On a conjecture of Montgomery-Vaughan on extreme values of automorphic L-functions at 1

functions at 1.

§ 1. Introduction

The automorphic L-functions constitute a powerful tool for studying arithmetic, algebraic or geometric objects. For squarefree integer N and even integer k, denote by H * k (N ) the set of all newforms of level N and of weight k. It is known that

(1.1) |H * k (N )| = k -1 12 ϕ(N ) + O (kN ) 2/3 ,
where ϕ(N ) is the Euler function and the implied constant is absolute. Let m 1 be an integer and let L(s, sym m f ) be the mth symmetric power L-function of f ∈ H * k (N ) normalised so that the critical strip is given by 0 < ℜe s < 1. The values of these functions at the edge of the critical strip contain information of great interest. For example, Serre [START_REF] Serre | Abelian ℓ-adic representation and elliptic Curves[END_REF] showed that the Sato-Tate conjecture is equivalent to L(1 + iτ, sym m f ) = 0 for all m ∈ N and τ ∈ R. The distribution of the values L(1, sym m f ) has received attention of many authors, including Goldfeld, Hoffstein & Lieman [START_REF] Goldfeld | An effective zero-free region[END_REF], Hoffstein & Lockhart [START_REF] Hoffstein | Coefficients of Maass forms and the Siegel zero[END_REF], Luo [START_REF] Luo | Values of symmetric square L-functions at 1[END_REF], Royer [START_REF] Royer | Statistique de la variable aléatoire L(1, sym 2 f )[END_REF][START_REF] Royer | Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique[END_REF], Royer & Wu [START_REF] Royer | Taille des valeurs de fonctions L de carrés symétriques au bord de la bande critique[END_REF][START_REF] Royer | Special values of symmetric power L-functions and Hecke eigenvalues[END_REF], Cogdell & Michel [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF], Habsieger & Royer [START_REF] Habsieger | L-functions of automorphic forms and combinatorics : Dyck paths[END_REF] and Lau & Wu [START_REF] Lau | A density theorem on automorphic L-functions and some applications[END_REF][START_REF] Lau | Extreme values of symmetric power L-functions at 1[END_REF]. In particular, Lau & Wu ([10], [START_REF] Lau | Extreme values of symmetric power L-functions at 1[END_REF]) proved the following results:

(i) For every fixed integer m 1, there are four positive constants A ± m and B ± m such that for any newform f ∈ H * k (1), under the Great Riemann Hypothesis (GRH) for L(s, sym m f ), we have, for k → ∞,

(1.2) {1 + o(1)}(2B - m log 2 k) -A - m L(1, sym m f ) {1 + o(1)}(2B + m log 2 k) A + m .
Here (and in the sequel) log j denotes the j-fold iterated logarithm. For most values of m, the constants A ± m and B ± m can be explicitly evaluated, for example,

         A + m = m + 1, B + m = e γ (m ∈ N), A - m = m + 1, B - m = e γ ζ(2) -1 (odd m), A - 2 = 1, B - 2 = e γ ζ(2) -2 , A - 4 = 5 4 , B - 4 = e γ B ′- 4 ,
where ζ(s) is the Riemann zeta-function, γ denotes the Euler constant and B ′- 4 is a positive constant given by a rather complicated Euler product ( [START_REF] Lau | A density theorem on automorphic L-functions and some applications[END_REF], Theorem 3).

(ii) In the opposite direction, it was shown unconditionally that for m ∈ {1, 2, 3, 4} there are newforms f ± m ∈ H * k (1) such that for k → ∞ ([10], Theorem 2),

(1.3) L(1, sym m f + m ) {1 + o(1)}(B + m log 2 k) A + m , L(1, sym m f - m ) {1 + o(1)}(B - m log 2 k) -A - m .
(iii) In the aim of removing GRH and closing up the gap coming from the factor 2 in (1.2) (comparing it with (1.3)), an almost all result was established. Let ε > 0 be an arbitrarily small positive number, m ∈ {1, 2, 3, 4} and 2 | k. Then there is a subset

E * k of H * k (1) such that |E * k | ≪ H * k (1)e -(log k) 1/2-ε and for each f ∈ H * k (1) E * k , we have, for k → ∞, (1.4 
) {1 + O(ε k )}(B - m log 2 k) -A - m L(1, sym m f ) {1 + O(ε k )}(B + m log 2 k) A + m ,
where ε k := (log k) -ε and the implied constants depend on ε only ( [START_REF] Lau | Extreme values of symmetric power L-functions at 1[END_REF], Corollary 2). By comparing (1.3) with (1.4), the extreme values of L(1, sym m f ) seem to be given by (1.3). Clearly it is interesting to investigate further the size of exceptional set E * k . In the case of quadratic characters L-functions, Montgomery & Vaughan [START_REF] Montgomery | Extreme values of Dirichlet L-functions at 1[END_REF] proposed, based on a probabilistic model, three conjectures on the size of exceptional set. The first one has been proved recently by Granville & Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF]. As Cogdell & Michel indicated in [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF], it would be interesting to try to get, as close as possible, the analogues of the conjectures of Montgomery-Vaughan for automorphic L-functions. The analogue of Montgomery-Vaughan's first conjecture for the automorphic symmetric power L-functions can be stated as follows.

Conjecture. Let m 1 be a fixed integer and

F k (t, sym m ) := 1 |H * k (1)| f ∈H * k (1), L(1,sym m f ) (B + m t) A + m 1, G k (t, sym m ) := 1 |H * k (1)| f ∈H * k (1), L(1,sym m f ) (B - m t) -A - m 1.
Then there are positive constants c i = c i (m) (i = 1, 2) such that for k → ∞,

(1.5)    e -c1(log k)/ log 2 k ≪ F k (log 2 k, sym m ) ≪ e -c2(log k)/ log 2 k , e -c1(log k)/ log 2 k ≪ G k (log 2 k, sym m ) ≪ e -c2(log k)/ log 2 k .
The aim of this paper is to prove a weaker form of this conjecture for m = 1. In this case, we write, for simplification of notation,

L(s, f ) = L(s, sym 1 f ), F k (t) = F k (t, sym 1 ), G k (t) = G k (t, sym 1 ).
In view of the trace formula of Petersson ([8], Theorem 3.6), it is more convenient to consider the weighted arithmetic distribution function. As usual, denote by

ω f := Γ(k -1) (4π) k-1 f
the harmonic weight in modular forms theory and define the weighted arithmetic distribution functions

F k (t) := f ∈H * k (1) ω f -1 f ∈H * k (1), L(1,f ) (e γ t) 2 ω f , G k (t) := f ∈H * k (1) ω f -1 f ∈H * k (1), L(1,f ) (6π -2 e γ t) -2 ω f .
By using (1.1), the classical estimate

(1.6) f ∈H * k (1) 
ω f = 1 + O k -5/6
and the bound of Goldfeld, Hoffstein & Lieman [START_REF] Goldfeld | An effective zero-free region[END_REF]:

(1.7) 1/(k log k) ≪ ω f ≪ (log k)/k,
we easily see that

(1.8) F k (t)/ log k ≪ F k (t) ≪ F k (t) log k, G k (t)/ log k ≪ G k (t) ≪ G k (t) log k.
This shows that in order to prove (1.5) it is sufficient to establish corresponding estimates of the same quality for F k (t) and G k (t). Our main result is the following one.

Theorem 1. For any A 1 there are two positive constants c = c(A) and C = C(A) such that the estimate

(1.9) F k (t) = {1 + ∆ k (t)} exp - e t-γ0 t 1 + O 1 t
holds uniformly for k 16, 2 | k and t T (k), where γ 0 is given by (1.24) below, |θ| 1 and

(1.10) ∆ k (t) := θe t-T (k)-C (t/T (k)) 1/2 + O A e -ce t/5 + (log k) -A , T (k) := log 2 k -5 2 log 3 k -log 4 k -3C.
In particular there are two positive constants c 1 and c 2 such that

(1.11) e -c1(log k)/{(log 2 k) 7/2 log 3 k} ≪ F k (T (k)) ≪ e -c2(log k)/{(log 2 k) 7/2 log 3 k} .
The similar estimates for G k (t) and G k (T (k)) hold also.

Remark 1. The estimates (1.11) of Theorem 1 can be considered as a weaker form of Montgomery-Vaughan's conjecture (1.5) for m = 1, since T (k) ∼ log 2 k as k → ∞. Moreover, if we could take T (k) = log 2 k in (1.11) then (1.9) would lead to the Montgomery-Vaughan's conjecture (1.5). Hence we fail from a shift 5 2 log 3 k + log 4 k + 3C.

It seems however to be rather difficult to resolve completely this conjecture. One of the main difficulties is that there are no analogues of the quadratic reciprocity law and Graham-Ringrose's estimates for short characters sums of friable moduli [START_REF] Graham | Lower bounds for least quadratic nonresidues[END_REF], which have been exploited by Granville & Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF].

In order to prove Theorem 1, we need to introduce a probabilistic model as in [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF]. Consider a probability space (Ω, µ), with measure µ. Let SU(2)

♮ be the set of conjugacy classes of SU [START_REF] Goldfeld | An effective zero-free region[END_REF].

The group SU( 2) is endowed with its Haar measure µ H and

SU(2) ♮ = e iθ 0 0 e -iθ : θ ∈ [0, π] ∼
is endowed with the Sato-Tate measure dµ st (θ) := (2/π) sin 2 θ dθ, i.e., the direct image of µ H by the canonical projection SU(2) → SU(2) ♮ . On the space (Ω, µ), define a sequence indexed by the prime numbers, g ♮ (ω) = {g ♮ p (ω)} p of random matrices taking values in SU(2) ♮ , given by

g ♮ p (ω) := e iϑp(ω) 0 0 e -iϑp(ω) ♮ .
We assume that each function g ♮ p (ω) is distributed according to the Sato-Tate measure. This means that, for each integrable function φ : SU(2)

♮ → R, the expected value of φ • g ♮ p is E(φ • g ♮ p ) := Ω φ • g ♮ p (ω) dµ(ω) = π 0 φ e iθ 0 0 e -iθ
• (2/π) sin 2 θ dθ.

Moreover, we assume that the sequence g ♮ (ω) is made of independent random variables. This means that, for any sequence of integrable functions {G p : SU(2) ♮ → R} p , we have

E p G p • g ♮ p := Ω p G p • g ♮ p (ω) dµ(ω) (1.12) = p Ω G p • g ♮ p (ω) dµ(ω) = p π 0 G p e iθ 0 0 e -iθ
• (2/π) sin 2 θ dθ.

Let I be the identity matrix. Then for ℜe s > 1 2 , the random Euler product L(s, g ♮ (ω)) :=

p det I -p -s g ♮ p (ω) -1 =: p L p (s, g ♮ (ω))
turns out to be absolutely convergent a.s. Now we define our probabilistic distribution functions

Φ(t) := Prob L(1, g ♮ (•)) (e γ t) 2 , Ψ(t) := Prob L(1, g ♮ (•)) (6π -2 e γ t) -2 .
We shall prove Theorem 1 in two steps. The first one is to compare F k (t) with Φ(t) (resp. G k (t) with Ψ(t)).

Theorem 2. For any A 1 there are two positive constants c = c(A) and C = C(A) such that the asymptotic formulas

(1.13) F k (t) = Φ(t){1 + ∆ k (t)} and G k (t) = Ψ(t){1 + ∆ k (t)}
hold uniformly for k 16, 2 | k and t T (k), where ∆ k (t) and T (k) are defined by (1.10).

The second step of the proof of Theorem 1 is the evaluation of Φ(t) (resp. Ψ(t)). For this, we consider a truncated random Euler product

L(s, g ♮ (ω); y) := p y L p (s, g ♮ (ω))
and the corresponding distribution functions

Φ(t, y) := Prob L(1, g ♮ (ω); y) (e γ t) 2 , Ψ(t, y) := Prob L(1, g ♮ (ω); y) (6π -2 e γ t) -2 .
We have

(1.14) Φ(t) = Φ(t, ∞) and Ψ(t) = Ψ(t, ∞).
We shall use the saddle-point method (introducted by Hildebrand & Tenenbaum [START_REF] Hildebrand | On integers free of large prime factors[END_REF]) to evaluate Φ(t, y) and Ψ(t, y). For this, we need to introduce some notation. For s ∈ C and y 2, define According to Lemmas 2.3 and 8.1 below, there is an absolute constant c 2 such that for t 4 log c and y ce t , the equation

(1.17) φ 1 (κ, y) = 2(log t + γ)
has a unique positive solution κ = κ(t, y) and for each integer J 1, there are computable constants γ 0 , γ 1 , . . . , γ J such that the asymptotic formula (1.18) κ(t, y) = e t-γ0 1 + J j=1 γ j t j + O J 1 t J+1 + e t t y log y holds uniformly for t 1 and y 2e t , the constant γ 0 beign given by (1.24) below.

Finally write σ n := φ n (κ, y).

Theorem 3. We have

Φ(t, y) = E(κ, y) κ √ 2πσ 2 (e γ t) 2κ 1 + O t e t
uniformly for t 1 and y 2e t .

Theorem 4. For each integer J 1, we have

(1.19) Φ(t, y) = exp -κ J j=1 a j (log κ) j + O J R J (κ, y)
uniformly for t 1 and y 2e t , where the error term R J (κ, y) is given by

(1.20) R J (κ, y) := 1 (log κ) J+1 + κ y log y and (1.21) a j := ∞ 0 h(u) u ′ (log u) j-1 du with (1.22) h(u) :=          log 2 π π 0 e 2u cos θ sin 2 θ dθ if 0 u < 1, log 2 π π 0 e 2u cos θ sin 2 θ dθ -2u if u 1.
As a corollary of Theorem 4, we can obtain an asymptotic developpment for log Φ(t, y) in t -1 . In particular we see that the probabilistic distribution function Φ(t) decays double exponentially as t → ∞.

Corollary 5. For each integer J 1, there are computable constants a * 1 , . . . , a * J such that the asymptotic formula

(1.23) Φ(t, y) = exp -e t-γ0 J j=1 a * j t j + O J R J (e t , y)
holds uniformly for t 1 and y 2e t . Further we have

(1.24) γ 0 := 1 2 ∞ 0 h ′ (u) u du, a * 1 := 1, a * 2 := γ 0 - γ 2 0 2 - ∞ 0 h(u) u 2 (log u) du.
In particular for each integer J 1, we have

(1.25) Φ(t) = exp -e t-γ0 J j=1 a * j t j + O J 1 t J+1
uniformly for t 1.

Remark 2. (i)

The same results hold also for Ψ(t, y). (ii) Taking t = log 2 k and J = 1 in (1.25) of Corollary 5, we see that the probabilistic distribution function Φ(t) (resp. Ψ(t)) verifies Montgomery-Vaughan's conjecture (1.5). But (1.13) is too weak to derive this conjecture for F k (t) (resp. G k (t)). This means that we must take T (k) = log 2 k in Theorem 2, which seems be rather difficult.

(iii) Our method can be generalized (with a little extra effort) to prove that Theorems 1 and 2 hold for L(1, sym m f ) for m 1 (unconditionally when m = 1, 2, 3, 4 and under Cogdell-Michel's hypothesis Sym m (f ) and LSZ m (1) [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF] when m 5) and that Theorems 3, 4 and Corollary 5 are true for L(1, sym m g ♮ (ω); y) when m 1.

Acknowledgements. We began working on this paper in November 2004 during the visit of the first author to l'Institut Elie Cartan de Nancy, and finished in January 2006 when the third author visited School of Mathematics and System Sciences of Shandong University. We are indebted to both institutions for invitations and support. The second and third authors want to thank the CRM at Montréal for its invitation. Finally we would express our sincere gratitude to Y.-K. Lau of the University of Hong Kong for valuable discussion. § 2. Expression of E(s, y) and existence of saddle-point

The aim of this section is to prove the existence of the saddle-point κ(t, y), defined by equation (1.17). The first step is to give an explicite expression of E(s, y), which is (1.24) of [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF]. For the convenience of readers, we state it here as a lemma.

Lemma 2.1. For prime p, real θ and complex number s, we define

(2.1) D p (θ) := 0 j 1 1 -e i(1-2j)θ p -1 -1 and E p (s) := 2 π π 0 D p (θ) s sin 2 θ dθ.
Then for all s ∈ C and y 2, we have

(2.2) E(s, y) = p y E p (s). Proof. Taking G p (M ♮ ) = det I -p -s ′ M ♮ -s if p y 1 otherwise in (1.
12), we get

E L(s ′ , g ♮ (ω); y) s = p y E L p (s ′ , g ♮ p (ω)) s = p y Ω det 1 -p -s ′ g ♮ p (ω) -s dµ(ω) = p y 2 π π 0 1 -2p -s ′ cos θ + p -2s ′ -s sin 2 θ dθ.
Taking s ′ = 1 and noticing (1.15) and (2.1), we get the desired result.

Lemma 2.2. For all p and σ > 0, we have

E ′′ p (σ)E p (σ) -E ′ p (σ) 2 > 0.
In particular for all σ > 0 and y 2, we have φ 2 (σ, y) > 0.

Proof. By using the definition (2.1) of E p (σ), it is easy to see that

E ′′ p (σ)E p (σ) -E ′ p (σ) 2 = 4 π 2 π 0 D p (θ) σ log 2 D p (θ) sin 2 θ dθ π 0 D p (θ) σ sin 2 θ dθ - 2 π π 0 D p (θ) σ log D p (θ) sin 2 θ dθ 2 = 4 π 2 π 0 π 0 D p (θ 1 ) σ D p (θ 2 ) σ log 2 D p (θ 1 ) -log D p (θ 1 ) log D p (θ 2 ) × × sin 2 θ 1 sin 2 θ 2 dθ 1 dθ 2 .
In view of the symmetry in θ 1 and θ 2 , the same formula holds if we exchange the roles of θ 1 and θ 2 . Thus it follows that

E ′′ p (σ)E p (σ) -E ′ p (σ) 2 = 2 π 2 π 0 π 0 D p (θ 1 ) σ D p (θ 2 ) σ log 2 D p (θ 1 ) D p (θ 2 ) sin 2 θ 1 sin 2 θ 2 dθ 1 dθ 2 .
This proves the first assertion and the second follows immediately.

Lemma 2.3.

There is an absolute constant c 2 such that for t 4 log c and y ce t , the equation φ 1 (σ, y) = 2(log t + γ) has a unique positive solution in σ. Denoting by κ(t, y) this solution, we have κ(t, y) ≍ e t uniformly for t 4 log c and y ce t .

Proof. According to Lemma 4.3 below with the choice of J = 1, we have

φ 1 (σ, y) = 2(log 2 σ + γ) + O(1/ log σ) for y σ 2. Thus φ(ce t , y) = 2 log(t + log c) + 2γ + O 1 t + log c > 2 log t + 2γ and φ(c -1 e t , y) = 2 log(t -log c) + 2γ + O 1 t -log c < 2 log t + 2γ,
provided that c is a large constant and t 4 log c. On the other hand, in view of Lemma 2.2, we know that for any y 2, φ 1 (σ, y) is an increasing function of σ in (0, ∞). Hence the equation φ 1 (σ, y) = 2(log t + γ) has a unique positive solution κ(t, y) and c -1 e t κ(t, y) ce t for t 4 log c and y ce t . This completes the proof. § 3. Preliminary lemmas This section is devoted to establish some preliminary lemmas, which will be useful later. Lemma 3.1. Let j 0 be a fixed real number. Then we have

(3.1) π 0 e 2u cos θ (1 -cos θ) j sin 2 θ dθ ≍ j e 2u u -(j+3/2)
(u 1).

The implied constant depends on j only.

Proof. First we write

π 0 e 2u cos θ (1 -cos θ) j sin 2 θ dθ = π/2 0 e 2u cos θ (1 -cos θ) j + e -2u cos θ (1 + cos θ) j sin 2 θ dθ = 1 0 e 2ut (1 -t) j + e -2ut (1 + t) j (1 -t 2 ) 1/2 dt ≍ 1 0 e 2ut (1 -t) j+1/2 dt + 1 0 e -2ut (1 -t) 1/2 dt.
By the change of variables u(1

-t) = v, it follows that 1 0 e 2ut (1 -t) j+1/2 dt = e 2u u -(j+3/2) u 0 e -2v v j+1/2 dv ≍ e 2u u -(j+3/2) , 1 0 e -2ut (1 -t) 1/2 dt 1 0 e -2ut dt ≪ u -1 .
We obtain the desired result by insertion of these estimates into the preceeding relation.

Lemma 3.2. Let j 0 be an integer and

(3.2) E p,j (σ) := 2 π π 0 D p (θ) σ (1 -cos θ) j sin 2 θ dθ.
(In particular E p,0 (σ) = E p (σ).) Then we have

E p,j (σ) = 2 j+3 π 1 0 1 - 1 p 2 + 4u p -σ u j+1/2 (1 -u) 1/2 du
and the estimate

(3.3) E p,j (σ)/E p (σ) ≪ (p/σ) j
holds uniformly for all primes p and σ > 0. Further if p σ 0, we have

(3.4) E p (σ) ≍ 1.
The implied constant in (3.3) depends on j only and the one in (3.4) is absolute.

Proof. By the change of variables u = sin 2 (θ/2), a simple computation shows that the first assertion is true. Obviously (3.3) holds for j = 0. Now assume that it is true for j. An integration by parts leads to

E p (σ) ≫ j σ p j 1 0 1 - 1 p 2 + 4u p -σ u j+1/2 (1 -u) 1/2 du ≫ j σ p j 1 0 1 - 1 p 2 + 4u p -1 4σ p + 1 2(1 -u) × × 1 - 1 p 2 + 4u p -σ u j+1+1/2 (1 -u) 1/2 du.
On the other hand, we have

0 < u < 1 ⇒ 1 - 1 p 2 + 4u p -1 4σ p + 1 2(1 -u) 1 + 1 p -2 4σ p 16σ 9p .
Inserting it into the preceeding estimate, we see that and let h(u) be defined as in (1.22). Clearly we have

E p (σ) ≫ j σ p j+1 1 0 1 - 1 p 2 + 4u p -σ u j+1+1/2 (1 -u) 1/2 du ≍ j σ p j+1 E p,j+1 (σ) 
h(u) = g(u) if 0 u < 1, g(u) -2u if u 1, (3.6) h ′ (u) = g ′ (u) if 0 u < 1, g ′ (u) -2 if u 1, (3.7) h ′′ (u) = g ′′ (u) (u 0, u = 1). (3.8) Lemma 3.3. We have h(u) ≍ u 2 if 0 u < 1, log(2u) if u 1, (3.9) h ′ (u) ≍ u if 0 u < 1, u -1 if u 1, (3.10) h ′′ (u) ≍ 1 if 0 u < 1, u -2 if u 1, (3.11) h ′′′ (u) ≍ u if 0 u < 1, u -3 if u 1. (3.12)
Proof. When 0 u < 1, we have

e 2u cos θ = ∞ n=0 (u cos θ) n n! .
From this we deduce that

h(u) = log 2 π ∞ n=0 u n n! π 0 (cos θ) n sin 2 θ dθ (3.13) = log 1 + ∞ ℓ=1 2 • (2ℓ -1)!! (2ℓ)!(2ℓ + 2)!! u 2ℓ ,
where we have used the following facts:

π 0 (cos θ) 2ℓ+1 sin 2 θ dθ = 0 and 2 π π 0 (cos θ) 2ℓ sin 2 θ dθ =    1 if ℓ = 0, 2 (2ℓ -1)!! (2ℓ + 2)!! if ℓ 1
and where n!! denotes the product of all positive integer from 1 to n having same parity than n. Now we easily deduce, from (3.13), the desired results (3.9)-(3.12) in the case of 0 u < 1. The estimates of (3.9)-(3.12) for u > 1 are simple consequences of (3.1), by noticing the following relations

h ′ (u) = -2 π 0 e 2u cos θ (1 -cos θ) sin 2 θ dθ π 0 e 2u cos θ sin 2 θ dθ , h ′′ (u) = 4 π 0 e 2u cos θ (1 -cos θ) 2 sin 2 θ dθ π 0 e 2u cos θ sin 2 θ dθ -4     π 0 e 2u cos θ (1 -cos θ) sin 2 θ dθ π 0 e 2u cos θ sin 2 θ dθ     2 .
This completes the proof. § 4. Estimates of φ n (σ, y)

The aim of this section is to prove some estimates of φ n (σ, y) for n = 0, 1, 2, 3, 4.

Lemma 4.1. For any fixed integer J 1, we have

(4.1) φ 0 (σ, y) = σ 2 log 2 σ + 2γ + J j=1 b j,0 (log σ) j + O J R J (σ, y)
uniformly for y σ 3, where R J (σ, y) is defined as in (1.20) and

(4.2) b j,0 := ∞ 0 h(u) u 2 (log u) j-1 du.
Proof. By the definition (2.1) of D p (θ) and the one of E p (σ), it is easy to see that for p σ 1/2 , we have

D p (θ) σ = e 2(σ/p) cos θ 1 + O σ p 2 , (4.3) E p (σ) = 1 + O σ p 2 2 π π 0 e 2(σ/p) cos θ sin 2 θ dθ. (4.4)
From these, we deduce that (4.5)

σ 1/2 <p y log E p (σ) = σ 1/2 <p y g(σ/p) + O(σ 1/2 / log σ)
where g(u) is defined as in (3.5).

In order to treat the sum over p σ, we write

E p (σ) = (1 -1/p) -2σ E * p (σ),
where

E * p (σ) := 2 π π 0 1 + 2(1 -cos θ) p 1 - 1 p -2 -σ sin 2 θ dθ.
By using the change of variables u = sin 2 (θ/2), we have

E * p (σ) = 8 π π 0 1 + 4 p 1 - 1 p -2 sin 2 (θ/2) -σ sin 2 (θ/2) cos 2 (θ/2) dθ 8 π p/2σ 0 1 + 4 p 1 - 1 p -2 u -σ u(1 -u) du 8 π 1 + 8 σ -σ p/2σ 0 u(1 -u) du C p σ 3/2
, where C > 0 is a constant. On the other hand, we have trivially E * p (σ) 1 for all p and σ > 0. Thus | log E * p (σ)| ≪ log(σ/p) for p σ 1/2 and (4.6)

p σ 1/2 log E * p (σ) ≪ p σ 1/2 log(σ/p) ≪ σ 1/2 .
Combining (4.5) and (4.6), we can write

p y log E p (σ) = 2σ p σ 1/2 log(1 -1/p) -1 + σ 1/2 <p y g(σ/p) + O(σ 1/2 ).
In view of (3.6) and the following estimate

σ 1/2 <p σ 2σ log(1 -1/p) -1 -2σ/p ≪ σ 1/2 <p σ σ/p 2 ≪ σ 1/2 / log σ,
the preceeding estimate can be written as (4.7)

p y log E p (σ) = 2σ p σ log(1 -1/p) -1 + σ 1/2 <p y h(σ/p) + O(σ 1/2 ).
By using the prime number theorem in the form

(4.8) π(t) := p t 1 = t 2 dv log v + O te -8 √ log t ,
it follows that (4.9)

σ 1/2 <p y h σ p = y σ 1/2 h(σ/t) log t dt + O(R 0 ),
where

R 0 := h σ y ye -8 √ log y + h σ 1/2 σ 1/2 e -4 √ log σ + y σ 1/2 (σ/t)|h ′ (σ/t)|e -8 √ log t dt ≪ σ 2 y e -8 √ log y + σ 1/2 e -2 √ log σ + σ σ 1/2 e -2 √ log t dt + σ 2 y σ e -8 √ log t t 2 dt ≪ σe - √ log σ
by use of Lemma 3.3.

In order to evaluate the integral of (4.9), we use the change of variables u = σ/t to write

y σ 1/2 h(σ/t) log t dt = σ σ 1/2 σ/y h(u) u 2 log(σ/u) du = σ σ 1/2 σ -1/2 h(u) u 2 log(σ/u) du + O R ′ 0 where R ′ 0 := σ σ/y 0 |h(u)| u 2 log(σ/u) du + σ σ -1/2 0 |h(u)| u 2 log(σ/u) du ≪ σ 2 y log y + σ 1/2 log σ .
On the other hand, we have

σ 1/2 σ -1/2 h(u) u 2 log(σ/u) du = 1 log σ σ 1/2 σ -1/2 h(u) u 2 (1 -(log u)/ log σ) du = J j=1 1 (log σ) j σ 1/2 σ -1/2 h(u) u 2 (log u) j-1 du + O 1 (log σ) J+1 .
Extending the interval of integration [σ -1/2 , σ 1/2 ] to (0, ∞) and bounding the contributions of (0, σ -1/2 ] and [σ 1/2 , ∞) by using (3.9) of Lemma 3.3, we have

σ 1/2 σ -1/2 h(u) u 2 (log u) j-1 du = b j,0 + O (log σ) j σ 1/2 .
Combining these estimates, we find that (4.10)

σ 1/2 <p y h σ p = σ J j=1 b j,0 (log σ) j + O J R J (σ, y) .
Now the desired result follows from (4.7), (4.10) and the prime number theorem in the form (4.11)

p σ log(1 -1/p) -1 = log 2 σ + γ + O e -2 √ log σ .
This completes the proof.

Remark 3. In view of (1.3), we can write (4.1) as

φ 0 (σ, y) = σ log(B + 1 log σ) A + 1 + J j=1 b j,0 (log σ) j + O J R J (σ, y)
uniformly for y σ 3. In the case σ < 0, a similar asymptotic formula (with A - 1 , B - 1 and corresponding b - j,0 in place of A + 1 , B + 1 and b j,0 ) can be established uniformly for y -σ 3. As indicated in the introduction, Lemma 4.1 can be easily generalised to the general case m 1. Thus we give an improvement and generalisation of Corollaries A and C of [START_REF] Royer | Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique[END_REF], of Theorem B of [START_REF] Habsieger | L-functions of automorphic forms and combinatorics : Dyck paths[END_REF], and an improvement of Theorem 1.12 of [START_REF] Cogdell | On the complex moments of symmetric power L-functions at s = 1[END_REF]. It is worthy to indicate that our method seems to be simpler and more natural. Lemma 4.2. We have

(4.12) E ′ p (σ) E p (σ) =            log D p (0) + O 1 σ for all p and σ > 0, 1 2 g ′ σ p log D p (0) + O 1 p 2 + σ p 3 if p σ 1/2 ,
where g(u) is defined as in (3.5).

Proof. First we write

E ′ p (σ) = 2 π π 0 D p (θ) σ log D p (θ) sin 2 θ dθ (4.13) = E p (σ) log D p (0) + R ′ , where (4.14) R ′ := 2 π π 0 D p (θ) σ log D p (θ) D p (0) sin 2 θ dθ. Since log D p (θ) D p (0) = -log 1 + 2p(1 -cos θ) (p -1) 2 2p(1 -cos θ) (p -1) 2 8(1 -cos θ) p , it follows from (3.3) of Lemma 3.2 with j = 1 that R ′ E p (σ) ≪ E p,1 (σ) pE p (σ) ≪ 1 σ
for all p and σ > 0. This implies, via (4.13), the first estimate of (4.12).

We have log

D p (θ) = (cos θ)(2/p) + O 1/p 2 = (cos θ) log D p (0) + O 1/p 2 .
Inserting it and (4.3) into the first relation of (4.13) and in view of (4.4), we can write, for p σ 1/2 ,

E ′ p (σ) = 1 + O σ p 2 2 π π 0 e 2(σ/p) cos θ (cos θ) log D p (0) + O 1 p 2 sin 2 θ dθ = 1 + O σ p 2 2 π π 0 e 2(σ/p) cos θ (cos θ) sin 2 θ dθ log D p (0) + O E p (σ) p 2 .
From this and (4.4), we deduce

E ′ p (σ) E p (σ) = 1 + O σ p 2 1 2 g ′ σ p log D p (0) + O 1 p 2 ,
which implies the second estimate of (4.12). This completes the proof.

Lemma 4.3. Let J 1 be a fixed integer. Then we have

φ 1 (σ, y) = 2 log 2 σ + 2γ + J j=1 b j,1 (log σ) j + O J R J (σ, y)
uniformly for y σ 3, where the constant b j,1 is given by

(4.15) b j,1 := ∞ 0 h ′ (u) u (log u) j-1 du
and R J (σ, y) is defined as in (1.20).

Proof. We have

φ 1 (σ, y) = p y E ′ p (σ)/E p (σ).
Using the first relation of (4.12) for p σ 2/3 and the second for σ 2/3 < p y, we obtain

φ 1 (σ, y) = p σ 2/3 log D p (0) + 1 2 σ 2/3 <p y g ′ σ p log D p (0) + O 1 σ 1/3 .
In view of (3.7), the preceeding formula can be written as

(4.16) φ 1 (σ, y) = p σ log D p (0) + σ 2/3 <p y h ′ σ p log 1 - 1 p -1 + O 1 σ 1/3 .
Similarly to (4.10), we can prove that (4.17) 

σ 2/3 <p y h ′ σ p log 1 - 1 p -1 = J j=1 b j,1 (log σ) j + O J R J (σ,
E ′′ p (σ)E p (σ) -E ′ p (σ) 2 E p (σ) 2 =          O 1 σ 2 if p σ 1/2 , 1 p 2 g ′′ σ p + O min 1 σ 2 p , 1 σp 2 if p > σ 1/2 ,
where g(u) is defined as in (3.5).

Proof. First we write 

E ′′ p (σ) = 2 π π 0 D p (θ) σ log 2 D p (θ) sin 2 θ dθ (4.19) = E p (σ) log 2 D p (0) + R ′′ , where R ′′ := 2 π π 0 D p (θ) σ log 2 D p (θ) -log 2 D p (0)
E ′′ p (σ)E p (σ) -E ′ p (σ) 2 E p (σ) 2 = R ′′ -2R ′ log D p (0) E p (σ) - R ′ E p (σ) 2 ,
where R ′ is defined as in (4.14).

From the definitions of R ′ and R ′′ , a simple calculation shows that

R ′′ -2R ′ log D p (0) = 2 π π 0 D p (θ) σ log 2 D p (θ) D p (0) sin 2 θ dθ. Since log 2 D p (θ) D p (0) = log 2 1 + 2p(1 -cos θ) (p -1) 2 = 4(1 -cos θ) 2 p 2 + O (1 -cos θ) 2 p 3 , we have R ′′ -2R ′ log D p (0) = 4 p 2 E p,2 (σ) + O E p,2 (σ) p 3 ,
where E p,j (σ) is defined as in (3.2). By using (3.3) with the choice of j = 2 and the trivial estimate E p,2 (σ) 4E p (σ), we deduce

(4.21) R ′′ -2R ′ log D p (0) E p (σ) = 4 p 2 E p,2 (σ) E p (σ) + O min 1 σ 2 p , 1 p 3 .
Similarly we have

log D p (θ) D p (0) = -log 1 + 2p(1 -cos θ) (p -1) 2 = - 2(1 -cos θ) p + O (1 -cos θ) p 2 ,
and therefore

R ′ = - 2 p E p,1 (σ) + O E p,1 (σ) p 2 . Now (3.
3) with j = 1 and the trivial estimate E p,1 (σ) 2E p (σ) imply

R ′ E p (σ) 2 = 4 p 2 E p,1 (σ) E p (σ) 2 + O E p,1 (σ) 2 p 3 E p (σ) 2 (4.22) = 4 p 2 E p,1 (σ) E p (σ) 2 + O min 1 σ 2 p , 1 p 3 .
Inserting (4.21) and (4.22) into (4.20) and in view of (4.14), we deduce (4.23)

E ′′ p (σ)E p (σ) -E ′ p (σ) 2 E p (σ) 2 = 4 p 2 h p (σ) + O min 1 σ 2 p , 1 p 3
for all p and σ > 0, where

h p (σ) := E p,2 (σ) E p (σ) - E p,1 (σ) E p (σ) 2 .
When p σ 

(σ) = g ′′ σ p 1 + O σ p 2 = g ′′ σ p + O min σ p 2 , 1 σ .
Inserting it into (4.23) and in view of Lemma 3.1, we get, for p σ 1/2 ,

E ′′ p (σ)E p (σ) -E ′ p (σ) 2 E p (σ) 2 = 1 p 2 g ′′ σ p + O min 1 σ 2 p , 1 σp 2 .
This completes the proof.

Lemma 4.5. Let J 1 be a fixed integer. Then we have

φ 2 (σ, y) = 1 σ J j=1 b j,2 (log σ) j + O J R J (σ, y) uniformly for y σ 2, where b j,2 := ∞ 0 h ′′ (u)(log u) j-1 du. In particular b 1,2 = 2.
Proof. From Lemma 4.4 and (3.8), we deduce easily that

φ 2 (σ, y) = p y E ′′ p (σ)E p (σ) -E ′ p (σ) 2 E p (σ) 2 = σ 1/2 <p y g ′′ (σ/p) p 2 + O 1 σ 3/2 log σ = σ 1/2 <p y h ′′ (σ/p) p 2 + O 1 σ 3/2 log σ .
Similarly to (4.10), we can prove that

σ 1/2 <p y h ′′ (σ/p) p 2 = 1 σ J j=1 b j,2 (log σ) j + O J R J (σ, y) ,
by using (3.11), (3.12) and (4.8). Now the desired result follows from the preceeding two estimates.

Finally

b 1,2 = 1 0 h ′′ (u) du + ∞ 1 h ′′ (u) du = h ′ (1-) -h ′ (1+) = h ′ (1-) -h ′ (1-) -2 = 2.
This completes the proof.

Similarly (even more easily, since we only need an upper bound instead of an asymptotic formula), we can prove the following result. 

     1 if |τ | c 1 σ 1/2 log σ or |τ | y 1/δ , e -c2τ 2 /[σ(log σ) 2 ] if c 1 σ 1/2 log σ |τ | σ, e -c3|τ | δ if σ |τ | y 1/δ .
Proof. First we write

E p (s) = 2 π π 0 D p (θ) -1 -s sin 2 θ dθ = 2 π π 0 sin 2 θ (1 -s)(D p (θ) -1 ) ′ d D p (θ) -1 1-s .
Since (D p (θ) -1 ) ′ = 2p -1 sin θ, after a simplification and an integration by parts it follows that

E p (s) = p π(s -1) π 0 D p (θ) s-1 cos θ dθ = p π(s -1) π/2 0 D p (θ) s-1 -D p (π -θ) s-1 cos θ dθ. This implies that (5.2) E p (s) E p (σ) = σ -1 s -1 E * p (s) E * p (σ) with E * p (s) := π/2 0 D p (θ) s-1 -D p (π -θ) s-1 cos θ dθ. 1 • Case of σ 1/δ < |τ | y 1/δ Write E * p (s) = π/2 0 D p (θ) s-1 1 -∆ p (θ) s-1 cos θ dθ with ∆ p (θ) := 1 -2p -1 cos θ + p -2 1 + 2p -1 cos θ + p -2 .
It is clear that for all p, the function θ → ∆ p (θ) is increasing on [0, π/2]. It follows that

E * p (σ) π/4 0 D p (θ) σ-1 1 -∆ p (θ) σ-1 cos θ dθ 1 -∆ p (π/4) σ-1 π/4 0 D p (θ) σ-1 cos θ dθ
for all p and σ 1. This implies that

(5.3) 1 E * p (σ) π/4 0 D p (θ) σ-1 cos θ dθ 1 1 -∆ p (π/4) σ-1 .
Similarly since the function θ → D p (θ) σ-1 cos θ is decreasing on [0, π/2] for all p and σ 2, we can deduce, via (5.3), that

(5.4) 1 E * p (σ) π/2 π/4 D p (θ) σ-1 cos θ dθ 1 1 -∆ p (π/4) σ-1 .
From (5.3) and (5.4), we deduce that

E * p (s) E * p (σ) 2 1 -∆ p (π/4) σ-1 .
It is easy to verify that for all p σ 2, we have

∆ p π 4 σ-1 1 - √ 2 p + 1 p 2 σ-1 1 - σ -1 4p .
Combining these estimates with (5.2), we obtain

E p (s) E p (σ) 8p |s -1| p 4 |τ | (p σ).
By multiplying this inequality for σ < p |τ | δ ( y) and the trivial inequality |E p (s)| |E p (σ)| for the others p, we deduce, via the prime number theorem, that

E(s, y) E(σ, y) exp - σ<p |τ | δ log |τ | + 4 σ<p |τ | δ log p e -{1/δ-4+o(1)}|τ | δ . 2 • Case of c 1 σ 1/2 log σ |τ | σ 1/δ
For p σ 1/2 2, we can write

|E * p (s)| π/2 0 D p (θ) σ-1 + D p (π -θ) σ-1 cos θ dθ = 1 + O σ p 2 π/2 0
e 2[(σ-1)/p] cos θ + e -2[(σ-1)/p] cos θ cos θ dθ and

|E * p (σ)| = π/2 0 D p (θ) σ-1 -D p (π -θ) σ-1 cos θ dθ = 1 + O σ p 2 π/2 0 e 2[(σ-1)/p] cos θ -e -2[(σ-1)/p] cos θ cos θ dθ.
From these, we deduce that (5.5)

E * p (s) E * p (σ) 1 + O σ p 2 + 1 e σ/p
(2 σ 1/2 p σ)

where we have used the following facts π/2 0 e 2[(σ-1)/p] cos θ cos θ dθ ≫ e σ/p and π/2 0 e -2[(σ-1)/p] cos θ cos θ dθ ≪ 1.

Inserting (5.5) into (5.2), for 2 σ 1/2 p σ we obtain

E p (s) E p (σ) exp -log s -1 σ -1 + C σ p 2 + 1 e σ/p e -τ 2 /(2σ 2 )+Cσ/p 2 +Ce -σ/p if 3 |τ | σ, e -1 2 log(1+τ 2 /σ 2 )+Cσ/p 2 +Ce -σ/p if σ |τ | σ 1/δ ,
where C > 0 is an absolute constant. Now by multiplying these inequalities for σ/(4 log σ) p σ/(2 log σ) and the trivial inequality |E p (s)| E p (σ) for the other p, we get

E(s, y) E(σ, y) exp - σ/(4 log σ) p σ/(2 log σ) τ 2 2σ 2 - Cσ p 2 - C e σ/p exp - τ 2 16σ(log σ) 2 -10C - 10C σ log σ exp - c 2 τ 2 σ(log σ) 2 if c 1 σ 1/2 log σ |τ | σ, and 
E(s, y) E(σ, y) exp - σ/(4 log σ) p σ/(2 log σ) 1 2 log 1 + τ 2 σ 2 - Cσ p 2 - C e σ/p (5.6) exp - σ 8 log σ log 1 + τ 2 σ 2 -10C - 10C σ log σ exp -c 3 |τ | δ if σ |τ | σ 1/δ
. This completes the proof. § 6. Proof of Theorem 3

We follow the argument of Granville & Soundararajan [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF] to prove Theorem 3. We shall divide the proof in several steps which are embodied in the following lemmas.

The first one is a classic integration formula (see [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF], page 1019).

Lemma 6.1. Let c > 0, λ > 0 and N ∈ N. Then we have

(6.1) 1 2πi c+i∞ c-i∞
y s e λs -1 λs

N ds s =      0 if 0 < y < e -λN , ∈ [0, 1] if e -λN y < 1, 1 if y 1.
The second one is an analogue for (3.6) and (3.7) of [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF] (see also Lemma 3.1 of [START_REF] Wu | Note on a paper by A. Granville[END_REF]).

Lemma 6.2. Let t 1, y 2e t and 0 < λ e -t . Then we have

(6.2) Φ(t, y) 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ t) 2s e λs -1 λs ds s Φ(te -λ , y), (6.3) 
Φ(te -λ , y) -Φ(t, y) 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ t) 2s
e λs -1 λs e 2λs -e -2λs ds s .

Proof. Denote by 1 X (ω) the characteristic function of the set X ⊂ Ω. Then by Lemma 6.1 with N = 1 and c = κ, we have

1 {ω∈Ω:L(1,g ♮ (ω);y)>(e γ t) 2 } (ω) 1 2πi κ+i∞ κ-i∞ L(1, g ♮ (ω); y) (e γ t) 2 s e λs -1 λs 2 ds.
Integrating over Ω and interchanging the order of integrations yield Φ(t, y)

Ω 1 2πi κ+i∞ κ-i∞ L(1, g ♮ (ω); y) (e γ t) 2 s e λs -1 λs 2 ds dµ(ω) = 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ t) 2s e λs -1 λs 2 ds.
This proves the first inequality of (6.2). The second can be treated by noticing that

1 {ω∈Ω:L(1,g ♮ (ω);y)>(e γ-λ t) 2 } (ω) = 1 {ω∈Ω:L(1,g ♮ (ω);y)>(e γ t) 2 } (ω) + 1 {ω∈Ω:(e γ t) 2 L(1,g ♮ (ω);y)>(e γ-λ t) 2 } (ω) 1 2πi κ+i∞ κ-i∞ L(1, g ♮ (ω); y) (e γ t) 2 s e λs -1 λs 2 ds.
From (6.2), we can deduce

Φ(te -λ , y) -Φ(t, y) 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ-λ t) 2s e λs -1 λs 2 ds - 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ+λ t) 2s e λs -1 λs 2 ds = 1 2πi κ+i∞ κ-i∞ E(s, y) (e γ t) 2s e λs -1
λs 2 e 2λs -e -2λs ds.

This completes the proof. Lemma 6.3. Let t 1, y 2e t and 0 < κλ 1. Then we have

1 2πi κ+iκ κ-iκ E(s, y) (e γ t) 2s e λs -1 λs 2 ds = E(κ, y) κ √ 2πσ 2 (e γ t) 2κ 1 + O κλ + log κ κ .
Proof. First in view of (4.24) we write, for s = κ + iτ and |τ | κ,

E(s, y) = exp σ 0 + iσ 1 τ - σ 2 2 τ 2 -i σ 3 6 τ 3 + O σ 4 τ 4
and e λs -1

λs 2 = 1 κ 1 - i κ τ + O κλ + τ 2 κ 2 .
Since σ 1 = log t + γ, we have

E(s, y) (e γ t) 2s e λs -1 λs 2 = E(κ, y) κ(e γ t) 2κ e -(σ2/2)τ 2 1 - i κ τ -i σ 3 6 τ 3 + O R(τ ) with R(τ ) := κλ + κ -2 τ 2 + σ 4 τ 4 + σ 2 3 τ 6 .
Now we integrate the last expression over |τ | κ to obtain (

t) 2s e λs -1

λs 2 ds = E(κ, y) 2πκ(e γ t) 2κ κ -κ e -(σ2/2)τ 2 1 + O R(τ ) dτ,
where we have used the fact that the integrals involving (i/κ)τ and (iσ 3 /6)τ 3 vanish.

On the other hand, using lemmas 4.5 and 4.6 we have

κ -κ e -(σ2/2)τ 2 dτ = 2π σ 2 1 + O exp - 1 2 κ 2 σ 2 , κ+iκ κ-iκ e -(σ2/2)τ 2 R(τ ) dτ ≪ 1 √ σ 2 κλ + 1 κ 2 σ 2 + σ 2 3 σ 3 2 + σ 4 σ 2 2 ≪ 1 √ σ 2 κλ + log κ κ .
Inserting these into (6.4), we obtain the desired result. uniformly for t 1, y 2e t , κ 2 and 0 < λκ 1, where

R 1 := λ -1 e -c3κ δ + λ -1 (κ/ log κ) 1/2 y -1/δ , R 2 := λκ(log κ) 1/2 + e -(c3/2)κ δ + λ -1 (κ/ log κ) 1/2 y -1/δ .
Proof. We split the integral in (6.5) into two parts according to κ |τ | y 1/δ or |τ | y 1/δ . Using Lemma 5.1 with σ = κ and the inequality (e λs -1)/s 2 ≪ 1/τ 2 , the integral in (6.5) is ≪ E(κ, y) (e γ t) 2κ λ e -c3κ δ κ + 1 y 1/δ , which implies (6.5), in view of Lemma 4.5 with J = 1.

Similarly we split the integral in (6.6) into four parts according to uniformly for t 1, y 2e t and 0 < λ e -t . Obviously the estimates (6.9) and (6.10) imply the desired result. This completes the proof of Theorem 3. § 7. Proof of Theorem 4

|τ | c 1 κ 1/2 log κ, c 1 κ 1/2 log κ < |τ | κ, κ < |τ | y 1/
Using Lemmas 4.1 and 4.5, we can write

E(κ, y) κ √ 2πσ 2 (e γ t) 2κ = exp φ(κ, y) -2κ(γ + log t) + O(log κ) = exp κ 2 log 2 κ -2 log t + J j=1 b j,0 (log κ) j + O J R J (κ, y)
.

On the other hand, Lemma 4.3 and (1.17) imply that

2 log 2 κ + 2γ + J j=1 b j,1 (log κ) j + O J R J (κ, y) = 2(log t + γ).
Combining these estimates, we can obtain

E(κ, y) κ √ 2πσ 2 (e γ t) 2κ = exp -κ J j=1 b j,1 -b j,0 (log κ) j + O J R J (κ, y) .
In view of (1.21), (4.2) and (4.15), we have b j,1 -b j,0 = a j . This completes the proof. § 8. Proof of Corollary 5

We first prove an asymptotic developpment of κ(t, y) in t.

Lemma 8.1. For each integer J 1, there are computable constants γ 0 , γ 1 , . . . , γ J such that the asymptotic formula (8.1) κ(t, y) = e t-γ0 1 + J j=1

γ j t j + O J R * J (t, y)
holds uniformly for t 1 and y 2e t , where

R * N (t, y) := 1 t N +1 + e t t y log y .
Further γ 0 is given by (1.24) and

γ 1 = -1 8 b 2 1,1 -1 4 b 2,1 .
Proof. By Lemma 4.3 and (1.17), we have

(8.2) 2 log t = 2 log 2 κ + J+1 j=1 b j,1 (log κ) j + O J R J+1 (κ, y) ,
where R J (κ, y) is defined as in (1.20). From (8.2), we easily deduce that

t = (log κ) J+1 j=1 exp b j,1 2(log κ) j exp O J R J+1 (κ, y) = (log κ) J+1 j=1 J+1 mj =0 1 m j ! b j,1 2(log κ) j mj + O J R J+1 (κ, y) .
Developping the product, we get

t = (log κ) J+1 j=0 b ′ j (log κ) j + O J R J+1 (κ, y) , where b ′ j := m1 0,...,mJ+1 0 m1+2m2+•••+(J+1)mJ+1=j b m1 1,1 • • • b mJ+1 J+1,1 (2m 1 )!! • • • (2m J+1 )!! = m1 0,...,mj 0 m1+2m2+•••+jmj =j b m1 1,1 • • • b mj j,1 (2m 1 )!! • • • (2m j )!! . Since b ′ 0 = 1 and b ′ 1 = b 1,1 /2 =
γ 0 , the preceeding asymptotic formula can be written as

(8.3) t = log κ + γ 0 + J j=1 b ′ j+1 (log κ) j + O J R * J (t, y) ,
where we have used the fact that κ(t, y) ≍ e t (see Lemma 2.3) and (log k)R J+1 (κ, y) ≍ R * J (t, y). With the help of (8.3), a simple recurrence argument shows that there are constants γ ′ n such that (8.4)

t = log κ + J j=0 γ ′ j t j + O J R * J (t, y) .
In fact taking J = 0 in (8.3), we see that (8.4) holds for J = 0. Suppose that it holds for 0, . . . , J -1, i.e.

t = log κ + J-j-1 i=0 γ ′ i t i + O R * J-j-1 (t, y) (j = 0, . . . , J -1), which is equivalent to (8.5) log κ = t 1 - J-j i=1 γ ′ i-1 t i + O R * J-j-1 (t, y) t (j = 0, . . . , J -1).
This holds also for j = J if we use the convention:

-1 i=0 = 0 and R * -1 (t, y) := 1, since log κ = t + O(1). Inserting it into (8.3), we easily see that (8.4) holds also for J. In particular we have

γ ′ 1 = b ′ 2 = 1 8 b 2 1,1 + 1 4 b 2,1 .
Now (8.1) is an immediate consequence of (8.4) with

γ j := m1 0,...,mJ 0 m1+2m2+•••+JmJ =j (-1) m1+•••+mJ γ ′ 1 m1 • • • γ ′ J mJ m 1 ! • • • m J ! .
This completes the proof. Now we are ready to prove Corollary 5.

Using (8.5), we have

J j=1 a j (log κ) j = J j=1 a j t j 1 - J-j i=1 γ ′ i-1 t i + O N R * J-j-1 (t, y) t -j (8.6) = J j=1 ρ j t j + O J R * J-2 (t, y) t 2 ,
where the ρ n are constants. In particular we have ρ 1 = a 1 = 1 and ρ 2 = γ 0 + a 2 . Now Theorem 4, (8.1) and (8.6) imply the result of Corollary with

a * 1 = ρ 1 = 1, a * j = ρ j + j-1 i=1 γ i ρ j-i (j 2).
This completes the proof of Corollary 5. § 9. Proof of Theorem 2

For each η ∈ (0, 1 2 ), define

H + k (1; η) := f ∈ H * k (1) : L(s, f ) = 0, s ∈ S ,
where S := {s :

= σ + iτ : σ 1 -η, |τ | 100k η } ∪ {s := σ + iτ : σ 1, τ ∈ R}, and 
H - k (1; η) := H * k (1) H + k (1; η).
Then we have (see [START_REF] Lau | A density theorem on automorphic L-functions and some applications[END_REF], (1.11))

(9.1) H - k (1; η) ≪ η k 31η .
Our starting point in the proof of Theorem 2 is the evaluation of the moments of L(1, f ). For this, we recall a particular case of Proposition 6.1 of [START_REF] Lau | A density theorem on automorphic L-functions and some applications[END_REF]. Lemma 9.1. Let η ∈ (0, 1 31 ) be fixed. There are two positive constants c i = c i (η) (i = 4, 5) such that (9.2)

f ∈H + k (1;η) ω f L(1, f ) s = E(s) + O η e -c4 log k/ log 2 k
uniformly for

(9.3) k 16, 2 | k and |s| 2T k with T k := c 5 log k/(log 2 k log 3 k).
Here E(s) is defined by (1.15).

Let κ(t, y) be the saddle-point determined by (1.17) and κ t := κ(t, ∞). For k 16, 2 | k, λ > 0, N ∈ N and t > 0, introduce the two integrals 

I 1 (k, t; λ, N ) := 1 2πi κt+i∞ κt-i∞ f ∈H + k (1;η) ω f L(1, f ) (e γ t)
k (t) + O η k -5/6 I 1 (k, t; λ, N ) F k (te -λN ) + O η k -5/6 , (9.4) Φ(t) I 2 (k, t; λ, N ) Φ(te -λN ) (9.5)
uniformly for k 16, 2 | k, λ > 0, N ∈ N and t > 0. The implied constants depend on η only.

Proof. By exchanging the order of sommation and by using Lemma 6.1 with c = κ t , we obtain

I 1 (k, t; λ, N ) = f ∈H + k (1;η) ω f 2πi κt+i∞ κt-i∞ L(1, f ) (e γ t) 2 s e λs -1 λs 2N ds s , f ∈H + k (1;η), L(1,f ) (e γ t) 2 ω f .
In view of the second estimate of (1.7) and of (9.1), we reintroduce the missing forms

I 1 (k, t; λ, N ) f ∈H * k (1), L(1,f ) (e γ t) 2 ω f + O f ∈H * k H + k (1;η) ω f f ∈H * k (1), L(1,f ) (e γ t) 2 ω f + O k -1+31η log k .
Clearly this implies the first inequality of (9.4), thanks to (1.6) and (1.7). Similarly, using Lemma 6.1 with c = κ t , we find I 1 (k, t; λ, N )

f ∈H + k (1;η) L(1,f ) (e γ t) 2 ω f + f ∈H + k (1;η) (e γ te -λN ) 2 L(1,f )<(e γ t) 2 ω f = f ∈H + k (1;η) L(1,f ) (e γ te -λN ) 2 ω f .
As before, we can easily show that the last sum is F k (te -λN ) + O k -5/6 . The estimates (9.5) can be proved in the same way as (6.2).

Lemma 9.3. Let η ∈ (0, 1 + e λκt λT k

2N

.

Combining (9.7) and (9.8) yields to the required estimate.

End of the proof of Theorem 2

For simplicity of notation, we write On the other hand, by using Theorem 3 and (1.25), it is easy to see that there is a positive constant c such that Φ(te λN ) ≍ Φ(t) ∼ E(κ t ) κ t √ 2πσ 2 (e γ t) 2κt ≫ e -c8e t /t ≫ e -c9(log k)/[(log 2 k) 7/2 log 3 k] for t T (k). Thanks to Lemma 4.5, the previous estimate can be written as Inserting (9.12) and (9.16) into (9.9) and (9.13) and (9.15) into (9.10), we obtain F k (t) Φ(t) 1 + e t-T (k)-C (t/T (k)) 1/2 + O e -c6e δt + (log k) -A and F k (t) Φ(t) 1 -e t-T (k)-C (t/T (k)) 1/2 + O e -c6e δt + (log k) -A .

This implies the first asymptotic formula of (1.13) by taking η = 1 200 and δ = 1 5 . The second can be established similarly. This completes the proof of Theorem 2. § 10. Proof of Theorem 1

The formula (1.9) is an immediate consequence of Theorem 2 and (1.25). Taking t = T (k) in (1.9), we find that 

(1. 15 )

 15 E(s, y) := E L(1, g ♮ (ω); y) s and E(s) := E(s, ∞), where E(•) denotes the expected value. We define also (1.16) φ(s, y) := log E(s, y), φ n (s, y) := ∂ n φ ∂s n (s, y) (n 0).

π π 0 e

 0 .Thus(3.3) holds also for j + 1.Since (1+1/p) -2 D p (θ) (1-1/p) -2 for all primes p and any θ ∈ R, we have D p (θ) σ ≍ 1 uniformly for p σ 0 and θ ∈ R. This implies(3.4).Introduce the function(3.5) g(u) := log 2 2u cos θ sin 2 θ dθ (u 0)

  y) , using (3.10),(3.11) and (4.11) instead of (3.9), (3.10) and (4.8). Now the desired result follows from (4.16), (4.10) and (4.17).

Lemma 4 . 4 .

 44 We have(4.18) 

Lemma 4 . 6 .Lemma 5 . 1 .

 4651 We have (4.24) φ n (σ, y) ≪ 1/(σ n-1 log σ) (n = 3, 4) uniformly for y σ 3. § 5. Estimate of |E(κ + iτ, y)| For any δ ∈ (0, 1 4 ), there are two absolute positive constants c 1 , c 2 and a positive constant c 3 = c 3 (δ) such that for all y σ 3 we have (5.1) E(σ + iτ, y) E(σ, y)

IF 6 = I 2 +

 62 j := I j (k, t; λ, N ) andI + j := I j (k, te λN ; λ, N ) k (t) I 1 + O k -5/O |I 1 -I 2 | + k -5/6 Φ(te -λN ) + O |I 1 -I 2 | + k -5/6 Φ(t) + |Φ(te -λN ) -Φ(t)| + O |I 1 -I 2 | + k -5/6

  k) A .Similarly we can prove (even more easily)(9.15) |I 1 -I 2 | ≪ Φ(t)/(log k) A .

(10. 1 ) e -c ′ 1 (

 11 log k)/{(log 2 k) 7/2 log 3 k} ≪ F k (T (k)) ≪ e -c ′ 2 (log k)/{(log 2 k) 7/2 log 3 k} ,where c ′ 1 and c ′ 2 are two positive constants. Clearly (10.1) and (1.8) imply(1.11). The related results on G k (t) and G k (T (k)) can be proved similarly. This completes the proof of Theorem 1.

  sin 2 θ dθ.

	Using (4.13) and (4.19), we can deduce
	(4.20)

  1/2 , the inequality (3.3) of Lemma 3.2 implies that h p (σ) ≪ (p/σ) 2 . From this and (4.23) we deduce the first estimate of (4.18).

	If p σ 1/2 , we can use (4.3), (3.11) and (3.8) to write
	4h p

  Lemma 6.4. Let δ and c 3 be two constants determined by Lemma 5.1. Then we have

	(6.5)			κ±i∞ κ±iκ	E(s, y) (e γ t) 2s	e λs -1 λs 2 ds ≪	κ	E(κ, y) √ σ 2 (e γ t) 2κ R 1 ,
	(6.6)	κ+i∞ κ-i∞	E(s, y) (e γ t) 2s	e λs -1 λs 2 e 2λs -e -2λs ds ≪	κ	E(κ, y) √ σ 2 (e γ t) 2κ R 2 ,

  δ , |τ | y 1/δ . (e γ t) 2κ λκ 1/2 log κ + e -c3κ δ + λ -1 y -1/δ ,

	By Lemma 5.1 with σ = κ and the inequalities
							(e λs -1)/λs ≪ min{1, 1/(λ|τ |)},
				(e 2λs -e -2λs )/s ≪ min{λ, 1/|τ |},
	the integral in (6.6) is, as before,
			≪ ε	E(κ, y)
	which implies (6.6), as before.		
	Now we are ready to complete the proof of Theorem 3. Lemma 6.3 and (6.5) of Lemma 6.4
	give						
	(6.7)	1 2πi	κ+i∞ κ-i∞	E(s, y) (e γ t) 2s	e λs -1 λs 2 ds =	κ	E(κ, y) 2πσ 2 (e γ t) 2κ 1 + O R ′ √
	where		R ′ :=	log κ κ	+ κλ +	e -c3κ δ + (κ/ log κ) 1/2 y -1/δ λ	.
	Taking λ = κ -2 and noticing y 2e t ≍ κ and 1/δ > 4, we deduce
	(6.8)							R ′ ≪ t/e t .
	Combining (6.7) and (6.8) with (6.2), we obtain
	(6.9)		Φ(t, y)		κ	E(κ, y) 2πσ 2 (e γ t) 2κ 1 + O √	t e t	Φ(te -λ , y)
	uniformly for t 1, y 2e t and 0 < λ e -t .
	On the other hand, (6.3) of Lemma 6.2 and (6.6) of Lemma 6.4 imply
		Φ(te -λ , y) -Φ(t, y) ≪	κ	E(κ, y) √ σ 2 (e γ t) 2κ λκ(log κ) 1/2 +	(κ/ log κ) 1/2 e c3κ δ	+	(κ/ log κ) 1/2 λy 1/δ
			≪	κ	E(κ, y) √ σ 2 (e γ t) 2κ λκ(log κ) 1/2 +	(κ/ log κ) 1/2 e c3κ δ
	when y -1/(2δ) κ -1/2 (log κ) -1 λ κ -1 . Since Φ(te -λ , y) -Φ(t, y) is a non-decreasing function of λ, we deduce
	(6.10)	Φ(te -λ , y) -Φ(t, y) ≪	κ	E(κ, y) √ σ 2 (e γ t) 2κ λκ(log κ) 1/2 +	(κ/ log κ) 1/2 e c3κ δ	+	κ(log κ) 1/2 y 1/(2δ)

  1 200 ] be fixed and c 4 be the positive constant given by Lemma 9.1. Then we have(9.6) |I 1 (k, t; λ, N ) -I 2 (k, t; λ, N )| ≪ e -c4(log k)/ log 2 k (1 + e λκt ) 2N log T k (e γ t) 2κt + E(κ t ) + e -c4(log k)/ log 2 k N (e γ t) 2κt1 + e λκt λT k2Nuniformly for λ > 0, N ∈ N, k 16, 2 | k and t T (k), where T (k) is given by (1.10). The implied constant depends on η only.Proof. By the definitions of I 1 and I 2 , we can writeI 1 (k, t; λ, N ) -I 2 (k, t; λ, N )In order to estimate the last integral, we split it into two parts according to |τ | T k or |τ | > T k .In view of (1.18), it is easy to see that κ t T k for t T (k). Thus we may apply (9.2) of Lemma 9.1 for s = κ t + iτ with |τ | T k . Note that |(e λs -1)/(λs)| 1 + e λκt for s = κ t + iτ , which is easily seen by looking at the cases |λs| 1 and|λs| > 1. The contribution of |τ | T k to |I 1 (k, t; λ, N ) -I 2 (k, t; λ, N )| is (9.7) ≪ e -c4(log k)/ log 2 k (1 + e λκt ) 2N log T k (e γ t) 2κt .Since κ t T k for t T (k), we can apply (9.2) of Lemma 9.1 to write, for s = κ t + iτ with τ ∈ R,

	=	1 2πi	κt+i∞ κt-i∞	f ∈H + k (1;η)	ω f L(1, f ) s -E(s)	e λs -1 λs	2N	ds s(e γ t) 2s .
		f ∈H + k (1;η)				
						1 + e λκt	2N dτ
						|τ | T k	λ|τ |		|τ |
			≪	E(κ				

ω f L(1, f ) s -E(s) f ∈H + k (1;η) ω f L(1, f ) κt + E(κ t ) 2E(κ t ) + O e -c4(log k)/ log 2 k . Thus the contribution of |τ | > T k to |I 1 (k, t; λ, N ) -I 2 (k, t; λ, N )| is (9.8) ≪ E(κ t ) + e -c4(log k)/ log 2 k (e γ t) 2κt t ) + e -c4(log k)/ log 2 k

N (e γ t) 2κt

and

(9.10)

In view of (6.10) and Theorem 3, we have

for λN e -t . Take Since T k = e T (k)+ 3 2 log 3 k+2C+log c5 , it is easy to see that

Inserting these estimates into the preceeding inequality, a simple calculation shows that (9.12)

provided the constant C is suitably large, where c 6 = c 6 (η, δ) is a positive constant.

Similarly by using (6.10) with te λN in place of t, we have Φ(t) -Φ(te λN ) ≪ Φ(te λN ) λN κ te λN (log κ te λN ) 1/2 + e -(c3/2)κ δ te λN

.

Since for t T (k) we have

the preceeding estimate can be writen as

from which we deduce that (9.13) Φ(t) -Φ(te λN ) Φ(t) e t-T (k)-C (t/T (k))