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Summary. Variational arguments go back a long time in the history of boundary
integral equations. Energy methods have shown up very early, then virtually dis-
appeared from the common knowledge and eventually resurfaced in the context of
boundary element methods. We focus on some not so well known parts of classical
works by well known classical authors and describe the relation of their ideas to
modern variational principles in boundary element methods.

1 Introduction

The method of boundary integral equations has always had two important
applications in the theory of boundary value problems for partial differential
equations: As a theoretical tool for proving the existence of solutions and as
a practical tool for the construction of solutions. This is one of the aspects
that has remained constant since the times of Green and Gauss in the early
19th century until our times. Other ideas, in particular techniques of the
analysis of integral equations, have of course greatly changed and evolved in
the meantime, but it is curious to see how some of the very early questions
and techniques are related to recent simple basic results about the structure
of boundary integral equations.

This article has evolved from some observations made in the talk [6] about
the scientific work of Wolfgang Wendland, connecting works by Carl Friedrich
Gauss [11] and Carl Neumann [27] to the work by Wendland and his group on
variational methods for boundary integral equations. In particular the curious
case of “Gauss’ missing theorem” on the positivity of the single layer potential
operator – a proof of which could have been given by Gauss himself, but was
in fact only given 135 years later by Nedelec and Planchard [26] – seemed to
be sufficiently intriguing to merit a more detailed presentation. A secondary
path concerning second kind boundary integral equations, leading from Neu-
mann’s observation of the contraction property of the double layer potential
to the recent paper [31] by Steinbach and Wendland where energy methods
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were used to prove the contraction property in very general cases, seemed to
be less straightforward on the level of analytical tools and mathematical ideas.
Following the early twists of this path, however, one comes across the monu-
mental paper [29] by Henri Poincaré which uses, indeed, energy methods for
proving the contraction property of Neumann’s operator. The historical trail
of Poincaré’s paper which, after having been instantly famous initially, seems
to have disappeared from the common knowledge of the boundary element
community, is a second curiosity on which we will try to shed some light here.
By taking this look, we will even find some “new” mathematical results.

This paper does not present a serious research into the history of math-
ematics, which would require much more space, time and knowledge than
available to the author. It rather stays within the narrow viewing angle of the
history of the analytical foundations of boundary element methods, but it tries
to illustrate how a fresh look, however biased, can reveal new details of old
monuments. We will consider a domain spanned by the four papers by Gauss
[11], Poincaré [29], Nedelec and Planchard [26], and Steinbach and Wendland
[31]. If one prefers a hexagonal constellation, one can add Neumann’s book
[27] and the paper [7] in which the generality of energy methods was empha-
sized. For a justification of this combination of papers, suffice it to say that in
the sky, for giving the perception of a well-balanced constellation, the more
distant objects have to be much bigger stars than the objects closer to the
observer. . . Within this constellation, there exists a myriad of other points of
light, only some of which will make a short appearance in the following. Other
very bright stars in the vicinity of our constellation, from Lebesgue and Fred-
holm over Hilbert to Calderón–Zygmund and Mazya, will not be considered
here.

The papers we are trying to connect belong, in fact, to three quite different
galaxies: There is ours, extending over roughly the last 40 years, characterized
by the availability of many simple but very powerful tools like the basic theory
of Hilbert and Banach spaces, distributions, Fourier transforms and Sobolev
spaces. At the distant end there is the early 19th century with Gauss, where
the first general tools in potential theory and partial differential equations
were being forged. In between there is the end of the 19th century, roughly
from 1870 to 1910 with a condensation around 1895–1900, in the center of
which we see Poincaré, where in close relation with the emergence of modern
physics the first steps were done in directions that led to the subsequent
explosion of functional analysis beginning quite soon afterwards.

What is common to all three periods is the strong primary motivation of
the mathematical research by applications, which then led to the discovery of
beautiful structures that were investigated for their own sake, the result being
the creation not only of fine new mathematics, but also of more powerful tools
for the applications. Let us quote from Gauss’ introduction to [10] where he
talks about some of the ambivalence in the relation between mathematics and
its applications:



Positivity of boundary integral operators 3

Der rastlose Eifer, womit man in neuerer Zeit in allen Theilen der
Erdoberfläche die Richtung und Stärke der magnetischen Kraft der
Erde zu erforschen strebt, ist eine um so erfreulichere Erscheinung,
je sichtbarer dabei das rein wissenschaftliche Interesse hervortritt.
Denn in der That, wie wichtig auch für die Schifffahrt die möglichst
vollständige Kenntniss der Abweichungslinie ist, so erstreckt sich doch
ihr Bedürfniss eben nicht weiter, und was darüber hinausliegt, bleibt
für jene beinahe gleichgültig. Aber die Wissenschaft, wenn gleich gern
auch dem materiellen Interesse förderlich, lässt sich nicht auf dieses
beschränken, sondern fordert für Alle Elemente ihrer Forschung glei-
che Anstrengung.1

An earlier quote is the following quite modern-sounding grumble from 1825
[13]:

Ihr gütiger Brief hat mir um so mehr Vergnügen gemacht, je sel-
tener jetzt in Deutschland warmes Interesse an Mathematik ist. So
erfreulich die gegenwärtige hohe Blüthe der Astronomischen Wis-
senschaften ist, so scheint doch die praktische Tendenz fast zu aus-
schliesslich vorherrschend, und die meisten sehen die abstracte Ma-
thematik höchstens als Magd der Astronomie an, die nur deswegen zu
toleriren ist.2

On a more technical level, all three periods have in common that variational
methods play an important role. In Gauss’ time, variational principles were
commonly used for existence proofs, such as in Gauss’ existence proof for
the Dirichlet problem. In Poincaré’s time, on the practical side their field
of applications had been enlarged to cover the construction of eigenfunction
systems via min-max principles, and on the theoretical side the problems
caused by the perceived inadequacies of too näıve applications of variational
principles (cf. Weierstrass’ well-known criticism of Dirichlet’s principle) were
beginning to find solutions. Hilbert [14] is often credited with having given
the first rigorous formulation and application of Dirichlet’s principle. Here

1 The restless eagerness with which in recent times one strives to investigate in all
parts of the surface of the earth the direction and strength of the magnetic force
of the earth, is a development which is all the more pleasing the clearer the purely
scientific interest is standing out. For, in fact, how important the most complete
knowledge of the deviation line may be for navigation, the need of the latter just
does not extend further, and it remains almost indifferent to anything that lies
beyond. But Science, albeit also beneficial to the material interest, cannot be
restricted to this, but requires for All elements of its research the same effort.

2 Your kind letter has given me all the more pleasure the rarer there is now warm
interest in mathematics in Germany. As pleasant as the current high bloom of
the astronomical sciences may be, the practical tendency seems to be almost too
exclusively predominant, and most people consider abstract mathematics at most
as a servant of astronomy which is only therefore to be tolerated.
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is, however, a quote from a recent paper[1] by one of the specialists in the
calculus of variations:

In 1900, D. Hilbert, in a celebrated address, followed by a (slightly)
more detailed paper in 1904 [14, 15, 16], announced that he had solved
the Dirichlet problem [. . . ] via the Dirichlet principle which had been
discovered by G. Green in 1833, with later contributions by C. F.
Gauss (1837), W. Thomson (=Lord Kelvin) (1847) and G. Riemann
(1853). [. . . ]
The announcement of Hilbert turned out to be a little premature.
Instead, it became a program which stimulated many people during
the period 1900-1940: B. Levi, H. Lebesgue, L. Tonelli, R. Courant, S.
L. Sobolev and many others. In 1940, H. Weyl [40] completed Hilbert’s
program. By 1940 the Calculus of Variations had been placed on firm
grounds [. . . ]

Thus a closer look at history tends to blur the boundaries of what constitutes
a formal and complete proof. In any case, nowadays we have clearcut basic
tools like Hilbert spaces, the Riesz representation theorem, the Lax-Milgram
lemma, and Sobolev spaces, which allow us to teach Dirichlet’s principle in a
first course on finite element methods.

A final bridge between the present and the past should be mentioned that
allows us to approach those distant galaxies far more easily than had been
possible for a long time: The Internet. Almost all references in this article are
readily and freely available online, thanks to enterprises like actamathematica,
Gallica, GDZ, JSTOR, NUMDAM, SpringerLink.

In the following we will first make some remarks about Gauss and the first
kind integral equation of the single layer potential. Then we describe some of
Poincaré’s ideas about the double layer potential. In the final part we list a
few known and unknown results related to these old ideas.

2 Gauss and the single layer potential

In 1838-40, Carl Friedrich Gauss published three famous works which stand at
the beginning of our curious history of boundary integral equation methods:
In two of them, [10] and [12], he introduced boundary integral equations (of
the first kind!) as a tool in numerical computations and published extensive
tables and graphs of numerical results obtained in part by employing this
tool. It is truly amazing to see how much could be achieved with numerical
calculations by hand when powerful analytical tools were used. In [10, §32]
Gauss gives a simple description of the principle of boundary reduction, an
idea from which another track leads to later successful methods for proving
existence for the Dirichlet problem, namely Schwarz’ alternating method and
Poincaré’s sweeping or “balayage” method.
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[32.] Die Art der wirklichen Vertheilung der magnetischen Flüssigkei-
ten in der Erde bleibt nothwendigerweise unbestimmt. In der That
kann nach einem allgemeinen Theorem, welches bereits in der Inten-
sitas Art. 2 erwähnt ist, und bei einer andern Gelegenheit ausführlich
behandelt werden soll, anstatt jeder beliebigen Vertheilung der mag-
netischen Flüssigkeiten innerhalb eines körperlichen Raumes allemal
substituirt werden eine Vertheilung auf der Oberfläche dieses Raumes,
so dass die Wirkung in jedem Punkte des äusseren Raumes genau
dieselbe bleibt, woraus man leicht schliesst, dass einerlei Wirkung im
ganzen äussern Raume aus unendlich vielen verschiedenen Vertheilun-
gen der magnetischen Flüssigkeiten im Innern abzuleiten ist.3

After this, he gives, for the case of a ball, an expansion in spherical harmon-
ics of the unknown density on the surface. The “other occasion” where the
mentioned Theorem was going to “be treated extensively”, is the third paper
[11, §36].

In this paper, Gauss not only lays down the foundations of potential theory,
including the mean value property of harmonic functions (§20), the maximum
principle and the principle of unique continuation (§21), but he also studies in
detail the properties of single layer potentials. He presents the jump relations
(§15) and the basic integration by parts formula (§21; now known as Green’s
first formula, because Green formulated this some years before Gauss, his
works not yet being widely known at the time of Gauss’ paper). We will quote
these two results below in Gauss’ own notation, as our pieces of evidence in
the curious case of “Gauss’ missing theorem.” Let us first see, however, how
Gauss considers the positivity of the single layer potential integral operator.
In his own words:

[30.] Es ist von selbst klar, dass, wie auch immer eine Masse M über
eine Fläche gleichartig vertheilt sein möge, das daraus entspringende
überall positive Potential V in jedem Punkte der Fläche grösser sein
wird, als M

r , wenn r die grösste Entfernung zweier Punkte der Fläche
voneinander bedeutet: diesen Werth selbst könnte das Potential nur
in einem Endpunkt der Linie r haben, wenn die ganze Masse in dem
andern Endpunkte concentrirt wäre, ein Fall, der hier gar nicht in
Frage kommt, indem nur von stetiger Vertheilung die Rede sein soll,
wo jedem Element der Fläche ds nur eine unendlich kleine Masse mds

3 The specifics of the real distribution of the magnetic fluids in the earth remain
necessarily undetermined. Indeed, according to a general theorem which has al-
ready been mentioned in the Intensitas Art. 2 and shall be treated extensively
at another occasion, one can always substitute instead of any arbitrary distribu-
tion of the magnetic fluids inside a bodily space, a distribution on the surface of
this space, so that the effect in every point of the exterior space remains exactly
the same, from which one easily concludes that an identical effect in the entire
exterior space is to be derived from infinitely many different distributions of the
magnetic fluids in the interior.
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entspricht. Das Integral
∫

V mds über die ganze Fläche ausgedehnt,
ist also jedenfalls grösser als

∫

M
r mds oder MM

r , und so muss es noth-
wendig eine gleichartige Vertheilungsart geben, für welche jenes Inte-
gral einen Minimumwerth hat.4

The notion “gleichartig” (homogeneous) means not changing sign, in the case
of a positive total mass M therefore non-negative.

In the paragraphs that follow, he considers a more general problem: Given
a continuous function U on the surface, minimise the integral

Ω =

∫

(V − 2U)mds

This is then seen to be equivalent to the integral equation problem: Find a
non-negative mass density m of total mass M and a constant C such that the
single layer potential V satisfies V +C = U on the surface. He also considers
the case where C is given and M is not fixed, thus the basic first kind integral
equation with the 1/r kernel.

For this problem he gives a detailed proof of existence and uniqueness.
From this result he then deduces an existence proof for the Dirichlet problem
in potential theory.

What jumps out at us when we read this argument is, of course, that Gauss
commits the freshman error of confusing infimum and minimum and that as a
consequence he has, in reality, no existence proof. This whole piece of analysis
was, indeed, far ahead of its time, and we all know that the crucial question
of completeness was only seriously studied after Weierstrass had criticized
this näıve use of variational arguments. Weierstrass’ main victim was the
Dirichlet principle, that is, the variational method involving minimization
of the Dirichlet integral over the domain. It is worth while noting, however,
that although Dirichlet’s principle was apparently formulated by Green before
Gauss’ work, the first serious mathematical existence proof for the Dirichlet
problem was the one discussed here, which used a boundary integral equation
of the first kind.

The second weak point of the above argument is one noticed by Gauss
himself: His positivity argument is of a simple geometric nature: Since r is
bounded by the diameter of the surface, the positive kernel 1/r is bounded

4 It is self-evident that, however a mass M may be distributed homogeneously over a
surface, the resulting everywhere positive potential V will be, in every point of the
surface, greater than M

r
if r designates the greatest distance between two points of

the surface: this value itself could be attained by the potential only in an endpoint
of the line r if the entire mass was concentrated in the other endpoint, a case which
cannot appear here, because we will only consider a continuous distribution, where
every surface element ds corresponds only to an infinitely small mass m ds. The
integral

R

V m ds, extended over the whole surface, is therefore in any case greater
than

R

M

r
m ds or MM

r
, and thus there must necessarily be a homogeneous kind

of distribution for which that integral has a minimum value.
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from below by a constant depending only on the domain. The quadratic form
defined by the integral operator is therefore seen to be positive, but only for
non-negative densities m. Having to respect this constraint makes the proof
rather complicated: Only variations inside the positive cone are allowed, which
means that in general, the solution of the minimisation problem solves only
an integral inequality, turning into an equation only in those points where the
solution is strictly positive. Gauss writes (Gauss’ original emphasis as always):

[33.] Der eigentliche Hauptnerv der im 32. Artikel entwickelten Be-
weisführung beruht auf der Evidenz, mit welcher die Existenz eines
Minimumwerthes für Ω unmittelbar erkannt wird, solange man sich
auf die gleichartigen Vertheilungen einer gegebenen Masse beschränkt.
Fände die gleiche Evidenz auch ohne diese Beschränkung Statt, so
würden die dortigen Schlüsse ohne weiteres zu dem Resultate führen,
dass es allemal, wenn nicht eine gleichartige, doch eine ungleichartige
Vertheilung der gegebenen Masse gibt, für welche W = V −U in allen
Punkten der Fläche einen constanten Werth erhält, indem dann die
zweite Bedingung (Art. 31. II) wegfällt. Allein da jene Evidenz ver-
loren geht, sobald wir die Beschränkung auf gleichartige Vertheilungen
fallen lassen, so sind wir genöthigt, den strengen Beweis jenes wichtig-
sten Satzes unserer ganzen Untersuchung auf einem etwas künstlichern
Wege zu suchen.5

Thus Gauss finds it desirable to prove the positivity of the quadratic form for
not necessarily non-negative mass distributions. This would have given not
only a much simpler proof, but even a much nicer theorem.

The truly odd observation is now that Gauss could easily have proved this
general positivity himself by simply combining the jump relations and the
integration by parts formula cited above. For completeness of this claim, here
are Gauss’ original formulations of these lemmas:

[end of 15.] Man kann diesen wichtigen Satz auch so ausdrücken:
der Grenzwerth von X, bei unendlich abnehmendem positiven x
ist X0 − 2πk0, bei unendlich abnehmendem negativen x hingegen
X0 + 2πk0, oder X ändert sich zweimal sprungsweise um −2πk0, in-
dem x aus einem negativen Werthe in einen positiven übergeht, das

5 [33.] The actual main nerve of the line of proof developed in §32 rests on the
self-evidence with which the existence of a minimum value for Ω is perceived
immediately, as long as one restricts oneself to the homogeneous distributions of
a given mass. If the same self-evidence held without this restriction, the above
arguments would lead immediately to the result that there is always, if not a
homogeneous, then at least an inhomogeneous distribution of the given mass for
which W = V −U obtains in all points of the surface a constant value, in that the
second condition (§31. II) can then be omitted. However, since this self-evidence
is lost as soon as we drop the restriction to homogeneous distributions, we are
forced to search for the strict proof of this most important theorem of our whole
investigation in a somewhat artificial way.
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erstemal, indem x den Werth 0 erreicht, und das zweitemal, indem es
ihn überschreitet.6

Here Gauss uses coordinates where the normal at a point on the surface co-
incides with the x axis and X = ∂V

dx where V stands for the single layer

potential with density k: V =
∫

k ds
r with the surface element ds and the

distance r between observation point and point of integration.

[24.] Lehrsatz. Es ist
∫

V
dV

dp
ds = −

∫

qq dT

wenn das erste Integral über die ganze Fläche, das zweite durch den
ganzen Raum T ausgedehnt wird.7

Here Gauss denotes by q the gradient of the potential V , by T the interior
domain, and dV

dp is the interior normal derivative.
We see that he could have added the formulas from Lehrsatz 24 for the

interior domain and the corresponding one for the exterior domain in order
to get with Theorem 15 (in what would have been his formulation; he didn’t
write this, of course)

∫

V mds =
1

4π

∫

qq dT > 0

where the second integral is extended over the whole space. This gives posi-
tivity for any m, positive or negative. It is also physically intuitive (in electro-
or magnetostatic terms that were familiar to Gauss), stating equality between
the potential energy stored in the surface and the total energy of the field.

We can only speculate why Gauss didn’t write this. It is also strange
that this result about the positivity of the quadratic form defined by the 1/r
kernel, which was, as we have seen, formulated as a useful and non-trivial open
problem in one of the most famous and widely studied papers of its time, did
apparently not become the object of serious study for a long time. The reason
cannot be that the simple argument of adding the interior and exterior Green
formulas did not occur to anyone. As an example, here is a quote from a paper
[32, p.216] by W. Steklov, written 1900 in the wake of Poincaré’s paper [29].

Posons

V =
1

4π

∫

W

r
ds ,

6 [end of 15.] One can express this important theorem also as follows: The limit of X

for infinitely decreasing positive x is X0 − 2πk0, whereas for infinitely decreasing
negative x it is X0 + 2πk0, or X jumps twice by −2πk0 when x passes from a
negative value to a positive one, the first time when x reaches the value 0, and
the second time when it goes beyond it.

7 [24.] Theorem. There holds [formula omitted] where the first integral is extended
over the whole surface, the second one over the whole space T .
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l’intégrale étant étendue à la surface (S) tout entière. Dans les sup-
positions faites par rapport à (S) nous pouvons employer le théorème
connu de Green qui nous donne8

∫

∑

(
∂V

∂x
)2dτ+

∫

∑

(
∂V

∂x
)2dτ ′ =

∫

V (
∂Vi

∂n
−
∂Ve

∂n
)ds =

∫

VW ds > 0

Steklov then uses this to prove that for a harmonic function the L2 norm
on the boundary is bounded by the diameter of the boundary times the H1

seminorm on the domain. But he doesn’t state this positivity as an interesting
result in itself.

In 1935, Otto Frostman [8] finally formulated the positivity of this quad-
ratic form as a theorem in order to complete Gauss’ proof. But he considers
the argument using Green’s formula as easy to see, but too restrictive (p.
24: “Si le potentiel (newtonien) a des dérivées continues, cela résulte déjà des
formules de Green et de Gauss; en effet on démontre facilement. . . ”9). He then
gives another proof using the composition property of Riesz potentials on the
whole space which shows that the convolution with 1/r on R

3 is a constant
times the square of the convolution with 1/r2. This argument (which can
easily be verified by taking Fourier transforms) is generalized by Frostman to
other kernels of the form 1/rα with α > 0. For these kernels, he then presents
Gauss’ complicated proof in the framework of positive measures using the
maximum principle as a principal tool.

The, in our view, simpler and more general (because it applies to other
equations of mathematical physics besides the Laplace equation) proof using
the energy identity was not given before another 38 years, in 1973 by Nedelec
and Planchard [26].

The difference between the two completions that have to be performed
in order to complete Gauss’ minimization argument is that on one hand,
as Frostman showed, positive measures are complete in the energy norm.
Thus in the well-understood framework of positive (Radon) measures, the
infimum is indeed a minimum. One doesn’t even have to know exactly what the
finiteness of energy means for those measures (more about this point below);
one can very well minimize a coercive lower semi-continuous functional that is
not everywhere finite. On the other hand, as Nedelec and Planchard noticed,
the space obtained by completion of a whole vector space (and not only the
positive cone) in the energy norm is the Sobolev space H−1/2 which is a space
not of functions or measures, but of distributions.

Thus, whereas the efforts of Hilbert and others to complete the proof of
Dirichlet’s principle led to the introduction of the function spaces of Beppo

8 Let [formula omitted], the integral being extended over the entire surface (S).
With our assumptions on (S) we can apply the known theorem of Green which
gives us [formula omitted].

9 If the (Newtonian) potential has continuous derivatives, this follows already from
the formulas of Green and Gauss; indeed one shows easily. . .
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Levi and Sobolev already in the beginning of the 20th century (crudely stated:
H1 is a subspace of L2, therefore a space of functions, once Lebesgue’s notion
of function is adopted), the energy space needed for Gauss’ boundary integral
form of the Dirichlet principle could only be constructed after the introduction
of Schwartz’ distributions and Sobolev spaces of fractional and negative index.

There is a glimpse of this difficulty in Henri Cartan’s works in 1941 and
1945: In [2] he presents a proof of Frostman’s theorem on the completeness
of positive measures of finite energy (in fact a greatly generalized version
thereof), but of the question of completeness of all signed measures of finite
energy, he says (p.90) “C’est peu probable.”10. In the paper [3] he gives a
counterexample (p.87) showing that it is, indeed, not complete.

On voit qu’en “complétant” l’espace E pour cette norme, on ob-
tiendrait un espace de Hilbert. On vérifie sans peine que E lui-même
n’est pas complet ().11

But he does not want to quit the framework of measures (which he also calls
“distributions”) to investigate the nature of this Hilbert space.

Could it be that Gauss already had some intuition about the different
nature of the minimizing objects that would appear when the condition of
non-negativity was dropped? We can only speculate.

To finish this paragraph, here is another historic curiosity related to mea-
sures and their energy: As is well-known in the theory of the logarithmic single
layer potential integral equation in two dimensions, the positivity is true there
only under an additional condition on the boundary: Its capacity has to be
less than one. It is also a classical result that the logarithmic capacity of a
compact set in R

2 is identical to its transfinite diameter and also to its exterior
conformal radius (other names are Chebyshev constant or Robin constant).
This was well known to Frostman in 1935, and the identity of transfinite di-
ameter and exterior mapping radius for regular sets was already proved by
Szegö in 1924 [39]. Now the standard reference (and the only available refer-
ence in book form, as far as I can tell) for a complete proof of this equivalence
result is the book [17] by Einar Hille. Hille gives a detailed proof of all the
equivalences, in particular (Theorem 16.4.4 p.284) a proof of the equality of
transfinite diameter and logarithmic capacity by constructing a minimizing
measure. He gets this measure as a limit of point measures supported by the
Fekete points. This is also Corollary 1 (p. 285):

Corollary 1. The equilibrium distribution ν(s) of E is the weak limit
of the sequence of point distributions µn(S) associated with the zeros
of the Fekete polynomials Fn(z;E).

Unfortunately, in the proof it is used that the energy of µn is finite (and can
even be given by a simple formula), which is not the case (Point measures are

10 This is not very likely.
11 One sees that by “completing” the space E in this norm, one would obtain a

Hilbert space. One verifies with ease that E itself is not complete.
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not in H−1/2). Thus the standard reference for this basic (and well-known
true) result has a hole that might still be open after more than 40 years!

3 Poincaré and the double layer potential

After Gauss’ work on the first kind integral equation of the single layer poten-
tial, the next major progress came with Carl Neumann’s work on the double
layer potential. Of his numerous publications on the subject of his “Methode
des arithmetischen Mittels”, we cite the book [27] from 1877 which is available
online from the Gallica project of the BNF.

For convex domains, Neumann proves the convergence of the method of
iterations which leads to the solution of the second kind integral equation
by the Neumann series. The tool here is not positivity, but the contraction
property of the integral operator in the maximum norm. Positivity comes in
through the convexity of the domain which means that the measure defined
by the double layer kernel

dθx(y) =
1

4π

n(y) · (y − x)

|x− y|3
ds(y) (1)

is a positive measure of total mass 1. The idea that integration against such a
measure should somehow level functions out and make iterations converge to a
constant function seems to have been intuitive to physicists before Neumann.
In a paper from 1856, quoted in its entirety by Neumann in his book (Chapter
6), the physicist Beer used an iterative method for the second kind integral
equation of the normal derivative of the single layer potential (the adjoint
equation to Neumann’s). He formulates

Dabei leuchtet ein, dass F ′ – welches innerhalb σ zwischen dem
größten und kleinsten Werthe liegt, den die Funktion F auf der Fläche
σ selbst annimmt – im Allgemeinen gleichförmiger als F verläuft.12

In a footnote, Neumann remarks that Beer does not offer any proof, and
that the claim is not true, in general, unless the measure mentioned above is
positive, that is, unless the domain is convex.

Neumann’s proof of his result (and as a corollary also of Beer’s result) uses
highly non-trivial geometric and measure-theoretic arguments that constitute
one of the early examples of “hard” analysis in potential theory. As a con-
sequence, subsequent generalizations of his techniques were confined to hard
harmonic analysis, too, see [24] and [25] for overviews.

Neumann’s method of the arithmetic mean became famous, because it
was at the time, besides Schwarz’ alternating method and Poincaré’s bal-
ayage method, the only rigorous way of proving existence for the Dirichlet

12 Here it is clear that F ′ – which, inside σ, lies between the largest and smallest
value that the function F takes on the surface σ itself – behaves in general more
uniformly than F .
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problem and for all the important theorems based on it like the Riemann
mapping theorem. In addition, it looked like it was simpler to apply and more
constructive than the other two methods. But the restrictive assumption of
convexity of the domain was a mathematical challenge, and in 1895 Henri
Poincaré published a paper [29] about Neumann’s method which introduced
a quite different argument for proving the contractivity that did not need
convexity of the domain. The new method was based on positivity and energy
identities.

In this paper, Poincaré presents an astonishing collection of techniques
that were new at the time and that made the paper famous, at least for
some years. Poincaré used this method only in one further work [30], a small
paper on generalizations to elasticity theory which he himself characterizes as
incomplete. But others continued and developed his ideas in various different
directions, in particular Arthur Korn [19, 21, 22, 23], Vladimir Steklov [32,
33, 36, 37, 38] and Stanislaw Zaremba [41, 42, 43]. Korn and Steklov for some
time engaged in a kind of race [34, 20, 35]. Here is a quote from [20] (our
reference numbers):

Dans une note [34] sur la méthode de Neumann et le problème de
Dirichlet, M. W. Stekloff est arrivé à une démonstration de la méthode
de la moyenne arithmétique de M. Neumann, qui est à peu près la
même que celle que j’ai publiée il y a un an dans mon Cours sur
la théorie du potentiel [19]. Ma démonstration, comme celle de M.
Stekloff, a pour base le Mémoire ingénieux [29] de M. Poincaré, et nous
avons éliminé tous les deux de la même manière la restriction de M.
Poincaré, que l’existence d’une solution soit préalablement établie.13

The “fonctions fondamentales” mentioned in the titles of some of these pa-
pers, also called “universelle Funktionen” by Korn, are potentials generated
by eigenfunctions of Neumann’s integral operator or also by its adjoint, some-
times also the eigenfunctions of what is known as Steklov eigenvalue problem,
or eigenfunctions of the Poincaré–Steklov operator.

These papers concentrated on eigenfunction expansions and eigenvalue es-
timates obtained by min-max principles as studied by Poincaré for the case
of the eigenvalue problem for the Laplace operator with Dirichlet boundary
conditions in his earlier important paper [28]. To prove existence of the eigen-
functions, regularity of the boundary had to be assumed, and after works
by Hölder and Lyapunov, Hölder continuous functions on Lyapunov surfaces
became the standard framework. During the same time, the new powerful

13 In a note [34] on Neumann’s method and the Dirichlet problem, Mr W. Stekloff
arrived at a proof of Mr Neumann’s method of the arithmetic mean which is
more or less the same as the one that I have published a year ago in my Course
on Potential Theory [19]. My proof, as the one of Mr Stekloff, is based on the
ingenious paper [29] by Mr Poincaré, and we have both eliminated in the same
manner the restriction of Mr Poincaré that the existence of a solution should be
established beforehand.
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Fredholm method for treating integral equations became widely accepted,
and Hilbert published his book on integral equations which had the ambi-
tion to subsume all known results about integral equations. Hilbert and his
group made big jumps forward by introducing the idea of function spaces
and norms and developing the basics of modern functional analysis with the
spectral theory of bounded and in particular compact selfadjoint operators in
Hilbert spaces.

I mention all this well-known history as an explanation for the curious fact
that the basic idea of Poincaré’s paper on Neumann’s method, namely to con-
sider the convergence of the Neumann series in the energy norm, disappeared
pretty much completely from the discussion. His estimates were only used for
estimating the eigenvalues of the boundary integral operators considered as
compact operators acting in spaces of continuous or Hölder continuous func-
tions, and this remained the standard for a long time, see for example [25,
Thm 12, p. 144]. One of the main advantages of Poincaré’s method, namely
its easy applicability to other elliptic problems having a positive energy, such
as linear elasticity, remained present, but the other advantage, namely that it
basically only uses Green’s formula and is therefore valid for general Lipschitz
domains, seems to have been forgotten.

Only very recently a similar point of view has been adopted in the paper
by Steinbach and Wendland [31] where the contraction property of Neumann’s
operator in a norm related to the energy norm was proved for the first time
for rather general positive second order elliptic systems on Lipschitz domains.

Poincaré’s own estimates are being revisited and adapted to a modern
standard in the very recent paper [18] which treats the same framework as
Poincaré did, namely two- and three-dimensional potential theory on smooth
domains. The full potential of Poincaré’s main idea which easily generalizes to
other positive elliptic operators and to domains with only Lipschitz continuous
boundary, does not seem to have been exploited in a modern context yet. We
will describe some of this in the next section.

Here is the basic estimate from [29, Chapter 2] in a notation similar to
Poincaré’s own notation: For a bounded domain Ω in R

3 let W be a function
harmonic in the domain and in the exterior domain Ω′ = R

3 \Ω, vanishing at
infinity. Quantities related to the exterior domain are indicated by a prime.
Let J and J ′ denote the interior and exterior Dirichlet integrals of W :

J =

∫

Ω

|∇W |2dx ; J ′ =

∫

Ω′

|∇W |2dx .

Lemma 1. There is a constant µ depending only on the domain such that
(i) If W is a double layer potential, then

J ≤ µJ ′ and J ′ ≤ µJ . (2)

(ii) If W is a single layer potential, then

J ≤ µJ ′ and if

∫

∂Ω

W ds = 0, then J ′ ≤ µJ . (3)
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Here double and single layer potentials are defined by their jump properties:
Single layer potentials are continuous across the surface ∂Ω and have a jump in
their normal derivatives, whereas double layer potentials have a jump across
the surface, but their normal derivatives from the interior and the exterior
coincide. The difference between single and double layer potentials in the
statement is caused by different behavior of potentials with vanishing Dirichlet
integrals (constants): For double layer potentials, if W is constant in the
interior domain, it is also constant (zero) in the exterior and vice versa, so
that J and J ′ both vanish if one of them vanishes. For single layer potentials,
W vanishing in the exterior implies W vanishing in the interior, so that J ′ = 0
implies J = 0, too, but there exists the non-trivial equilibrium density (Robin
density) which has potential 1 in the interior and non-constant potential in the
exterior, so that J ′ can be bounded by J only on a subspace of codimension
one.

In 1900, Steklov [32, p.224], after stating the above estimate for single
layer potentials, gets quite enthusiastic and writes (his emphasis):

Nous appellerons ce théorème théorème fondamental.
. . .
Nous verrons dans ce qui va suivre, que la solution de tous les
problèmes fondamentaux de la Physique mathématique se ramène à
la démonstration complète du théorème fondamental.14

Writing this in a year when Planck introduced his quantum constant and
Poincaré was already working on the theory of relativity seems, in hind-
sight, slightly exaggerated, but it underlines the importance of these estimates
for potential theory and for related models of classical mathematical physics
like elasticity, heat conduction, acoustics, electrostatics and electrodynamics,
fluid dynamics and so on. Such applications were studied by Steklov, Korn,
Zaremba and others, who also worked on removing some of the hypotheses
Poincaré had to make in order to prove Lemma 1. They proved the lemma
essentially for arbitrary connected Lyapunov (i.e. C1,α) surfaces.

Poincaré proved the lemma under the condition that the domain is dif-
feomorphic to a ball (actually for a simply connected smooth boundary; the
question of the existence of a diffeomorphism to the ball is a first simple case
of the famous Poincaré conjecture), and he used the diffeomorphism to re-
duce the estimates to the case of a ball where he could show them explicitly
by expansion in spherical harmonics.

Nowadays, the lemma is easy to prove even for Lipschitz surfaces by notic-
ing that the H1 seminorm of a harmonic function on the interior or exterior
domain is equivalent to both the H1/2 seminorm of its trace and the H−1/2

norm of its normal derivative on the boundary. This equivalence is seen im-
mediately in one direction from the standard trace theorem (sometimes called

14 We shall call this theorem the fundamental theorem.. . . We shall see in the fol-
lowing that the solution of all the fundamental problems of Mathematical Physics
can be reduced to a complete proof of the fundamental theorem.
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Gagliardo’s trace theorem in the case of a merely Lipschitz continuous bound-
ary) plus Poincaré’s inequality (the one estimating the L2 norm modulo con-
stants by the H1 seminorm) and the weak definition of the normal derivative,
and in the other direction from the variational solution of the Dirichlet and
the Neumann problems. But one should keep in mind that without the in-
troduction of the fractional Sobolev space H1/2 on the surface, which at first
seems like overkill for proving a statement mentioning only Dirichlet integrals,
one has no way of stating or proving that the trace spaces from the exterior
and from the interior are the same, which is one of the crucial points in this
argument. In fact, one can consider Poincaré’s procedure of using a diffeo-
morphism to the sphere and estimating the coefficients of the expansion in
spherical harmonics as an early definition of the space H1/2, although the idea
of function spaces and norms was not expressed in that paper.

Poincaré uses the estimates in Lemma 1 to prove the contraction property
of Neumann’s operator in the energy norm, and with this the convergence
of Neumann’s series solution for the Dirichlet problem in the same norm. He
then shows trace estimates, first for the boundary L2 norm modulo constants
(Chapter 4), and then (Chapter 5) for the L∞ norm of the double layer oper-
ator applied to the trace on the boundary. The latter estimate uses difficult
geometric constructions, is not yet optimal, and is subsequently generalized by
the above-mentioned authors and others like Lebesgue, Plemelj and Radon,
one famous later observation being that whereas Neumann’s operator is not a
contraction in the L∞ norm when the domain is not convex, the square of the
operator is a contraction, at least when the domain is smooth. In any case,
Poincaré completes the proof of the uniform convergence in the whole space
of Neumann’s series for general smooth domains.

Neumann’s operator, as defined by Neumann himself and in the same way
by Poincaré, is the mapping from the difference of the boundary traces of a
double layer potential to the sum of the traces. If we denote the interior and
exterior traces of the double layer potential W by V and V ′, respectively,
then Neumann’s operator N maps V − V ′ to V + V ′, which corresponds in
our notation of the next section below to

N = −2K .

The problem studied by Poincaré (his equation (1)) is written not as an inte-
gral equation, but as a transmission problem with a parameter λ:

V − V ′ = λ(V + V ′) + 2Φ . (4)

The choice of λ = 1 corresponds to the exterior Dirichlet problem, and λ =
−1 to the interior Dirichlet problem. Poincaré proves convergence (modulo
constant functions) of the Neumann series solution of (4) for |λ| < µ+1

µ−1 , where
µ is the constant from Lemma 1.
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4 Positive boundary integral operators and the

convergence of Neumann’s series

In this section we will give a modern expression of Poincaré’s idea that the
estimate (2) of Lemma 1 implies that Neumann’s operator is a contraction.
We start by an abstract observation whose simple proof we leave to the reader.
No tools more advanced than the Cauchy-Schwarz inequality are required for
the proof.

Lemma 2. Let A and B be bounded selfadjoint operators on a Hilbert space
X satisfying A + B = I , where I is the identity operator.
(i) If B − A is a contraction, then A and B are contractions with norms
bounded by (1 + ‖B − A‖)/2. The inverse A−1 can be represented in two
different ways by convergent Neumann series

A−1 =

∞
∑

ℓ=0

Bℓ = 2

∞
∑

ℓ=0

(B −A)ℓ . (5)

(ii) If A is positive definite and B positive semidefinite:

∃α > 0 ,∃β ≥ 0 : ∀u ∈ X : (Au, u) ≥ α‖u‖2 ; (Bu, u) ≥ β‖u‖2 ,

then B is a contraction with norm ‖B‖ ≤ 1 − α. If in addition β > 0, then
B −A is a contraction with norm ‖B −A‖ ≤ max{1 − 2α, 1 − 2β}.

A situation where this lemma can easily be applied is the following:

Lemma 3. Let a and b be symmetric bilinear forms on a vector space X0. We
assume that a and b are positive semidefinite and that a is non-degenerate:

∀u ∈ X0 : a(u, u) > 0 if u 6= 0 ; b(u, u) ≥ 0 .

Let X be the Hilbert space completion of X0 with respect to the inner product

(u, v) = a(u, v) + b(u, v)

and let A and B be the operators on X defined by the bilinear forms a and b.
If there exists µ > 0 such that

∀u ∈ X0 : b(u, u) ≤ µa(u, u) ,

then A and B satisfy the hypothesis of Lemma 2 (ii) with α = 1
µ+1 .

In particular, B is a contraction with norm ‖B‖ ≤ µ
µ+1 . If, in addition,

∀u ∈ X0 : a(u, u) ≤ µ b(u, u) ,

then B −A is a contraction with norm ‖B −A‖ ≤ µ−1
µ+1 .
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Note that the Riesz representation theorem implies that the existence of an
estimate b ≤ µa is equivalent to the positive definiteness of a on the Hilbert
space X.

Another remark which is easy to verify is that the non-degeneracy of a
alone is sufficient to show that all eigenvalues of B−A and of B are of absolute
value strictly less than 1. One does not need the estimate b ≤ µa for this, but
one also does not get the contractivity from it. If, however, B −A has a pure
point spectrum, for example if it is compact, then the contractivity follows.
This may provide a partial explanation why Poincaré’s mutual estimates of
the interior and exterior energies were later forgotten: If the Fredholm-Riesz
theory can be applied as is the case for Neumann’s operator on a smooth
surface, then they are not needed. They are then, in fact, a consequence of
the Fredholm alternative: If a is positive semidefinite and non-degenerate and
the corresponding operator A is Fredholm, then a is positive definite.

In the following, we present some applications of these simple estimates. In
all cases, the quadratic forms a and b will correspond to the energy integrals
in the exterior and interior domains, respectively, so that the Hilbert space X
will be endowed with the norm of the total energy. Which concrete boundary
integral operators correspond to the abstract operators A and B can vary,
however, according to how the abstract vector space X0 is represented by a
concrete function space.

We choose the same general situation as considered in the paper [31] by
Steinbach and Wendland. This covers some of the most important applications
such as potential theory and elasticity theory (basically “every fundamental
problem of mathematical physics” in the sense of Steklov quoted above).

The same ideas for proving the contraction property of second kind bound-
ary integral operators could be applied to higher order strongly elliptic partial
differential operators that have a positive energy form in the framework stud-
ied in [7], or to other situations where positivity of first kind integral operators
has been shown by using Green’s formulas like for parabolic problems in [5]. In
this paper we will stay within the framework of positive second order systems
as in [31]. This will allow an easy comparison in order to see similarities and
differences with the arguments of [31]. Note, however, that while we consider
the same objects as in [31], we will not always use the same letters to denote
them.

Let then L be a second order selfadjoint elliptic partial differential operator
on R

n with smooth, not necessarily constant coefficients about which we will
make a certain number of further hypotheses. First we assume that L has a
real-valued fundamental solution U∗(x, y). Given a density ψ on the boundary
Γ of the bounded Lipschitz domain Ω, the single layer potential S is defined
in the interior domain Ω and in the exterior domain Ωc = R

n \Ω by

Sψ(x) =

∫

Γ

U∗(x, y)ψ(y) dy . (6)
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Before defining the double layer potential, we need to assume that there exists
a first Green formula

∫

Ω

(Lu(x))⊤v(x) dx = Φ(u, v) −

∫

Γ

(Tu(x))⊤v(x) ds(x) (7)

Here T is the conormal derivative, defined by this formula. The energy bilinear
form Φ is a first order symmetric integro-differential form which we assume to
be positive in the sense that it is non-negative and elliptic: There are constants
α, c, k with α > 0 such that |Φ(u, v)| ≤ c‖u‖H1(Ω)‖v‖H1(Ω) and

Φ(u, u) ≥ 0 and Φ(u, u) ≥ α‖u‖2
H1(Ω) − k‖u‖2

L2(Ω) (8)

As a consequence of the G̊arding inequality (8) and the compact embedding
of the Sobolev space H1(Ω) into L2(Ω), the space of functions of vanishing
energy

R = {u | Φ(u, u) = 0} (9)

is finite-dimensional. For u ∈ R one has also Φ(u, v) = 0 for all v, which ac-
cording to (7) is the weak formulation of the homogeneous Neumann problem
Lu = 0 in Ω, Tu = 0 on Γ , so that R can also be defined as solution space of
the homogeneous Neumann problem.

For the exterior domain, we also assume the first Green formula

∫

Ωc

(Lu(x))⊤v(x) dx = Φc(u, v) +

∫

Γ

(Tu(x))⊤v(x) ds(x) (10)

Whereas the previous equations (6)–(9) were assumed to be valid for all
smooth functions – with the idea of extending the domain of validity by con-
tinuity to some larger Hilbert spaces of functions afterwards – in the Green
formula (10) for the exterior domain we have to assume that u and v are, in
addition, of compact support. For such functions, we assume then positivity
of the exterior energy form:

∀u ∈ C∞

0 (Rn) : Φc(u, u) > 0 unless u ≡ 0 . (11)

The final assumption we have to make is that potentials have finite energy.
This is an assumption on the behavior of the fundamental solution at infinity
which can be phrased as follows: If γ and δ are multi-indices and χ ∈ C∞(Rn)
is a cut-off function which is zero on a large enough ball and equal to one on
a neighborhood of infinity, then the function u defined by

u(x) = χ(x)∂γ
x∂

δ
yU

∗(x, y)

satisfies Φc(u, u) <∞.
The assumptions made so far cover some important standard examples:

- The Laplace equation in dimension n ≥ 3 with its standard fundamental so-
lution. Here the conormal derivative T is the exterior normal derivative. The
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space R consists of the constant functions on Ω. The condition that potentials
have finite energy excludes the logarithmic potentials in the plane.
- The equations of linear elasticity in dimension n ≥ 3. The conormal deriva-
tive T corresponds to the normal traction on the boundary, and the space R

consists of the rigid motions.
- The mathematically simplest case is a strictly positive operator such as
−∆+ λI with λ > 0 in any dimension, or similarly any strongly elliptic con-
stant coefficient operator plus λI with a sufficiently large λ. In this case, the
energy form in the interior is positive definite, too, the space R is reduced to
{0}, and the energy forms in both the interior and the exterior domain are
equivalent to the square of the H1 norm.

The double layer potential D with density ϕ is given for x 6∈ Γ by

Dϕ(x) =

∫

Γ

(TyU
∗(x, y))

⊤
ϕ(y) ds(y) . (12)

It is well known [4] that the definitions (6) and (12) of the single and double
layer potentials can be extended by continuity to densities ψ ∈ H−1/2(Γ ) and
ϕ ∈ H1/2(Γ ), respectively, and that the potentials v = Sψ and w = Dϕ then
satisfy

Lv = 0 , Lw = 0 in Ω ∪Ωc ; v ∈ H1
loc(R

n) ; w ∈ H1(Ω) and w ∈ H1
loc(Ω

c) .

If we denote the interior and exterior traces by γ and γc and the interior and
exterior conormal derivatives (both taken with respect to the exterior normal)
by γ1 and γc

1, then these can also be extended by continuity to the potentials
with this weak regularity, and there hold the jump relations

(γc − γ)Sψ = 0 ; (γc
1 − γ1)Sψ = −ψ ;

(γc − γ)Dϕ = ϕ ; (γc
1 − γ1)Dϕ = 0 .

(13)

The four classical boundary integral operators are then defined as the opera-
tors of
- the single layer potential: V = γS = γcS

- the normal derivative of the single layer potential: K ′ = 1
2 (γ1 + γc

1)S
- the double layer potential: K = 1

2 (γ + γc)D
- the normal derivative of the double layer potential: W = −γ1D = −γc

1D .
With these definitions, the traces of the single layer and double layer po-

tentials take the form

γS = γcS = V ; γ1S = 1
2I +K ′ ; γc

1S = − 1
2I +K ′ ;

γ1D = γc
1D = −W ; γD = − 1

2I +K ; γcD = 1
2I +K .

(14)

As mentioned above, this way of defining the boundary integral operator
K of the double layer potential corresponds to Neumann’s and Poincaré’s def-
initions for the case of potential theory. If one defines K0ϕ as the double layer
potential of density ϕ evaluated on the surface Γ in the sense of a Cauchy
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principal value integral (which in potential theory is the same as integrat-
ing with respect to the solid angle measure (1)), then it is well known that
Kϕ(x) = K0ϕ(x) for smooth boundary points x, but for corner points the
two definitions differ. The operator whose contraction property is studied by
Neumann is N = −2K. If N has a norm less than one in some function space,
then the four operators 1

2I ±K and 1
2I ±K ′ will also have norms less than

one.
We can now begin to apply Lemma 3 to various incarnations of vector

space X0 and bilinear forms a and b. We will always represent a by the energy
integral Φc and b by Φ. According to the Green formulas (7) and (10), we have
for a function u satisfying Lu = 0 in Ω and in Ωc and any v:

Φ(u, v) = 〈γ1u, γv〉 ; Φc(u, v) = −〈γc
1u, γ

cv〉 . (15)

Here we write 〈·, ·〉 for the L2 inner product (integral) on Γ , extended to the
duality product between H−1/2(Γ ) and H1/2(Γ ).

4.1 Single layer potentials

The first possibility is to take for the space X0 some space of integrable
functions on Γ , for example the continuous functions, or L2(Γ ). For ϕ,ψ ∈ X0,
we define the bilinear forms a and b as energy forms of the corresponding single
layer potentials:

a(ϕ,ψ) = Φc(Sϕ,Sψ) ; b(ϕ,ψ) = Φ(Sϕ,Sψ) . (16)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the single layer potential, we find the boundary integral
forms

a(ϕ,ψ) = 〈(
1

2
I −K ′)ϕ, V ψ〉 ; b(ϕ,ψ) = 〈(

1

2
I +K ′)ϕ, V ψ〉 . (17)

For the total energy a + b we find the bilinear form defined by the single
layer potential integral operator which is therefore positive definite (Gauss’
missing theorem); and the Hilbert space X is the completion of our space X0

in this energy norm which we know from Nedelec and Planchard [26] to be
the Sobolev space H−1/2(Γ ):

a(ϕ,ψ) + b(ϕ,ψ) = 〈ϕ, V ψ〉 ; X = H−1/2(Γ ) with norm ‖ϕ‖2
V = 〈ϕ, V ϕ〉 .

(18)
The operators A and B are defined by (Aϕ,ψ)V = a(ϕ,ψ) and (Bϕ,ψ)V =
b(ϕ,ψ), hence

A =
1

2
I −K ′ ; B =

1

2
I +K ′ . (19)

We conclude from our construction that the hypotheses of Lemma 2 are sat-
isfied. In particular, 1

2I ±K ′ are bounded operators in H−1/2(Γ ), selfadjoint



Positivity of boundary integral operators 21

and positive semidefinite with respect to the inner product (ϕ,ψ)V = 〈ϕ, V ψ〉.
As we explained after Lemma 1, the positive definiteness of A or, equivalently,
the Poincaré estimate b ≤ µa is a simple consequence of the identity between
X and H−1/2(Γ ): b(ϕ,ϕ) is the energy integral Φ(Sϕ,Sϕ), and u = Sϕ
is the solution of the Dirichlet problem Lu = 0 in Ω, u = V ϕ on Γ , hence
Φ(Sϕ,Sϕ) is bounded by ‖V ϕ‖2

H1/2(Γ )
. Now V is continuous from H−1/2(Γ )

to H1/2(Γ ), so we get an estimate by ‖ϕ‖2
H−1/2(Γ )

. That this in turn can be

estimated by a(ϕ,ϕ) is an a-priori estimate for the solution of the exterior
Neumann problem which follows from its variational formulation.

In this way we obtain that B is a contraction. If we want to show that A
is a contraction, too, or even stronger that B − A is a contraction, we need
the positive definiteness of B, and this is not satisfied, in general, if the space
R of functions of vanishing energy in Ω is non-trivial. The nullspace of the
form b consists of densities whose single layer potential has vanishing energy
on Ω:

b(ψ,ψ) = 0 ⇐⇒ Sψ ∈ R ⇐⇒ V ψ ∈ γR .

To make B positive definite, we have to factor this kernel out, which is done
by the definition [31]

H
−1/2
0 (Γ ) = {ϕ ∈ H−1/2(Γ ) | ∀ψ ∈ kerB : (ϕ,ψ)V = 0}

= {ϕ ∈ H−1/2(Γ ) | ∀u ∈ R : 〈ϕ, γu〉 = 0} (20)

Equivalently, we could have passed to the quotient space H−1/2(Γ )/γR. In
any case, we then find that B is positive definite, which by Lemma 2 implies
that both B − A and A are contractions. We also note that since A and B
commute, kerB and its orthogonal complement are invariant subspaces of A.
We summarize these results:

Theorem 1. The operators A = 1
2I − K ′ and B = 1

2I + K ′ are posi-

tive semidefinite bounded selfadjoint operators on the Hilbert space H−1/2(Γ )
equipped with the inner product (·, ·)V . The operator 1

2I −K ′ is positive defi-
nite, and the operator 1

2I +K ′ is a contraction. The Neumann series

(
1

2
I −K ′)−1 =

∞
∑

ℓ=0

(
1

2
I +K ′)ℓ

converges in H−1/2(Γ ) in the operator norm associated with the norm ‖ · ‖V .

On the subspace H
−1/2
0 (Γ ), the operator 1

2I +K ′ is positive definite, and the
operators 1

2I −K ′ and B−A = 2K ′ are contractions. On this subspace, there
are the convergent Neumann series:

(
1

2
I −K ′)−1 = 2

∞
∑

ℓ=0

(2K ′)ℓ
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(
1

2
I +K ′)−1 =

∞
∑

ℓ=0

(
1

2
I −K ′)ℓ

(
1

2
I +K ′)−1 = 2

∞
∑

ℓ=0

(−2K ′)ℓ

4.2 Double layer potentials

As a second possibility, we now look at double layer potentials. In order to
have finite energy, we have to take a space of more regular functions for our
classical departure space X0, Hölder continuous functions for example. For
ϕ,ψ ∈ X0, we now define the bilinear forms a and b as energy forms of the
corresponding double layer potentials:

a(ϕ,ψ) = Φc(Dϕ,Dψ) ; b(ϕ,ψ) = Φ(Dϕ,Dψ) . (21)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the double layer potential, we find the boundary integral
forms

a(ϕ,ψ) = 〈Wϕ, (
1

2
I +K)ψ〉 ; b(ϕ,ψ) = 〈Wϕ, (

1

2
I −K)ψ〉 . (22)

The total energy a+b is now given by the bilinear form defined by the operator
W of the conormal derivative of the double layer potential. It is easy to see
that the nullspace of W is given by the traces of the zero-energy fields R.
Densities in γR generate double layer potentials that are identically zero in
the exterior domain Ωc and belong to R in Ω. In order to be able to apply our
program, to get a positive definite bilinear form a and hence Hilbert space X,
we have to factor these densities out from the beginning. Our Hilbert space
is therefore a quotient space

X = H1/2(Γ )/γR with norm ‖ϕ‖2
W = 〈Wϕ,ϕ〉 . (23)

This is the natural dual space of H
−1/2
0 (Γ ) with respect to L2(Γ ) duality. We

know from the variational solution of the Dirichlet problem Lu = 0 in Ω or
Ωc, γu = ϕ or γcu = ϕ, that on this space the square of the (quotient) norm
is equivalent to each one of the energy forms Φ(u, u) and Φc(u, u). Thus both
quadratic forms a and b can be mutually estimated, and we get the full result
of Lemmas 3 and 2.

It remains to identify the operators A and B. We have for all ϕ,ψ ∈ X:

〈Wϕ, (
1

2
I +K)ψ〉 = (ϕ,Aψ)W = 〈Wϕ,Aψ〉

and similarly for B. This shows that if πR : H1/2(Γ ) → X is the canonical
projection on the quotient space, we have
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A = πR(
1

2
I +K) ; B = πR(

1

2
I −K) .

In the case of the operator A, we can omit the extra factor πR, because
ker( 1

2I+K) = γR, and therefore 1
2I+K is well-defined on the quotient space

and commutes with the projector. This remark does not apply in the same
way to the operator B, but since 1

2I −K commutes with 1
2I +K, the kernel

γR of the latter is an invariant subspace of the former, so that 1
2I −K is also

defined in a natural way on the quotient space. The operator 1
2I−K actually

acts as the identity on the subspace γR, so that its inverse on the whole space
H1/2(Γ ) can be obtained from the inverse on the quotient space. Altogether,
we can simply write without ambiguity

A =
1

2
I +K ; B =

1

2
I −K . (24)

We can now summarize the conclusion of Lemma 2 in this case:

Theorem 2. The operators A = 1
2I+K and B = 1

2I−K are positive definite

bounded selfadjoint operators on the quotient space H1/2(Γ )/γR equipped with
the inner product (·, ·)W . Both operators, as well as the operator B−A = −2K
(Neumann’s operator) are contractions in the corresponding operator norm.
The Neumann series

(
1

2
I −K)−1 =

∞
∑

ℓ=0

(
1

2
I +K)ℓ

(
1

2
I −K)−1 = 2

∞
∑

ℓ=0

(2K)ℓ

(
1

2
I +K)−1 =

∞
∑

ℓ=0

(
1

2
I −K)ℓ

(
1

2
I +K)−1 = 2

∞
∑

ℓ=0

(−2K)ℓ

all converge in the operator norm in the quotient space, which corresponds to
convergence in H1/2(Γ ) modulo the traces γR of the zero-energy fields in Ω.
The first Neumann series for the operator ( 1

2I −K)−1 converges in the whole

Sobolev space H1/2(Γ ).

4.3 Single layer potentials via Dirichlet data

The bijectivity of the single layer integral operator V offers another possible
interpretation of the results of Section 4.1: Instead of representing a single
layer potential v = Sψ by its density ψ, one can represent it by its Dirichlet
trace γv = V ψ. Since V : H−1/2(Γ ) → H1/2(Γ ) is bijective, it can be used
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to transport the Hilbert space structure on H−1/2(Γ ) which we considered
before to H1/2(Γ ). From the relation

(ϕ,ψ)V = 〈ϕ, V ψ〉 = 〈V −1V ϕ, V ψ〉

we see that if we define the inner product on H1/2(Γ ) by

(u, v)V −1 = 〈V −1u, v〉 ,

then V : H−1/2(Γ ) → H1/2(Γ ) becomes an isometry. Instead of writing our
whole program once again with a new space X, we can simply transport
all the results of Section 4.1 via this Hilbert space isomorphism. Positivity,
operator norms and convergence of Neumann series are conserved, the only
question that has to be settled is the form of the operators A and B in this
new representation.

The answer to this question is provided by the well-known relation

KV = V K ′

which is one of the relations that give the projection property of the Calderón
projector, obtained from the representation of a single layer potential as a
sum of a single layer potential and a double layer potential of its own Cauchy
data.

The operator A = 1
2I − K ′ on H−1/2(Γ ) is therefore transported to the

operator V AV −1 = V ( 1
2I−K

′)V −1 = 1
2I−K, and B = 1

2I+K
′ is transported

to the operator 1
2I + K. In this way, we can transport all of Theorem 1. In

particular, 1
2I +K is a contraction on H1/2 equipped with the norm ‖ · ‖V −1 .

For the other results we have to transport the subspace H
−1/2
0 (Γ ). We find

V H
−1/2
0 (Γ ) = {ϕ ∈ H1/2(Γ ) | ∀u ∈ R : (ϕ, γu)V −1 = 0}

On this space, the operator 1
2I −K and Neumann’s operator −2K are con-

tractions.
Thus we get similar results as in Section 4.2, with a different norm onH1/2.

The results in this form (except for the operator −2K) were first proved by
Steinbach and Wendland in [31].

4.4 Final remarks

Although our results obtained here from Poincaré’s estimates are largely simi-
lar to the results of Steinbach and Wendland in [31], their method for proving
the contraction property of 1

2I ±K and 1
2I ±K ′ is different:

The simple idea here was that if two positive numbers add up to 1, then
both of them must be smaller than 1; with Lemma 2 as a transposition of this
idea to the class of selfadjoint operators on a Hilbert space.
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The corresponding simple idea in [31] is that if a number is bigger than
its square, then it must lie between 0 and 1. For operators, this idea can be
stated as follows:

Let A and B be bounded selfadjoint operators on a Hilbert space. If

B = B2 +A and A is positive definite, A ≥ αI,

then B is a contraction with norm ‖B‖ ≤ 1
2 +

√

1
4 − α.

This lemma can be applied to the well-known relations

(
1

2
I +K)(

1

2
I −K) = VW ; (

1

2
I +K ′)(

1

2
I −K ′) = WV

which are a consequence of the symmetry of the energy form Φ(u, v) between a
double layer potential u and a single layer potential v, or also of the projection
property of the Calderón projector. Since WV is positive semi-definite in
the inner product (·, ·)V and VW is positive definite in the inner product
(·, ·)W and positive semi-definite in the inner product (·, ·)V −1 , the respective
contraction properties for 1

2I ±K and 1
2I ±K ′ follow.
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(1941) 71–96.
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