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The infinite Brownian loop on a symmetric space
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Abstract

The infinite Brownian loop {BY,t > 0} on a Riemannian manifold M is
the limit in distribution of the Brownian bridge of length T' around a fixed
origin 0, when T' — +o00. It has no spectral gap. When M has nonnega-
tive Ricci curvature, BY is the Brownian motion itself. When M = G/K
is a noncompact symmetric space, B° is the relativized ®o—process of the
Brownian motion, where @ denotes the basic spherical function of Harish—
Chandra, i.e. the K—invariant ground state of the Laplacian. In this case,
we consider the polar decomposition BY = (K, X;), where K; € K/M and
X; € a,, the positive Weyl chamber. Then, as t — +o00, K; converges and
d(0, X;)/t — 0 almost surely. Moreover the processes { X;r/v/T,t > 0} con-
verge in distribution, as T — +00, to the intrinsic Brownian motion of the
Weyl chamber. This implies in particular that d(0, Xy7)/v/T converges to a
Bessel process of dimension D = rank M + 2j, where j denotes the number
of positive indivisible roots. An ingredient of the proof is a new estimate
on $.
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1. Introduction

In order to get some insight into the geometry at infinity of a Riemannian mani-
fold M, it is natural to look at the asymptotic properties of its Brownian motion
{B¢,t > 0}, i.e. the Markov process with generator A/2, where A is the Laplace
Beltrami operator on M. On manifolds with a spectral gap this can be disappoint-
ing. Consider the two following examples of manifolds with nonpositive curvature,
either M is the universal cover of a compact manifold with negative curvature or
M is a Riemannian symmetric space of the noncompact type. In these cases the
asymptotic behavior of the Brownian motion is completely understood. Let us
consider for instance the distance d(z, B;) from a fixed point z € M. Then there
exists £ > 0,0 > 0 such that 1d(z, B;) — £ almost surely and %ﬁ(d(x, B;) — tl)
converges in distribution to a Gaussian law N(0,1) when ¢t — oo (see Virtser [53],
Orihara [44], Malliavin & Malliavin [37], Taylor [52], Babillot [4] for symmetric
spaces, Pinsky [46], Ledrappier [34] for manifolds). The dependence of this re-
sult on the geometry in the large of M is rather poor. This can be intuitively
explained: since B; goes to infinity with a linear rate it goes too fast to be able

to see the geometry of M.

On the other hand, the so-called central local limit theorem is more precise. It
associates to a symmetric space M an integer D > 3 with the following property:
let m be the Riemannian measure and Ag > 0 be the spectral gap, then there is

a positive function ¢ on M such that, as t — +o0,

e—t)\o

for any compact set C with negligible boundary (see [6, 7]). This integer D
is equal to d + 24, where d is the rank of M and j is the number of positive
indivisible roots. It depends only on the geometry of the Weyl chamber. Thus it
is natural to look for a random process on M such that the asymptotic behavior
of its paths is clearly related to D. Intuitively, this process should be connected
with the Brownian motion, but should go to infinity slowly and have no spectral
gap. This has led us to introduce the infinite Brownian loop (I.B.L.), which is
roughly speaking the limit of the Brownian motion constrained to come back to
its starting point at a very large time. We will show that the behavior of the
radial part of this process at infinity is the same as the one of the Brownian

motion in a D-dimensional Euclidean space.



Firstly, it is worth defining the infinite Brownian loop on a general Riemannian
manifold M. We fix a point « € M. The Brownian bridge B(*) around a of length
L > 0 is the Brownian motion {B;,0 < ¢t < L} on M conditioned by By = By, = a.

Definition 1.1 The infinite Brownian loop (BY) around a is, when it exists, the
limit in distribution of the Brownian bridge BY) as L — +o0.

For any T > 0, the process {BY,0 < t < T} is the limit of {B,gL),O <t<T}
when L tends to infinity. Thus, this infinite Brownian loop can be seen as the
limit of the beginning of the Brownian bridge.

We will first show the following theorem. Let pi(x,y) be the heat kernel and Ao
be the bottom of the spectrum of —A/2 on L2(M, m) where m is the Riemannian

measure.

Theorem 1.2 On a Riemannian manifold M, the infinite Brownian loop B°

around a € M ezists if and only if the following limit exists:

pt(iL',a) _ T
t+oo py(a,a) (z).

In this case @ is of class C?, (A +2Xo)p = 0 and B is the relativized @-process,

i.e. the Markov process starting from a € Ml with semigroup P given by

Pf(e) = ot [P 1) gy,

for any measurable f : M — Ry . Its generator is A°/2 where

AVf = éA(fgo) +2X\f = Af +2Viogy- V.
A positive solution of (A + 2Xg)¢ = 0 is usually called a ground state. The rela-
tivized (-process is a generalized h-process in the sense of Doob. The processes
relativized by a ground state were introduced on general Riemannian manifolds
by Sullivan in [50] and [51]. In general there are many positive ground states. The
interesting feature of the infinite Brownian loop is that it chooses in a canonical
way one of them, which is arguably the most symmetric one. According to Davies
[14], the idea of studying the heat kernel by using A® goes back to Nelson [42]
and Gross [24], at least when there is a unique ground state. It plays a major

role in Davies & Simon [15] for instance.

Often, the infinite Brownian loop is the Brownian motion itself. This is the

case when M = R" or more generally when the Ricci curvature is nonnegative.



This follows from the following proposition and from Li & Yau [36]. Notice also
that the hypotheses of this proposition are fulfilled for recurrent manifolds. This

generalizes Theorem 28 in Davies [14] as conjectured by himself.

Proposition 1.3 If A\ = 0 and if the positive harmonic functions are constant,
then

lim Piys(T,y)
t=+o0 pi(a,a)

and the infinite Brownian loop is the Brownian motion itself.

The purpose of this paper is to study in details a class of manifolds with nonposi-
tive curvature, namely symmetric spaces M = G/ K associated with a noncompact
semisimple Lie group G. The infinite Brownian loop in this case is the relativized
(p—process where ¢ is the basic spherical function ®( of Harish-Chandra, i.e. the
unique K-invariant ground state. Its generator is

A0

A
— = — log @, - V.
2 2+Vog0V

We will show that its asymptotic behavior depends on the geometry of M in a
more interesting way that the Brownian motion itself. Let us recall the generalized
polar decomposition of M associated with a Cartan decomposition G = KAK
and with a Weyl chamber a, in a. Let M be the centralizer of A in K. For any
z € M we define k(z) € K/M and C(z) € a, by the fact that if k(z) € K is a

representative of k(z) then
k(z)expC(z).o=z

where o is the origin in M, i.e. the class K in G/K, C(z) is called the radial part
of z. The main result of this paper is the following. Since the action of G is

transitive on M|, there is no restriction to study the I.B.L. only around o.

Theorem 1.4 Consider the infinite Brownian loop (BY) around o on the sym-
metric space M. Then, as T — +00,

a. Almost surely, k(BY) converges in K/M and +C(BY) — 0.

b. The processes {ﬁ C(BY),t > 0} converge in distribution to the intrinsic
Brownian motion of the Weyl chamber a,.

c. {I%(Bg)),t > 0} and {ﬁ C(BY),t > 0} are asymptotically independent.

The intrinsic Brownian motion of the Weyl chamber a, has several equivalent

definitions which will be given in Section 3. Roughly speaking, it is the usual



Euclidean Brownian motion inside the Weyl chamber with Dirichlet conditions
on the walls, conditioned to have infinite lifetime, starting from 0.

The local central limit theorem of [7] appears to be the “local” version of the
“central limit theorem” given by Theorem 1.4. We will also obtain the following

corollary.

Corollary 1.5 As T — +oo, %d(a:,B%) converges almost surely to 0 and the
processes {\/%fd(w,BfT),t > 0} converge in distribution to the Bessel process of

dimension D.

These results show that the I.B.L. is deeply connected with a process of dimen-
sion D. In a sense, for the infinite Brownian loop D plays the role of a dimension
at infinity of the manifold. This integer D is called the pseudo-dimension of M
by Cowling, Giulini & Meda in [13]. Another interpretation is available: we will
see that the situation is almost trivial when the group of isometries G of M is
complex. In this case D = dimM, and C(BY}) is equal to the intrinsic Brownian
motion of the Weyl chamber a, (without any normalization). Thus Theorem 1.4
shows that complex groups are models for the general situation. The asymptotic
behavior of the radial part of the I.B.L. is the same for all symmetric spaces with
the same Weyl chamber. It is the behavior of the radial part of the I.B.L. for the
unique complex group corresponding to this Weyl chamber. For instance S1(2, C)
is the complex group associated to all rank-one symmetric spaces, and the limit

process is the 3-dimensional Bessel process.

One can also consider simultaneously the two ends of the Brownian bridge
{B(L), 0 <t < L} around a. More generally, given two points a,b € M, it is also
interesting to look at the two ends of the Brownian bridge {B,EL’a’b), 0<t< L}
which is the Brownian motion {B;,0 < ¢ < L} conditioned by By = a, By, = b.

Definition 1.6 The double-ended infinite Brownian loop (B, BY) from a to b
is, when it exists, the limit in distribution of {(BgL’a’b),BgL_’?’b)),O <t <L} as
L — +o0.

We will describe its asymptotic behavior on symmetric spaces in Theorem 7.1.
We will see that the two ends BY and B? are not asymptotically independent,
and that the asymptotic behavior of the first one does depend on the extremity b
of the other one. In a sense, this reflects the importance of boundaries for these

manifolds with nonpositive curvature.



This paper is organized as follows. In Section 2 we present some general con-
siderations on the infinite Brownian loop and the double-ended infinite Brownian
loop and we prove Theorem 1.2. In Section 3 we present the intrinsic Brownian
motion of the Weyl chamber, considered by Biane [5] and Grabiner [22] (after
Dyson [18]). We show its relation with the I.B.L. on symmetric spaces associ-
ated with complex groups. Theorem 1.4, which is the heart of this paper, is
proved in Section 5. The almost sure behavior of the “angular” part follows from
the description of the Martin boundary at the bottom of the spectrum given by
Guivarc’h, Ji & Taylor in [26]. For each fixed ¢ > 0, the convergence of the
distribution of C(BY)/VT, as T — +o0, follows easily from the asymptotics of
the heat kernel in Anker & Ji [2] for instance. But the behavior of the process
itself is more difficult since its generator becomes singular on the walls of the
Weyl chamber. To study this process, we use on the one hand stochastic calculus
and in particular Girsanov’s theorem and, on the other hand, a new estimate
on the Harish-Chandra’s function ®y . Specifically we establish in the appendix
(Section 8) the boundedness of the derivative & log(6'/?®,) with respect to the
Euler operator £, where § is the density function in the Cartan decomposition.
Its proof follows Harish—Chandra’s induction argument, i.e. the analysis along
faces of the Weyl chamber is performed by reduction to symmetric subspaces of
lower rank. In Section 6, we describe the behavior of all the relativized processes
at the bottom of spectrum. We shall see that they satisfy a theorem similar to
Theorem 1.4, as a straightforward application of our study of the I.B.L.. Section
7 is devoted to the double-ended infinite Brownian loop.

Notice that the generalization to arbitrary simply connected symmetric space

of the results of this paper is straightforward.

Let us indicate some open questions related to this work. As mentioned above,
Ledrappier [34] has proved the central limit theorem on the universal covering of a
compact manifold with negative curvature. In that context the local limit theorem
is not known. One can ask for conditions ensuring that the I.B.L. exists and then
that its normalized distance to a fixed point converges to a three dimensional
Bessel process. In a recent work, Hamenstadt studies the set of ground states on
these manifolds in [27].

Let us consider again the Brownian bridge {B,SL),O <t < L} of length L.
In this paper we let L — 400 and then look at the normalized process. It
is also natural to first normalize and then let L — +o0co. More precisely one
may study the behavior of {Bt(f)/\/f,o <t <1} as L — +oo. With physical



motivations, this question has been considered in Nechaev & Sinai [41], Nechaev,
Grosberg & Vershik [40], Nechaev [39], Letchikov [35]. It is shown in [9] that
in the rank-one case, the limit of the radial part is the Brownian excursion. It
is natural to conjecture that in the general case the limit will be the excursion
in the Weyl chamber, i.e., roughly speaking, the Brownian motion in the Weyl
chamber conditioned to be at 0 at the times 0 and 1, and inside the chamber
between 0 and 1. Tt is straightforward to check that this conjecture is true when

G is complex, see Remark 4.6. This problem will be dealt with in a future work
1

2. The infinite Brownian loop on a Riemannian mani-
fold

Let M be a Riemannian manifold, not necessarily complete, A its Laplace Bel-
trami operator and let {By,t > 0} be the associated Brownian motion on M. By
definition (B;) is the minimal Markov process on M with generator A/2. It takes
its values in the set C(R;, MU {oo}) of continuous paths in the Alexandrov com-
pactification MU {co} of M which remain at oo once they reach it. Its transition
semigroup P, has a smooth symmetric positive density pi(z,y) with respect to
the Riemannian measure m, when ¢ > 0. We denote by \¢ the bottom of the
spectrum of —A/2 on L?(M, m). The purpose of this section is to prove Theorem
1.2 and its analogue for the double-ended I.B.L. (see Proposition 2.6).

Let us establish some preliminary results. The following lemma occurs in the

proof of Theorem 25 in Davies [14].

Lemma 2.1 For any f € L? and any z € M|,

lim <P8+tf7 f) — ]im pS‘i‘t(‘,‘C’ "Ll) — e—)\ot.
s=+oo (Psf, f) s—+oo pg(z, 1)
The next theorem is of general interest. It is inspired by a quotient theorem of

Guivarc’h on Lie groups [25] and by Collet, Martinez & San Martin [10].
Theorem 2.2 For all a € M, the family of functions

Ps+t($, y)

, s>1
py(a, ) }

{tz,y) =

!See Bougerol Ph. & Jeulin T., Brownian bridge on Riemannian symmetric spaces, C. R.
Acad. Sci. Paris Série I Math. 333 (2001), 785-790.



is relatively compact for the topology of CY? uniform convergence on compact
subsets of Ry x M2. As s — 400, each limit point U satisfies

where
(Aw + 2A0)’¢ = (Ay + 2A0)¢ = 0.

Proof. Let s, = 4+00, s, > 1, and let

Ds,+t(2,Y)
up(t,z,y) = —————=.
n( y) psn (CI,, G,)

It follows from the local parabolic Harnack inequality of Moser [38] that for each
compact set K in M, there exists R > 0 such that

for any n € N;t > 0,2,y € K (see Theorem 10 of Davies [14]). Since s — p4(a,a)

is non increasing (see [14]), this implies that
(1) un(t, z,y) < R.

Since s, > 1, uy, is a solution of the heat equation on (—1,400) x M2:

0
(128 8)u=s

It thus follows from the Schauder parabolic estimates (see, e.g., Theorem 3.3.5 in
Friedman [20]) and from (1) that for each 0 < o < 1 and each compact set Ky of
R, x M2, there is Cp > 0 and C§ > 0 such that (using local coordinates and D*
equal first to 8%1, and then to a%i),

ou , o
155 lavko + e, o + > 1D unla,o + Y 1D DI,
g ]
(2) S CO sup Un(t,.’L',y) S C(I),
(tazay)eKO
where || - ||o,x, is the Holder norm of order a on Ky for the distance

d((t,z,y), (t',a',y)) = (d(z,2")* + d(y, /)" + [t = ') ">,

This implies (by a diagonal argument) that there is a subsequence ny such that

the functions (¢, z,y) — un, (t,z,y) and their derivatives (up to the first order in ¢



and second order in z,y) converge uniformly on the compact subsets of R, x M?.
Let ¥(t,z,y) be the limit of this subsequence. For each x € M}, (¢,y) — U(t,z,y)

is a smooth solution of the heat equation:

®) (5 Snu=0.

Let f and g be two continuous functions with compact support on M and let
rk = 1/ps,, (a,a). Then

lim ’r‘k< Snk+tf7f> — lim //f unk t z y)dm( )dm(y)

k—+o0 k—+o0

— [[ 101w (t..9) dm(s) dmy),

hence if [[ f(z)f(y)¥(0,z,y)dm(z)dm(y) # 0,

i Poogehs 1) [ £@)f @)Ut 2, y)dm(z)dm(y)
e P 10 T F @02, y)dm(@)dm(y)

It follows from Lemma 2.1 that

J[ 1@ 108tz dm@yin) = [[ 10)£0)8(0.0,9)dm(@)dm()

and by polarization

J[ 1@9wut . dm@ame) = < [ 119080, 2.9)dm(@)dm(y)

hence U(t,z,y) = e~ "(z,y) if P(z,y) = ¥(0,2,y). Now (z,) =1)(y, ) and

0
ot
hence (2Xg + Ay)h(z,y) = (2A0 + Ay)p(y,z) =0 by (3). O

(2 - Ay)\IJ(t,.’E, y) = _eiAOt(zAO + Ay)d)(xvy)

We will also use the following lemma, which is Theorem 4.1.1 of Pinsky [48]
adapted to our setting. It introduces the notion of relativized p-process which is

coincides with the notion of h-process due to Doob when A\ = 0.

Lemma 2.3 Let ¢ be a positive C? function on M such that (A + 2X¢)p = 0.
Consider the second order elliptic operator LY defined by

L7 = 5oA(9) + hof = 50 + Vlogp- V).



The semigroup of the minimal Markov process associated with L¥ has the transi-

tion semigroup (P/) defined by
)\ot
PEf(e) = [ SRS 1) angy,
o(x)
for all measurable f : Ml — Ry and all x € M. We call it the relativized p-process.

The relativized @-process takes its values in C(R;., MU {o0}), see Azencott [3] or
Ikeda & Watanabe [32], Theorem 5.1.1. It is nonexploding and thus C(R,, M)-
valued if and only if P,y = e~*%y for some ¢ > 0.

For a fixed point @ € M, the Brownian bridge of length L around a is intu-
itively the Brownian motion {B;,0 < ¢t < L} conditioned by {By = By, = a}. It
is rigorously defined as the non-homogeneous Markov process {B(L),O <t< L}
on M with generator

A
- +V(ogpr—(-a)) -V

2
starting from a. Its transition kernel P(t) is given when 0 < s <t < L by
s\Q, T —s\Z, — s a
(@ P se) = [ PABDPD DA ) ),
M pr(a,a)

We equip C(R,, MU{oc}) with the topology of uniform convergence on com-
pact sets. We define the infinite Brownian loop around a as the limit of B(") in
distribution in C(Ry,M U {co0}) as L — +oc, when this limit exists.

Proof of Theorem 1.2. Let F; be the o-algebra generated by the evaluation
maps ws, 0 < s < t, on C(Ry,MU{oc}). We denote by P, the distribution of the
Brownian motion B starting at a and by PgL) the distribution of the Brownian
bridge B() around a. The distribution Q of the infinite Brownian loop around

(L)

a is the weak limit of P; "’ as L — 4o00. By definition, this means that for any
¢ > 0 and any Fy-measurable continuous bounded function F on C(R,,MU{oco}),
[ F dpiP converges to [ F dQ, i.e.

(B
(5) lim E, [FpL ASedihe ] /Fd@

L—+o00
since it follows from (4) that
_+(B
/FdPgL) —F, [FpiL i t’a)] :
pr(a,a)
Let us first suppose that the I.B.L. around a exists. By Theorem 2.2, the set of
functions x — pr(x,a)/pr(a,a) is relatively compact for the topology of uniform

10



convergence on compact sets. Let ¢ be a limit point of this set as L tends to
infinity along a suitable sequence (Ly). It follows from Lemma 2.1 that, for all
t>0

an(x’a’) _ : an(‘rE’a’) an(a”a) _ Aot
—r = 1 e

lim = e"%p(x).

n—+o0 pr, 14(a,a)  n=+o pr,(a,a) pr,+i(a, a)
We deduce from (5) that for any continuous function f : M + R with compact

support,

P(Ln+t)—t(Bt, a)
PL,+t (CI,, a)

[ r@ydew) = 1w B |15 | - [rBOsBI].

This formula determines ¢, hence the functions pr(-,a)/pr(a,a) do indeed con-
verge to ¢ as L — +o0.

Conversely, let us suppose that pr(-,a)/pr(a,a) converges to some function ¢
and let us show that the I.B.L. converges to the relativized ¢-process. It follows
from Lemma 2.1 and Theorem 2.2 that p;_¢(z,a)/pr(a,a) converges to e*p(x)
uniformly on compact sets and that (A + 2Xg)y = 0.

We first suppose that the relativized y-process does not explode. In this case

Pyp = ey, thus

Ey[eX'0(By)] = ' Pip(a) = p(a) = 1.
Therefore, for any L > t,

[pL—t(Bta a)
pr(a,a)

] = 1 = Eq[e"0(By)].

Hence % converges to e*tp(B;) in L' (P,) by Scheffe’s theorem. Thus, for

any J;-measurable bounded function F,

pr—t(Bt, a)
[F pL (CI,, CI,)

lim &,

L—+4o00

] =R, [Fe)‘ot‘P(Bt)] = /FdQ’

and (5) holds.

If there is explosion, the proof is more delicate (there is no explosion on
symmetric spaces, thus this proof will not be used in other sections). Let Q be
the distribution on C(R;,M U {oo}) of the relativized @-process. Let ((w) =
inf{t > 0;w; = oo}. For all stopping time o, if F' is a bounded F,-measurable

bounded random variable

(6) E, [Fe*7p (B,) ;o < ¢| = Q[F;0 < ().

11



We first verify this formula when o takes its values in a finite set {tx,1 < k < n}.
In this case,

E, [FeAOU‘P (Bs)jo < C] = ZEa [Fe)‘oti‘{’(Bti);a =i, By, € M]
i=1
= ZQ[F;U:tithi GlMI] :Q[F;0<C]'
=1

One then uses the fact that every stopping time ¢ is the limit of a decreasing
sequence (o) of such finite valued stopping times (notice that e’ (B,, ) is a
supermartingale and thus converges to e*?¢ (B,) in L'). Actually this formula
is well known and characterizes Q as the Follmer’s measure associated with the
supermartingale e’y (B;) under P, (see Follmer [19] or Dellacherie & Meyer
[17], XVI.2.29), however we will only use (6).

Let T' > 0. We have to prove that, for any bounded Fr-measurable uniformly
continuous function ¥ on € (Ry, M U {oc}),

(7) lim EP (0] = Q[¥].

L—+o00

Let K be some compact set in Ml with a € K. Define
L=sup{t<T|Be€K}.

Let also BYY) = Byp. When £ < u < T, B, is in K¢, hence |U (B®) — ¥(B)| is
uniformly controlled by the distance of co to K and can be made arbitrary small

by an appropriate choice of K. Thus it remains to prove that

(8) lim (Y [J] = Q[J]

L—+

where J, = ¥ (B®) . Let (V;) be some adapted bounded increasing process. Let
us first show that

li IE
(9) JHm '[Vi] = Qvel.
For s € [0,T1], let

o(s)=inf{t>s| By € K},
one has,

{s<t}={o(s) <T}.

12



Using Theorem 2.2 we can choose a C' > 0 such that
PrL—t (.’E, G,)

PL ((1,, a)

forallt € [0,T),z € K,L > 2T. We have

]EgL) [Ve] = Eq [pL_T(BT’a) f[o,T]l{sSZ} dVS]

pL(a,a)

<C

_r(Br,a
e [/[0 - | 25525 N o<1y | Foge)| AV

—o(s Ba’ 3)s@
" [/[o e Ny av
< CE, [fo 71o(s)<T} dV] CE.[V2]-
Thus
(10) B [Vi] < CE,[Vl.

On the other hand, using Lebesgue’s theorem,

—a(8 BU 8 ’a
ESY (Vi) = E, [ /[0 T}%l{m)sn dv;

L—+4o00

oo [/[0 T]e/\OU(S)(p (Bo(s)) Lo(s)<Ty dVs

Now, let v be the right-continuous inverse of V. One has, using (6),

K, [/[0 T]e)\oa(S)(p (Ba(s)) l{U(s)ST} dv,
/ B, [0 (Byuyy) 5 0 (v (y)) <T] dy
/ ]Ea /\00 ) ( o(v (y))) o(v(y) <T,o(v(y)) < C] dy
=/ @[0( () < T, (v(y)) <] dy
r p+oo
- /O Lio(o(y))<¢, o(v(y))<T} dy]

e
=Q /0 1{a(s)<<,a<s>gT}st]

o
:@/ 1{s§e}st]:Q[W]a
LJO

13



since Q[o(s) < ¢] = 1. This shows (9). Let us now prove (8). The process J is
continuous, adapted and bounded. Define for £ > 0,

Jt(g) = /_tooJ(t — 1) %g (g) dz,

where g is a smooth nonnegative bounded function on R, with support in |0, 1|
such that [, g(z)dz = 1. The map t — Jt(s) is C', with a bounded derivative
when 0 < t < T. Therefore J (€) is the difference of two bounded increasing
processes, and it follows from (9) that

(11) im B [77] =@ |J7].

L—+o0

Since [J\¥) — Jt| < sup, p<tla—pi<e |Ja — Jb|, one also has for all L > 0, by (10),
t b<t|a—b| <

E’SLL) [lthE) - Jel] <CE, [Supa,b§£,|a—b|<s |Ja - Jb|] 5:)0 0,
thus (11) implies that (8) holds. This concludes the proof. [J

The following proposition is straightforward. Notice that it implies that the
infinite Brownian loop has no spectral gap on L?(p?.m) and that it is its own
[B.L.

Proposition 2.4 Let ¢ be the ground state associated with the I.B.L. around a
and let p) be the density of its semigroup with respect to the measure p>.m. Then

erotp,(z,

pl(z,y) =Py, ) = Ww(y)) for all x,y € M and

lim pg—ks (ba G,)

=1
t—+4o00 pg(a’a)

for all s >0 and b € M.

Let us give two examples. Consider first a complete model manifold M in the
sense of Grigor’yan [23], also called a spherically symmetric manifold with a pole.
Without loss of generality, one can take Ml = R” with a Riemannian metric which

can be written in polar coordinates as
ds? = dr® + o*(r)d6?

where df? is the standard metric on the sphere S*!. Necessarily the function o

is a smooth positive function on R} and o(0) = 0,¢'(0) = 1.

14



Corollary 2.5 On a complete model manifold, the I.B.L. around 0 exists. It is

equal to its Brownian motion when Ay = 0.

Proof. The heat kernel p;(z,0) depends only on r = d(0,z). Therefore, if for

some t; — +00,
Py, (2,0
ola) = tim PutD0)
k—+00 D, (0, 0)

then ¢ is radial: there is a smooth positive function f on Ry such that p(z) =
f(d(0,z)). It follows from Theorem 2.2 that (A+2Xg)p = 0. In polar coordinates
the Laplace Beltrami operator A is given by

0? o' 0 1
= — —1)—=—+ =5A

o2 + (n ) + Sa

o or
(see [23]), hence f" + (n — 1)%’]” = 2)\of. By the theorems 1.2 and 2.2, we are
reduced to proving that all the smooth positive solutions of this equation are

A

proportional. If g is another solution and h = (g/f)’, then
B+ [log(f20™ H)'h = 0.

Thus there is a ¢ > 0 such that h = c¢f 20 ™. This function is smooth only if
¢ =0, i.e. when f and g are proportional. When Ay = 0, g = 1 is a solution,

hence p =1. O

Another interesting example is the Brownian motion of M = R’ . This is
the usual Brownian motion on R killed when it reaches 0. If follows from the
reflexion principle that

I — )2 " 2
o) = o= [exp(— T30 — exp(— I

which implies that, for all z,y,a,b > 0, s > 0,

lim Pits(@,y) Ty

t=+o0  py(a,b) ab’

In this case \g = 0 and (z) = z. Thus B is the 3-dimensional Bessel process.
The intrinsic Brownian motion in a Weyl chamber considered in Section 3 is a

generalization of this example to some other cones.

One can also consider the simultaneous behavior of the two ends of the Brow-
nian bridge {B®),0 < t < L} around a as I — oo. More generally, given two
points a,b € M, it is interesting to look at the two ends of the Brownian bridge

15



{Bt(L’a’b),() < t < L} which is the Brownian motion {B;,0 < t < L} condi-
tioned by By = a,B;, = b. We first observe that if ' and G are two bounded
F-measurable functions on C(R,,M U {co}), then, as soon as L > 2t,

E [F(BgL’“”’),s <GB s < t)]

pr—at(Bt, Bt)

=K
pL(aab)

F(Bg,s < t) G(Bs,s < t) |,

where B and B are two independent copies of the Brownian motion on M, such
that By = a, By = b (in other words (B, B) is the Brownian motion on M? starting
from (a,b)). Using this representation, the proof of the following proposition is

the same as the proof of Theorem 1.2.
p s (Lab) p(L,a.b)
roposition 2.6 As L — +oo, the processes {(B, ,B;707),0 <t < L}

converge in distribution if and only if the limit

()
o o) = i P4

exists for all x,y € M. The function v is a ground state for the Brownian motion
on M2. The limit process (B°, B°) is the relativized 1-process, starting from (a,b).
We call it the double-ended infinite Brownian loop from a to b.

Notice that the two ends B and B are independent if and only if one can write 9
as a product (i.e. ¥(z,y) = ¢(z)e(y)). Recently, Collet, Martinez & San Martin
[10] have given very interesting examples of domains in R” where (12) holds and
where 1 is not a product.

Proposition 1.3 is a consequence of:

Corollary 2.7 Suppose that there is a unique ground state, i.e. a unique C?
positive solution ¢ of (A +2Xg)p =0, up to a multiplicative constant. Then

(13) lim Pet(@Y) e e@)e(y)

s—+oo  pg(a,b) p(a)p(b)

for all z,y,a,b € M. The infinite Brownian loop is the relativized p-process and
the double-ended infinite Brownian loop is given by two independent copies of the

relativized p-process.

Proof. By Theorem 2.2, the set of functions {(z,y) — ps(z,y)/ps(a,a),s > 1}
is relatively compact. Let 1 be a limit point of this set as s — +o0. For each

y € M, z — 9¥(z,y) is a ground state, hence there exists ¢(y) > 0 such that
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P(z,y) = c(y)p(x). Since y — (x,y) is also a ground state, there exists v > 0
such that c(y) = y¢(y). Thus ¥(z,y) = ye(x)p(y). Noticing that ¥(a,a) =1 we

obtain that ¥(z,y) = %. One concludes easily the proof by using Lemma
2.1. O

Example 1. Suppose that M is a A\gp-recurrent manifold, i.e. ffo Moty (z,y) dt =
+oo for some z,y in M. Then there is a unique ground state (see Theorem 4.3.4
in Pinsky [48]). Hence the corollary holds in this situation. This generalizes
Theorem 28 in Davies [14].

Example 2. If M has a nonnegative Ricci curvature it follows from Li & Yau
[36] that the hypothesis of the corollary holds true with Ay = 0. This was already
proved by Davies (see [14], Theorem 27). The same result is obviously true for

compact manifolds. In these cases the I.B.L. is the Brownian motion itself.

Example 3. If M is a bounded connected open set in R® with smooth boundary,
then it is well known that there is a unique ground state. Hence the corollary
holds. The I.B.L. is the same as the Euclidean Brownian motion in M killed at
the boundary and conditioned to have an infinite lifetime, see Pinsky [47]. This is
also the intrinsic process considered in Davies & Simon [15, 16]. Some unbounded
domains are studied in Collet, Martinez & San Martin [10, 11].

Example 4. It follows from Sullivan [51], Example 8.4, that the (double-ended)
I.B.L. does not explode when the geometry of M is bounded. On the other hand,
Pinchover has given in [45] an example of an exploding Brownian motion on a
Riemannian manifold such that Ay = 0 and such that the only positive harmonic
functions are constant. In this case the [.B.L. is the Brownian motion itself and

thus is exploding.

Davies [14] has conjectured that

i Pt(T:Y)
m ———-—
t—+4o0 pt(a, a)

exists on any Riemannian manifold. This amounts to the existence of the double-
ended 1.B.L.

17



3. The intrinsic Brownian motion of a Weyl chamber

3.1. A definition of the intrinsic B.M. of a Weyl chamber

Let a be an Euclidean space of dimension d equipped with a reduced root system
Yo C a, see Helgason ([30], X.3.1). Recall that a root system is reduced if the
only roots proportional to a root o are o and —a. We choose a Weyl chamber
a, in a, i.e. a connected component of {z € a; (o, z) # 0,Va € Lp}. This is an
open convex cone. Let a, be its closure and da, = @, — a, be its boundary. The
set of positive roots is 37 = {a € Zy; (o, z) > 0,Vz € a,}. The function

(14) (z) = H (a,z), = € a.

aeEj

is harmonic for the Euclidean Laplacian A, on a, cf. Helgason ([31], Theorem
II1.3.6). Biane [5] and Grabiner [22] have considered the following stochastic

process in a, U {0} which will play a major role in this paper.

Definition 3.1 The intrinsic Brownian motion of a, is the continuous Markov
process Zy such that Zg = 0, and for all t > 0,

(i) Zy € a, and Z; is the relativized m-process of the Brownian motion on a,
killed at the boundary Oa,.. We denote by hi(z,y),x,y € a,, the density of its
semigroup with respect to the Lebesgue measure.

(i1) The distribution of Z; has the density hy(0,y) = limg_,0 he(z,y).

By definition the generator of Z; inside a, is

1
(15) L™ = §Aa + Valogw - V,.

where A, is the Euclidean Laplacian on a and V, is its gradient. As noticed
by Biane, & is, up to a multiplicative constant, the unique positive harmonic
function on a, equal to 0 on the boundary. Therefore, inside a,, the intrinsic
Brownian motion can be interpreted as the Brownian motion in a,, killed at the
boundary and conditioned to go to oo, or equivalently conditioned to remains
alive. In some particular cases, this process inside a, was already considered by
Dyson [18], see also Neveu [43]. The name “intrinsic” is borrowed from Davies &
Simon [15], [16].

The point 0 is singular in a, U {0}. This explain why the entry distribu-
tion of the Markov process starting at 0 has to be specified by (ii). Since the
finite-dimensional distributions are given, the definition determines the process.
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However, its existence is not completely obvious. We will show it in the next
subsection by an explicit construction as a generalized Bessel process. The fact
that Z; remains in a, for all ¢ > 0 is related to the following lemma that we will

need later.

Lemma 3.2 Let B¢ be a Brownian motion on a. For any x € a,, the solution of

the stochastic integral equation
t

(16) Xt:x+ﬁt+/valog7r(Xs) ds
0

is in ay for all t > 0.

Proof. The function V4loga is C* on a,. Thus the equation (16) has a unique
maximal solution X in a,, defined on a time interval [0, ([ where ( is an explosion
time or the exit time from a,. The function 7 is harmonic and positive on a,,

hence
Ayt +2 <Va log 7, Vaﬂ'_1> = 0.

By Ito’s formula, =1 (X;¢) is a positive local martingale, thus it converges a.s.
when t — +00. Since w = 0 on da,, this implies that || X¢||— + oo when t — (.
On the other hand £logm = || where £ = Z?Zl Iia%i is the Euler operator on
a and d = dima. Let D = d + 2|Z§|. By Ito’s formula,

tAC

tAC
Xincl? = ||ac||2+2/0 (¥,dB)+2 [ & (logm) (X,) da+(£AO)d

tAC -
|2 + 2 /0 1X, ]| dBs + (£ AC)D.

~ ~ tAG
where f is the stopped real Brownian motion §; = / | X,)| 7" (X, dBs). This
0

shows that ||Xt/\<||2 is the square of a D-dimensional Bessel process, stopped at
time ¢ (see Yamada [55] or Revuz & Yor [49], XI.1). Since X; — 400 when t — (,

one has ( = +o00 almost surely. [J

3.2. The intrinsic Brownian motion of a Weyl chamber as a gener-
alized Bessel process

In this subsection we consider a complex semisimple Lie algebra g. Let J be the

complex structure, € be a compact real form of g and p = Jé. Theng=%t+pisa
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Cartan decomposition of g. The adjoint group K of £ is compact. We equip p with
the Euclidean structure given by the Killing form. For each k£ € K, Ad(k)p = p
and Ad(k) is a linear isometry of p. Let a be a maximal Abelian subspace of
p. Since g is complex, the root system associated with the pair (g, a) is reduced,
hence we denote it by ¥y. Let a, be a Weyl chamber in a. We can introduce
a generalized polar decomposition in p: for each z € p there exists k € K and
R(z) € a, such that z = Ad(k)R(z). The element R(z) is uniquely determined.

Proposition 3.3 Let g be a complex semisimple Lie algebra. If W, is the Eu-
clidean Brownian motion on p starting from 0, then R(W}) is the intrinsic Brow-

nian motion of a,.

Proof. Let A, be the Euclidean Laplacian on p. Since g is complex, it follows
from Helgason ([31], Proposition I11.3.13) that the radial part of A, on a, is the
operator L™ defined by (15). Therefore the generator of R(W;) inside a, is L™.
For all measurable f : p — Ry,

(17) /p f(&) de = ¢ /K F(Ad(k)y) 7 (y)? di dy

(see Helgason, [29], Proposition X.1.17, [31], Theorem 1.5.17) where dz and dy
are the Lebesgue measures on p and a*t, dk is the normalized Haar measure on
K, w(y) = Haezg(a,y) and ¢y = Vol(K/M). Let D = dimp. The density of

. . . . _ =y —eall®
the semigroup of the Brownian motion W; is g¢(z1,z2) = (2mt)~P/2e T

Therefore if f is a bounded measurable function on 6_2“

B (ROV,), ROV, 0)) = [ (R (@), R)gs(001)ai(er, ) doda

= [, 1wl P x

1
y { /K (0, Ad(ky)yn)gu(Ad(k )y, Ad(F)y2) dkldkg} dyrdys

= [, 0wt m | [ o0, AdOT o) dbaa | iy

:/ai (1, y2)95(0, y1)com (y1)? {/K gt(ylaAd(k)y2)607r(y2)2dk} dy1dy;
This shows that the density h:(y1,y2) of the semigroup of R(W;) is

M) = am)? [ aln Adw)) dk

c — Ad(k)ys|?
- (27rt())D/27"(y2)2/KeXP(—”yl 2t( Juz ) dk,
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and that
llyll”
(18) hs(0,9) = co(2ms)” (1D w(y) e 5
Thus h¢(0,y2) = limy, 0 ~¢(y1,y2). This also implies that, for all ¢y > 0 fixed,
R(Wy,) € a, almost surely. For t > tg, X; = R(W},44) is a solution of (16), hence
R(W;) € ag for all t > ty, by Lemma 3.2. Since t( is arbitrary, R(W;) € a, for
all t > 0. We have verified that R(W;) satisfies all the properties of the intrinsic
Brownian motion of a,. O
Of course, ¢y can be computed: ¢y = (27r)‘23L‘71'(p0)*1 where p? = %Zaezg a.
By writing that h1(0,z) is the density of a probability measure, this formula is
equivalent to the relation
1 9 _l=l®
() em

We will obtain it in the proof of Lemma 5.7. It can also be proved directly by

h1 (0, .’L‘) =

applying the differential operator 7r(59—/\)2 ‘ o to the classical Fourier transform

2

=12 .
/6H2” et M) gy = (27r)% e
a

The intrinsic Brownian motion R(W;) is scale invariant: for any 7' > 0,
{ﬁR(WtT),t > 0} has the same distribution as {R(W}),t > 0}. Since R(W}) is
a generalized radial part of a standard Brownian motion, we can consider it as a

generalized Bessel process, notice that |[R(Wy)|| = [|[Wy|.

Let us consider now a general Weyl chamber a, in an Euclidean space a as
defined in 3.1. The integer

D =dima+2|37],

depends only on a,. It follows from Dynkin’s classification that there is exactly
one complex semisimple Lie algebra g with Weyl chamber a, (see Helgason [30],
X.3.3). Thus the above proposition gives a realization of the intrinsic Brownian
motion for every Weyl chamber. When g is complex, D = dimp = %dim g.
Therefore we see that ||R(W;)|| is also the norm of the D-dimensional Brownian

motion ||W;||. In other words (see also Grabiner [22] or the proof of Lemma 3.2)

Corollary 3.4 The norm of the intrinsic B.M. of a, is a Bessel process of di-

mension D.

For instance, when a = R, a, = R’ and the infinite Brownian loop is the Bessel

process of dimension 3. In this case w(z) = z and g = sl(2,C).
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4. The infinite Brownian loop on symmetric spaces

In this section we study the I.B.L. on a Riemannian simply connected symmetric
space. Any symmetric space M can be decomposed as the direct product M =
M; x My x M3, where M is of the so-called noncompact type, My is of the
Euclidean type (i.e. My = R? for some d > 0) and M is of the compact type (i.e.
M is compact). The metric is the product metric, hence the Brownian motion W
on M can be written as W = (B, B', B"), where B, B', B"” are three independent
Brownian motions. The processes B’ and B"” are their own I.B.L., hence the
infinite Brownian loop on M is W(®) = (B, B’. B"), where B() is the L.B.L. of

B. Thus we are reduce to studying only the noncompact type component.

From now on, let us consider a symmetric space M of the noncompact type.
By definition, one can write M = G/K, where G is a semisimple noncompact
connected group with finite center and K is a maximal compact subgroup of G.
Let g and ¢ be the Lie algebras of G and K and let g = € + p be the Cartan
decomposition. We choose a maximal Abelian subspace a of p. We equip it
with the Euclidean structure given by the Killing form and use it to identify a
with its dual. Let ¥ be the root system of (g,a), a, an open Weyl chamber
and ¥ the corresponding set of positive roots. The set of indivisible roots
%o = {a € T;1a ¢ T} is a reduced root system. We set B = S+ N g and
|Z4| = Card Xf.

Let us recall the polar decomposition on M. We choose 0 = K to be the origin
in M. Let M be the centralizer of A in K. For any z € M, let k(z) € K/M and
C(z) € a, be such that

k(z)expC(z).0 = z.

where k(z) € K is a representative of k(z). Such a decomposition always exists.
The (generalized) radial component C(z) is uniquely determined. It is also the

case for k(z) provided C(z) € a,. Let m, be the multiplicity of the root « and

(19) p= % Z Mo Q.

acxt

Although we do not need it, let us recall the asymptotic behavior of the Brownian
motion on M, see Virtser [53], Orihara [44], Malliavin & Malliavin [37], Taylor
[52], Babillot [4] (the convergence in distribution in C'(Ry,a) is not explicitly
stated in these papers however it follows immediately from the approach given in
Babillot [4]).
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Theorem 4.1 Let B; be the Brownian motion on M. Then
a. Almost surely, k(Bt) converges in K/M and limy_, 4 C(ft) =p.
b. In distribution in C(R,,a), the processes {M,t > 0} converge to

VT
the Fuclidean Brownian motion in a when T — +oo.

For any g € G, we denote by H[g] the a-component of ¢ in the Iwasawa de-
composition G = K(expa)N. Let us consider the basic spherical function of
Harish-Chandra

(20) Bo(g) = / e P (k) ged,
K/M

where v is the unique K-invariant probability measure on K /M. This function is
K-biinvariant, thus it defines a K-invariant function on M, also denoted ®,, by
the formula

Do(g.0) = Po(9), for all g € ML

Let A be the Laplace Beltrami operator on M. The bottom of the L?-spectrum
of —%A is

1
(21) Yo =5 [l

There exist many ground states, but the only one which is K-invariant is ®;. We
first consider the I.B.L., the double-ended I.B.L. will be dealt with in section 7.
Since G acts on M transitively by isometries, it suffices to consider the Brownian

motion starting from o.

Proposition 4.2 Let p; be the heat kernel of AJ2. For all g,h € G,

.0, h.
lim PU0R0) g1y )
t—+o0 pt(07 0)
The infinite Brownian loop B on M around o is the relativized ®o-process of the

Brownian motion. Its generator is A®/2 where
(22) A'f = Af +2V1og ®; - V.

Proof. The behavior of the quotients of p; follows from the precise estimates of
Anker & Ji [2] or from the local limit theorem in [6], (see also Guivarc’h [25]). But
it is also easy to prove it directly: the set of functions z — p;(z,0)/p:(0,0), when
t > 1, is relatively compact and each limit point ¢ is a solution of (2Ag+ A)p =0
by Theorem 2.2. Since pi(k.x,0) = pi(z,0) for all k € K, ¢ is also invariant under
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K and satisfies ¢(0) = 1. The function @ is the only one having these proper-
ties, hence p¢(z, 0) /pt(0, 0) must converge to ®o(x). By invariance under isometry,
p¢(g.0, h.0)/pi(0.0) = pi(h1g.0,0)/ps(0,0) converges to ®(h 'g.0). The descrip-
tion of the I.B.L. follows from Theorem 1.2. [J

For z € a, let
(23) §(z) = [ sinh™(a,z).
acxt

One has the following decomposition of the Riemannian measure m, see [29],
Theorem X.1.17: if f : M — R, is measurable

/ £(2) dm(z) = / F(ke.0) §(z)dv (k) do
M K/Mxayg

where 6 = Vol(K/M)é. Thus the radial component C(B;) of the Brownian motion
B on M has a semigroup with the density ¢; with respect to the Lebesgue measure
on a, given by

(24) ae9) =5 [ (ko) dv
K/M
This can be verified as in the proof of Proposition 3.3. The radial part Rad(A)
of A on a, is defined by: for any smooth function f on a,,
[Rad(A)flo C = A(f o C).
It follows from Helgason [31], I1.3, Remark 1, that
(25) Rad(A) = Ag 4 2 V4 logd'/2 - v,,.
We define ¢g : ¢ — R by, for z € a,
(po(.’l)) = @0(6‘%.0).

Corollary 4.3 The radial part C(B°) on a, of the LB.L. on M around o is a
continuous Markov process such that C(Bg) = 0, and such that for all t > 0,
C(BY) is inside a,. and has the generator

1 1
5 Rad(A%) = SAq + Ve log(6'/%p) - V.

The semigroup of C(BY) has the density q) with respect to the Lebesque measure

on a, given by

0 (z,y) = e2llPl’t§ (’DO—(y) e*.0,keY.o) dv
af (w) = A5 ) PO [ (o) an),

for all z € a, U{0},y € a,, where (pt),~q 45 the heat kernel of %A on M.
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Proof. It is well known that the radial part C(B;) of the Brownian motion B
on M, starting from o, is for all ¢ > 0 in a, and has the generator  Rad(A) (see,
for instance, Orihara [44], Taylor [52]). The function ®; is K-invariant. Thus
the radial part C(B°) of the relativized ®g-process is the relativized @g-process
of C(B). This implies that for all ¢ > 0, the distribution of {C(B?),s < t} is
equivalent to the distribution of {C(Bs),s < t} (the Radon Nikodym derivative
is e0'®((B;)). Therefore C(B?) € a, for all s > 0 and its generator is (see, e.g.,
Lemma 2.3 and (25))

1 1
EAa + Vqlog §1/2. Va+ ValogpyVy = EA'I + Va log(51/2<po) V..

The expression of ¢) follows from Lemma 2.3 and from (24). O

Notice that the I.B.L. is nonexploding. When G is complex ¢y = 6~ 1/2x
(cf. Theorem IV.4.7 in Helgason [31]). As stated next, in this case C(B?) is

elementary and part (b) of Theorem 1.4 is trivial.

Corollary 4.4 Assume that G is complex. Then the radial part in a, of the
LB.L. on M around o coincides with the intrinsic Brownian motion of the Weyl

chamber.

Remark 4.5 Let us pull back B? via the diffeomorphism exp : p — M. It follows
from the corollary that exp~!(B°) has the same radial part on a as the Euclidean
Brownian motion on p when G is complex. However these two processes are
different on p since the K/M-component of the first one converges a.s., which is

not the case for second one.

Remark 4.6 One deduces immediately from the corollary that the radial part
of the Brownian bridge on M around o is the generalized radial component on a
of the Euclidean Brownian bridge on p around 0. It is natural to consider this

radial process as the Brownian excursion in the Weyl chamber.

5. Asymptotic behavior of the normalized I.B.L. on a
symmetric space

On a symmetric space of noncompact type M, we first consider the infinite Brow-

nian loop around o This particular case contains all essential difficulties. It will

be also the major step towards the double-ended 1.B.L. which will be dealt with
in Section 7.
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5.1. Asymptotic behavior of the K/M-component of the I.B.L.

We recall that v is the K-invariant probability measure on K/M.

Proposition 5.1 Let B be the infinite Brownian loop around o on M. Almost

surely, k(B?) converges to a random variable with distribution v on K/M.

Proof. We will use the description of the Martin boundary of Ay, = %A + Ao
given in Guivarc’h, Ji & Taylor [26]. Let G, be the Green kernel of Ay, and let

K, be the corresponding Martin kernel with base point o, namely

e G (2, Y)
= Aot dt, K = 22002
Grole) = [ Mmand Kyay) = G2 d

The Green kernel G of ATO = &5 (A), 0 ®p) with respect to m is (see Lemma 2.3)

+oo e/\ot T

thus its Martin kernel K (z,y) = (G;g’gg is given by

K/\O (‘Ta y)

K(z,y) = Do)

For any b € K/M, let hy be the Ay, -harmonic function on M defined by

hy(z) = e (PHIIT KD

?

ifr=g.0€Mand b=kM € K/M. The set {hy,b € K/M} is a compact subset
of the Martin boundary of (M, Ay,) and it is shown in Guivarc’h, Taylor & Ji
[26] that

lim Ky, (z,yn) = he(z)

n—-+00

if and only if k(y,) converges to b in K/M and (a, C(y,)) = +oo for all a € £
(in order to give a precise reference for this claim, let us use the notations of [26]
and set hggy(z) = exp—(p, H[g"']) when z = gK. Then, for b = kM € K/M,
hy = Skhigy, where Sif(z) = f(k 1.z) for any function f on M. Thus, in the
Martin topology for A, a sequence y, converges to hy if it is Cg-fundamental
in the sense of [26], that is if and only if k(y,) — b and (o, C(ypn)) — +oo for
all @ € IF, see [26], 7.27-7.33). The functions h) = h;/®y are A’-harmonic.
The sequence y,, converges to the functions h(g for the Martin topology of A,
ie. K(z,y,) = hY(z), if and only if E(y,) — b and (a,C(y,)) — +oo for any
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a € ¥, Since ®y(z) = fK/M hy(z) dv(b), the A%-harmonic function 1 has the

representation

= 0.’L‘ vV .
1—/K/Mhb< ) du(b)

It follows from the Martin boundary theory that BY, starting from o, converges
almost surely in the Martin topology to a random point carried by {hg, be K/M}
with distribution v (see, e.g., Kunita & Watanabe [33], Pinsky [48], Theorem
7.2.2). This proves the proposition.

Remark 5.2 The proof of the proposition shows that {(a, BY) — +oo a.s. for
each o € ¥ T, when t — +o0.
5.2. Asymptotic behavior of the radial component of the I.B.L.

We have seen in Corollary 4.3 that the radial part X = C (B°) on a, U {0} of
the infinite Brownian loop B? around o is a a, U {0}-valued continuous Markov

process starting from 0, with generator
2 Rad (A ) =3 Ay + Valog(d2¢yg) - V.
Thus Xy = 0 and

Vt>0, Xt E a+’

26 t
(26) X — Xy — / Va log(éégoo) (Xs) ds is a Brownian motion on a.
0

We will consider the behavior of this Markov process starting from any point
z € a, U{0}. The case where z € a, will be needed to establish the asymptotic
independence of the radial and of the K/M-component of the I.B.L. around o.

5.2.1. Almost sure behavior

Let us recall that the Bessel process of dimension 7 is the norm of an n-dimensional

Brownian motion.

Proposition 5.3 Let X be a continuous process satisfying (26) starting from
z € a, U{0}. For some k € N, there ezists two Bessel processes R and RW),
of dimension d and p, such that R(()d) =|lz]| = R(()p) and such that, for all t >0

R < |X|| < R{.
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t
Proof. By assumption By = X; — Xy — / Va log(ééwo)(Xs) ds is a Brownian
0

motion. By Ito’s formula,

t t
1
1 X2 =||X0||2+2/0 <Xs,st>+td+2/0 (Valog(d2¢0) X, Xs) ds

t t
= || Xol*> + 2/ (Xs,dBs) +td + 2/ Slog(éécpo)(Xs) ds
0 0
here d = dim(a) and £ = -6'thE1 t As sh
where d = dim(a) and £ = ZISdewja—a:j is the Euler operator on a. As shown
in the appendix (Theorem 8.3), there is some integer ¢ such that on a,

0 < Elog(82 o) < q.

Let H™) be the solution of the equation
t
H =1%ol +2 [ VA d, +
0

t

where 3 is the real Brownian motion defined by §; = / | Xs ||~ Xs, dBs). Tt is
0

well known (see Yamada [55], Revuz & Yor [49], X1.1) that H(™ is the square of

a Bessel process of dimension n. Let p = d + 2¢q. It follows from the comparison
theorem ([49], Theorem IX.3.7) that almost surely, for all £ > 0,

(27) 7Y <1 X,)° < H?.

One obtains the proposition by setting Rgn) = Ht(") forn=d,p. O

Corollary 5.4 Let B be the I.B.L. around o. Then, almost surely,

More precisely (law of iterated logarithm), a.s.

hmsup 4O B
,H+oop 2tloglogt

and for all 0 < e < 1, there is C. > 0 such that, for all t,n > 1,

0 .
A0 BY) | o

P( sup
et<s<t S

Proof. Since d(o, BEO)) = || X¢||, where X is the solution of (26) starting from 0,
the result follows easily from the proposition and from classical properties of the

Brownian motion. [J
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5.2.2. Distributional behavior

In this part, we will prove the following theorem.
Theorem 5.5 Let X be a continuous process satisfying (26) starting from some
z € a, U{0} and let, for T >0, XT) be the rescaled process defined by

1
VT

As T — +o0, XT) converges in distribution in C(Ry,d.) to the intrinsic Brow-

xP = — Xy

nian motion of the Weyl Chamber a,.

It can be useful to the reader to have a very sketchy and informal presentation
of the strategy of our proof. Let Gr(z) = (6%900)(:1:\/T). We will see that Xt(T)

is a solution of the equation

¢
Xy =Xo+ B +/ Va(logGr) (X5) ds
0

where ( is a Brownian motion on a,. On the other hand, the intrinsic Brownian

motion Z; of a, is a solution of

t
(28) Z, =B, + /0 V. (log ) (Z,) ds.

Imagine now that G and 7 are bounded away from 0 and with bounded deriva-
tives on d, (this is actually obviously false). Then by using the fact that for every

smooth function h on a,

Agh
(29) Aq (logh) = == + || Va (log h)||* = 0

one sees that

T

NE = e (< [ (S 00 - 245 ) ) as)

is a martingale and that, for all b > 0, when 0 <t < b,

t
x =x" +8,+ / Va (log m) (X{1) ds
0

where 3 is a Brownian motion on a, under the probability NI (NJ)™! - P (using
Girsanov’s theorem). If, when T — +o00, NI;‘F tends to 1 in an appropriate way,

we will conclude that Xt(T) converges in distribution to the solution of (28).
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Actually the behavior of the coefficients are singular near the walls of the
Weyl chamber and in particular near 0 which is the starting point (at least of the
limit) and thus cannot be avoided. The plan of the proof is now the following.
In Lemma 5.6 we show that the processes X(7) are well behaved in a short time
t < a. At a fixed time t = a, we will use the convergence of the densities at time
t (see Lemma 5.7). Then one localizes the processes in compact subsets of the
open cone a,. The convergence of (a localized variant of) N7 is dealt with in
Lemma 5.8. The precise version of Girsanov’s type argument alluded to above is
given in Lemma 5.9. After these preliminaries the proof is easy and presented at

the end of this section.

We will suppose without loss of generality that the process X satisfying (26)
is the coordinate process on Q@ = C (R}, d,) and we let F; = o {X, | 0 < s < t}.
When Xy = z, we let P, be the distribution of X and ]P’(IT) be the distribution of
X The distribution of the intrinsic Brownian motion of the Weyl chamber is
denoted by Q.

Lemma 5.6 There exists k > 0 such that for all T > 0,7 > 0,1 > 0,

2 |2
P, [sup,<, X > 7] < 5 (% + m:) :

Proof. It follows from Proposition 5.3 that, for some x > 0,

l=]1?

1 2
E, [Supsgt ||X§T)||2] < T]E [SuPsgtT (Rgn)> ] < 2( T + Kt).

This gives the lemma using Markov’s inequality. [

Lemma 5.7 For any starting point x, the density HgT) of X gT) converges, as

T — +o0, to the density 8y = hy(0,-) at time t of the intrinsic Brownian motion
of the Weyl chamber.

Proof. It follows from Corollary 4.3 that 9§T) (z,y) = T%thT(:I:, VTy). We must
show that, for each fixed x € a,,y € a, and ¢ > 0,

lim T% g% (z, VTy) = hy(0,y).

T—+o0

We may assume that ¢ = 1 by scaling. Recall that
2

> (z,VTy) = e S 8(VTy) ""(’;07‘(/;? / pr(€e”.0, keﬁy.o) dk
K
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where § = Vol(K/M)§. We have

pr(e®.o, keﬁy.o) = pr(e®.0,0)

if z = 2(T,z,y,k) € a, is the radial component of e~VTYk=leT. Notice that z
remains at bounded distance from vT(—w.y) € a,, as T — +oo, where w is the
element in the Weyl group W, which interchanges a, with —a,. We have indeed

|z + VTw.y|| < d(e_ﬁyk_lem.o, e_ﬁy.o) = d(e".0,0)

(see for instance Lemma 2.1.2 in [2]). Since y € a,, this implies in particular that
for every o € X, (a,2)/VT stays within two positive constants as T — +oo.
The heat kernel analysis in Anker & Ji [2] (see Section 3, Step 6) yields the

following asymptotics

2
lyll

- D lel?
pr(e®.0,0) = cpe 2 T 2

e 5 T po(z) + O (T 81675 Ty (2) )
as T — +00, where ¢; = 2" % 72 Vol(K/M) ™" 7(°) b(0)~2 and n = dim M.
Notice that this estimate is uniform in the variable k¥ € K involved in z. By

integrating ¢o(z) over K and by using the functional relation
/ B (VTR 1e%) dk = Bo (eVTY) 3o ("),
K
we obtain

/ pr(e”.0, ke‘/Ty.O) dk = crpo(z)e” 2 T~
K

~ cpo(z)e 2 T
as T' — +o00. By using the asymptotics
§5(VTy) ~ Vol(K/M)24" ¢2VT langlepa)

and

b(0) /%! —VT{p,y)
(p° € ’

o(VTy) ~ 2T 2 w(y)

(see for instance [2], Proposition 2.2.12.ii), we further obtain

2
[yl

(30) 3@, VTy) ~ (2n) "2 w(0*) " w(y)?e 2 T2,
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We now remark that the limit depends only on the Weyl chamber a,. Let us
consider the symmetric space G /K where G is a complex group, which has this
Weyl chamber. We have seen in Proposition 3.3 that in this case the radial part
of the I.B.L. around o is equal to the intrinsic Brownian motion on a,. Thus, in
this case q? = hy where h; is the density of the intrinsic Brownian motion. This

process has the scaling property:
h (0,yV'T) = ha(0,).

Thus, if we apply (30) to h with z = 0 we obtain that

llylI2

h(0,y) =, lim hr(0,yVT) = (2m) 72 m(p") " m(y)’ e 2 T

ol

Thus (30) proves the lemma. O

Let a > 0,7 >0, R > 0, we set
(31) o ={z € ay; (a,z) >n, Va € BT},
31
o=inf{t >a; X; ¢ o’ or || X;|| > R}.
Lemma 5.8 Let Gr(z) = ((5%@0)(:16@) and, for b>a >0,

™ (Xono) Gr (Xo) (/Wég’: (X) ds) .

(1) _
(32) Mb Com (Xa Gr (Xb/\a) o

Then, almost surely, Mb(T) —1asT — .

Proof. Recall that G = 5%900 and G7 = G(VT ). Obviously, for all z € a,,

e )

Gr G
On one hand, A®; = —||p||?®¢ hence Rad(A)py = —||p||*vo.- On the other
hand, 5’ Rad(A)py = G1AG — 6_%Aa(5%. As a consequence, G~1AG =
572 AG67 — lpl>. The latter expression occurs in the analysis of the Harish—

Chandra expansion (41), as performed by Gangolli. It follows immediately from
its expansion in [31], proof of Lemma IV.5.6, or from the following explicit formula
noticed by Wallach [54] (see also Heckman ([28], Theorem 2.1.1):

1 1 1 .
d(z) 2 Az02(x) — ||p||2 =1 E (M (Mo — 2) + 2mgmay) ||a||2 sinh 2<a,x)
a62+
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(where ma, = 0 when a ¢ ) that A&—(T;T converges uniformly to 0 on a.

Therefore
bAC
exp(/ M(Xs)ds) —1 as T — +o0.
Besides, for every z € a,, if n = dim M
Gr(z) = 5(\/Tx)%<po(ﬁm) ~ 2%6%@@@0(@&6) ~ 2(1%7 T‘Zgwﬂ'(x)

as T'— +oo (see for instance Theorem 8.1.ii). Thus

Q

(z
y)

3

7(z)
Gr(y)

for all z,y € a,. This concludes the proof of the Lemma. O

_)

as T — 40,

2

Recall that Q is the distribution of the intrinsic Brownian motion of the Weyl
chamber, 6, is its density at time ¢ and Ht(T) is the density of X; under ]P’:(ET).

Lemma 5.9 Let b > a > 0 and let “X be the process defined by “X; = Xgyp(a,t)-
Then, for any Fp-measurable function ¥ on Q and € > 1),

o) (x,) 1

(33) D[ C0 x| = | G ¥ ) 1
b

€as o>b}

Proof. The process X satisfies (26), thus we know that, for ¢ > a,
t
X — X, — / Valog G (X,) ds
a

is a Brownian motion on a, under P, starting from 0 at time a. Hence, under

(T)

the probability measure Py /,
- t
t( ) — X — X, —/ Valog Gr (X) ds
a

is also a Brownian motion for ¢ > a. Since (see (29))

AaG’T
Gr

it follows from Ito’s formula that M, b(T) defined by (32) satisfies

) bAc 1 bAo

|Valog Grl|? + Aglog G = and |Valogn||? + Aglogw = 0,
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where kr = V,log(mw/Gr). This shows that Mb(T) is a local martingale under
IP);(CT), for b > a. It is clear on (32) that it is bounded, hence

BT [Mb(T) |]—"a] = 1.

From now on we work conditionally on {X, € af }. By Girsanov’s theorem, under

the probability M.") - P{"), when a <t <b,

tho
Xinoe — Xq — Valogm (X5) ds
a

is a continuous local martingale with increasing process 11,54} (t A 0 — a) Iy. This

implies that there is a Brownian motion 8 such that, for a < ¢ < b,

tAo
(34) /Bt/\a - /Ba = Xipo — Xog — Va logﬂ' (Xs) ds.
a
Since log 7 is C* inside a,, (X¢r¢);s, i the unique solution of the stochastic
integral equation (34) starting at X, and stopped at its first exit time from a”] N
{z € a,; ||z|]| < R}. The intrinsic Brownian motion satisfies the same stochastic
equation. Thus Xia,,a <t < b, has the same distribution under the probability

measure Mb(T).IF’SCT) and under @@, conditionally on X,. This implies that

a _ ]' a
E(7) [xy( X)X, a0} |0'(Xa)] =Eq [W\p( X) 1x,cas 050} | o(Xa) | 5

which yields (33), using the Markov property. [J

We can now prove Theorem 5.5. Let 0 < a < b,0 < n < ¢ and *X; = X
We remark that

up(a,t)-

supy<p [|“ Xt — Xi|| = supi<q | Xa — Xtll < 2sup;<, [| Xzl -

Let ¥ be a nonnegative function on C([0,b],a,), uniformly continuous and
bounded by 1. Let § > 0 and 8 > 0 such that |¥(X)— ¥ (X')] < § when
sup;<y [| X; — X¢|| < 8. We have:

1
D[ (0] ~ B 8 ()] < 5+ 2 [supc 161 > 36
and, applying Lemma 5.6,

ESD @ (X)] > ESD (¥ (°X)) -,
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2
I

ifr=6+ %(HQET + K a). Therefore, it follows from Lemma 5.9 that

ED [0 (X)] > ED [‘P(“X)l{xae@,m}]—f

Xz

6. (Xa) 1
> Eq IWW‘P( X) L x,eat o0} | — T

Using the lemmas 5.7, 5.8 and Fatou’s lemma, we have:

16

.. (T) a _s_ =2

lTnf,lngz T (X)] > Eg [\IJ( X) 1{Xaeaj_,a>b}] Y ka
6

52
> %[\P(X)J—%—%m—@[xam}

~Qlo <8~ 20 [supyca Xl > 58]

Recall that o = inf (t > a | X; ¢ o’ or || X¢|| > R). As Qa.s., X; € a, for all
t > 0, obviously Q[o < b — 0 when n — 0 and R — +oo. It suffices to let
successively (7, R) goes to (0,+00), € to 0, a to 0 and § to 0 to conclude that
lim inf ET) [T (X)] > Eo [¥ (X)].

T—+00

Replacing ¥ with 1 — U gives immediately that

JJim BT [¥ (X)) = g [¥ (X)]. 0

5.3. Asymptotic independence

We will now (define and) prove the asymptotic independence of the radial and of
the K /M components of the I.B.L. This will be a consequence of the following

proposition.

Proposition 5.10 Let X be a continuous process satisfying (26), defined on
some probability space (Q,F,P). Let P be a probability on F, absolutely con-
tinuous with respect to P. Under IE as T — +oo, XT) converges in distribution

to the intrinsic Brownian motion of the Weyl Chamber a,.

Proof. Let Fw = 0 {X,; 7 >0} and F, = 0 {X;; 0 <7 < a}. We have to show
that for any Z € L' (Q, F,P), for any s > 0 and any bounded continuous function
¥ on C (R, a,), Fs-measurable,

(35) im B[z o(XT)] =E[2] Q[¥],
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where Q is the distribution of the intrinsic Brownian motion of a,. Since
E[Z O(X"))] = E[Zo T(XD)]
where Zy, = E[Z | F] and since
E[U O (XT)] - E[V ¥(XD)]| < ¥ E|U - V),

it suffices by density in L(Q, F,P) to consider the case where Z is bounded

and F,-measurable for some a > 0. Let

1

a, T’
x@T) gy Xt( ) = ﬁXSUP(Ttﬂ)'

X" —x

Since sup;, || < \/— Sup;<, || Xtl|, we may also replace X (1) py x (@1,

Using the Markov property at time a, we get
B[z 9(X©®D)] = E | ZEw(X*D) | F)| = E|ZEx, [0(X@D)],

~ 7T . .
where Xt(a ) _ %X(Tt_a” and where P, is the law of the solution of (26)
starting at z € a, U {0}. By the dominated convergence theorem, it suffices
finally to show that, for all z € a, U {0},
(36) lim B, [¥(X(*7)] = Q[¥].

T—+00

By Theorem 5.5 and Prokhorov’s criterion, the family of the distributions of X (1),
T > 1, under P, is tight: for all € > 0, there exists a compact set X in C(Ry,a,)
such that for all T' > 1

P,[XT) ¢ K] < ¢

Using the Ascoli’s criterion of compactness, we know that, uniformly in 7" > 1,
when X(*) € K, the modulus of continuity

SUPg<u<v<s,lu—v|<n ||X’I(LT - X«ST)”
goes to 0 with 7 in P,-probability. Since
sup,, | %" - X7 = & szwXﬁa)—&ﬂ
< SUPp<ycv<suvics X — X0

and since ¥ is Fs-measurable, this implies that

Jim B [U(XOD)] = Tim B, [w(xX 1)
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thus (36) follows from Theorem 5.5. [

We have seen that l.c(B,go)) converges almost surely to some random limit
boo € K/M. For b € K/M let b be the constant path b; = b for all ¢ > 0.
The process {k( )) t > 0} converges in distribution in C((0,00), K/M) to the
process boo, where C((0,00), K/M) is equipped with the uniform convergence on

compact subsets of (0,00). Notice that 0 has to be excluded.

Corollary 5.11 The two processes {k(B(O) t > 0} a { ,t > 0} are

asymptotically independent in the sense that their joint dzstrzbutzon on

C((0,00), K/M) x C([0,00),8.)
converges to the distribution of two independent processes, as T — +00.

Proof. Let us actually prove that, if F' is a bounded continuous function on
C((0,00), K/M) and G is a bounded continuous function on C(R;,a, U {0}),
then

(0)
: ) C(Byr)
T1—1>I—|I—100]E F(k(BtT)1t>O)G( \/T

By density, one may suppose that, for w € C((0,00), K/M), F(w) does not de-

1> 0)| =E[F(bo)] EolC]

pends on w; for ¢t < e. Then

(0) 7
Jlim P(EB),t > 0) = F(b).

Thus

o(BY)
VT
<|ICI=E[|FRBE)) - F)|

_ B

R | F(be)G(

)

converges to 0 as 7' — +oo and one concludes with Proposition 5.9. O

6. The other ground state processes

Motivated by the infinite Brownian loop on the symmetric space M, we have so
far studied the relativized ®g-process of the Brownian motion. The function @ is

the unique K-invariant ground state, but there are many others. Recall that we
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call a ground state any positive solution ¢ of (A + 2)\g)¢ = 0. To every ground
state ¢ corresponds a unique probability measure A on K/M such that

o) = 9(0) [ a)dx®)
K/M
(see, e.g., Guivarc’h, Ji & Taylor [26], 7.1).

Theorem 6.1 Let B¥ be the relativized p-process of the Brownian motion on a
noncompact symmetric space M, starting from o. Then, as T — 400,

(i) Almost surely, $d(o, BY) — 0 and k(Bj‘e) converges to a random variable
with distribution X\ on K/M.

(1) {ﬁC(Bt“}),t > 0} converges in distribution to the intrinsic Brownian
motion on the Weyl chamber.

(i1i) {I%(BfT),t > 0} and {ﬁC(BfT),t > 0} are asymptotically independent.

Proof. The proof of the almost sure convergence of k(B;’i) is the same as the
proof of Proposition 5.1. Let us consider the radial part. Let F' : C(R;,a,) — Ry
be a Fr-measurable function for the canonical filtration. Then, by definition of

the @p-process,

e)\oT

¢(0)

where B is the Brownian motion on M starting from o. Notice that, if b = ko and

E[F(C(B?))] = ——E[F(C(B))p(Br)]

T =g.0
/ by (k.z) dk = / e Hlgk hol) g — & ()
K K

therefore
/K o(k.z)dk = (o) /K /K | olk) DO = plo)00(z).

We use this equality, the invariance invariance of the Brownian motion under K
and the relation C(k.z) = C(z) for k € K and z € M to write

e)\oT

BRCE))] = S /K E[F(C(B))e(k.Br)) dk

= TE[F(C(B))®o(Br)]

= E[F(C(B”)))
This proves that the process C'(B¥) has the same distribution as the radial part
of the I.B.L. Thus (ii) follows from Theorem 1.4 and (iii) is proved exactly in the

same way as Proposition 5.11 was.
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Remark 6.2 Let us consider the case where A is the Dirac measure on the class
M in K/M, i.e. the case where

o(z) = e PHTD if x = go.

In this case the generator of the p-process is the so-called distinguished Laplacian
on the solvable group AN, (see [8], Cowling, Giulini, Hulanicki & Mauceri [12]).

This generator is
1
DI
i k

where (H;) is an orthonormal basis of a and (Nj) is an orthonormal basis of n,
compatible with the root space decomposition. It is left invariant under AN and
the relativized ¢-process is a symmetric continuous-time random walk on AN (the
distributions of Bf form a symmetric convolution semigroup on the group AN).
The above proposition thus gives a precise description of this process (notice that

k(BY) converges to the class M in this case).

7. Asymptotic behavior of the double-ended I.B.L. on

a symmetric space

We now consider the double-ended infinite Brownian loop {(B?, BY),t > 0} from
q € M to p € M. Without loss of generality we will suppose that ¢ = 0. Let us
define ¥ : M x M — R by

T(g.0,h.0) = Bo(h~'g.0)

where ®g is the Harish—Chandra function. It follows immediately from Proposi-
tion 2.6 and Proposition 4.2 that this double-ended I.B.L. (B, B?) is the rel-
ativized W-process of the Brownian motion (B,B) on M x M, starting from
(0,p). Observe that B and B are two independent Brownian motions on M.
Since ¥(g.0, h.0) # ®g(g.0)o(h.0), the two components B® and B are not in-
dependent. Actually, loosely speaking, these two components remember that the
K /M-component of the Brownian motion on M converges almost surely. This is
the intuitive explanation of the assertion (i) of the following theorem. Observe
also that it follows from this theorem that the asymptotic behavior of the first
component B itself does also depend on the end p.
For each p € M, let v, be the distribution on K/M defined by

[ hs(p)
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for all Borel set V' in K/M, where v is the K-invariant probability measure on
K/M and hy(g.0) = e~»H7 k) if h = kM, k € K. We choose some v € G such
that v.p = o. Notice that when p = o, the following theorem (except (ii)) also
follows from Theorem 6.1, since the double ended I.B.L is a ground state process

of the Brownian motion on MZ2.

Theorem 7.1 Let {(BY, BY),t > 0} be the double-ended infinite Brownian loop
from o to p on the symmetric space M. Then

(i) The "angular parts” k(BY) and k(B?) converge almost surely to the same
limit bs, which has the distribution v, on K/M.

(i) The processes B® and C(.B°) are independent.

(iii) The normalized radial parts {ﬁ(C(B?T),C(B?T)),t > 0} converge in
distribution to two independent copies of the Brownian motion in the Weyl cham-
ber, as T — +o0.

(iv) The three processes ﬁC(B?T): ﬁC(B?TL and (k(BP), k(BY?)) are asymp-
totically independent (in the sense similar to that of Corollary 5.11).

Proof. The proof of (i) will use the same approach as Proposition 5.1 and the
following formula (see Helgason [31], Lemma IV.4.4), for all g,h € G,

@O(h_lgo) — / e_(paH[h_lk])e_(va[g_lkD dy(i{;)’
K/M

which can be written: for all 1,20 € M|
(37) U1, ) = / (1 ) () o (b).
K/M

Let D = A, + A,, be the Laplace Beltrami operator on M2. The bottom of
the spectrum of —D/2 is 2)¢. Let p§2) be the heat kernel on M? and Gg\)o =
fre e”‘opg?) dt be the Green kernel of 2D + 2. Consider

1
D0 = \IJ_1 (ED + 2)\0) o) \P,

and its Green kernel G. We introduce the two following Martin kernels

GS) (2,y) G(z,y)
K(Z)(I,y):%—” K (_fL"y): 7,y’ :L"yEMZ.
G3) ((0,0),9) ’ G((0,p),v)

For all (b1,b2) € K/M x K/M, the functions

_ hy, (1) hp, (22) T (o0,
i (2) — bli(%:()p)b\zy(( le)’ wi ) P)’

r = (z1,29) € MP
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are D% harmonic and equal to 1 at (o,p). The formula (37) can be written:

1= /K/M ) (3:)\11(1)0,1)) dv(b) = /K/M h,p) (z) dvy (D)

for all z € M2, or

1= / ;L(bhbz) (z) dﬂp(bla b2)
K/MxK/M

where 7, is the image on the diagonal of K/M x K /M of v, by the map b — (b, b).
It follows from Martin boundary theory and from this representation formula of
the harmonic function 1 that the diffusion (B, B®) associated with D? starting
from (o0, p) converges almost surely in the Martin topology of (D%, K},) to a random
limit (boo, boo) Where by, has the distribution v, (see [33]). By definition, this
means that

lim K,(z, (B}, BY)) = hs,, (z).

t—+00

Now, since G(z,y) = Gg\)o (z,y)¥(y)/¥(x), it is easy to see that

Kp(z,y)¥(z)
KO (g, y) = 2227
=K 00)
Therefore, for all z1,z9 € M,
(38) lim K@ ((z1,22), (B, BY)) = hoo. (#1)hog (w2)-

t—+o00
As in the proof of Proposition 5.1, we see, using the description of the Martin

boundary of %D + 2X¢ given by Guivarc’h, Ji & Taylor [26], that if

lim K@ ((z1,22),y™) = hy(x1)hp(w2),  V(z1,22) € M2,

n—-+o0o

then the two K/M-components k(ygn)) and k(yén)) of yp = (ygn)’ yén)) € M2 both
converge to b € K/M. Thus (i) follows from (38).
Let us prove (ii). Let f : M® — Rand g : a, x a, — R be measurable bounded

functions. One has, for all £,s > 0,

Elf(BY, BY,1)9(C(v.BY),C(~v.Bl, )] =
= E[f(Bs, Bs+1)9(C(7.B;), C(7.Byyr)) e CTI20W (B, 1y, Byyy)]

e—(5+t)2)‘0/f(xl,wg)g(c(’)’-xs)a0(7-374))178(0"Tl)pt(wl"m)

xps(Y".0,23)pe(3, 24) U (2, 24)dm(z1)dm(z2)dm(z3)dm(z4)
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where m is the Riemannian measure on M. Since both m and p; are invariant

under the action of G, one has
[ 9(C022), Cranpu(y 0, 30)p1(as, 24) ¥z, ) ) 1)
— [ (@), Caploaamr v0,7™ o)W,y wa)dm(s)dm(a)
= [ (@), Canpu(o, o, 20w,y )im(zz)am(c)
= /g(C(xg),T4)ps(0, wg)pt(xg,k4e”.o)\IJ(gc2,7_1k4e’"4.o)dm(xg)dk45(r4)dr4

= /g(C(k4.$3),r4)ps(k4.0,k4.m3)pt(k4.x3,k4e”.o)
XU (29,7 'kse".0)dm(z3)dksd (r4)dry
= [ 9(C@).rap.fo,zs)pilas,e"0)Uwa,y e o)dim(as) b3 (r4)ars

where we have used the expression of m in polar coordinates (if z = ke'.o,
dm(z) = dkdé(r)dr). On the other hand, since ® as a function on G is spherical
([ ®o(gkh) dk = To(g)Po(h)) and symmetric (®o(g) = Po(g~')) one has

/ U(x9, 7 Lkee™.0) dky = / Bo(e Mk, Ly.z0) dky = Do (y.22) Do (e.0)
hence,
E[f(BY, B )g(C(v.BY), C(v.BY,))] = e+
></f(ivla352)173(0,iEl)Pt(ﬂCla$2)¢0(7-$2)dm($1)dm(332)
x / 9(rs, 74)ps (0, €7.0)pr(kse™ 0, €™.0)Bo (€7.0) §(rs)5 (ra) dradrads.
= 6_A°(s+t)/f(ivla$2)ps(0,$1)1)t($1a$2)¢0(7-$2)dm($1)dm($2)
x e Mo(s+t) / 9(C(z3), C(24))ps (0, z3)ps (z3, T4) Do (24)dm(z3)dm(z).

The same proof applies for f and g depending on an arbitrary finite number of
coordinates of the processes B%, BY. We first deduce from this formula that the
process C(7.B°) has the same distribution as the radial part of the I.B.L. around
0, and then that B® and (C(B°) are independent. This proves (ii).

To prove (iii) one first observes that C(B°) and C(7.B°) are independent
and have the same distribution as the radial component of the I.B.L. around o.

Hence, the processes {%(C(B?T), C(v.BY:)),t > 0} converge in distribution to
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two independent copies of the Brownian motion in the Weyl chamber, as T' —
+00. It follows from the next lemma that C(y.B?) — C(BY?) is bounded when
t — 4o00. This implies (iii).

In order to show (iv), let us prove that if F' is a bounded continuous function
on C((0,00), (K/M)?) and G1, G are bounded continuous function on C(R, ,a, U
{0}), then, as T — o0,

c(BY)

E|F(k(BY, k(BY)) Gi( T2 | = BIF (0] (G)Fq (Go)

where b is the constant function b(t) = b. One may suppose that, for some £ > 0,

F(w) does not depend on ws, s < €. It follows from (i) that

Jim (B, k(Bip), t > 0)) = F(b).

This implies that

O ., CBY). cBY)

E |F(k(BY,k(BY)) G1(—

(0) (0)
P 6y (CBD) g, OB

= lim E
T—+o00

0 ©
— lm E|F(oe) Gi(ZBT)) g, CO-Br)

T—+o00

where we use Lemma, 7.2 to replace C(B©) by C(7.B(). Since by is o(BY,t >

0)-measurable, this is equal to

(0)
F(beo) Gl(C%T

by (ii) and one concludes with Corollary 5.11. O

C(v.BY)

lim E JT

T—+o0

E

) Ga(

)

Lemma 7.2 Let x; be a sequence in a., and let g,h € G. Denote by y; € a, the
radial component of geih in the Cartan decomposition G = K(expa,)K. Then

y; remains at bounded distance from x;, as j — +00.

Proof. Let k;, k; € K such that ge®™ h = k; e¥ k; and let us decompose g = k e*n

in the Iwasawa decomposition G = K (exp a)N. Since

lyj — ;|| = d(Ke¥ .o, Ke™ .0)
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(see for instance Lemma 2.1.2 in [2]), we have

s — 51l < (k™ kje¥.0,6%.0) = d(en c¥h.o,e.0)
< d(e®*ne®ih.o,e*ne%.o0) + d(e*ne%i.o, e .0)
= d(h.o,0) + d(e"¥ine".0,e *.0)
< d(h-o,0) + d(e~%ne%.0,0) + ||2||,

which remains bounded, since Ad(e %) = e~ 24%j acts by contractions on n. O

8. Appendix. Some estimates of ¢,

We consider a symmetric space M = G/K of the noncompact type. The ground

spherical function
wolg) = [ @RI gk = [ ol gy
K K/M

plays a fundamental role in harmonic analysis on semisimple Lie groups. Let us
recall its behavior, which was fully determined in Anker [1] and in Anker & Ji
[2] (see Proposition 2.2.12), by resuming carefully Harish-Chandra’s analysis (see
Gangolli & Varadarajan [21], Section 4.6 & Theorem 5.9.5). We use the notation
of these references with a few modifications: E[{ is the set of indivisible positive
roots, S is the set of simple positive roots, p° = %Zaezg a and d = rank(M).
Recall that @o(z) = ®p(e*), z € a.

Theorem 8.1 (i) Global estimate? :

vo(x) X{ I1 (1-Ir(oz,36))}e*<”"C> Vz€ea,.
aEEK

(ii) Asymptotics away from the walls:

po(x) ~ ym(z) e

when (a,z) - +oo Ya € YT, The positive constant v is equal to % , where

b(A\) = w(iX) c(A), w(z) = HaeEJg (a, ), and c is the Harish—Chandra function.

(iii) Asymptotics along a face:

_<pF7I>

o () wro(x) )
’77"(56(; e " qp 7TF(£C(; e (o) “© po(w) ~ v n"(z) pro(z) e

2The symbol < between two positive expressions means that there ratio is bounded above
and below
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when z € 6, , w'(z) = mingesr(a,z) = +oo, while wp(zr) = Mmaxeer{a, )

remains o (w(z)) .
Recall that subsets F' of S are in one-to—one correspondence with faces
o ={z€ca|{a,z)=0Va€cF and (a,z) >0 YVa € S\F}

of a, and with standard parabolic subgroups P! = GrA'NY of G. We use F
as a subscript for quantities attached to the reductive component G, and as a
superscript for complementary quantities, which are most generally attached to

the split component A, For instance

1 br(0
pF =135 ), Maa € ap, ’YFZ,,FF(E,O)),
+ F
aEEF
while

F 1 F F bf'(0
p =P~ PF= 3 Z Ma €4°, 7y :rylF:.n.F((pO))a

a€E+\E;

In this appendix, we analyze some logarithmic derivatives of (g, which are used

in Proposition 5.3. Consider the Euler operator

Ef(z) = Ouf(z) = &|,_, f(tz)

on a, which writes
d el
Ef(z) = _Zlﬂﬁj a2,/ (%)
j:

in Euclidean coordinates or, after a short calculation,

Ef(ili) = Z My <0‘ax) aaf(m) =2 Z My <O‘a$> aaf(x)

aex aext
with respect to X (we will not use this one). The expression we are interested in
is
1
(39) x = Elog (37¢o) -

It is well-known that spherical analysis is elementary when G is complex. In this
case, % is reduced, all roots have multiplicity 2, and ¢ %900 = 7 is a homogeneous

polynomial of degree |~|. Consequently

(40) x(z) = [%F],
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In general, since, if n = dimM and d = dima,
§(z) ~ 27X and  @o(z) ~ ym(z) e PP

when z € a, tends to infinity away from the walls, it is conceivable that (40)

holds asymptotically. This will be established next.

Proposition 8.2 The ezpression x(z) tends to |S{| when (a,z) — 400 for
all € X7,

Proof. Since we are working away from the walls, we can expand the spherical

functions
q))\(g):/ ¢ (IA—=p,H[gk]) g1
K

according to Harish—-Chandra, actually in the following modified way, due to

Gangolli: if py(z) = @) (e%),z € a,,

41) (@) m(iN) ex@) = X YD (detw)b(w.\) ag(w.\) el WAoo

weW qe2Q
(see for instance Gangolli & Varadarajan [21], Section 4.5). Here W is the Weyl
group, @ is the positive lattice generated by the (simple) positive roots, b(\) =
m(iA) ¢(A) is an analytic function on a with polynomial growth, ap(A) = 1 and
the other a4(\) are rational functions with no singularities on a, which can be

estimated as follows, together with their derivatives:

(&) au)| < CA+]gl)Y  VArea.

As a consequence, the series in (41) converges for A € a and z € a,, and it
can be differentiated term by term in both variables. By applying successively

m(—iZ) | s—o and the Euler operator, we deduce from (41) the expansions

(42) 8(2)% po(z) = Lo (—i)|,_, {8(2)7 w(iX) pr(2) }
= X % eng{ Il (@a)}e e

Rcxiqe2Q a€ER

where ¢ = §(w) m = |W|m(p°) (for the last equality see for instance [2], Proof of
Proposition 2.2.12.ii.), and

(43)  EGie)@) = X % eng (Rl (ga) { [T (o2} e @2

RCE}’; qe2qQ acR
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The constant ¢ is positive, as well as the leading coefficient Csto = % . The
other cg 4 are O (1+ ||g||V) . Thus we deduce from (42) and (43) that

(44) 5(@)7 po(a) = {exg 4 +0 (1)} m(x)
and
(45) E(F2p0)(z) = {egs oIZF] +0 ()} m(@)

when (a,z) - +00 Va € X7, hence
1
£(02 po)(z) +
r)=——"" — |X{]|. O
x(z) 5(2) F oo(@) pry

Remarks: (a) Notice that (44) reproves Theorem 8.1.ii.
(b) By combining (45) with Theorem 8.1.i, we see that x is bounded in every a.

The rest of this appendix is devoted to the proof of the following result, which

requires to analyze the expression x(z) along the various faces af] of a,.

Theorem 8.3 On a_, x is positive and bounded, both above and below. Moreover
x(z) = [ENBh,| + X %
aEE;

when = € G, tends to infinity tangentially to the face afl i.e.

(a,z) — 0 VacgeeF,
(46)
(,z) > +00 YaeS\F.

We shall first replace the factor ¢ (:1:)% by e{”®) in the definition (39) of x.

Lemma 8.4 (i) The expression x1 =& log(éée_”) is positive and bounded above
on a, .

(ii) x1(z) tends to Eaezlt T under the assumption (46).

(iii) x1(z) tends to O if and only if {(a,z) — 0o YVa € X7,

Proof. Everything follows from the explicit formula

xi@) = Y me et
a62+

and from the behavior of the function z +— Z= for x >0.
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In order to prove Theorem 8.3, it remains for us to establish the following

properties of the expression

(47) x2 = x — x1 = € log(eipy) .

Proposition 8.5 On a,, x2 is nonnegative and bounded above. Moreover x2(x)

tends to |E$\Ebf’0| under the assumption (46).

Apart maybe from the lower bound, Theorem 8.3 follows obviously from Lemma
8.4 and Proposition 8.5. If x were not bounded below, there would be a sequence
zn € . such that x(z,) — 0. Since x; and x2 are nonnegative, according to
Lemma 8.4 and Proposition 8.5, this implies successively x2(z,) — 0, (@, z,) = 0
V a € ¥t and x(z,) — |2§|, by Lemma 8.4 and Proposition 8.2. Hence a

contradiction.

Proposition 8.5 will be proved in several steps. After the first step, which
is independent of the rest, we shall follow Harish—-Chandra’s strategy, using his
constant term theory for g along faces, which consists in first order asymptotics,
and reducing this way to semisimple symmetric subspaces of lower rank. Thus,
beginning with Step 2, we shall argue by induction over the semisimple split
rank and assume that Proposition 8.5 holds for every proper symmetric subspace
My = Gp/Kp of M = G/K . Notice that the rank zero case F' = () is trivial and

that the rank one case |F| =1 is already covered by Proposition 8.2.

Step 1: Let us first show that x2 > 0.

When applying the Euler operator £ to the expression
eP) po(x) = / e (P x—H[e"k]) g1
K

one is essentially reduced to differentiating the Iwasawa map
z > H[e"k] = H[erk )

Recall that the derivative at the origin of the Iwasawa projection Hoexp : p — a
is the orthogonal projection pr, : p — a. Setting y = Adk™ Lz and g = ¥ =

k~le®k, we have

HIe"K] = &|,_, Hooxp (ty) = &, HIe"g) = &],_, H [ klgle"¥Inlg]]

d
dt |t:1 dt lt=1 dt lt=0

which is equal to

(48) Hoexp (t Adklg]~'y) = pro(Adk[g] "y) = pro(Ad k[e"k] 'z),

d
dt |t=0
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since H [e¥k[gle®9n[g)] = H[eWk[g]] + H]g]. Thus
@) Eon)) = [ (o, pro(Adkek]a)) e
K
According to Kostant’s convexity theorem in the flat case (see for instance Helga-
son [31], Theorem I1V.10.2), pr,(Ad K.z) coincides with the convex hull of W.z.
In particular,
(p,pro(Ad k[e®k]Lz)) < (p,z) VkeK,Vzeca,.

_ £(ePpo)(z)

As a consequence, the expression (49) hence x2(z) = <53 o) is nonnegative.

Step 2: Analysis along a face
This is the actual induction step. Assume that z tends to infinity in a, in the
following way :

(,z) =o([z]) Va€eF,

(o, ) < ||z VaeS\F,

(50)

where F' is a proper subset of S. Then
(51) po(z) = ¢ (z) e #"2") 4 O (e lpm)=20" (@) |

where 9 is the constant term of ¢g at infinity along the face af] (see for instance
Gangolli & Varadarajan [21], Theorem 5.9.3.a) and w’(z) = mingesp{a,z) <
lz|| . Specifically,

o (@) = p" () oo 03 (8) = / pF(Hr[e kp] + ") e P Hrlerbed g,

Kp

where
F F
@)= Y r{Il{a=)}
Rcx} ach
[RISISENEL |
is a polynomial with leading coefficient v, | =~ = bFF—(OO) > 0 (see Gangolli
DIF RN Mg 7 (p0)

& Varadarajan [21], Corollary 5.8.12 and Anker & Ji [2], proof of Proposition
2.2.12.ii), and

@f(w):/ e (iA—pr, Hle"kp)) dkF:/ ¢ (iXp—pr, Hp[e*F kp]) o (iA",2") dkp
KF KF
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denotes the spherical function of index A = Ap + A on G¥ = Gp AF. Hence

(52)  eWrrriyf(a) = > Y { 11 (@,2™)} x
RCSHNS,, RICTENR ack

\R|+|R'|<|z+\z+, |

(I (8, Hele i)} oroor=HriheD gy
Krp pBER!

with ny+ s+ 0 ny+\E+ = 4F. As shown in Anker & Ji [2] (see Proof of

F,00

Prop051t10n 2.2.12.ii), the leadlng term
(53) A" wf(z") / elorer—Hrlehel) g
Kp

= yF wl(z) elpr>or) oro(zr) + 0{ IT 1+ <a,m))}

aeEE
= I (1 +{e2))
aEEE

in (52) is obtained by taking R = S\ 3, and R’ = (), while the other terms

are

of TI (1+(ea)) }.

aEEE
This yields the behavior
P po(z) = ePror gl (z) + O (||z)~)
_ ,YF ﬂ_F(m.)e(ﬂF,l'F) oro(zr) + 0 { IT 1+ (a,m))}

aEEE
= 1T (0 +{e2))
aeEg

stated in Theorem 8.1. Here ||z||~® denotes an arbitrary negative power of ||z]| .
The expression £(efyp)(x) can be analyzed in a similar way. Since the asymptotic

(51) holds also for derivatives: for each polynomial P there is Np > 0 such that

P(ge){e " eo@)} = P(&){e 745 ()} + O{(L + [lal)™7e ")}

(see Gangolli & Varadarajan [21], Theorem 5.9.3.a), we have

EePpo) (@) = E(P ) (@) + O {(1 + [la]) Ve 24 @)}
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and are thus reduced to studying &(e?F4{")(x) . When the Euler operator is ap-
plied to the right hand side of (52), one obtains three kinds of expressions, depend-
ing whether € acts on [] (o, z¥), on [] (8, Hr[e*F kr]) or on e P 2r—Hrle*Fkr])

a€R 56R’
namely
(54) IFIZR’ :7£R’ |R|{H<a,$F>} x
acR
x | { T (8, Hele"F kp)) } e (or=r—Hrle" kr]) gy,
Kr BeR

(55) IIFIZR’ = ’yéRl { H <OA,.TF>} X
aER

x /K [ S (8, pra. (Ad kple®"ke] " 2p)) x

F PER

X { I1 (ﬁI,HF[ekaF])} e(ﬂwaF_HF[ekaF])] dkp
B'eR'~{B}

and
(56) TTTEw = ~Ew { 1 (e 2")} / [{ T1 (8, Hele*kz))} x
a€ER Kr BER
X <pF,:L'F — pI‘aF(AdkF[ekaF]_l_ .’L‘F)> e<PF,wF—HF[e”FkF]>] dkp

using (48) in the last two cases. Let us analyze all these expressions. First of all,

I§+\E+ o 1s equal to the left hand side of (53), multiplied by |\ 3 ,|. The
0 F,0° )

other expressions (54) are smaller:
Trwl < 0/ s IIwFIIR'/ e Promr = kD) gk,
’ Kp Kp

=o{ Il (1+(a,a) }.

+
a€¥y

since ||zf'|| < ||z|| and ||zF|| = o (||z||). Same for the expressions (55). The expres-
sions (56) are more delicate to handle and will require the induction hypothesis.
Consider first
F F__F
11} Y wt(2F) x

_(’)'\E;:O,(D -

X / (pr, oF — Prop(Ad kple kp) ™" wp)) e (Pr 7r ~HrIETReD) gy
Kr

and observe that this integral coincides with Er(e”F pr)(zF), which is the ex-
pression under investigation for the symmetric subspace My = Gr/Kp. Thus,
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by induction,

L oy =27 77 (@) E(e ono)an) + o TT (1+(a,a)) }

£ aEEt

AN

=< J] QA+ (a,z)).

+
aEd

For the other expressions (56), we use in addition the nonnegativity of
(pr, P — Py, (Adkple™ kp] " zF))
(see Step 1) to estimate
[ITIE | < Clla™ | flap]| ] x

x/ (pF,wF—praF(AdkF[ekaF]_l.a:F))e<”F’$F_HF[ekaF]>dkF.
Kp

Notice that the last integral is equal to Er(e’"@rgo)(zr). Thus |III£R,| =
o{ Haezg(l + {(a,z)) }, again by induction. By putting everything together,
we obtain eventually that

_ 7F F
(57) E(po)lw) = Iy py o+ TTITk sx o + of TI (1+(aa)) }

£0 aEEE

= |ZENSH, | V() e o) ppo(ap) +

4" 7"(@) Er(Foro)(ar) +of T1 (1+{a2) |

is bounded above by e{*®) po(z) < T[] (14 (a,z)), see Theorem 8.1.ii. More-

aEEt
over, by induction, (57) behaves asymptotically like

|SENSh o | 7 () ePror) ppg(ar) ~ |SHNTi o1 e go(x),

if for some F' C F, (@, z) — 0 for all @ € F' and (a,z) — +oo foralla € F\F'.

Step 3: Conclusion
We argue by contradiction.
(i) If the expression (47)

xo(z) = Elog(eo)(a) = Eate
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were unbounded on @, , there would be a sequence z,, € a, such that xa(z,) —
+00. Since x2 is analytic on a, hence locally bounded, the sequence ||z, || must
tend to +o00. By passing to a subsequence, we may assume that Hz—:H tends to a

unit vector o in @, , which lies in some face of, with F’ G S. Thus
(@ zn) =o([znl)) VaeF
(o, zp) =< ||zn]| Vae S\F
as in (50). According to Step 2 (or Proposition 8.2 when F' = )), the sequence
X2(zy) is bounded. Hence a contradiction.
(ii) Similarly, if x2(z) would not tend to | ZF % ij’ o | under the assumption (46),
there would be a sequence z, € d, such that
(a,zp) >0 VaeF,
(,zp) > 400 YaeS\F,
inf | x2(2n) — [ZENBgol[ > 0.

We may assume again the existence of a limit direction ”;—Z” — Zoo in some face
Ct' with F C F' C S. Hence again

(,zq) =0 ([|lznl) YaeF

(@, ) < ||z Vae S\F'

and a contradiction with the convergence x2(z,) — [T N2 }" o | established in
Step 2 (or in Proposition 8.2 when F = ().

This concludes the proof of Proposition 8.5. [J

Remark: All these results extend trivially to reductive symmetric spaces in the
Harish-Chandra class. Except of course the lower bound on & log §*/2¢q in the
purely Euclidean case, where all expressions g, d, e? are identically equal to 1.
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