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Abstract

Using measured instrumental response functions for data deconvolution is a known source of

uncertainty. This problem is revisited here with Bayesian data analysis an Monte Carlo simula-

tions. Noise correlation induced by the convolution operator is identified as a major source of

uncertainty which has been neglected in previous treatments of this problem. Application to a lu-

minescence lifetime measurement setup shows that existing approximate treatments are markedly

defficient and that the correlation length of the noise is directly related to the lifetime to be esti-

mated. Simple counteractive treatments are proposed to increase the accuracy of this procedure.
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1 Introduction

The deconvolution problem is a classical inverse problem, and has received a lot of attention in many

scientific and engineering fields. The instrument response function (IRF), also called blurring func-

tion, is generally assumed to be accurately determined. It is however not uncommon that the IRF is

measured with the same accuracy as the signal to be treated, due to instrumental or experimental de-

sign constraints. The impact of an uncertain IRF on the accuracy of the deconvolved signal has to be

considered with care. This uncertainty propagation issue has been addressed in the past by Dose et al.

[1]. We show here analytically and numerically that their approximate solution does not encompass

important effects of noise correlation due to convolution.

In this paper, we use Bayesian data analysis to derive an exact expression of the likelihood function

in the case of gaussian additive noise. This solution is applied to the classical problem of lifetime

estimation from luminescence data.

2 Theory

The observed signal vector s (length n) is generally expressed as a linear reconvolution model

s = Hm + es, (1)

where m is a vector of values of the model function at the measurement points, H is a n × n zero-

padded lower triangular Toeplitz matrix built from the IRF h of length nh
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
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and es is an additive noise with multinormal statistics and covariance matrix Rs:

es ∼ Nn(0,Rs). (3)

Note that we use bold lowercase symbols for vectors (s) and bold capitals for matrices (H).

Using the symmetry property of convolution, Eq. 1 can also be written

s = Mh + es (4)

where M is a n × nh lower triangular Toeplitz matrix built from the model vector m as shown above

(Eq. 2).

As the exact IRF is generally not known, a measured IRF is used instead to solve Eq.1 or Eq.4. A

multinormal additive noise model is also used for the IRF

h = ĥ + eh, (5)

where ĥ is the unknown exact IRF and eh ∼ Nnh
(0,Rh).

The problem is to reconstruct the model vector m, knowing s, Rs, h and Rh, and to evaluate the

impact of the measurement uncertainties of h on m. This is an inverse problem doubled with an

uncertainty propagation problem. Bayesian data analysis is very well suited to handle this kind of

problem (author?) [2, 6, 5, 3].

2.1 Bayesian data analysis

The posterior probability density function (pdf) for m is obtained by Bayes’s formula

p(m|s,Rs,h,Rh) =
p(m)

p(s)
p(s|m,Rs,h,Rh), (6)

where p(m) and p(s) are the prior pdf’s for m and s, and where p(s|m,Rs,h,Rh) is the likelihood

function. Given our model, we do not know explicitely this latter function. Instead, we know the
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explicit expression for the likelihood when the exact IRF ĥ is considered (cf. Eq. 3)

p(s|m,Rs, ĥ) ∼ Nn(Mĥ,Rs). (7)

Applying the marginalization rule and knowing the expression of the pdf for ĥ

p(ĥ|h,Rh) ∼ Nn(h,Rh), (8)

we can write

p(m|s,Rs,h,Rh) =
p(m)

p(s)

∫

dĥ p(s|m,Rs, ĥ)p(ĥ|h,Rh). (9)

Considering that in our model p(s) is a normalization constant, and expliciting the pdf’s, one gets

p(m|s,Rs,h,Rh) ∝ p(m)

∫

dĥ exp

(

−
1

2
J

)

, (10)

where

J = (s − Mĥ)TR−1
s (s − Mĥ)

+ (h − ĥ)TR−1

h (h − ĥ). (11)

This quantity is rearranged in order to enable analytical integration

J = (ĥ − h0)
TP−1(ĥ − h0) − hT

0 P−1h0

+ sTR−1
s s + hTR−1

h h, (12)

where






















P =
(

MTR−1
s M + R−1

h

)

−1

h0 = P(MTR−1
s s + R−1

h h)

= h + PMTR−1
s (s − Mh)

(13)
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Integration over ĥ finally leads to

p(m|s,Rs,h,Rh) ∝
p(m)

|P|1/2
exp

(

−
1

2
(s − Mh)TK(s − Mh)

)

, (14)

where

K = R−1
s − R−1

s MPMTR−1
s . (15)

This expression for the posterior pdf calls for a few comments :

• convolution of the model vector with a noisy IRF leads to a ”noisy model” m̃ = Mh, affected

by correlated noise with covariance matrix K−1, the structure of which depends explicitely on

the model vector itself (heteroscedastic correlated noise). This is in contrast with the result

of Dose et al. (author?) [1], who obtain an expression for an effective variance, and do not

consider the covariance part.

• the mode of the posterior pdf depends on the actual value of the measured IRF h. A bias in the

optimal values for the model vector is thus to be expected, as a different realization of the IRF

would lead to a different solution. In any case, a consistent uncertainty analysis should ensure

that the exact value lies within confidence intervals.

3 Application

An application of interest is for instance the lifetime estimation of unstable chemical species from

their luminescence decays.

3.1 Model

A mono-exponential decay signal with lifetime τ is generated over a regular time grid (nh = n =

100). The model is mi = exp(−ti/τ). The IRF is a gaussian function centered at t0, and of FWHM

wh

hi = exp
(

−4 ln(2)(ti − t0)
2/w2

h

)

. (16)
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In order to keep a single parameters, the model after convolution is rescaled to the maximal value of the

signal, and we can set p(τ |s,Rs,h,Rh) ≡ p(m|s,Rs,h,Rh). Homoscedastic noise is considered

for both signal and IRF, i.e. Rs = σ2
s ∗ In , Rh = σ2

h ∗ Inh
. Finally, a uniform prior distribution for τ

is used (p(τ) = cte).

Figure 1: Typical synthetic signal and IRF used for lifetime estimation (σs = σh = 0.01, τ = 0.1
t0 = 0.1and wh = 0.03).

3.2 Comparison of models of the posterior pdf

The exact expression for the posterior pdf (eq.15) is compared to approximate expressions :

• no correction for the noisy IRF (σh = 0, in our model), which is the most commonly used

method;

• the diagonal approximation of eq.15, which implements some level of variance correction, but

fails to encompass the correlation in the model’s noise;

• the ”effective variance” method [1, 7].
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Figure 2: Posterior density functions for the lifetime estimated from a noisy decay and for different

treatments of the IRF’s uncertainty (σh = σs = 0.01). The functions have been shifted and renor-

malized to facilitate direct comparison. (a) comparison of simulation results (1000 runs) with the

full bayesian solution proposed in the present work; (b) comparison of the full treatment with vari-

ous approximations (see text), full support of the IRF; (c) support of the IRF limited to t ≤ 0.2 (all

approximate methods are undiscernable).

Variance. Fig. 2 represents the posterior pdf p(τ |s, σs,h, σh) computed by Monte Carlo simulation,

and by the different methods in the case of a same measurement accuracy for the signal and the

IRF (σh = σs = 0.01). The Monte Carlo method consists in repeated analysis of randomly noised

signal and IRF to build histograms of the maximum a posteriori (MAP) lifetime values (modes of the

posterior pdf). All curves have been shifted to a common mode, in order to facilitate comparison. The

exact expression is fully coherent with the histogram resulting of the simulation, i.e. it takes properly

the variance of the signal and the variance of the IRF into account. It can be seen on this figure that the

approximate methods all perform quite similarly and fail to recover the full variance of the lifetime.

The ”effective variance” method is seen to be numerically equivalent to the diagonal approximation
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of our method, and it performs only slightly better than the totally uncorrected method. Correlation in

the noise of the convolved model can thus have a major impact on uncertainty quantification.

Figure 3: Error estimates and 95% confidence intervals for the lifetime recovered simultaneously by

the exact method ∆τexact and by the effective variance method ∆τeff for 100 randomly noised signals

and IRF’s (σh = σs = 0.01).

Bias. All methods perform similarly with regard to the bias on lifetime estimation (Fig. 3). In this

figure, we reported the estimation by the ”effective variance” method as function of the estimation by

the exact method. The biases of both methods are highly correlated and practically identical. How-

ever, underestimation of the confidence intervals by the approximate method results in inconsistent

estimations, i.e. it fails significantly more than the exact method to include the exact value inside

the confidence interval, and confidence intervals for different realizations of the noise are frequently

disjoint. In this regard, Eq. 15 performs much better.

Accuracy of the IRF. For a given lifetime, when the IRF is measured with a better accuracy (σh <

σs), the differences observed between the various methods tend to vanish (Fig.4). For instance, if the

IRF is ten times more accurate than the signal, the uncorrected method provides exact results over all

the practical range of lifetimes. It is also observed that longer lifetimes are relatively more affected

than shorter ones, which is a pure effect of noise correlation (see next section).
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Figure 4: Ratio of the standard deviations of the posterior pdf for the exact model (σexact) and for the

uncorrected model (σuncor) as a function of the theoretical lifetime.

3.3 Structure of the correlation matrix

The convolution of the mono-exponential model by the IRF is a vector m̃ which elements obbey the

following reccurence

m̃i = exp(−
∆t

τ
)m̃i−1 + ĥi + eh,i. (17)

As soon as the IRF vanishes the correlation between consecutive points is

< m̃i, m̃i−1 >= exp(−
∆t

τ
) (18)
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As there is supposedly no correlation in the signal noise, the covariance matrix K preserves this

correlation scheme. An approximation of the correlation matrix can thus been expressed as

C =

























1 ρ ρ2 · · · ρn

ρ 1 ρ · · · ρn−1
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
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

, (19)

where ρ = exp(−∆t
τ ). The noise correlation decays thus exponentially with de delay between points

of the model, the decay rate being the inverse of the theoretical lifetime.

3.4 Support length of the IRF

When the IRF is recorded on the same support as the signal, most of the its elements are pure noise.

We saw above that these points contribute significantly to the correlation of the noise in the convolved

model. Limiting the support of the IRF (nh < n), or zeroing it’s purely noisy elements might thus

enable to improve the correlation matrix. If we observe the standard deviation for the convolved

model (Fig. 5), we see that the truncation of the support of the IRF contributes significantly to reduce

the uncertainty at larger times. As shown on Fig.2(c), this enables some uncertainty reduction for the

lifetime estimation, but the effect of the correlated noise is still quite marked.

3.4.1 Identifiability

The behaviour of the present model with regard to the limits of detection of lifetimes due to the IRF

has been tested by reconstructing the posterior pdf from synthetic signals generated with very small

lifetimes. The posterior pdf displays explicitely the non identifiability of lifetimes that are too small

(Fig. 6). When τ decreases, the pdf becomes asymmetric, defining an upper limit for the lifetime, but

no lower limit, except the one imposed by the prior.
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Figure 5: Standard deviation of the model, after convolution with the IRF. Full line : IRF with full

support; dashed line : IRF with support limited to t ≤ 0.2. Same parameters as for Fig. 2.

4 Conclusion

The use of measured instrumental response functions for data deconvolution is a source of uncertainty.

We derived a new expression of the likelihood within a bayesian framework to explicitely incorporate

this effect and display it’s importance. Convolution of a noisy IRF with a model curve produces a

noisy model curve with correlated noise.

This has been illustrated on a luminescence lifetime measurement setup, for which it was shown that

existing approximate treatments were markedly defficient. It was also shown that, in this case, the

correlation length of the noise was directly related to the lifetime to be estimated. Longer lifetimes

are thus counterintuitively more affected by IRF’s uncertainty that shorter ones. Although the most

efficient way to reduce this effect is clearly to improve the IRF’s measurement accuracy, we have

shown that an qualitative improvement can very simply be obtained by zeroing those parts of the IRF

consisting of pure noise.

The method has been applied to an homoscedastic noise pattern, but extension to cases where the

noise is dependent on signal intensity (e.g. photon counting methods) is straightforward, as long
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Figure 6: Evolution of the (unnormalized) posterior pdf for τ at the resolution limit of the experimental

setup. The exact values for τ are reported alongside the curves. The standard deviation for signal and

IRF is σs = σh = 0.005.

as the normal noise distribution approximation is valid. Similarly, cases where the IRF is locally

fluctuating due to minor modifications of the experimental setup can be easily treated by a carefull

modelling of the variance/covariance matrix.

We are studying extension of this method to Poisson uncertainties. Evaluation of the resolution limits

of a fluorescence TCSCP apparatus [4]. Consistent uncertainty estimation for lifetimes recovered

from fluorescence spectra analysis.

An alternative treatment is to modelize the IRF by a function, which parameters pdf’s are estimated

by a bayesian analysis

p(m|s,Rs,h,Rh) =
p(m)

p(s)

∫

dph p(s|m,Rs,ph)p(ph|h,Rh).
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