ Pf
[

2Bβ,L(κ(s− 1))

+σε(κ(s− 1) ∧ l)|ξ(κ(s− 1) ∧ l)|
+σε(l)|ξ(l)| > CSε(l)

]

≤ Pf
[

2C∗Sε(κ(s− 1))

+σε(κ(s− 1) ∧ l)|ξ(κ(s− 1) ∧ l)|
+σε(l)|ξ(l)| > CSε(l)

]

.

Using lemma (3), it follows

Dl(s) ≤ Pf

[

|ξ(κ(s− 1) ∧ l)| + |ξ(l)| > (C − 2C∗)
√

1 + |l| ln 2
]

≤ 2P

[

|N (0, 1)| > C − 2C∗

2

√

1 + |l| ln 2

]

≤ 2−C̃|l|+1,

where C̃ = (C − 2C∗)2/8. Thus,

D(s) ≤ 2
∑

l∈Zε,l�κ(s−1)

2−C̃|l|. (6)

Control of R(s, p). Let us recall that

R(s, p) = Ef

[∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣

p

1{k̂∈B1(s)}

]

.

The main idea is to decompose
∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣

by introducing f̂κ(s)(t). In order to do that, we have to introduce f̂k̂∧κ(s)(t).
Let us write:

∣

∣

∣
f̂k̂(t) − f(t)

∣

∣

∣
≤

∣

∣

∣
f̂k̂(t) − f̂k̂∧κ(s)(t)

∣

∣

∣

+
∣

∣

∣
f̂k̂∧κ(s)(t) − f̂κ(s)(t)

∣

∣

∣

+
∣

∣

∣
f̂κ(s)(t) − f(t)

∣

∣

∣
.
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It is easy to prove that, if s ≤ smax then κ(s) belongs to Zε. This is a
very important point. We will consider only s ≤ smax. Let us recall that, if
s > smax then D(s) = 0.

Let us denote:










I1 = |f̂k̂(t) − f̂k̂∧κ(s)(t)|1{k̂∈B1(s)}

I2 = |f̂k̂∧κ(s)(t) − f̂κ(s)(t)|1{k̂∈B1(s)}

I3 = |f̂κ(s)(t) − f(t)|1{k̂∈B1(s)}.

We have:
R(s, p) ≤

(

3p−1 ∨ 1
)

(Ef [I
p
1 ] + Ef [I

p
2 ] + Ef [I

p
3 ]) .

a) Let us control Ef [I
p
3 ]. Using lemmas (3), (4) and (5), we have:

Ef [I
p
3 ] = Ef

[

|f̂κ(s)(t) − f(t)|1{k̂∈B1(s)}

]

≤ Ef

[

(

|bκ(s)(t)| + σε(κ(s))|ξ(κ(s))|
)p

1{k̂∈B1(s)}

]

≤ Ef

[

(

Bβ,L(κ(s)) + σε(κ(s))|ξ(κ(s))|
)p

1{k̂∈B1(s)}

]

≤ Ef

[

(C∗Sε(κ(s)) + σε(κ(s))|ξ(κ(s))|)p 1{k̂∈B1(s)}

]

.

Thus, we obtain:

Ef [I
p
3 ] ≤

(

2p−1 ∨ 1
)

(C∗)pSpε (κ(s))

+
(

2p−1 ∨ 1
)

Ef

[

(σε(κ(s))|ξ(κ(s))|)p 1{k̂∈B1(s)}

]

. (7)

b) Let us control Ef [I
p
2 ]. First, let us remark that:

• k̂ belongs to A. By definition of k̂.

• |κ(s)| ≥ |k̂|. Because k̂ belongs to B1(s).

• κ(s) belongs to Zε. Thanks to lemma ??.

Thus, the construction of our procedure implies that

Ef [I
p
2 ] ≤ CpSpε (κ(s)). (8)

c) Let us control Ef [I
p
1 ]. Using lemmas 3, 4 and 5, it is easy to see that:

I1 ≤ 2C∗Sε(κ(s))1{k̂∈B1(s)}

+σε(k̂)|ξ(k̂)|1{k̂∈B1(s)}

+σε(k̂ ∧ κ(s))|ξ(k̂ ∧ κ(s))|1{k̂∈B1(s)}.
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Thus, we obtain:

Ef [I
p
1 ] ≤

(

3p−1 ∨ 1
)

(2C∗)pSpε (κ(s))

+
(

3p−1 ∨ 1
)

Ef

[(

σε(k̂)|ξ(k̂)|
)p

1{k̂∈B1(s)}

]

+
(

3p−1 ∨ 1
)

Ef

[(

σε(k̂ ∧ κ(s))|ξ(k̂ ∧ κ(s))|
)p

1{k̂∈B1(s)}

]

(9)

Using inequalities (7)–(8)–(9), we obtain:

R(s, p) ≤
(

(

2p−1 ∨ 1
)

(C∗)p + Cp +
(

3p−1 ∨ 1
)

(2C∗)p
)

Spε (κ(s))

+
(

2p−1 ∨ 1
)

Ef

[

(σε(κ(s))|ξ(κ(s))|)p 1{k̂∈B1(s)}

]

+
(

3p−1 ∨ 1
)

Ef

[(

σε(k̂)|ξ(k̂)|
)p

1{k̂∈B1(s)}

]

+
(

3p−1 ∨ 1
)

Ef

[(

σε(k̂ ∧ κ(s))|ξ(k̂ ∧ κ(s))|
)p

1{k̂∈B1(s)}

]

(10)

Thus, we have to control the expectations in the last inequality.
It is easy to control the first one:

Ef

[

(σε(κ(s))|ξ(κ(s))|)p 1{k̂∈B1(s)}

]

≤ σε(κ(s))E [|N (0, 1)|p] .

Now, let us explain how to control the others. Let us denote k̃ = k̂ ∧ κ(s)
and

Λk =
{

|ξ(k ∧ κ(s))| > 2
√

1 + |k| ln 2
}

.

Now, let us calculate:

(∗) = Ef

[(

σε(k̂ ∧ κ(s))|ξ(k̂ ∧ κ(s))|
)p

1{k̂∈B1(s)}

]

= Ef

[(

σε(k̃)|ξ(k̃)|
)p

1{k̂∈B1(s)}

(

1{Λ
k̂
} + 1{Λc

k̂
}

)]

≤ Ef

[(

σε(k̃)|ξ(k̃)|
)p

1{k̂∈B1(s)}1{Λ
k̂
}

]

+Ef

[(

2σε(k̃)

√

1 + |k̂| ln 2

)p

1{k̂∈B1(s)}

]

≤ σpε(κ(s))Ef

[

|ξ(k̃)|p1{Λ
k̂
}

]

+ (2Sε(κ(s)))
p .

Let us denote ml = E
[

|N (0, 1)|l
]

. We obtain:

(∗) ≤ σpε(κ(s))m
1/2
2p Pf [Λk̂] + (2Sε(κ(s)))

p .
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Moreover we have:

Pf [Λk̂] ≤ Pf

[

⋃

k∈Zε

Λk

]

≤
∑

k∈Zε

2−|k|

≤
∞
∑

n=0

∑

k∈Zn

2−n

≤
∞
∑

n=0

(#Zn)2
−n < +∞.

Let us denote |Z| =
∑∞

n=0(#Z(n))2−n. We obtain:

(∗) ≤ σpε (κ(s))m
1/2
2p |Z| + (2Sε(κ(s)))

p ≤
(

2p +m
1/2
2p |Z|

)

Spε (κ(s)).

It is not difficult to obtain a similar result for the last expectation:

Ef

[(

σε(k̂)|ξ(k̂)|
)p

1{k̂∈B1(s)}

]

≤
(

2p +m
1/2
2p |Z|

)

Spε (κ(s)).

Finaly, using (10) and the control of the expaectations we obtain:

R(s, p) ≤ CpS
p
ε (κ(s)) (11)

where Cp is a constant depending only on p and |Z|.
Back to our problem. Now, we can conclude. Let us recall that:

(∗∗) = Ef

[(∣

∣fΦ
ε (t) − f(t)

∣

∣

)q] ≤ R(0, q) +
∑

s≥1

√

R(s, 2q)D(s).

Thus, we obtain — using (6) and (11):

(∗∗) ≤ CqS
q
ε (κ) + (2C2q)

1/2
∑

s≥1

√

S2q
ε (κ(s))

∑

l∈Zε,l�κ(s−1)

2−C̃|l|.

Let us recall that C̃ = 3q + 2 and that:

Sε(κ(s)) = Sε(0)2|κ(s)|
√

1 + |κ(s)| ln 2.

Thus:

S2q
ε (κ(s))2−3q|κ(s−1)| ≤ S2q

ε (0)22q|κ(s)|(1 + |κ(s)| ln 2)q2−3q|κ(s)|

≤ S2q
ε (0)22q(|κ(s)|−|κ(s−1)|)

(

1 + |κ(s)| ln 2

2|κ(s−1)|

)q

≤ 3dqS2q
ε (0).
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Now, it is easy to see that (we do not recall that l ∈ Zε):

(∗∗) ≤ CqS
q
ε (κ) + (3dq2C2q)

1/2Sqε (0)
∑

s≥1

√

∑

l�κ(s−1)

2−3q(|l|−|κ(s−1))−2|l|

≤ CqS
q
ε (κ) + (3dq2C2q)

1/2Sqε (0)
∑

s≥1

√

∑

l�κ(s−1)

2−2|l|

≤ CqS
q
ε (κ) + (3dq2C2q)

1/2Sqε (0)
∑

s≥1

∑

l�κ(s−1)

2−|l|

Now, we have to prove that:
∑

s≥1

∑

l�κ(s−1)

2−|l| < +∞.

Let us calculate:
∑

s≥1

∑

l�κ(s−1)

2−|l| =
∑

s≥0

∑

n≥|κ(s)|

(#Z(n)) 2−n

=
∑

s≥0

∑

n≥s

(#Z(n)) 2−n

=
∑

n≥0

∑

s≤n

(#Z(n)) 2−n

=
∑

n≥0

n(n+ 1)

2
(#Z(n)) 2−n < +∞.

Let us denote ‖Z‖ this constant. Finaly, if we remeber that κ = k(β, L, ε)
and that Sε(0) ≤ Sε(κ), we obtain the following result:

Ef

[(∣

∣fΦ
ε (t) − f(t)

∣

∣

)q] ≤
(

Cq + (3dq2C2q)
1/2‖Z‖

)

Sε(k(β, L, ε)).

As Sε(k(β, L, ε)) = ϕε(β, L), result follows.

B) A is empty

This case is simpler. We have to control:

Ef

[

|f(t)|q1{A=∅}

]

≤ LqPf [A = ∅] .

Moreover, we can assume that there exist s ∈ N such that κ(s) = Nε and
κ(s) ∈ Zε. The fact that A is empty implies that κ(s) is not in A, thus:

Pf [A = ∅] ≤ Pf [κ(s) /∈ A] .
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The same quantity was controlled by formula (6). Then, it is easy to obtain
that:

Pf [A = ∅] ≤
(

∑

n≥0

(#Z2n) 2−C̃n+1

)

2−C̃|κ(s)|.

The last thing we have to observe is that 2−C̃|κ(s)| ≤ Sε(κ).

7 Proof of theorem 2

Let us consider another admissible family Ψ = {ψε(β, L)}(β,L)∈B×I and fΨ
ε

an estimator satisfying (A.U.B) with Ψ.
To prove that Φ is the adaptive rate, it is enough to prove the following

assertion:

Lemma 7. Set α = (α1, . . . , αd) ∈ B and β = (β1, . . . , βd) ∈ B such that
ᾱ < β̄. Set Lα and Lβ in I. If

ψε(α, Lα)

ϕε(α, Lα)
−−→
ε→0

0,

then,
ψε(β, Lβ)

ϕε(β, Lβ)
× ψε(α, Lα)

ϕε(α, Lα)
−−→
ε→0

+∞.

Indeed, let us remark, first, that we cannot improve ϕε(b, L) because it is
the minimax rate of convergence on H(b, L) for all L.

Next, let us suppose that there exists (β0, L0) such that ψε(β0, L0) im-
proves ϕε(β0, L0). Using the previous lemma, it is easy to sea that I0(Ψ/Φ) ⊂
B(β̄0) × I. Indeed, let us suppose that there exists (β1, L1) such that
ψε(β1, L1) improves ϕε(β1, L1) and β̄1 < β̄0 then we obtain:

ψε(β1, Lβ1
)

ϕε(β1, Lβ1
)
× ψε(β0, Lβ0

)

ϕε(β0, Lβ0
)
−−→
ε→0

+∞.

In particular ψε(β0, Lβ0
)/ϕε(β0, Lβ0

) tends to +∞ which it is impossible.
On the other hand, it is easy to sea that

⋃

γ>β0
B(γ) × I ⊂ I∞(Ψ/Φ).

Lemma 7 is a corrolary of the following proposition:

Proposition 1. Set (α, β) ∈ B2 such that ᾱ < β̄ and (Lα, Lβ) ∈ I2. Let
us define, for any estimator f̃ε(·) which satisfies (A.U.B.) with Ψ and for all
ν < 2(β̄ − ᾱ)/((2ᾱ+ 1)(2β̄ + 1)) the following quantiy:

R(q)
ε (f̃ε) = sup

f∈H(α,Lα)

Ef

[(

ϕ−1
ε (α, Lα)|f̃ε(t) − f(t)|

)q]

+ sup
f∈H(β,Lβ)

Ef

[(

ενϕ−1
ε (β, Lβ)|f̃ε(t) − f(t)|

)q]

.
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If ψε(α, Lα)/ϕε(α, Lα) tends to 0 as ε→ 0, then, we have:

lim inf
ε→0

R(q)
ε (f̃ε) > 0.

Proof. As ψε(δ, Lδ) and ϕε(δ, Lδ) do not depend, in order, on Lδ (δ ∈
{α, β}), we will denote, for simplicity:

ψε(δ) , ψε(δ, Lδ) and ϕε(δ) ,

(

ε
√

ln 1/ε
)

2δ̄
2δ̄+1

.

Set κ a positive parameter to be chosen. We consider hi = hi(ε) defined by
the formula

hi =
(

κε
√

ln ε−1
)

2ᾱ
2ᾱ+1

1

αi ,

and we consider the two following functions:

{

f0 = 0

f1(x) = Lακ

2ᾱ
2ᾱ+1ϕε(α)f

(

x1−t1
h1

, . . . , xd−td
hd

)

where f belongs to H(α, 1). Hence f1 belongs to H(α, Lα) and, if E0 and E1

denote respectively Ef0 and Ef1, we have:

R(q)
ε (f̃ε) ≥ E0

∣

∣

∣
ενϕ−1

ε (β)f̃ε(t)
∣

∣

∣

q

+ E1

∣

∣

∣
ϕ−1
ε (α)(f̃ε(t) − f1(t))

∣

∣

∣

q

≥ E0

∣

∣

∣
ενϕ−1

ε (β)f̃ε(t)
∣

∣

∣

q

+ E1

∣

∣

∣
ϕ−1
ε (α)f̃ε(t) − z

∣

∣

∣

q

,

where z denote Lκ

2ᾱ
2ᾱ+1f(0). For simplicity, we consider the following nota-

tions:

λε = εν
ϕε(α)

ϕε(β)
= εν

(

ε

√

ln
1

ε

)−̺

where ̺ =
2(β̄ − ᾱ)

(2β̄ + 1)(2ᾱ + 1)
.

and
θ̃ = ϕ−1

ε (α)|f̃ε(t)|.
Thus, we have:

R(q)
ε (f̃ε) ≥ E0

∣

∣

∣
λεθ̃
∣

∣

∣

q

+ E1

∣

∣

∣
θ̃ − z

∣

∣

∣

q

By changing the probability measure, we obtain:

R(q)
ε (f̃ε) ≥ E1

[∣

∣

∣
λεθ̃
∣

∣

∣

q

Zε +
∣

∣

∣
θ̃ − z

∣

∣

∣

q]

27



where Zε denotes the classical likelyhood ratio:

Zε =
dP0

dP1

(X (ε)).

Now, consider the following event for δ > 0:

Λ =
{

|θ̃| > δ
}

Clearly, if δ is small enough:

R(q)
ε (f̃ε) ≥ E1

[

(δλε)
qZε1{Λ} + (z − δ)q1{Λc}

]

.

But,

Zε = exp

(

−1

ε

∫

Rd

f1(u)dW (u)− 1

2ε2
‖f1‖2

)

= exp

(

−‖f1‖
ε
ξ − 1

2

(‖f1‖
ε

)2
)

,

where ξ ∼ N (0, 1). Hence, if the event

Λa = {|ξ| ≤ a}

occurs, we can deduce that:

Zε ≥ exp

(

−‖f1‖
ε

a− 1

2

‖f1‖2

ε2

)

≥ exp

(

−1

2

(‖f1‖
ε

+ a

)2
)

Then, we have:

R(q)
ε (f̃ε) ≥ E1

[

(δλε)
qZε1{Λ∩Λa} + (z − δ)q1{Λc}

]

≥ E1

[

(δλε)
q exp

(

−1

2

(‖f1‖
ε

+ a

)2
)

1{Λ∩Λa} + (z − δ)q1{Λc}

]

.

Let us remark that:
‖f1‖
ε

= Lκ‖f‖
√

ln
1

ε
.

If we chose

a = Lκ‖f‖
√

ln
1

ε
∧ 1,
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then we obtain:

R(q)
ε (f̃ε) ≥ E1

[

(δλε)
q exp

(

−
(‖f1‖

ε

)2
)

1{Λ∩Λa} + (z − δ)q1{Λc}

]

≥ E1

[

(δλε)
qε(Lακ‖f‖)21{Λ∩Λa} + (z − δ)q1{Λc}

]

≥ E1

[

(δηε)
qεq(ν−̺)+(Lακ‖f‖)21{Λ∩Λa} + (z − δ)q1{Λc}

]

,

where ηε =
(

ln 1
ε

)−̺/2
.

Let us introduce

tε =
q

ln 1
ε

(

ln
1

δηε
+ lnALαf(0)

)

→ 0,

where

A =

(

√

q(̺− ν)

Lα‖f‖

) 2ᾱ
2ᾱ+1

,

and let us chose:

κ =

√

q(̺− ν) − tε
Lα‖f‖

.

Using this choice of κ, we obtain that:

(Lακ‖f‖)2 = q̺− tε and (δηε)
qε−q̺+(Lακ‖f‖) = (ALαf(0))q

Thus, we obtain:

R(q)
ε (f̃ε) ≥ E1

[

(ALαf(0))q1{Λ∩Λa} + (κ
2ᾱ

2ᾱ+1Lαf(0) − δ)q1{Λc}

]

> E1

[

(κ
2ᾱ

2ᾱ+1Lαf(0) − δ)q
(

1{Λ+Λc}

)

1{Λa}

]

≥ (κ
2ᾱ

2ᾱ+1Lαf(0) − δ)qP1 [Λa]

≥ (κ
2ᾱ

2ᾱ+1Lαf(0) − δ)qP [|ξ| ≥ 1] .

And, then:

lim inf
ε→0

R(q)
ε (f̃ε) ≥

(

L
1

2ᾱ+1

α
f(0)

‖f‖ 2ᾱ
2ᾱ+1

(q(̺− ν))
ᾱ

2ᾱ+1

)q

P [|ξ| ≥ 1] > 0.

Proposition is proved.
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A Proof of lemma 1

Let us denote H = (R∗
+)d and ∂H = {h ∈ (R∗

+)d; ∃i ∈ [[1; d ]]hi = 0} ∪ {∞}.
Let us recall that ϕβ,Lε = bβ,L + sβ,Lε . It is easy to prove the following

assertion:
ϕβ,Lε (h) −−−−→

h→∂H
+∞.

Thus, it is enough, to prove Lemma, to prove that h(β, L, ε) is the unique
point of H such that ∇ϕβ,Lε = 0. Let us fix i ∈ [[1; d ]], and let us calculate:

∂iϕ
β,L
ε (h) = Lβiλi(β)hβi−1

i − ‖K‖ε

2
(

∏d
j=1 hj

)
1

2

1

hi
ρε(β, L).

To simplify notations, as β and L are fixed, we will denote λi instead of
λi(β). It follows that:

∂iϕ
β,L
ε (h) = 0 ⇔ hβi

i = (λiβi)
−1 ‖K‖

2L

ερε(β, L)
(

∏d
j=1 hj

)
1

2

.

It is easy to deduce, from the previous equality, the following expression for
hi:

hi = (λiβi)
−1

βi







‖K‖
2L

ερε(β, L)
(

∏d
j=1 hj

)
1

2







1

βi

.

A simple computation prove that:

(

d
∏

i=1

hi

)
1

2

=

(

d
∏

i=1

(λiβi)
−1

βi

)

β̄

2β̄+1 (‖K‖
2L

ερε(β, L)

) 1

2β̄+1

.

The follwing equality follows easily from previous equalities:

hi = γi

(‖K‖Γ
2L

ερε(β, L)

)
2β̄

2β̄+1

1

βi

where






γi = (λiβi)
−1

βi

Γ =
(

∏d
i=1 γi

)
1

2

.

Conversely, it is easy to proved that h ∈ H given by the previous formulas
is such that ∇ϕβ,Lε (h) = 0. This result implies that the problem is solved.
Lemma is proved.
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B Proof of lemma 2

This lemma is the most technical one. It will be proved in two steps.

Step 1. Set (β, L) ∈ B × I. We have:

0 ≤
d
∑

i=1

(ki(β, L, ε) + 1) ≤ Nε

where Nε is defined by:
⌊

2

(

2b̄

2b̄+ 1
ln

l∗
‖K‖ε + ln

l∗

l∗

)⌋

+ 1.

Proof. Let us denote

xε(β, L) =
4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
ln

L

‖K‖ε +
2

2b̄+ 1
ln
L

l∗

=
4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
ln

l∗
‖K‖ε +

2

2β̄ + 1
ln
L

l∗
.

Using this notation, it is easy to proof that

ln

d
∏

i=1

h∗i (ε)

hi(β, L, ε)
= xε(β, L) − 1

2β̄ + 1
ln(1 + xε(β, L)).

Moreover,

1

2β̄ + 1
ln(1 + xε(β, L)) ≤ ln(1 + xε(β, L)) ≤ xε(β, L),

thus

ln
d
∏

i=1

h∗i (ε)

hi(β, L, ε)
≥ 0.

This result implies that:

d
∑

i=1

(ki(β, L, ε) + 1) ≥ 0.

On the other hand,

ln

d
∏

i=1

h∗i (ε)

hi(β, L, ε)
≤ xε(β, L)

=
4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
ln

l∗
‖K‖ε +

2

2β̄ + 1
ln
L

l∗

≤ 4b̄

2b̄+ 1
ln

l∗
‖K‖ε + 2 ln

l∗

l∗
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Step 2. Set (β, L) ∈ B×I and let us denote n =
∑

i(ki(β, L, ε)+ 1). Then,
for all i ∈ [[1; d ]], we have:

|ki(β, L, ε)| ≤
(

2b̄+ 1

2b̄
× ln(1 + δ) +

√

2 ln(1 + δ)

ln(1 + δ)

)

n+ 1.

Proof. In this case, we can write

n ln(2) ≥ ln

d
∏

i=1

h∗i (ε)

hi(β, L, ε)

= xε(β, L) − 1

2β̄ + 1
ln(1 + xε(β, L)).

Thus, we have:
xε(β, L) ≤ n ln(2) + ln(1 + xε(β, L)).

Now, let us remark that, if x is such that x ≤ A + ln(1 + x) for a given
constant A > 0, then x ≤ A+

√
2A. Thus, we have

xε(β, L) ≤ n ln(2) +
√

2n ln(2)

≤ n
(

ln(2) +
√

2 ln(2)
)

.

Now, let us write

ln
h∗i (ε)

hi(β, L, ε)
=

(

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi

)

ln
l∗

‖K‖ε

+
2β̄

2β̄ + 1

1

βi
ln
L

l∗

− β̄

2β̄ + 1

1

βi
ln(1 + xε(β, L)).

Let us estimate this quatity.
Upper bound. First, using the fact that β̄ ≤ βi for all i, we obtain:

ln
h∗i (ε)

hi(β, L, ε)
≤

(

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi

)

ln
l∗

‖K‖ε +
2

2β̄ + 1
ln
L

l∗
.

On the other hand, it is easy to prove that:

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi
≤ 2b̄+ 1

2b̄

4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
.
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Indeed, let us write:

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi
=

2β̄

2β̄ + 1

(

1

βi
− 1

bi

)

− 1

bi

(

2b̄

2b̄+ 1
− 2β̄

2β̄ + 1

)

≤ 2β̄

2β̄ + 1

(

1

βi
− 1

bi

)

≤ 2β̄

2β̄ + 1

(

1

β̄
− 1

b̄

)

≤ 2β̄

2β̄ + 1

b̄− β̄

b̄β̄

=
2b̄+ 1

2b̄

4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
.

Finally, we obtain:

ln
h∗i (ε)

hi(β, L, ε)
≤ 2b̄+ 1

2b̄
xε(β, L),

and thus

ki(β, L, ε) ≤ 1

ln(2)
ln

h∗i (ε)

hi(β, L, ε)

≤ 2b̄+ 1

2b̄
× xε(β, L)

ln(2)

≤
(

2b̄+ 1

2b̄
× ln(2) +

√

2 ln(2)

ln(2)

)

n.

Lower bound. First, let us supose that the following fact is proved:

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi
≥ − 1

2b̄

4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
. (12)

Then, we obtain

ln
h∗i (ε)

hi(β, L, ε)
≥ − 1

2b̄

4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)
ln

l∗
‖K‖ε −

β̄

2β̄ + 1

1

βi
ln(1 + xε(β, L)).

Using the inequality xε(β, L) ≥ ln l∗/‖K‖ε, it follows

ln
h∗i (ε)

hi(β, L, ε)
≥ − 1

2b̄

(

xε(β, L) +
2β̄

2β̄ + 1

b̄

βi
ln(1 + xε(β, L))

)

.
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And, then

ln
h∗i (ε)

hi(β, L, ε)
≥ −2b̄+ 1

2b̄
xε(β, L).

Finally:

ki(β, L, ε) + 1 ≥ 1

ln(2)
ln

h∗i (ε)

hi(β, L, ε)

≥ −
(

2b̄+ 1

2b̄
× ln(2) +

√

2 ln(2)

ln(2)

)

n.

To end the proof of this lema, we have to prove inequality (12) i.e.

(∗) =

(

2β̄

2β̄ + 1

1

βi
− 2b̄

2b̄+ 1

1

bi

)

/

(

4(b̄− β̄)

(2b̄+ 1)(2β̄ + 1)

)

≥ − 1

2b̄
.

But,

(∗) =
2β̄(2b̄+ 1)bi − 2b̄(2β̄ + 1)βi

4biβi(b̄− β̄)

=
2β̄(2b̄+ 1)(bi − βi) − 2βi(b̄− β̄)

4biβi(b̄− β̄)

≥ − 1

2bi
.

C Proof of lemma 4

Let us introduce a new notation. For all i ∈ [[1; d ]], x and y in Rd, let us
denote:

[x, y](i) = (x1, . . . , xi−1, 0, yi+1, . . . , yd).

Let us fix k and l in Zε. We are interrested in the following quatity:

bk∧l(t) − bl(t) =

∫

Rd

K(u)
(

f(t− h(k∧l).u) − f(t− h(l).u)
)

du.

Let us consider the set J ⊂ [[1; d ]] defined by:

J =
{

i ∈ [[1; d ]]; h
(k)
i > h

(l)
i

}

.

If i ∈ Jc then h
(k∧l)
i = h

(l)
i . Thus, we denote:

ηi =

{

h
(k∧l)
i = h

(l)
i if i ∈ Jc

0 if i ∈ J.
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Using these notations, we obtain:

bk∧l(t) − bl(t) =

∫

Rd

K(u)
(

f(t− h(k∧l).u) − f(t− η.u)
)

du

+

∫

Rd

K(u)
(

f(t− η.u) − f(t− h(l).u)
)

du.

Thus, it is enough to study quantities of the following form:
∫

Rd

K(u) (f(t− h.u) − f(t− η.u)) du

where h = h(k∧l) else h = h(l). In both case we have hi = ηi if i ∈ Jc and
hi ≤ h

(k)
i if i ∈ J . Here and later we will consider a such bandwidth h.

It is easy to rewrite the following quatity

(∗) = f(t− h.u) − f(t− η.u),

using a telescopic sum. We obtain:

(∗) =

d
∑

i=1

fi(−hiui|t− [η, h](i).u) − fi(−ηiui|t− [η, h](i).u).

As hiui = ηiui if i ∈ Jc, we deduce that indexes belonging to Jc do not
contribute to the sum. Finally:

(∗) =
∑

i∈J

fi(−hiui|t− [η, h](i).u) − fi(0|t− [η, h](i).u).

Now, using that f belongs to the anisotropic class H(β, L) it is easy to
develop the quantity (∗) using a Taylor’s formula. If we denote mi = ⌊βi⌋,
we obtain:

(∗) =
∑

i∈J

mi
∑

n=1

f
(n)
i (0|t− [η, h](i).u)

(−hiui)n
n!

+
∑

i∈J

(−hiui)mi

mi!

(

f
(mi)
i (θi|t− [η, h](i).u) − f

(mi)
i (0|t− [η, h](i).u)

)

,

where |θi| ≤ hi|ui|.
If we remark that t − [η, h](i).u does not depend on ui, using hypothesis

(K4) on K and Fubini’s theorem, we obtain that, for all i ∈ J and n ∈
[[1;mi ]], we have:

∫

Rd

K(u)f
(n)
i (0|t− [η, h](i).u)

(−hiui)n
n!

du = 0.
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Moreover it is easy to obtain that if i ∈ J , then:

∣

∣

∣
f

(mi)
i (θi|t− [η, h](i).u) − f

(mi)
i (0|t− [η, h](i).u)

∣

∣

∣
≤ L|θi|βi−mi

≤ Lhβi−mi

i |ui|βi−mi .

Then, we can deduce that:

∣

∣

∣

∣

∫

Rd

K(u) (f(t− h.u) − f(t− η.u)) du

∣

∣

∣

∣

≤ L
∑

i∈J

(∫

Rd

|K(u)| |ui|
βi

mi!
du

)

hβi

i

≤ L

d
∑

i=1

λi(β)hβi

i .

Lemma follows.

D Proof of lemma 5

First of all, let us remark that:

∀i, ∀(β, L), 1 ≤ hi(β, L, ε)

h
(k(β,L,ε))
i

≤ 2.

Let us calculate:

Bβ,L(k(β, L, ε)) = bβ,L(h(k(β,L,ε)))

= L

d
∑

i=1

λi(β)
(

h
(k(β,L,ε))
i

)βi

= L
d
∑

i=1

λi(β) (hi(β, L, ε))
βi

(

h
(k(β,L,ε))
i

hi(β, L, ε)

)βi

≤ bβ,L(h(β, L, ε)).

On the other hand, it is easy to prove that:

bβ,L(h(β, L, ε)) =

(

d
∑

i=1

λi(β)

)

sε(h(β, L, ε)).

Thus, we obtain:

Bβ,L(k(β, L, ε)) ≤ (dλ∗)sε(h(β, L, ε)).
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Now, we focus our attention on sε(h(β, L, ε)). First, it is easy to prove that:

sε(h(β, L, ε)) ≤
ρε(β, L)

√

1 + |k(β, L, ε)| ln 2
Sε(k(β, L, ε)).

Next, let us prove that:

ρ2
ε(β, L)

1 + |k(β, L, ε)| ln 2
=

1 + xε(β, L)

1 + |k(β, L, ε)| ln 2
≤ 2 ∨ b̄+ 1

b̄
.

It is known that:

1 + |k(β, L, ε)| ln 2 ≥ 1 + xε(β, L) − 1

2β̄ + 1
ln(1 + xε(β, L)), (13)

thus, we obtain that:

xε(β, L) ≤ |k(β, L, ε)| ln 2 +
1

2β̄ + 1
ln(1 + xε(β, L)).

This implies in particular that:

xε(β, L) ≤ |k(β, L, ε)| ln 2 +
√

|k(β, L, ε)| ln 2.

If |k(β, L, ε)| ≥ 2 (for example if β̄ < b̄/2), we obtain:

xε(β, L) ≤ 2|k(β, L, ε)| ln 2,

which implies immediatly that:

1 + xε(β, L)

1 + |k(β, L, ε)| ln 2
≤ 2.

On the other hand, when β̄ ≥ b̄/2, we obtain from (13) that:

1 + |k(β, L, ε)| ln 2 ≥ 1 + xε(β, L) − 1

b̄+ 1
ln(1 + xε(β, L))

≥ 1 +
b̄

b̄+ 1
xε(β, L).

Last inequality implies that:

1 + xε(β, L)

1 + |k(β, L, ε)| ln 2
≤ b̄+ 1

b̄
.

Lemma follows.
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E Proof of lemma 6

First, it is easy to prove that;

Sε(k(β, L, ε)) ≤ 2d/2

√

1 + |k(β, L, ε)| ln 2

1 + xε(β, L)
sε(h(β, L, ε)).

Next, we know that:

1 + |k(β, L, ε)| ln 2 = 1 + xε(β, L) − 1

2β̄
ln(1 + xε(β, L)) ≤ 1 + xε(β, L).

Lemma is proved.
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