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Reconstruction of lattice sets from infinite X-rays

Alain Daurat∗

May 22, 2002

Abstract

For any infinite non-null vectors there is always a subset of Z
2 whose X-rays along

fixed directions are the given vectors. If there are only two directions and the vectors

are periodic, then the set can be chosen periodic, it’s not true with more than two

directions.

1 Introduction

Reconstruction of a finite lattice subset (i.e. subsets of Z
2) from its X-rays is the most

basic problem in Discrete Tomography. This problem was positively solved independently
by Ryser and Gale in [5, 2] in the two-directions case Many variants of this problem have
been studied since this first result. Discrete Tomography could be applied in several areas
like biplane angiography, image processing and image microscopy. For an overview of all
these results, see [4].

In usual reconstruction, the X-rays are non-null only on a finite segment because only
finite lattice sets are considered. In this paper we make the inverse hypothesis: the support
of the X-rays is infinite. Simplest such X-rays are the periodic ones. In this case we
also can suppose the periodicity to the solutions. In fact, reconstruction of periodic sets
from periodic X-rays is motivated by application in high resolution microscopy because it
would help to find crystallographic structures (which are supposed to be periodic) from
the number of atoms in lines of prescribed directions.

2 Preliminary definitions

A direction is an equivalence class for the relation of parallelism on the straight lines of
the plane. It can be given by an equation p = λx + µy = const or by a directing vector
−→p = (−µ, λ). If λ and µ are integer then, the direction is a lattice direction, and we can
suppose that λ and µ are coprime. In this paper we only consider lattice directions.
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A lattice set is a subset of Z
2.

A lattice line is a line which contains at least two points of Z
2. A lattice line has an

equation p(M) = k where p is a lattice direction and k is an integer.
The cardinal of a set E will be denoted |E|.
The X-ray of a subset E of Z

2 along a direction p is the function XpE : Z → N ∪∞
given by XpE(k) = |{M ∈ E : p(M) = k}|.

The support of a numerical function f is the set of elements x such that f(x) 6= 0.
If p = ax + by and q = cx + dy are two lattice directions (with a, b, c, d ∈ Z

2), then the
determinant of the two directions (denoted det(p, q)) is the quantity |ad − bc|, which only
depends on the two directions.

3 Reconstruction of Arbitrary Infinite Sets

Basic problem of Discrete Tomography consists in checking if a family of vectors are X-
rays of a subset of Z

2. In fact, if the vectors are infinite and everywhere non-null then this
problem can be trivially solved by the following proposition:

Proposition 1 For any set D of directions, and any function f : D × Z → N
∗, there is a

subset E of Z
2 such that Xp(E) = f(p, ·) where f(p, ·) = ((p, x) 7→ f(p, x)).

Proof: Let i 7→ (pi, ki) be a bijection from N in D × Z. We must find a set E which has
f(pi, ki) points on the line pi(M) = ki for any i.

Let

S = {E ⊂ Z
2 : E is finite and ∀(p, k) ∈ D × Z XpE(k) ≤ f(p, k)}.

For any E ∈ S we define N(E) by:

N(E) = min{i : Xpi
E(ki) 6= f(pi, ki)}

Let E ∈ S, i = N(E), p = pi, k = ki. The set R is defined by:

R = {M : p(M) = k and ∀q ∈ D \ {p} XqE(q(M)) < f(q, q(M))}.

If R was finite, then there would be a direction q and an infinity of points M such that
p(M) = k and XqE(q(M)) ≥ f(q, q(M)) > 0, and so E would be infinite. So R is infinite.
We order the points of Z

2 by φ(x) ≤ φ(y) where φ is any bijection from Z
2 to N. Let R′ be

the set of the first f(p, k) − XpE(k) points of R and consider the set F = c(E) = E ∪ R′.
Let us compute the X-rays of F = c(E). The X-rays of F along the lines which do not

contain any point of R′ are the same than the ones of E. Consider a direction q 6= p and
a point M ∈ R′ we have:

XqF (q(M)) = XqE(q(M)) + 1 ≤ (f(q, q(M) − 1) + 1 = f(q, q(M)).

moreover XpF (k) = XpE(k) + (f(p, k) − XpE(k)) = f(p, k) so F ∈ S and N(F ) > N(E).
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So we have proved that for any set E ∈ S, there exists a set c(E) ∈ S such that
N(c(E)) > N(E).

We define inductively the sequence of sets (En) by E0 = ∅ and En+1 = c(En). We have
N(En) ≥ n. Let us define E∞ by

E∞ =
⋃

n∈N

En.

For any i ∈ N and j ≥ i we have Xpi
Ej(ki) = f(pi, ki), so Xpi

E∞(ki) = f(pi, ki). So
E∞ is the searched set. �

Remark 1 In the proof, the set R′ has not been defined as any subset of f(p, k)−XpE(k)
elements of R, because with this vague definition, Axiom of Choice would be needed for the
existence of the function c.

Remark 2 If D = {x, y}, the proposition remains true for any function f : D × Z → N

such that the supports of the two functions f(x, ·) and f(y, ·) are infinite.

Remark 3 If D = {p, q} then the discrete plane Z
2 is the union of det(p, q) lattices Li

such that there exist module-isomorphisms φi : Li −→ Z
2 which transform the p-lines into

the horizontal lines and the q-lines into the vertical ones. (see for example [1])
So if |D| = 2 the proposition remains true for any function f : D × Z → N if the

set Sp,i = {x : f(p, x) > 0 and (x mod det(p, q) = i)} is infinite for any p ∈ D and
i ∈ {0, . . . , det(p, q) − 1}.

4 Reconstruction of Periodic Sets

A function f : Z → N is periodic of period p if f(x + p) = f(x) for any x. A lattice set E

is periodic of period −→u ∈ Z
2 if E is invariant by the translation of vector −→u .

Now we are interested by the following algorithmic problem (D is a finite set of direc-
tions):
RECPER(D)
Data: a function f : D × Z → N

∗ such that for any p ∈ D the function f(p, ·) is periodic.
Question: does there exist a periodic lattice set E such that Xp(E) = f(p, ·) for any p ?

This problem is well-posed because a function f , data of this problem, can be finitely
represented, by the periodicity of the partial functions f(p, ·).

In fact with two directions, this problem is trivial because we have a proposition which
is the periodic version of proposition 1.

Proposition 2 For any pair D of directions and any f : D×Z → N, if for any p ∈ D the
function f(p, ·) is periodic, then there exists a periodic subset E of Z

2 such that Xp(E) =
f(p, ·) for any p.

We recall Ryser’s characterization of X-rays of finites sets along two directions ([5, 2]):
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Theorem 3 (Gale-Ryser) Let (hi)0≤i<m and (vj)0≤j<n two finite sequences of non-negative
integers. There exists a finite set E ⊂ {0, . . . , n − 1} × {0, . . . , m − 1} such that XyE = h

and XxE = v if and only if:

m−1∑

i=0

hi =
n−1∑

j=0

vj (1)

j∑

k=0

vk ≥

j∑

k=0

ṽk for any 0 ≤ j < n (2)

where ṽ is the sequence v reordered decreasingly, and vj = |{i : hi > j}|.

Proof of Proposition 2: By the same argument than in remark 2, we can suppose that
D = {p, q} with p = x, q = y. Let m be the period of f(q, ·), n be the period of f(p, ·),
hi = f(q, i), vj = f(p, j).

Let V =
∑n−1

j=0 vj , H =
∑m−1

i=0 hi. Then the sequences (hi)0≤i<mV and (vj)0≤j<nH verify
the condition (1) of theorem 3.

Now we fix an integer l and we define hl = (hi)0≤i<mV l and vl = (vj)0≤j<nHl.
Let (ṽj)0≤j<n (resp. (ṽl

j)0≤j<nHl) be the sequence (vj)0≤j<n (resp. vl) reordered de-
creasingly, vj = |{0 ≤ i < m : hi > j}|, vl

j = |{0 ≤ i < mV l : hi > j}| and finally
m′ = maxhi. We have

vl = (V lv0, V lv1, . . . , V lvm′−1, 0, 0, . . . . . . , 0︸ ︷︷ ︸
Hl−m′ times

)

ṽl = (ṽ0, ṽ0, . . . , ṽ0︸ ︷︷ ︸
Hl times

, ṽ1, . . . , ṽ1︸ ︷︷ ︸
Hl times

, ṽ2, . . . . . . , ṽm−1, . . . , ṽm−1︸ ︷︷ ︸
Hl times

)

So if we take l such that

Hl ≥ m′

V l

j∑

k=0

vk ≥ (j + 1)ṽ0 for any 0 ≤ j < m′

then the sequences vl and hl verify the conditions (1) and (2). So there exists a set E

whose X-rays are hl and vl. Then E + (nHl, mV l)Z is the searched set. �

This proposition is not true with more than two directions:

Proposition 4 There is no periodic lattice set such that the X-rays along x, y, x + y are
the constant function 1.

It is in fact a simple corollary of the following property:
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Lemma 5 If E is periodic of period −→u ∈ Z
2 and has X-rays XpE, XqE : Z → N along

two directions p and q then we have:

|p(−→u )|−1∑

k=0

XpE(k) =

|q(−→u )|−1∑

k=0

XqE(k). (3)

Proof: We define the two following finite sets:

E1 = {M ∈ E : 0 ≤ p(M) < |p(−→u )|}, E2 = {M ∈ E : 0 ≤ q(M) < |q(−→u )|}

We have E = E1 + −→u Z = E2 + −→u Z and

|E1| =

|p(−→u )|−1∑

k=0

XpE(k), |E2| =

|q(−→u )|−1∑

k=0

XqE(k)

So we only have to prove |E1| = |E2|.
Suppose for example |E1| > |E2|. For any x ∈ E1, there are yx ∈ E2 and nx ∈ Z such

that x = yx + nx
−→u . We have |E1| > |E2| so there are two distinct points x1, x2 ∈ E1 such

that yx1
= yx2

= y. We have

x1 = y + nx1

−→u

x2 = y + nx2

−→u

So x1 = x2+(nx1
−nx2

)−→u and then p(x1) = p(x2)+(nx1
−nx2

)p(−→u ) with 0 ≤ p(x1), p(x2) <

|p(−→u )|. So nx1
− nx2

= 0 and x1 = x2 which leads to a contradiction. �

Proof of Proposition 4: Suppose there is a set E periodic of period −→u = (ux, uy) which
has the prescribed X-rays.

By using Lemma 5 with the directions x, y we have:

|ux|−1∑

k=0

1 =

|uy|−1∑

k=0

1

so |ux| = |uy|.
But again by Lemma 5 with the pair of directions (x, x+y), we also have |ux| = |ux+uy|

so −→u = 0 contradiction. �

We can think that if there exists a vector −→u which verifies the equation (3) for any
pair of direction in D then there is solution with period a multiple of −→u . For example,
does there exist a periodic set whose X-rays along x, y, x + y are respectively the periodic
functions (1), (1), (4, 1, 1, 1, 1, 1) (second set of figure 1) ? In fact I even do not know if
RECPER({x, y, x + y}) is decidable.
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Figure 1: The X-rays along x, y, x + y are the periodic functions (1), (1), (1) for the first
one, and (3), (3), (4, 1, 1, 1, 1) for the second one. By proposition 3 the first set is not
periodic, for the second one it is more complex.
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