Stochastic derivatives for fractional diffusions

Sébastien Darses, Ivan Nourdin

To cite this version:

Sébastien Darses, Ivan Nourdin. Stochastic derivatives for fractional diffusions. 2006. hal00022829v3

HAL Id: hal-00022829
 https://hal.science/hal-00022829v3

Preprint submitted on 20 Nov 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STOCHASTIC DERIVATIVES FOR FRACTIONAL DIFFUSIONS

\author{

Abstract

In this paper, we introduce some fundamental notions related to the so-called stochastic derivatives with respect to a given σ-field \mathcal{Q}. In our framework, we recall well-known results about Markov Wiener diffusions. We afterwards mainly focus on the case where X is a fractional diffusion and where \mathcal{Q} is the past, the future or the present of X. We treat some crucial examples and our main result is the existence of stochastic derivatives with respect to the present of X when X solves a stochastic differential equation driven by a fractional Brownian motion with Hurst index $H>1 / 2$. We give explicit formulas.

}

1. Introduction. There exist various ways to generalize the notion of differentiation on deterministic functions. We may think about fractional derivative or differentiation in the sense of the theory of distributions. In both cases, we lose a dynamical or a geometric interpretation as tangent vectors, velocities for instance. In this present work, we want to construct derivatives on stochastic processes which conserve a dynamical meaning. Our goal may be motivated by the stochastic embedding of dynamical systems introduced in [3]. This procedure aims at comprehending the following question: how to write an equation which contains the dynamical meaning of an initial ordinary differential equation and which extends this dynamical meaning on stochastic processes? We refer to [4] for more details.

Unfortunately, for most of the stochastic processes used in physical models, the limit

$$
\frac{Z_{t+h}-Z_{t}}{h}
$$

does not exist pathwise. What can we do to give a meaning to this limit? One of the main available tool is the "quantity of information" we can use to calculate it, namely a given σ-field \mathcal{Q}. The idea is that one can remove the divergences which appear by doing some means in the computation. This fact can be achieved by studying the behavior when h goes to zero of the

[^0]conditional expectation:
$$
\mathrm{E}\left[\left.\frac{Z_{t+h}-Z_{t}}{h} \right\rvert\, \mathcal{Q}\right] .
$$

Such objects were introduced by Nelson in his dynamical theory of Brownian diffusion [10]. For a fixed time t, he calculates a forward (resp. backward) derivative with respect to a given σ-field \mathcal{P}_{t} which can be seen as the past of the process up to time t (resp. \mathcal{F}_{t}, the future of the process after time t). The main class with which he can work turns out to be that of Wiener diffusions.

The purpose of this paper is, on one hand, to introduce notions to study the above mentioned quantities for general processes and, on the other hand, to treat some examples. We mainly study these notions on solutions of stochastic differential equations driven by a fractional Brownian motion with Hurst index $H \geqslant \frac{1}{2}$. In particular, we recall results on Wiener diffusions (case $H=\frac{1}{2}$) in our framework. We prove that for a suitable σ-algebra, the stochastic derivatives of a solution of the fractional stochastic differential equation exist and we are able to give explicit formulas.

Our paper is organized as follows. In section 2, we recall some now classical facts on stochastic analysis for fractional Brownian motion. In section 3, we introduce the fundamental notions related to the so-called stochastic derivatives. In section 4, we study stochastic derivatives of Nelson's type for fractional diffusions. We show in section 5 that stochastic derivatives with respect to the present turn out to be adequate tools for fractional Brownian motion with $H>\frac{1}{2}$. We treat also the more difficult case of a fractional diffusion.
2. Basic notions for fractional Brownian motion. We briefly recall some basic facts about stochastic calculus with respect to a fractional Brownian motion. One refers to [13] for further details. Let $B=\left(B_{t}\right)_{t \in[0, T]}$ be a fractional Brownian motion with Hurst parameter $H \in(0,1)$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We mean that B is a centered Gaussian process with the covariance function $\mathrm{E}\left(B_{s} B_{t}\right)=R_{H}(s, t)$, where

$$
\begin{equation*}
R_{H}(s, t)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) . \tag{1}
\end{equation*}
$$

If $H=1 / 2$, then B is a Brownian motion. From (1), one can easily see that $\mathrm{E}\left|B_{t}-B_{s}\right|^{2}=|t-s|^{2 H}$, so B has α-Hölder continuous paths for any $\alpha \in(0, H)$.
2.1. Space of deterministic integrands. We denote by \mathcal{E} the set of step \mathbb{R}-valued functions on $[0, T]$. Let \mathcal{H} be the Hilbert space defined as the
closure of \mathcal{E} with respect to the scalar product

$$
\left\langle\mathbf{1}_{[0, t]}, \mathbf{1}_{[0, s]}\right\rangle_{\mathcal{H}}=R_{H}(t, s) .
$$

We denote by $|\cdot|_{\mathcal{H}}$ the associate norm. The mapping $\mathbf{1}_{[0, t]} \mapsto B_{t}$ can be extended to an isometry between \mathcal{H} and the Gaussian space $H_{1}(B)$ associated with B. We denote this isometry by $\varphi \mapsto B(\varphi)$.

When $H \in\left(\frac{1}{2}, 1\right)$, it follows from [15] that the elements of \mathcal{H} may be not functions but distributions of negative order. It will be more convenient to work with a subspace of \mathcal{H}, which contains only functions. Such a space is the set $|\mathcal{H}|$ of all measurable functions f on $[0, T]$ such that

$$
|f|_{|\mathcal{H}|}^{2}:=H(2 H-1) \int_{0}^{T} \int_{0}^{T}|f(u)||f(v)||u-v|^{2 H-2} d u d v<\infty .
$$

We know that $\left(|\mathcal{H}|,|\cdot|_{|\mathcal{H}|}\right)$ is a Banach space but that $\left(|\mathcal{H}|,\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is not complete (see e.g. [15]).

Moreover, we have the inclusions

$$
\begin{equation*}
\mathrm{L}^{2}([0, T]) \subset \mathrm{L}^{\frac{1}{H}}([0, T]) \subset|\mathcal{H}| \subset \mathcal{H} . \tag{2}
\end{equation*}
$$

2.2. Fractional operators. The covariance kernel $R_{H}(t, s)$ introduced in (1) can be written as

$$
R_{H}(t, s)=\int_{0}^{s \wedge t} K_{H}(s, u) K_{H}(t, u) d u
$$

where $K_{H}(t, s)$ is the square integrable kernel defined by

$$
\begin{equation*}
K_{H}(t, s)=c_{H} s^{\frac{1}{2}-H} \int_{s}^{t}(u-s)^{H-\frac{3}{2}} u^{H-\frac{1}{2}} d u, \quad 0<s<t \tag{3}
\end{equation*}
$$

where $c_{H}{ }^{2}=H(2 H-1) \beta(2-2 H, H-1 / 2)^{-1}$ and β denotes the Beta function. By convention, we set $K_{H}(t, s)=0$ if $s \geq t$.

Let $\mathcal{K}_{H}^{*}: \mathcal{E} \rightarrow \mathrm{L}^{2}([0, T])$ be the linear operator defined by:

$$
\mathcal{K}_{H}^{*}\left(\mathbf{1}_{[0, t]}\right)=K_{H}(t, \cdot) .
$$

The following equality holds for any $\phi, \psi \in \mathcal{E}$

$$
\langle\phi, \psi\rangle_{\mathcal{H}}=\left\langle\mathcal{K}_{H}^{*} \phi, \mathcal{K}_{H}^{*} \psi\right\rangle_{\mathrm{L}^{2}([0, T])}=\mathrm{E}(B(\phi) B(\psi))
$$

and then \mathcal{K}_{H}^{*} provides an isometry between the Hilbert spaces \mathcal{H} and a closed subspace of $\mathrm{L}^{2}([0, T])$.

The process $W=\left(W_{t}\right)_{t \in[0, T]}$ defined by

$$
W_{t}=B\left(\left(\mathcal{K}_{H}^{*}\right)^{-1}\left(\mathbf{1}_{[0, t]}\right)\right)
$$

is a Wiener process, and the process B has an integral representation of the form

$$
B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

Hence, for any $\phi \in \mathcal{H}$,

$$
B(\phi)=W\left(\mathcal{K}_{H}^{*} \phi\right) .
$$

Let $a, b \in \mathbb{R}, a<b$. For any $p \geqslant 1$, we denote by $\mathrm{L}^{p}=\mathrm{L}^{p}([a, b])$ the usual Lebesgue space of functions on $[a, b]$.

Let $f \in \mathrm{~L}^{1}$ and $a>0$. The left-sided and right-sided fractional RiemannLiouville integrals of f of order α are defined for almost all $x \in(a, b)$ by

$$
I_{a+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-y)^{\alpha-1} f(y) d y
$$

and

$$
I_{b-}^{\alpha} f(x)=\frac{(-1)^{-\alpha}}{\Gamma(\alpha)} \int_{x}^{b}(y-x)^{\alpha-1} f(y) d y
$$

respectively, where Γ denotes the usual Euler function. These integrals extend the classical integral of f when $\alpha=1$.

If $f \in I_{a+}^{\alpha}\left(\mathrm{L}^{p}\right)$ (resp. $\left.f \in I_{b-}^{\alpha}\left(\mathrm{L}^{p}\right)\right)$ and $\alpha \in(0,1)$, then for almost all $x \in(a, b)$, the left-sided and right-sided Riemann-Liouville derivative of f of order α are defined by

$$
D_{a+}^{\alpha} f(x)=\frac{1}{\Gamma(1-\alpha)}\left(\frac{f(x)}{(x-a)^{\alpha}}+\alpha \int_{a}^{x} \frac{f(x)-f(y)}{(x-y)^{\alpha+1}} d y\right)
$$

and

$$
D_{b-}^{\alpha} f(x)=\frac{1}{\Gamma(1-\alpha)}\left(\frac{f(x)}{(b-x)^{\alpha}}+\alpha \int_{x}^{b} \frac{f(x)-f(y)}{(y-x)^{\alpha+1}} d y\right)
$$

respectively, where $a \leq x \leq b$.
We define the operator \mathcal{K}_{H} on $\mathrm{L}^{2}([0, T])$ by

$$
\left(\mathcal{K}_{H} h\right)(t)=\int_{0}^{t} K_{H}(t, s) h(s) d s
$$

It is an isomorphism from $\mathrm{L}^{2}([0, T])$ onto $I_{0^{+}}^{H+\frac{1}{2}}\left(\mathrm{~L}^{2}([0, T])\right)$ and it can be expressed as follows when $H>\frac{1}{2}$:

$$
\mathcal{K}_{H} h=I_{0^{+}+s}^{1} s^{H-\frac{1}{2}} I_{0^{+}}^{H-\frac{1}{2}} s^{\frac{1}{2}-H} h
$$

where $h \in \mathrm{~L}^{2}([0, T])$. The crucial point is that the functions of the space $I_{0^{+}}^{H+\frac{1}{2}}\left(\mathrm{~L}^{2}([0, T])\right)$ are absolutely continuous when $H>\frac{1}{2}$. For these functions ϕ, the inverse operator \mathcal{K}_{H}^{-1} is given by

$$
\mathcal{K}_{H}^{-1} \phi=s^{H-\frac{1}{2}} D_{0^{+}}^{H-\frac{1}{2}} s^{\frac{1}{2}-H} \phi^{\prime} .
$$

When $H>\frac{1}{2}$, we introduce the operator \mathcal{O}_{H} on $\mathrm{L}^{2}([0, T])$ defined by

$$
\begin{equation*}
\left(\mathcal{O}_{H} \varphi\right)(s):=\left(\frac{d}{d t} \mathcal{K}_{H}\right)(\varphi)(s)=s^{H-\frac{1}{2}} I_{0^{+}}^{H-\frac{1}{2}} s^{\frac{1}{2}-H} \varphi(s) . \tag{4}
\end{equation*}
$$

Let $f:[a, b] \rightarrow \mathbb{R}$ be α-Hölder continuous and $g:[a, b] \rightarrow \mathbb{R}$ be β-Hölder continuous with $\alpha+\beta>1$. Then, for any $s, t \in[a, b]$, the Young integral [20] $\int_{s}^{t} f d g$ exists and we can express it in terms of fractional derivatives (see [21]): for any $\gamma \in(1-\beta, \alpha)$, we have

$$
\begin{equation*}
\int_{s}^{t} f d g=(-1)^{\gamma} \int_{s}^{t} D_{s+}^{\gamma} f(x) D_{t-}^{1-\gamma} g_{t-}(x) d x \tag{5}
\end{equation*}
$$

where $g_{t-}(x)=g(x)-g(t)$. In particular, we deduce that:

$$
\begin{equation*}
\forall s<t \in[a, b], \quad\left|\int_{s}^{t}(f(r)-f(s)) d g(r)\right| \leq \kappa|f|_{\alpha}|g|_{\beta}|t-s|^{\alpha+\beta} \tag{6}
\end{equation*}
$$

where κ is a constant depending only on a, b, α and β, and if $h:[a, b] \rightarrow \mathbb{R}$ and $\mu \in(0,1]$,

$$
|h|_{\mu}=\sup _{a \leq s<t \leq b} \frac{|h(t)-h(s)|}{|t-s|^{\mu}} .
$$

2.3. Malliavin calculus. Let \mathcal{S} be the set of all smooth cylindrical random variables, $i . e$. which writes $F=f\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right)$ where $n \geqslant 1, f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} is a smooth function with compact support and $\phi_{i} \in \mathcal{H}$. The Malliavin derivative of F w.r.t. B is the element of $\mathrm{L}^{2}(\Omega, \mathcal{H})$ defined by

$$
D_{s}^{B} F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(B\left(\phi_{1}\right), \ldots, B\left(\phi_{n}\right)\right) \phi_{i}(s), \quad s \in[0, T] .
$$

In particular $D_{s}^{B} B_{t}=\mathbf{1}_{[0, t]}(s)$. As usual, $\mathbb{D}^{1,2}$ denotes the closure of the set of smooth random variables with respect to the norm

$$
\|F\|_{1,2}^{2}=\mathrm{E}\left[F^{2}\right]+\mathrm{E}\left[\left|D_{.}^{B} F\right|_{\mathcal{H}}^{2}\right] .
$$

The Malliavin derivative D^{B} verifies the chain rule: if $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C_{b}^{1} and if $\left(F_{i}\right)_{i=1, \ldots, n}$ is a sequence of elements of $\mathbb{D}^{1,2}$ then $\varphi\left(F_{1}, \ldots, F_{n}\right) \in \mathbb{D}^{1,2}$ and we have, for any $s \in[0, T]$:

$$
D_{s}^{B} \varphi\left(F_{1}, \ldots, F_{n}\right)=\sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}}\left(F_{1}, \ldots, F_{n}\right) D_{s}^{B} F_{i} .
$$

The divergence operator δ^{B} is the adjoint of the derivative operator D^{B}. If a random variable $u \in \mathrm{~L}^{2}(\Omega, \mathcal{H})$ belongs to the domain of the divergence operator, that is if it verifies

$$
\left|\mathrm{E}\left\langle D^{B} F, u\right\rangle_{\mathcal{H}}\right| \leq c_{u}\|F\|_{\mathrm{L}^{2}} \quad \text { for any } F \in \mathcal{S}
$$

then $\delta^{B}(u)$ is defined by the duality relationship

$$
\mathrm{E}\left(F \delta^{B}(u)\right)=\mathrm{E}\left\langle D^{B} F, u\right\rangle_{\mathcal{H}},
$$

for every $F \in \mathbb{D}^{1,2}$.
2.4. Pathwise integration with respect to B. If $X=\left(X_{t}\right)_{t \in[0, T]}$ and $Z=$ $\left(Z_{t}\right)_{t \in[0, T]}$ are two continuous processes, we define the forward integral of Z w.r.t. X, in the sense of Russo-Vallois, by

$$
\begin{equation*}
\int_{0}^{\bullet} Z_{s} d X_{s}=\lim _{\varepsilon \rightarrow 0} \operatorname{ucp} \quad \varepsilon^{-1} \int_{0}^{\bullet} Z_{s}\left(X_{s+\varepsilon}-X_{s}\right) d s, \quad t \in[0, T], \tag{7}
\end{equation*}
$$

provided the limit exists. Here "ucp" means "uniform convergence in probability". If X (resp. Z) has a.s. Hölder continuous paths of order α (resp. β) with $\alpha+\beta>1$ then $\int_{0}^{\bullet} Z_{s} d X_{s}$ exists and coincides with the usual Young integral (see [16], Proposition 2.12).
2.5. Stochastic differential equation driven by B. Here we assume that $H>1 / 2$. We denote by C_{b}^{k} the set of all functions whose derivatives from order 1 to order k are bounded. If $\sigma \in \mathrm{C}_{b}^{2}$ and if $b \in \mathrm{C}_{b}^{1}$, then the equation

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s, \quad t \in[0, T] \tag{8}
\end{equation*}
$$

admits a unique solution X in the set of processes whose paths are Hölder continuous of order $\alpha>1-H$. Here, the integral w.r.t. B is in the sense of Russo-Vallois, see (7). Moreover, we have a Doss-Sussmann [6, 18] type representation:

$$
X_{t}=\phi\left(A_{t}, B_{t}\right), \quad t \in[0, T]
$$

imsart-aop ver. 2006/10/13 file: dn06-v3.hyper3032.tex date: November 20, 2006
where ϕ and A are given respectively by

$$
\frac{\partial \phi}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\sigma\left(\phi\left(x_{1}, x_{2}\right)\right), \quad \phi\left(x_{1}, 0\right)=x_{1}, \quad x_{1}, x_{2} \in \mathbb{R}
$$

and

$$
A_{t}^{\prime}=\exp \left(-\int_{0}^{B_{t}} \sigma^{\prime}\left(\phi\left(A_{t}, s\right)\right) d s\right) b\left(\phi\left(A_{t}, B_{t}\right)\right), \quad A_{0}=x_{0}, \quad t \in[0, T] .
$$

Using this representation, we can show that X belongs to $\mathbb{D}^{1,2}$ and that

$$
D_{s}^{B} X_{t}=\sigma\left(X_{s}\right) \exp \left(\int_{s}^{t} b^{\prime}\left(X_{u}\right) d u+\int_{s}^{t} \sigma^{\prime}\left(X_{u}\right) d B_{u}\right) \mathbf{1}_{[0, t]}(s), \quad s, t \in[0, T] .
$$

(see [11], proof of Theorem B).
3. Notions related to stochastic derivatives. Let $\left(Z_{t}\right)_{t \in[0, T]}$ be a stochastic process defined on $(\Omega, \mathcal{F}, \mathbb{P})$. In the sequel, we always assume that for any $t \in[0, T], Z_{t} \in \mathrm{~L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$. For all $t \in(0, T)$ and $h \neq 0$ such that $t+h \in(0, T)$, we set:

$$
\Delta_{h} Z_{t}=\frac{Z_{t+h}-Z_{t}}{h}
$$

3.1. Stochastic derivatives in a strong sense.

Definition 1. Set $t \in(0, T)$. We say that \mathcal{A}^{t} (resp. \mathcal{B}^{t}) is a forward differentiating σ-field (resp. backward differentiating σ-field) for Z at t if $\mathrm{E}\left[\Delta_{h} Z_{t} \mid \mathcal{A}^{t}\right]$ (resp. $\mathrm{E}\left[\Delta_{-h} Z_{t} \mid \mathcal{B}^{t}\right]$) converges in probability when $h \downarrow 0^{+}$. In these cases, we define the so-called forward and backward derivatives

$$
\begin{align*}
D_{+}^{\mathcal{A}^{t}} Z_{t} & =\lim _{h \downarrow 0^{+}} \mathrm{E}\left[\Delta_{h} Z_{t} \mid \mathcal{A}^{t}\right], \tag{9}\\
D_{-}^{\mathcal{B}^{t}} Z_{t} & =\lim _{h \downarrow 0^{+}} \mathrm{E}\left[\Delta_{-h} Z_{t} \mid \mathcal{B}^{t}\right] . \tag{10}
\end{align*}
$$

The set of all forward (resp. backward) differentiating σ-fields for Z at time t is denoted by $\mathcal{M}_{Z}^{+(t)}$ (resp. $\left.\mathcal{M}_{Z}^{-(t)}\right)$. The intuition we can have is that the more $\mathcal{M}^{ \pm(t)}$ is high, the more Z is regular at time t. For instance, one has obviously that $\{\emptyset, \Omega\} \in \mathcal{M}_{Z}^{+(t)}$ (resp. $\in \mathcal{M}_{Z}^{-(t)}$) if and only if $s \mapsto \mathrm{E}\left(Z_{s}\right)$ is right differentiable (resp. left differentiable) at time t. At the opposite, one has that $\mathcal{F} \in \mathcal{M}_{Z}^{+(t)}$ (resp. $\left.\in \mathcal{M}_{Z}^{-(t)}\right)$ if and only if $s \mapsto Z_{s}$ is a.s. right differentiable (resp. left differentiable) at time t.

Definition 2. We say that $\left(\mathcal{A}^{t}, \mathcal{B}^{t}\right)_{t \in(0, T)}$ is a differentiating collection of σ-fields for Z if for any $t \in(0, T)$, \mathcal{A}^{t} (resp. \mathcal{B}^{t}) is a forward (resp. backward) differentiating σ-field for Z at t. If $\mathcal{A}^{t}=\mathcal{B}^{t}$ for any $t \in(0, T)$, we write, for simplicity, $\left(\mathcal{A}^{t}\right)_{t \in(0, T)}$ instead of $\left(\mathcal{A}^{t}, \mathcal{B}^{t}\right)_{t \in(0, T)}$.

On one hand, we may introduce the following:
Definition 3. Set $t \in(0, T)$. We say that \mathcal{A}^{t} (resp. \mathcal{B}^{t}) is a non degenerated forward σ-field (resp. non degenerated backward σ-field) for Z at t if it is forward (resp. backward) differentiating at t and if

$$
\begin{equation*}
\text { for any } c \in \mathbb{R}, \mathrm{P}\left(D_{+}^{\mathcal{A}^{t}} Z_{t}=c\right)=0\left(\text { resp. } \mathrm{P}\left(D_{-}^{\mathcal{B}^{t}} Z_{t}=c\right)=0\right) . \tag{11}
\end{equation*}
$$

For instance, if Z is a process such that $s \mapsto \mathrm{E}\left(Z_{s}\right)$ is differentiable at $t \in(0, T)$ then $\{\emptyset, \Omega\}$ is a forward and backward differentiating σ-field at t but is degenerated. Let us also note that the condition (11) is obviously equivalent to $\operatorname{Var}\left(D_{+}^{\mathcal{A}^{t}} Z_{t}\right) \neq 0\left(\right.$ resp. $\left.\operatorname{Var}\left(D_{-}^{\mathcal{B}^{t}} Z_{t}\right) \neq 0\right)$ when $D_{+}^{\mathcal{A}^{t}} Z_{t} \in \mathrm{~L}^{2}(\Omega)$ (resp. $\left.D_{-}^{\mathcal{B}^{t}} Z_{t} \in \mathrm{~L}^{2}(\Omega)\right)$.

On the other hand, one could hope that such stochastic derivatives conserve the property which holds for ordinary derivatives on functions: "it can discriminate the constants among the other processes". So we introduce:

Definition 4. We say that $\left(\mathcal{A}^{t}, \mathcal{B}^{t}\right)_{t \in(0, T)}$ is a discriminating collection of σ-fields for Z if $\left(\mathcal{A}^{t}, \mathcal{B}^{t}\right)_{t \in(0, T)}$ is a differentiating collection of σ-fields for Z and if it satisfies the following property:
$\left(\forall t \in(0, T), D_{+}^{\mathcal{A}^{t}} Z_{t}=D_{-}^{\mathcal{B}^{t}} Z_{t}=0\right) \Rightarrow Z$ is a.s. a constant process on $[0, T]$.
As in Definition 2, we write, for simplicity, $\left(\mathcal{A}^{t}\right)_{t \in(0, T)}$ instead of $\left(\mathcal{A}^{t}, \mathcal{B}^{t}\right)_{t \in(0, T)}$ when $\mathcal{A}^{t}=\mathcal{B}^{t}$ for any $t \in(0, T)$.

An obvious example of discriminating collection of σ-fields for a process with differentiable paths is $\left\{\mathcal{A}^{t}=\mathcal{F}, t \in(0, T)\right\}$. If Z is a process such that $s \mapsto \mathrm{E}\left(Z_{s}\right)$ is differentiable on $(0, T)$ then the collection $\left\{\mathcal{A}^{t}=\{\emptyset, \Omega\}, t \in\right.$ $[0, T]\}$ is differentiating but, in general, not discriminating.

Let us now consider a more advanced example. Let $B=\left(B_{t}\right)_{t \in[0, T]}$ be a fractional Brownian motion with Hurst index $H \in(1 / 2,1)$. Let us denote by \mathcal{P}_{t} the σ-field generated by B_{s} for $0 \leq s \leq t$ and, if $g: \mathbb{R} \rightarrow \mathbb{R}$, by \mathcal{T}_{t}^{g} the σ-field generated by $g\left(B_{t}\right)$.

Example 5. For any $t \in(0, T), \mathcal{P}_{t}$ is not a forward differentiating σ field for B at t.

We refer to Proposition 10 in [5] for a proof. This result is extended to the case of Volterra processes in this paper, see Proposition 13.

Example 6. For any even function $g: \mathbb{R} \rightarrow \mathbb{R}$ and for any $t \in(0, T)$, \mathcal{T}_{t}^{g} is a forward and backward differentiating (but degenerated) σ-field for B at t.

Proof. Since B and $-B$ have the same law, we have that $\mathrm{E}\left[\Delta_{h} B_{t} \mid g\left(B_{t}\right)\right]=$ 0 for any $t \in(0, T)$ and $h \neq 0$ such that $t+h \in(0, T)$. The conclusion follows easily.

EXAMPLE 7. For any $t \in(0, T), \mathcal{T}_{t}^{\text {id }}$ is a forward and backward differentiating and non degenerated σ-field for B at t.

Proof. Using a linear Gaussian regression, we can write

$$
\mathrm{E}\left[\Delta_{h} B_{t} \mid B_{t}\right]=\frac{(1+h / t)^{2 H}-1-(h / t)^{2 H}}{2} B_{t} \xrightarrow[h \rightarrow 0]{\longrightarrow} H \frac{B_{t}}{t} \text { in probability. }
$$

Since $\operatorname{Var}\left(H t^{-1} B_{t}\right)>0, \mathcal{T}_{t}^{\text {id }}$ is non-degenerated.

Thus, for the fractional Brownian motion, stochastic derivatives w.r.t. the present (that is w.r.t. $\mathcal{T}_{t}^{\text {id }}$) turns out to be an adequate tool (see section 5 below, for a more precise study).
3.2. Stochastic derivatives in a weak sense. A way to weaken Definition 1 is to consider stochastic derivatives as follows:

Definition 8. Set $t \in(0, T)$ and let \mathcal{A} be a sub- σ-field of \mathcal{F}. We say that Z is weak forward differentiable w.r.t. \mathcal{A} at t if

$$
\lim _{h \downarrow 0^{+}} \mathrm{E}\left[V \Delta_{h} Z_{t}\right] \text { exists }
$$

for all random variable V belonging to a dense subspace of the closed subspace $\mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P}) \subset \mathrm{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$.
We similarly define the notion of weak backward differentiation w.r.t. \mathcal{A} at t by considering $\Delta_{-h} Z_{t}$ instead of $\Delta_{h} Z_{t}$.

If the process Z is weak forward differentiable at t and is such that the sequence $\left(\Delta_{h} Z_{t}\right)_{h}$ is bounded in $\mathrm{L}^{2}(\Omega)$, then we can associate a weak forward stochastic derivative w.r.t. \mathcal{A} at t. Indeed, in that case, let us denote by Θ the dense subspace involved. The linear form $\psi: V \mapsto \lim _{h \downarrow 0^{+}} \mathrm{E}\left[V \Delta_{h} Z_{t}\right]$ defined on $\Theta \subset L^{2}(\Omega, \mathcal{A}, \mathbb{P})$ is continuous and so can be extended in a unique continuous linear form on $\mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$, still denoted by ψ. Thus there exists a unique $Z_{t}^{\prime} \in \mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$ such that $\psi(V)=\mathrm{E}\left[Z_{t}^{\prime} V\right]$. One can easily show that Z_{t}^{\prime} does not depend on Θ. We will say that Z_{t}^{\prime} is the weak forward stochastic derivative of Z w.r.t. \mathcal{A} at t.

Remark 9. The boundedness of $\left(\Delta_{h} Z_{t}\right)_{h}$ in $\mathrm{L}^{2}(\Omega)$ may appear as a quite restrictive condition (for instance, it is not satisfied for a fractional Brownian motion). But it allows to relate our notion with the usual notion of weak limit.

If $\mathcal{A}^{t}\left(\right.$ resp. $\left.\mathcal{B}^{t}\right)$ is a forward (resp. backward) differentiating σ-field for Z at t and if moreover the convergence (9) (resp. (10)) also holds in L^{2}, then Z is weak forward (resp. backward) differentiable w.r.t. $\mathcal{A}^{t}\left(\right.$ resp. $\left.\mathcal{B}^{t}\right)$ at t. But the converse is not true in general.

Let Υ be the set of the so-called fractional diffusions $X=\left(X_{t}\right)_{t \in[0, T]}$ defined by

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} \sigma_{s} d B_{s}+\int_{0}^{t} b_{s} d s, \quad t \in[0, T] \tag{12}
\end{equation*}
$$

where σ and b are adapted w.r.t. the natural filtration associated to B and X. We moreover assume that they satisfy the following conditions: $\sigma \in C^{\alpha}$ a.s. with $\alpha>1-H$ and $b \in \mathrm{~L}^{1}([0, T])$ a.s.

Lemma 10. The decomposition (12) is unique: if

$$
\begin{equation*}
x_{0}+\int_{0}^{t} \sigma_{s} d B_{s}+\int_{0}^{t} b_{s} d s=\tilde{x}_{0}+\int_{0}^{t} \tilde{\sigma}_{s} d B_{s}+\int_{0}^{t} \tilde{b}_{s} d s, \quad t \in[0, T] \tag{13}
\end{equation*}
$$

then $x_{0}=\tilde{x}_{0}, \sigma=\tilde{\sigma}$ and $b=\tilde{b}$.
Proof. The equality $x_{0}=\tilde{x}_{0}$ is obvious and (13) is then equivalent to

$$
\int_{0}^{t}\left(\sigma_{s}-\tilde{\sigma}_{s}\right) d B_{s}=\int_{0}^{t}\left(\tilde{b}_{s}-b_{s}\right) d s, \quad t \in[0, T]
$$

which implies, by setting $t_{k}=\frac{k T}{n}$:

$$
\begin{aligned}
\left(\mid \sigma_{t_{k}}-\right. & \left.\tilde{\sigma}_{t_{k}}| | B_{t_{k+1}}-B_{t_{k}} \mid\right)^{1 / H} \\
& =\left|\int_{t_{k}}^{t_{k+1}}\left(b_{s}-\tilde{b}_{s}\right) d s+\int_{t_{k}}^{t_{k+1}}\left(\sigma_{s}-\sigma_{t_{k}}\right) d B_{s}+\int_{t_{k}}^{t_{k+1}}\left(\tilde{\sigma}_{s}-\tilde{\sigma_{t_{k}}}\right) d B_{s}\right|^{1 / H} \\
\leqslant & \leqslant\left[\left|\int_{t_{k}}^{t_{k+1}}\left(b_{s}-\tilde{b}_{s}\right) d s\right|^{1 / H}+\left|\int_{t_{k}}^{t_{k+1}}\left(\sigma_{s}-\sigma_{t_{k}}\right) d B_{s}\right|^{1 / H}\right. \\
& \left.\quad+\left|\int_{t_{k}}^{t_{k+1}}\left(\tilde{\sigma}_{s}-\tilde{\sigma}_{t_{k}}\right) d B_{s}\right|^{1 / H}\right] .
\end{aligned}
$$

We easily deduce, using (6), that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left|\sigma_{t_{k}}-\tilde{\sigma}_{t_{k}}\right|^{1 / H}\left|B_{t_{k+1}}-B_{t_{k}}\right|^{1 / H}=0 \quad \text { in probability. }
$$

But, on the other hand, it is easy to obtain (see, for instance, Theorem 4.4 in [8]) that:
$\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left|\sigma_{t_{k}}-\tilde{\sigma}_{t_{k}}\right|^{1 / H}\left|B_{t_{k+1}}-B_{t_{k}}\right|^{1 / H}=\int_{0}^{T}\left|\sigma_{s}-\tilde{\sigma}_{s}\right|^{1 / H} d s$ in probability.
We deduce that $\sigma=\tilde{\sigma}$ and then $b=\tilde{b}$.
In section 4, we will see that the past of $X \in \Upsilon$ before time t is not, in general, a forward differentiating σ-field at time t. At the opposite, we will see in section 5 that the present of $X \in \Upsilon$ is, in general, a differentiating collection of σ-fields.

However, X is weak differentiable for a large class of σ-fields. We introduce the set \mathcal{S}^{b} of all r.v. $\varphi\left(B\left(\phi_{1}\right), \cdots, B\left(\phi_{n}\right)\right) \in \mathcal{S}$ such that $\phi_{1}, \cdots, \phi_{n}$ are bounded functions.

Let \wp be the set of all sub- σ-fields $\mathcal{A} \subset \mathcal{F}$ such that $\mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P}) \cap \mathcal{S}^{b}$ is dense in $\mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$. For instance, any σ-field which writes $\mathcal{A}^{[r, s]}=\varsigma\left(B_{v}, r \leqslant\right.$ $v \leqslant s$) belongs to \wp (see e.g. [13] p.24).

Proposition 11. Let $\mathcal{A} \in \wp$ and $t \in(0, T)$. Let $X \in \Upsilon$ be given by (12) satisfying the following conditions:
(i) The map $s \mapsto b_{s}$ is continuous from $(0, T)$ into $L^{1}(\Omega)$,
(ii) for all $s \in[0, T], \sigma_{s} \in \mathbb{D}^{1,2}$ and $\sup _{s \in[0, T]} \mathrm{E}\left|D_{s}^{B} \sigma_{t}\right|<+\infty$,
(iii) $\mathrm{E}\left(|\sigma|_{\alpha}^{p}\right)<+\infty$ for some $p>1$ and $\alpha>1-H$.

Then X is weak forward and backward differentiable at t w.r.t. \mathcal{A}.
Proof. For simplicity, we only prove the forward case, the backward case being similar. Let $t \in(0, T)$.

We write

$$
\begin{equation*}
X_{t+h}-X_{t}=\sigma_{t}\left(B_{t+h}-B_{t}\right)+\int_{t}^{t+h} b_{s} d s+\int_{t}^{t+h}\left(\sigma_{s}-\sigma_{t}\right) d B_{s} . \tag{14}
\end{equation*}
$$

First of all, we treat the second term of the r.h.s. of (14). Let $V \in$ $\mathrm{L}^{2}(\Omega, \mathcal{A}, \mathbb{P}) \cap \mathcal{S}^{b}$. Since V is bounded and the map $s \mapsto b_{s}$ is continuous from $(0, T)$ into $L^{1}(\Omega)$, the function $s \mapsto \mathrm{E}\left[V b_{s}\right]$ is continuous. We then deduce, together with the Fubini theorem, that

$$
\begin{equation*}
\lim _{h \downarrow 0} \frac{1}{h} \mathrm{E}\left[V \int_{t}^{t+h} b_{s} d s\right] d s=\mathrm{E}\left[V b_{t}\right] . \tag{15}
\end{equation*}
$$

Afterwards, using the inequality (6) and the hypothesis $\mathrm{E}\left(|\sigma|_{\alpha}^{p}\right)<+\infty$, the following limit holds:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h} \mathrm{E}\left[V \int_{t}^{t+h}\left(\sigma_{s}-\sigma_{t}\right) d B_{s}\right]=0 \tag{16}
\end{equation*}
$$

Finally, we show that the limit

$$
\lim _{h \downarrow 0} \mathrm{E}\left[\sigma_{t} V \Delta_{h} B_{t}\right]
$$

exists. Since $\sigma_{t} V \in \mathbb{D}^{1,2}$ (see Exercice 1.2.13 in [12]), we have

$$
\begin{aligned}
\mathrm{E}\left[\sigma_{t}\left(B_{t+h}-B_{t}\right) V\right] & =\mathrm{E}\left[\delta^{B}\left(\mathbf{1}_{[t, t+h]}\right) \sigma_{t} V\right] \\
& =\mathrm{E}\left[\sigma_{t}\left\langle\mathbf{1}_{[t, t+h]}, D^{B} V\right\rangle_{\mathcal{H}}\right]+\mathrm{E}\left[V\left\langle\mathbf{1}_{[t, t+h]}, D^{B} \sigma_{t}\right\rangle_{\mathcal{H}}\right] .
\end{aligned}
$$

The condition (ii) and the fact that $V \in \mathcal{S}^{b}$ allow in particulary to write

$$
\begin{equation*}
\mathrm{E}\left[\sigma_{t}\left(B_{t+h}-B_{t}\right) V\right]=H(2 H-1)\left(\Psi_{t, h}\left(\sigma_{t}, V\right)+\Psi_{t, h}\left(V, \sigma_{t}\right)\right) \tag{17}
\end{equation*}
$$

where

$$
\Psi_{t, h}(X, Y)=\mathrm{E}\left[X \int_{0}^{T} D_{s}^{B} Y \int_{t}^{t+h}|v-s|^{2 H-2} d v d s\right]
$$

When X or Y denotes σ_{t} or V, the Fubini theorem yields to

$$
\Psi_{t, h}(X, Y)=\int_{t}^{t+h} f(v, X, Y) d v
$$

imsart-aop ver. 2006/10/13 file: dn06-v3.hyper3032.tex date: November 20, 2006
with

$$
f(v, X, Y)=\int_{0}^{T} \mathrm{E}\left[X D_{s}^{B} Y\right]|v-s|^{2 H-2} d s
$$

We have thanks to the condition (ii) and the fact that $V \in \mathcal{S}^{b}$ again:

$$
|f(v, X, Y)-f(w, X, Y)| \leqslant C(X, Y) \int_{0}^{T}| | v-\left.s\right|^{2 H-2}-|w-s|^{2 H-2} \mid d s
$$

where $C(X, Y)$ is a constant depending only on X and Y. This inequality shows the continuity of the function $v \mapsto f(v, X, Y)$ thanks to a straightforward study of the involved integral.

Therefore, the limit

$$
\lim _{h \rightarrow 0} h^{-1} \mathrm{E}\left[\sigma_{t}\left(B_{t+h}-B_{t}\right) V\right]
$$

exists and equals

$$
H(2 H-1) \mathrm{E}\left[\sigma_{t} \int_{0}^{T} D_{s}^{B} V|t-s|^{2 H-2} d s+V \int_{0}^{T} D_{s}^{B} \sigma_{t}|t-s|^{2 H-2} d s\right]
$$

4. Stochastic derivatives of Nelson's type. Let Z be a stochastic process defined on $(\Omega, \mathcal{F}, \mathbb{P})$. We define the past of Z before time t :

$$
\mathcal{P}_{t}^{Z}:=\varsigma\left(Z_{s}, 0 \leq s \leq t\right)
$$

and the future of Z after time t :

$$
\mathcal{F}_{t}^{Z}:=\varsigma\left(Z_{s}, t \leq s \leq T\right)
$$

If \mathcal{P}_{t}^{Z} and \mathcal{F}_{t}^{Z} are respectively forward and backward differentiating σ fields for Z at t, we call $D_{+}^{\mathcal{P}_{t}^{Z}} Z_{t}$ and $D_{-}^{\mathcal{F}_{t}^{Z}} Z_{t}$ respectively the forward and backward stochastic derivatives of Nelson's type in reference of Nelson's work [10]. In the sequel, we denote them by $D_{+}^{\mathcal{P}} Z_{t}$ and $D_{-}^{\mathcal{F}} Z_{t}$ for simplicity.
4.1. The case of Wiener diffusions. We denote by Λ the space of diffusion processes X satisfying the following conditions:

1. X solves the stochastic differential equation :

$$
\begin{equation*}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}, \quad X_{0}=x_{0} \tag{18}
\end{equation*}
$$

where $x_{0} \in \mathbb{R}^{d}, b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\sigma:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ are Borel measurable functions satisfying the hypothesis : there exists a constant $K>0$ such that for every $x, y \in \mathbb{R}^{d}$ we have

$$
\begin{aligned}
& \sup _{t}(|\sigma(t, x)-\sigma(t, y)|+|b(t, x)-b(t, y)|) \leqslant K|x-y|, \\
& \sup _{t}(|\sigma(t, x)|+|b(t, x)|) \leqslant K(1+|x|) .
\end{aligned}
$$

2. For any $t \in(0, T), X_{t}$ has a density p_{t}.
3. Setting $a_{i j}=\left(\sigma \sigma^{*}\right)_{i j}$, for any $i, j \in\{1, \cdots, n\}$, for any $t_{0} \in(0, T)$, for any bounded open set $O \subset \mathbb{R}^{d}$,

$$
\int_{t_{0}}^{T} \int_{O}\left|\partial_{j}\left(a_{i j}(t, x) p_{t}(x)\right)\right| d x d t<+\infty
$$

4. The functions b and $(t, x) \mapsto \frac{1}{p_{t}(x)} \partial_{j}\left(a_{i j}(t, x) p_{t}(x)\right)$ are bounded, belong to $C^{1,2}\left([0, T] \times \mathbb{R}^{d}\right)$, and have all its first and second order derivatives bounded (we use the usual convention that the term involving $\frac{1}{p_{t}(x)}$ is 0 if $\left.p_{t}(x)=0\right)$.
These conditions are introduced in [9] and ensure the existence of a drift and a diffusion coefficient for the time reversed process $\bar{X}_{t}:=X_{T-t}$. Föllmer focuses in [7] Proposition 2.5 on the important relation between drifts and derivatives of Nelson's type. It allows him to compute the drift of the time reversal of a Brownian diffusion with a constant diffusion coefficient both in the Markov and non Markov case (see Theorem 3.10 and 4.7 in [7]).

For a Markov diffusion with a rather general diffusion coefficient, we have the following

Theorem 12. Let $X \in \Lambda$ given by (18). Then X is a Markov diffusion with respect to \mathcal{P}^{X} and \mathcal{F}^{X}. Moreover, \mathcal{P}^{X} and \mathcal{F}^{X} are differentiating and, in general, non degenerated:

$$
\begin{aligned}
D_{+}^{\mathcal{P}} X_{t} & =b\left(t, X_{t}\right) \\
\left(D_{-}^{\mathcal{F}} X_{t}\right)_{i} & =b_{i}\left(t, X_{t}\right)-\frac{1}{p_{t}\left(X_{t}\right)} \sum_{j} \partial_{j}\left(a_{i j}\left(t, X_{t}\right) p_{t}\left(X_{t}\right)\right),
\end{aligned}
$$

where the convention that the term involving $\frac{1}{p_{t}(x)}$ is 0 if $p_{t}(x)=0$.
We refer to [4] for a proof: it is based on the proof of Proposition 4.1 in [19] and Theorem 2.3 in [9].
4.2. The case of fractional Brownian motion and Volterra processes. Let K be an L^{2}-kernel, that is a function $K:[0, T] \times[0, T] \rightarrow \mathbb{R}$ verifying $\int_{[0, T]^{2}} K(t, s)^{2} d t d s<+\infty$. We denote by $\frac{\partial^{+} K}{\partial t}$ the right derivative of K with respect to t (with the convention that it equals to $+\infty$ if it does not exist).

We assume moreover that K is Volterra: that is it vanishes on $\{(t, s) \in$ $\left.[0, T]^{2}: s>t\right\}$, and is non degenerated: that is the family $\{K(t, \cdot), t \in[0, T]\}$ is free and span a vector space dense in $\mathrm{L}^{2}([0, T])$. For such a kernel K, we associate the so-called Volterra process

$$
\begin{equation*}
G_{t}=\int_{0}^{t} K(t, s) d W_{s}, \quad 0 \leq t \leq T \tag{19}
\end{equation*}
$$

where W denotes a standard Brownian motion. The assumptions made on K imply in particular that the natural filtrations associated to W and G are the same (see for instance [2], Remark 3).

Proposition 13. Let $t \in(0, T)$ and G be a Volterra process associated to a non degenerated Volterra kernel K satisfying the condition:

$$
\begin{equation*}
\frac{K(t+h, \cdot)-K(t, \cdot)}{h} \underset{h \downarrow 0}{\longrightarrow} \frac{\partial^{+} K}{\partial t} \text { in } \mathrm{L}^{2}([0, t]) \text {. } \tag{20}
\end{equation*}
$$

The forward Nelson derivative $D_{+}^{\mathcal{P}} G_{t}$ at exists if and only if $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s<$ $+\infty$. In this case, we have $D_{+}^{\mathcal{P}} G_{t}=\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s) d W_{s}$ and \mathcal{P}_{t}^{G} is non degenerated at t if and only if $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s>0$.

Proof. We adapt the proof of [5], Proposition 10. Using the representation (19), we deduce that

$$
\begin{aligned}
\mathrm{E}\left[\Delta_{h} G_{t} \mid \mathcal{P}_{t}^{G}\right] & =\mathrm{E}\left[\Delta_{h} G_{t} \mid \mathcal{P}_{t}^{W}\right] \\
& =\frac{1}{h} \int_{0}^{t}[K(t+h, s)-K(t, s)] d W_{s}=: Z_{h}
\end{aligned}
$$

Remark that $Z=\left(Z_{h}\right)_{h>0}$ is a centered Gaussian process. First assume that $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s=+\infty$. It is classical that, if Z_{h} converges in probability as $h \downarrow 0$, then $\operatorname{Var}\left(Z_{h}\right)$ converges as $h \downarrow 0$. But, from Fatou's lemma, we deduce

$$
\liminf _{h \downarrow 0} \operatorname{Var}\left(Z_{h}\right) \geq \int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s=+\infty .
$$

Thus, Z_{h} does not converge in probability as $h \downarrow 0$. Conversely, assume that $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s<+\infty$. In this case, the assumption (20) implies that
$Z_{h} \rightarrow \int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s) d W_{s}$ in probability, as $h \downarrow 0$. In other words, $D_{+}^{\mathcal{P}} G_{t}$ exists and equals $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s) d W_{s}$. We easily deduce that \mathcal{P}_{t}^{G} is non degenerated at t if and only if $\int_{0}^{t} \frac{\partial^{+} K}{\partial t}(t, s)^{2} d s>0$.

The result of Proposition 10 in [5] is then a particular case: if B denotes a fractional Brownian motion with Hurst index $H \in(0,1 / 2) \cup(1 / 2,1)$ and if $t \in(0, T)$, then $D_{+}^{\mathcal{P}} B_{t}$ does not exist. Indeed, we have $B_{t}=\int_{0}^{t} K_{H}(t, s) d W_{s}$ where K_{H} is the non-degenerated Volterra kernel given by (3) and verifying

$$
\frac{\partial K_{H}}{\partial t}(t, s)=c_{H}\left(\frac{t}{s}\right)^{H-1 / 2}(t-s)^{H-3 / 2} .
$$

Remark 14. For a stochastic process Z, let us define

$$
\begin{equation*}
\xi(Z)=\operatorname{Leb}\left\{t \in[0, T], D_{+}^{\mathcal{P}} Z_{t} \text { exists }\right\} . \tag{21}
\end{equation*}
$$

For instance, if B is a fractional Brownian motion with Hurst index $H \in$ $(0,1)$, then $\xi(B)=T$ if $H=1 / 2$ and $\xi(B)=0$ otherwise. A real $c \in[0, T]$ being fixed, it is in fact not difficult, by using Proposition 13, to construct a continuous process Z such that $\xi(Z)=c$. For instance, we can consider the Volterra process associated to the Volterra kernel
$K(t, s)=\left\{\begin{array}{cl}(t-s)^{H(t)} & \text { if } s \leq t \\ 0 & \text { otherwise }\end{array} \quad\right.$ with $H(t)=\left\{\begin{array}{cl}0 & \text { if } t \leq c \\ (t-c) \wedge 1 / 4 & \text { if } t>c\end{array}\right.$.
The study of backward derivatives seems to be more difficult. Among these difficulties, we mention the fact that it is not easy to obtain backward representation of fractional diffusions (see [5]). However, for a fractional Brownian motion, we are able to prove the following proposition:

Proposition 15. Set $H>1 / 2$. The limit

$$
\lim _{h \downarrow 0} \mathrm{E}\left[\left.\frac{B_{t}-B_{t-h}}{h} \right\rvert\, \mathcal{F}_{t}^{B}\right]
$$

exists neither as an element in $\mathrm{L}^{p}(\Omega)$ for any $p \in[1, \infty)$ nor as an almost sure limit.

Proof. We fix $t \in(0, T)$. We set

$$
G_{h}:=\mathrm{E}\left[\left.\frac{B_{t}-B_{t-h}}{h} \right\rvert\, \mathcal{F}_{t}^{B}\right] \quad \text { and } \quad Z_{h}:=\mathrm{E}\left[\left.\frac{B_{t}-B_{t-h}}{h} \right\rvert\, B_{t}, B_{t+h}\right] .
$$

Since $\left(G_{h}\right)_{h>0}$ is a family of Gaussian random variables, it only suffices to prove that $\operatorname{Var}\left(G_{h}\right)$ diverges when h goes to 0 .

We have : $Z_{h}=\mathrm{E}\left[G_{h} \mid B_{t}, B_{t+h}\right]$. So, by Jensen inequality, $Z_{h}^{2} \leqslant \mathrm{E}\left[G_{h}^{2} \mid B_{t}, B_{t+h}\right]$ and $\operatorname{Var}\left(Z_{h}\right) \leqslant \operatorname{Var}\left(G_{h}\right)$. Let us show that $\lim _{h \downarrow 0} \operatorname{Var}\left(Z_{h}\right)=+\infty$.

The covariance matrix of the Gaussian vector ($B_{t-h}-B_{t}, B_{t}, B_{t+h}$) reads

$$
\left(\begin{array}{cc}
a & v \\
v^{*} & M
\end{array}\right)
$$

where $a=\operatorname{Var}\left(B_{t-h}-B_{t}\right), v=(R(t-h, t)-R(t, t) ; R(t-h, t+h)-R(t, t+h))$ and

$$
M=\left(\begin{array}{cc}
R(t, t) & R(t, t+h) \\
R(t, t+h) & R(t+h, t+h)
\end{array}\right) .
$$

Since $d_{h}:=R(t, t) R(t+h, t+h)-R(t+h, t)^{2} \neq 0, M$ is invertible. Therefore $h Z_{h}=v M^{-1} Q^{*}$ where $Q=\left(B_{t}, B_{t+h}\right)$. Since $M=\mathrm{E}\left[Q^{*} Q\right]$, we deduce that

$$
\operatorname{Var}\left(h Z_{h}\right)=\mathrm{E}\left[v M^{-1} Q^{*}\left(v M^{-1} Q^{*}\right)^{*}\right]=v M^{-1} v^{*} .
$$

Hence

$$
\operatorname{Var}\left(h Z_{h}\right)=\frac{1}{d_{h}}\left(R(t+h, t+h) v_{1}^{2}-2 R(t+h, t) v_{1} v_{2}+R(t, t) v_{2}^{2}\right) .
$$

This expression is homogeneous in $t^{2 H}$, so we henceforth work with $t=1$. Tedious computations give $d_{h} \sim h^{2 H}$ as $h \downarrow 0$. Moreover we note that $v_{2}=v_{1}+\mathrm{ch}^{2 H}$ where c is a constant depending only on H. Thus

$$
d_{h} \operatorname{Var}\left(h Z_{h}\right)=v_{1} \mathrm{ch}^{2 H}\left(1-(1+h)^{2 H}+h^{2 H}\right)+h^{2 H} v_{1}^{2}+\mathrm{c}^{2} h^{4 h} .
$$

Since $2 H>1$ and the function $x \mapsto x^{2 H}$ is derivable, the quantities $\frac{v_{1}}{h}$ and $\frac{1-(1+h)^{2 H}+h^{2 H}}{h}$ converge as $h \downarrow 0$. But $2 H<2$ and $\frac{h^{4 H}}{h^{2} h^{2 H}}=h^{2 H-2} \rightarrow+\infty$ as $h \downarrow 0$. Thus

$$
\lim _{h \downarrow 0} \operatorname{Var}\left(Z_{h}\right)=+\infty,
$$

which concludes the proof.

4.3. The case of fractional diffusions.

Proposition 16. Let $X \in \Upsilon$ given by (12) and satisfying the following conditions: $\mathrm{E}\left(\int_{0}^{T}\left|b_{s}\right| d s\right)<+\infty$ and $\mathrm{E}\left(|\sigma|_{\alpha}^{p}\right)<+\infty$ for some $p>1$ and $\alpha>1-H$. If, for any $t \in(0, T), \sigma_{t} \neq 0$ a.s. then for almost all $t \in(0, T)$, \mathcal{P}_{t}^{X} is not a forward differentiating σ-field for X at t.
imsart-aop ver. 2006/10/13 file: dn06-v3.hyper3032.tex date: November 20, 2006

Proof. Remember we assumed that σ and b are adapted w.r.t. the natural filtration associated to B and X, see (12). In particular, we deduce from (12) that $\mathcal{P}_{t}^{X} \subset \mathcal{P}_{t}^{B}$. Since we can also write

$$
B_{t}=\int_{0}^{t} \frac{1}{\sigma_{s}} d X_{s}-\int_{0}^{t} \frac{b_{s}}{\sigma_{s}} d s
$$

we finally have $\mathcal{P}_{t}^{X}=\mathcal{P}_{t}^{B}$.
Thus, we deduce that $\mathrm{E}\left[\Delta_{h} B_{t} \mid \mathcal{P}_{t}^{X}\right]=\mathrm{E}\left[\Delta_{h} B_{t} \mid \mathcal{P}_{t}^{B}\right]$ does not converge in probability as $h \downarrow 0$, as a consequence of Proposition 10 in [5] or Proposition 13 of this paper.

Consider the expression (14). The hypothesis $E \int_{0}^{T}\left|b_{s}\right| d s<+\infty$ allows us to use the techniques of the proof of Proposition 2.5 in [7] to show that $\frac{1}{h} E\left[\int_{t}^{t+h} b_{s} d s \mid \mathcal{P}_{t}^{X}\right]$ converges in probability for almost all t. Using now the inequality (6) and the hypothesis $\mathrm{E}\left(|\sigma|_{\alpha}^{p}\right)<+\infty$, we can finally conclude that \mathcal{P}_{t}^{X} is not a forward differentiating σ-field for X at almost all time t.

4.4. The case of fractional differential equations with analytic volatility.

Proposition 17. Let $X \in \Xi$ given by (8) and $t \in(0, T)$. We assume moreover that σ is a real analytic function. Then \mathcal{P}_{t}^{X} is a forward differentiating σ-field for X at t if and only if $\sigma \equiv 0$. In this case, $\mathcal{P}^{X}=\left\{\mathcal{P}_{t}^{X}, t \in\right.$ $(0, T)\}$ is a discriminating collection of σ-fields and \mathcal{P}_{t}^{X} is degenerated at any $t \in(0, T)$.

Proof. It $\sigma \equiv 0$ then X is deterministic, and differentiable in t. Consequently, \mathcal{P}_{t}^{X} is a forward differentiating σ-field but is degenerated. Assume now that $\sigma \not \equiv 0$. According to the Bouleau-Hirsch optimal criterium for fractional differential equations (see [11], Theorem B), we have that the law of X_{t} is absolutely continuous w.r.t. the Lebesgue measure for any t (we have indeed int $\left.\sigma^{-1}(\{0\})=\emptyset\right)$. We deduce that $\mathrm{P}\left(\sigma\left(X_{t}\right)=0\right)=0$ for any t, since $\operatorname{Leb}\left(\sigma^{-1}(\{0\})\right)=0$ (σ has only isolated zeros). Proposition 16 allows to conclude that \mathcal{P}_{t}^{X} is not a forward differentiating σ-field.

Remark 18. The case where σ is not assumed analytical seems more difficult to reach. We conjecture however that, in this case, \mathcal{P}_{t}^{X} is a forward differentiating σ-field for X if and only if $t<t_{x}$ where t_{x} is the deterministic time defined by

$$
t_{x}=\inf \left\{t \geq 0: x_{t} \notin \operatorname{int} \sigma^{-1}(\{0\})\right\}
$$

with $\left(x_{t}\right)_{t \in[0, T]}$ the solution to $x_{t}=x_{0}+\int_{0}^{t} b\left(x_{s}\right) d s$. If this conjecture is true, we would have that $\xi(X)=t_{x}$, see (21).

5. Stochastic derivatives with respect to the present.

5.1. Definition. A consequence of Proposition 13 is that the σ-field \mathcal{P}_{t}^{X} generated by $X_{s}, 0 \leq s \leq t$ (the past of X) is not an adequate objet as regards our differentiation when we work with the fractional Brownian motion. Moreover, we can stress on the following important fact: the Markov property of a Wiener diffusion $X \in \Lambda_{d}$ implies that to take expectations w.r.t. \mathcal{P}_{t}^{X} produces the same effect as to take expectations only w.r.t. X_{t}. The following definition is then natural.

DEFINITION 19. Let $Z=\left(Z_{t}\right)_{t \in[0, T]}$ be a stochastic process defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and, for any $t \in(0, T), \mathcal{T}_{t}^{Z}$ be the σ-field generated by Z_{t}. We say that Z admits a forward (resp. backward) stochastic derivative w.r.t. the present $t \in(0, T)$ if \mathcal{T}_{t}^{Z} is a forward (resp. backward) differentiating σ-field for Z at t. In this case, we set $D_{+}^{\mathcal{T}} Z_{t}:=D_{+}^{\mathcal{T}_{t}^{Z}} Z_{t}$ (resp. $\left.D_{-}^{\mathcal{T}} Z_{t}:=D_{-}^{\mathcal{T}_{t}^{Z}} Z_{t}\right)$.

Example 20. Let B be a fractional Brownian motion with Hurst index $H \in(0,1)$ and $t \in(0, T)$. Then

$$
\begin{gathered}
D_{+}^{\mathcal{T}} B_{t}=\left\{\begin{array}{cl}
H t^{-1} B_{t} & \text { if } H>1 / 2 \\
0 & \text { if } H=1 / 2 \\
\text { does not exist } & \text { if } H<1 / 2
\end{array}\right. \text { and } \\
D_{-}^{\mathcal{T}} Z_{t}=\left\{\begin{array}{cl}
H t^{-1} B_{t} & \text { if } H>1 / 2 \\
t^{-1} B_{t} & \text { if } H=1 / 2 \\
\text { does not exist } & \text { if } H<1 / 2
\end{array}\right.
\end{gathered}
$$

(see also Example 7). In particular, we would say that the fractional Brownian motion with Hurst index $H>1 / 2$ is more regular than the Brownian motion $(H=1 / 2)$, because of the equality between the forward and backward derivatives in the case $H>1 / 2$ contrary to the case $H=1 / 2$. We can identify the cause of these different regularities: the covariance function R_{H} is differentiable along the diagonal (t, t) in the case $H>1 / 2$ while it is not when $H=1 / 2$.
5.2. Case of fractional differential equations. We denote by Ξ the set of fractional differential equations, that is the subset of Υ whose elements are processes $X=\left(X_{t}\right)_{t \in[0, T]}$ solution of (8) with $\sigma \in \mathcal{C}_{b}^{2}$ and $b \in \mathcal{C}_{b}^{1}$.

In the sequel, we compute $D_{ \pm}^{\mathcal{T}} X_{t}$ for $X \in \Xi$ and $t \in(0, T)$. Let us begin by a simple case.

Proposition 21. Let $X \in \Xi$ given by (8) and $t \in(0, T)$. Assume moreover that σ and b are proportional. Then X admits a forward and a backward stochastic derivative w.r.t. the present t, given by

$$
\begin{equation*}
D_{+}^{\mathcal{T}} X_{t}=D_{-}^{\mathcal{T}} X_{t}=H t^{-1} \sigma\left(X_{t}\right) B_{t}+b\left(X_{t}\right) \tag{22}
\end{equation*}
$$

In particular, the present \mathcal{T}_{t}^{X} is non degenerated at t if and only if $\sigma\left(x_{0}\right) \neq 0$ and the collection of σ-fields $\mathcal{T}^{X}=\left\{\mathcal{T}_{t}^{X}, t \in(0, T)\right\}$ is discriminating for X.

Proof. We make only the proof for $D_{+}^{\mathcal{T}} X_{t}$, the computation for $D_{-}^{\mathcal{T}} X_{t}$ being similar. Assume that $b(x)=r \sigma(x)$ with $r \in \mathbb{R}$. Then $X_{t}=f\left(B_{t}+r t\right)$ with $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(0)=x_{0}$ and $f^{\prime}=\sigma(f)$. If $\sigma\left(x_{0}\right)=0$ then $X_{t} \equiv x_{0}$ and $D_{+}^{\mathcal{T}} X_{t}=0=\sigma\left(X_{t}\right) H t^{-1} B_{t}+b\left(X_{t}\right)$. If $\sigma\left(x_{0}\right) \neq 0$ then it is classical that f is strictly monotonous. We can then write $B_{t}=f^{-1}\left(X_{t}\right)-$ $r t$. In particular, the random variables which are measurable with respect to X_{t}, are measurable with respect to B_{t}, and vice-versa. On the other hand, by using a linear Gaussian regression, it is easy to show that $D_{+}^{\mathcal{T}} B_{t}=$ $H t^{-1} B_{t}$ (see also Example 7). Finally, the convergences (15) and (16) and the equality (14) allow to conclude that we have (22).

Now, let us prove that the present is non degenerated for X at t if and only if $\sigma\left(x_{0}\right) \neq 0$. When $\sigma\left(x_{0}\right)=0$, it is clear that the present is degenerated at t (see the first part of this proof). On the other hand, if the present is degenerated at t, then there exists $c \in \mathbb{R}$ such that

$$
H t^{-1} \sigma \circ f\left(B_{t}+r t\right) B_{t}+r \sigma \circ f\left(B_{t}+r t\right)=c
$$

By rearranging, we obtain that $\sigma \circ f(X)(X+\alpha)=\beta$ for some $\alpha, \beta \in \mathbb{R}$ and with $X=B_{t}+r t$. By using the fact that X has a strictly positive density on \mathbb{R}, we deduce that $\sigma \circ f(x)(x+\alpha)=\beta$ for any $x \in \mathbb{R}$. Necessarily, $\beta=0$ (with $x=-\alpha$) and then $f^{\prime}=\sigma \circ f=0$. We deduce that f is constant and then that $f \equiv x_{0}$, that is $\sigma\left(x_{0}\right)=0$.

Finally, if $H t^{-1} \sigma\left(X_{t}\right) B_{t}+b\left(X_{t}\right)=\sigma\left(X_{t}\right)\left(H t^{-1} B_{t}+r\right)=0$ a.s. for any t, then $\sigma\left(X_{t}\right)=0=b\left(X_{t}\right)$ a.s. for any t and $X_{t} \equiv x_{0}$ a.s. for any t, see (8). In other words, the collection of σ-fields $\mathcal{T}^{X}=\left\{\mathcal{T}_{t}^{X}, t \in(0, T)\right\}$ is discriminating.

Let us now describe a more general case.
Theorem 22. Let $X \in \Xi$ given by (8) and $t \in(0, T)$. Assume moreover that $b \in \mathcal{C}_{b}^{2}$ and that $\sigma \in \mathcal{C}_{b}^{2}$ is elliptic, that is verifies $\inf _{x \in \mathbb{R}}|\sigma(x)|>0$.

Then X admits a forward and a backward stochastic derivative w.r.t. the present t, given by

$$
\begin{align*}
D_{+}^{\mathcal{T}} X_{t}= & D_{-}^{\mathcal{T}} X_{t} \\
= & b\left(X_{t}\right)+H \frac{\sigma\left(X_{t}\right)}{t}\left\{\int_{0}^{X_{t}} \frac{d y}{\sigma(y)}\right. \\
& \left.-\mathrm{E}\left[\left.\int_{0}^{t} \frac{b}{\sigma}\left(X_{s}\right) d s+\int_{0}^{t} \int_{0}^{t} \beta_{r}^{H}(s) \delta B_{r} d s-t \int_{0}^{t} \beta_{r}^{H}(t) \delta B_{r} \right\rvert\, X_{t}\right]\right\} \tag{23}
\end{align*}
$$

$$
\beta_{r}^{H}(t)=\left(\mathcal{O}_{H} \int_{0}^{r} \frac{b^{\prime} \sigma-b \sigma^{\prime}}{\sigma}\left(X_{s}\right) \mathbf{1}_{s \geq} d s\right)(t)
$$

Recall that \mathcal{O}_{H} is defined by (4).
Proof. Remark first that $\beta_{r}^{H}(t)$ belongs to the domain of the divergence operator δ^{B}, due to the additional hypothesis on b and σ. We only make the proof for $D_{+}^{\mathcal{T}} X_{t}$, the computation for $D_{-}^{\mathcal{T}} X_{t}$ being similar.
First step. Assume that $\sigma \equiv 1$. Using the transfer principle and the isometry \mathcal{K}_{H}, it holds that

$$
X_{t}=\int_{0}^{t} K_{H}(t, s) d Y_{s}
$$

where

$$
Y_{t}=W_{t}+\int_{0}^{t} a_{r} d r
$$

Here, we set

$$
a_{r}=\left(\mathcal{K}_{H}^{-1} \int_{0}^{r} b\left(X_{s}\right) d s\right)(r)
$$

We know (see [14], Theorem 2) that the process $X=\left(X_{t}\right)_{t \in[0, T]}$ is a fractional Brownian motion under the new probability measure $\mathbb{Q}=G \cdot \mathbb{P}$ where

$$
G=\exp \left(-\int_{0}^{T} a_{s} d W_{s}-\frac{1}{2} \int_{0}^{T} a_{s}^{2} d s\right) .
$$

Using the integration by part of Malliavin calculus, we can write, for g : $\mathbb{R} \rightarrow \mathbb{R} \in \mathrm{C}_{b}^{1}:$

$$
\left.\begin{array}{rl}
\mathrm{E}\left[\left(X_{t+h}-X_{t}\right) g\left(X_{t}\right)\right]= & \mathrm{E}_{\mathbb{Q}}[
\end{array} G^{-1} g\left(X_{t}\right) \delta^{X}\left(\mathbf{1}_{[t, t+h]}\right)\right] .
$$

imsart-aop ver. 2006/10/13 file: dn06-v3.hyper3032.tex date: November 20, 2006

But $\mathcal{K}_{H}^{*} D^{X} G^{-1}=D^{Y} G^{-1}$ (transfer principle). Since

$$
G^{-1}=\exp \left(\int_{0}^{T} a_{s} d Y_{s}-\frac{1}{2} \int_{0}^{T} a_{s}^{2} d s\right)
$$

we have

$$
\begin{aligned}
G \times D_{t}^{Y}\left(G^{-1}\right) & =a_{t}+\int_{0}^{T} D_{t}^{Y} a_{s} d Y_{s}-\int_{0}^{T} a_{s} D_{t}^{Y} a_{s} d s \\
& =a_{t}+\int_{0}^{T} D_{t}^{Y} a_{s} d W_{s} .
\end{aligned}
$$

Moreover

$$
\int_{0}^{T} D_{s}^{Y} a_{r} d W_{r}=\int_{0}^{T}\left(\mathcal{K}_{H}^{*} D_{s}^{X} a\right)(r) d W_{r}=\int_{0}^{T} D_{s}^{X} a_{r} \delta B_{r}:=\Phi(s),
$$

and

$$
\left(\mathcal{K}_{H}^{*} \mathbf{1}_{[0, t]}\right)(s)=K_{H}(t, s) \mathbf{1}_{[0, t]}(s) .
$$

Therefore

$$
\begin{aligned}
\left\langle\mathcal{K}_{H}^{*} \mathbf{1}_{[t, t+h]}, G \mathcal{K}_{H}^{*} D^{X} G^{-1}\right\rangle_{\mathrm{L}^{2}}= & \left(\mathcal{K}_{H} a\right)(t+h)-\left(\mathcal{K}_{H} a\right)(t) \\
& +\left(\mathcal{K}_{H} \Phi\right)(t+h)-\left(\mathcal{K}_{H} \Phi\right)(t) \\
= & \int_{t}^{t+h} b\left(X_{u}\right) d u+\left(\mathcal{K}_{H} \Phi\right)(t+h)-\left(\mathcal{K}_{H} \Phi\right)(t) .
\end{aligned}
$$

By the stochastic Fubini theorem, we have $\left(\mathcal{O}_{H} \Phi\right)(t)=\int_{0}^{T}\left(\mathcal{O}_{H} D_{-}^{X} a_{r}\right)(t) \delta B_{r}$. We set

$$
\beta_{r}^{H}(t)=\left(\mathcal{O}_{H} D_{.}^{X} a_{r}\right)(t)=\left(\mathcal{O}_{H} \int_{0}^{r} b^{\prime}\left(X_{s}\right) \mathbf{1}_{s \geq} d s\right)(t) .
$$

We then deduce

$$
\begin{align*}
\mathrm{E}\left[\left(X_{t+h}-X_{t}\right) g\left(X_{t}\right)\right] & =\mathrm{E}\left[g^{\prime}\left(X_{t}\right)\right]\left\langle\mathbf{1}_{[t, t+h]}, \mathbf{1}_{[0, t]}\right\rangle_{\mathcal{H}} \\
& +\mathrm{E}\left[g\left(X_{t}\right)\left(\int_{t}^{t+h} b\left(X_{s}\right) d s+\int_{t}^{t+h} \int_{0}^{T} \beta_{r}^{H}(s) \delta B_{r} d s\right)\right] . \tag{24}
\end{align*}
$$

By developing $\mathrm{E}\left[X_{t} g\left(X_{t}\right)\right]$ as in (24), we obtain

$$
t^{2 H} \mathrm{E}\left[g^{\prime}\left(X_{t}\right)\right]=\mathrm{E}\left[g\left(X_{t}\right)\left(X_{t}-\int_{0}^{t} b\left(X_{s}\right) d s-\int_{0}^{t} \int_{0}^{T} \beta_{r}^{H}(s) \delta B_{r} d s\right)\right]
$$

Then:

$$
\begin{aligned}
& \mathrm{E}\left[\Delta_{h} X_{t} \mid X_{t}\right] \\
& =h^{-1}\left\langle\mathbf{1}_{[t, t+h]}, \mathbf{1}_{[0, t]}\right\rangle_{\mathcal{H}}\left(X_{t}-\mathrm{E}\left[\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \int_{0}^{T} \beta_{r}^{H}(s) \delta B_{r} d s \mid X_{t}\right]\right) \\
& \quad+h^{-1} \mathrm{E}\left[\int_{t}^{t+h} b\left(X_{s}\right) d s+\int_{t}^{t+h} \int_{0}^{T} \beta_{r}^{H}(s) \delta B_{r} d s \mid X_{t}\right] .
\end{aligned}
$$

We deduce that $\mathrm{E}\left[\Delta_{h} X_{t} \mid X_{t}\right]$ converges in probability, as $h \downarrow 0$, to

$$
\begin{aligned}
b\left(X_{t}\right)+\frac{H}{t} X_{t}-\frac{H}{t} \mathrm{E}\left[\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t}\right. & \int_{0}^{T} \beta_{r}^{H}(s) \delta B_{r} d s \\
& \left.-\int_{0}^{T} \beta_{r}^{H}(t) \delta B_{r} \mid X_{t}\right]
\end{aligned}
$$

Since $\lim _{h \downarrow 0} \mathrm{E}\left[\Delta_{h} X_{t} \mid X_{t}\right]$ does not depend on T, we finally obtain (23) in the particular case where $\sigma \equiv 1$, by letting $T \downarrow t$.
Second step. Assume that σ does not vanish. Set $Y_{t}=h\left(X_{t}\right)$ where $h(x)=$ $\int_{0}^{x} \frac{d y}{\sigma(y)}$. Using the change of variable formula, we obtain that Y verifies

$$
Y_{t}=y_{0}+B_{t}+\int_{0}^{t} \frac{b}{\sigma} \circ h^{-1}\left(Y_{s}\right) d s, \quad t \in[0, T] .
$$

Since, on the one hand, the σ-fields generated by X_{t} and Y_{t} are the same and, on the other hand, X has α-Hölder continuous paths with $\alpha>1 / 2$, we have

$$
D_{+}^{\mathcal{T}} X_{t}=\sigma\left(X_{t}\right) D_{+}^{\mathcal{T}} Y_{t} .
$$

The expression (23) is then a consequence of the first step of the proof.

Remark 23. When σ does not vanish and $b \equiv r \sigma$ with $r \in \mathbb{R}$, we can apply either Proposition 21 or Theorem 22 to compute $D_{ \pm}^{\mathcal{T}} X_{t}$. Of course, the conclusions are the same. Indeed, since we have, in this case, $b^{\prime} \sigma-b \sigma^{\prime} \equiv 0$ and $\int_{0}^{X_{t}} \frac{d y}{\sigma(y)}=B_{t}+r t\left(\right.$ since $X_{t}=f\left(B_{t}+r t\right)$ with f verifying $\left.f^{\prime}=\sigma \circ f\right)$, formula (23) can be simplified in (22).

Compared to the case where σ and b are proportional, it is here more difficult to decide if the present (that is the collection of σ-fields generated by X_{t}) is discriminating or not.

In the framework of the stochastic embedding of dynamical systems introduced in [3], the set of processes, called set of Nelson differentiable processes, which satisfy the equality between a stochastic forward and stochastic backward derivatives plays a fundamental role (see [4], Chapters 3 and 7). We stress on the fact that solutions of stochastic differentiable equations driven by a fractional Brownian motion with $H>1 / 2$ provide examples of non absolutely continuous Nelson differentiable processes.

Acknowledgment: This work was achieved while the first author benefited from the hospitality of the University Paris 6. This institution is here gratefully acknowledged. We also want to thank the anonymous referee for a careful and thorough reading of this work and his constructive remarks.

REFERENCES

[1] E. Alòs and D. Nualart (2003). Stochastic Integration with respect to the fractional Brownian motion. Stochastics and Stochastics Reports 75, 129-152.
[2] F. Baudoin and D. Nualart (2003). Equivalence of Volterra processes. Stochastic Proc. Appl. 107, 327-350.
[3] J. Cresson and S. Darses (2006): Plongement stochastique des systèmes lagrangiens. C.R. Acad. Sci. Paris Ser. I 342 (5), 333-336.
[4] J. Cresson and S. Darses (2006): Stochastic embedding of dynamical systems. Preprint I.H.É.S. 06/27.
[5] S. Darses and B. Saussereau (2006). Time reversal for drifted fractional Brownian motion with Hurst index $H>1 / 2$. Preprint Besancon.
[6] H. Doss (1977). Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Probab. Statist 13, 99-125.
[7] H. Föllmer (1984). Time reversal on Wiener space. Stochastic processes - mathematics and physics (Bielefeld). Lecture Notes in Math. 1158, 119-129.
[8] J. Guerra and D. Nualart (2005). The $1 / H$-variation of the divergence integral with respect to the fractional Brownian motion for $H>1 / 2$ and fractional Bessel processes. Stochastic Proc. Appl. 115, 91-115.
[9] A. Millet, D. Nualart and M. Sanz (1989): Integration by parts and time reversal for diffusion processes. Annals of Probab. 17, No. 1, 208-238.
[10] E. Nelson (2001). Dynamical theory of Brownian motion. Princeton University Press. Second edition. Available online at http://www.math.princeton.edu/~nelson/books/bmotion.pdf.
[11] I. Nourdin and T. Simon (2006). On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statistics and Probability Letters 76 (9), 907912.
[12] D. Nualart (1996). The Malliavin Calculus and Related Topics. Springer Verlag.
[13] D. Nualart (2003). Stochastic calculus with respect to the fractional Brownian motion and applications. Contemporary Mathematics 336, 3-39.
[14] D. Nualart and Y. Ouknine (2002). Regularization of differential equations by fractional noise. Stochastic Proc. Appl. 102, 103-116.
[15] V. Pipiras and M. Taqqu (2001). Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7 (6), 873-897.
[16] F. Russo and P. Vallois (2005). Elements of stochastic calculus via regularisation. To appear in Séminaires de Probabilités. Available online at http://arxiv.org/pdf/math.PR/0603224.
[17] S.G. Samko, A.A. Kilbas and O.I. Marichev (1993). Fractional integrals and derivatives, Theory and applications. Gordon and Breach Science Publishers, Yvendon.
[18] H. J. Sussmann (1977). An interpretation of stochastic differential equations as ordinary differential equations which depend on a sample point. Bull. Amer. Math. Soc. 83, 296-298.
[19] Thieullen M. (1993). Second order stochastic differential equations and non-Gaussian reciprocal diffusions. Probab. Theory and Rel. Fields 97, 231-257.
[20] Young, L.C. (1936): An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251-282.
[21] Zähle, M. (1998): Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111, 333-374.

Sébastien Darses	Ivan Nourdin
Laboratoire de Mathématiques	LPMA, Université Paris 6,
Université de Franche-Comté	Boîte courrier 188, 75252 Paris Cedex 05
16 route de Gray, 25030 Besancon Cedex	France
France	E-mail: nourdin@ccr.jussieu.fr
E-Mail: sedarses@ccr.jussieu.fr	

[^0]: AMS 2000 subject classifications: Primary 60G07, 60G15; secondary 60G17, 60H07
 Keywords and phrases: stochastic derivatives, Nelson's derivative, fractional Brownian motion, fractional differential equation, Malliavin Calculus.

