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Abstract

In this paper, we introduce some fundamental notions related to the so-called stochastic
derivatives with respect to a given σ-field Q. In our framework, we recall well-known
results about Markov Wiener diffusions. We afterwards mainly focus on the case where
X is a fractional diffusion and where Q is the past, the future or the present of X . We
treat some crucial examples and our main result is the existence of stochastic derivatives
with respect to the present of X when X solves a stochastic differential equation driven
by a fractional Brownian motion with Hurst index H > 1/2. We give explicit formulas.

Key words: stochastic derivatives, Nelson’s derivative, fractional Brownian motion, frac-
tional differential equation, Malliavin calculus.
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1 Introduction

There exist various ways to generalize the notion of differentiation on determinis-
tic functions. We may think about fractional derivative or differentiation in the sense of
the theory of distributions. In both cases, we lose a dynamical or a geometric interpreta-
tion as tangent vectors, velocities for instance. In this present work, we want to construct
derivatives on stochastic processes which conserve a dynamical meaning. Our goal may
be motivated by the stochastic embedding of dynamical systems introduced in [3]. This
procedure aims at comprehending the following question: how to write an equation which
contains the dynamical meaning of an initial ordinary differential equation and which ex-
tends this dynamical meaning on stochastic processes? We refer to [4] for more details.
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Unfortunately, for most of the stochastic processes used in physical models, the limit

Zt+h − Zt

h

does not exist pathwise. What can we do to give a meaning to this limit? One of the main
available tool is the ”quantity of information” we can use to calculate it, namely a given
σ-field Q. The idea is that one can remove the divergences which appear by doing some
means in the computation. This fact can be achieved by studying the behavior when h goes
to zero of the conditional expectation:

E

[

Zt+h − Zt

h
|Q

]

.

Such objects were introduced by Nelson in his dynamical theory of Brownian diffusion [10].
For a fixed time t, he calculates a forward (resp. backward) derivative with respect to a
given σ-field Pt which can be seen as the past of the process up to time t (resp. Ft, the
future of the process after time t). The main class with which he can work turns out to be
that of Wiener diffusions.

The purpose of this paper is, on one hand, to introduce notions to study the above
mentioned quantities for general processes and, on the other hand, to treat some examples.
We mainly study these notions on solutions of stochastic differential equations driven by
a fractional Brownian motion with Hurst index H ≥ 1

2 . In particular, we recall results on
Wiener diffusions (case H = 1

2) in our framework. We prove that for a suitable σ-algebra,
the stochastic derivatives of a solution of the fractional stochastic differential equation exist
and we are able to give explicit formulas.

Our paper is organized as follows. In section 2, we recall some now classical facts
on stochastic analysis for fractional Brownian motion. In section 3, we introduce the fun-
damental notions related to the so-called stochastic derivatives. In section 4, we study
stochastic derivatives of Nelson’s type for fractional diffusions. We show in section 5 that
stochastic derivatives with respect to the present turn out to be adequate tools for fractional
Brownian motion with H > 1

2 . We treat also the more difficult case of a fractional diffusion.

2 Basic notions for fractional Brownian motion

We briefly recall some basic facts about stochastic calculus with respect to a frac-
tional Brownian motion. One refers to [13] for further details. Let B = (Bt)t∈[0,T ] be a
fractional Brownian motion with Hurst parameter H ∈ (0, 1) defined on a probability space
(Ω,F ,P). We mean that B is a centered Gaussian process with the covariance function
E(BsBt) = RH(s, t), where

RH(s, t) =
1

2

(

t2H + s2H − |t− s|2H
)

. (1)

If H = 1/2, then B is a Brownian motion. From (1), one can easily see that E|Bt −Bs|
2 =

|t− s|2H , so B has α−Hölder continuous paths for any α ∈ (0,H).
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2.1 Space of deterministic integrands

We denote by E the set of step R−valued functions on [0,T ]. Let H be the Hilbert
space defined as the closure of E with respect to the scalar product

〈

1[0,t],1[0,s]

〉

H
= RH(t, s).

We denote by | · |H the associate norm. The mapping 1[0,t] 7→ Bt can be extended to an
isometry between H and the Gaussian space H1(B) associated with B. We denote this
isometry by ϕ 7→ B(ϕ).

When H ∈ (1
2 , 1), it follows from [15] that the elements of H may be not functions

but distributions of negative order. It will be more convenient to work with a subspace of
H, which contains only functions. Such a space is the set |H| of all measurable functions f
on [0, T ] such that

|f |2|H| := H(2H − 1)

∫ T

0

∫ T

0
|f(u)||f(v)||u − v|2H−2dudv <∞.

We know that (|H|, | · ||H|) is a Banach space but that (|H|, 〈·, ·〉H) is not complete (see e.g.
[15]).

Moreover, we have the inclusions

L2([0, T ]) ⊂ L
1

H ([0, T ]) ⊂ |H| ⊂ H. (2)

2.2 Fractional operators

The covariance kernel RH(t, s) introduced in (1) can be written as

RH(t, s) =

∫ s∧t

0
KH(s, u)KH(t, u)du,

where KH(t, s) is the square integrable kernel defined by

KH(t, s) = cH s
1

2
−H

∫ t

s
(u− s)H− 3

2uH− 1

2 du, 0 < s < t (3)

where cH
2 = H(2H − 1)β(2 − 2H,H − 1/2)−1 and β denotes the Beta function. By con-

vention, we set KH(t, s) = 0 if s ≥ t.
Let K∗

H : E → L2([0, T ]) be the linear operator defined by:

K∗
H

(

1[0,t]

)

= KH(t, ·).

The following equality holds for any φ,ψ ∈ E

〈φ,ψ〉H = 〈K∗
Hφ,K

∗
Hψ〉L2([0,T ]) = E(B(φ)B(ψ))
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and then K∗
H provides an isometry between the Hilbert spaces H and a closed subspace of

L2([0, T ]).
The process W = (Wt)t∈[0,T ] defined by

Wt = B
(

(K∗
H)−1(1[0,t])

)

is a Wiener process, and the process B has an integral representation of the form

Bt =

∫ t

0
KH(t, s)dWs.

Hence, for any φ ∈ H;
B(φ) = W (K∗

Hφ) .

Let a, b ∈ R, a < b. For any p ≥ 1, we denote by Lp = Lp([a, b]) the usual Lebesgue space
of functions on [a, b].

Let f ∈ L1 and a > 0. The left-sided and right-sided fractional Riemann-Liouville
integrals of f of order α are defined for almost all x ∈ (a, b) by

Iα
a+f(x) =

1

Γ(α)

∫ x

a
(x− y)α−1f(y)dy,

and

Iα
b−f(x) =

(−1)−α

Γ(α)

∫ b

x
(y − x)α−1f(y)dy,

respectively, where Γ denotes the usual Euler function. These integrals extend the classical
integral of f when α = 1.

If f ∈ Iα
a+(Lp) (resp. f ∈ Iα

b−(Lp)) and α ∈ (0, 1), then for almost all x ∈ (a, b), the
left-sided and right-sided Riemann-Liouville derivative of f of order α are defined by

Dα
a+f(x) =

1

Γ(1 − α)

(

f(x)

(x− a)α
+ α

∫ x

a

f(x) − f(y)

(x− y)α+1
dy

)

and

Dα
b−f(x) =

1

Γ(1 − α)

(

f(x)

(b− x)α
+ α

∫ b

x

f(x) − f(y)

(y − x)α+1
dy

)

respectively, where a ≤ x ≤ b.
We define the operator KH on L2([0, T ]) by

(KHh)(t) =

∫ t

0
KH(t, s)h(s)ds.

It is an isomorphism from L2([0, T ]) onto I
H+ 1

2

0+

(

L2([0, T ])
)

and it can be expressed as follows
when H > 1

2 :

KHh = I1
0+s

H− 1

2 I
H− 1

2

0+ s
1

2
−Hh
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where h ∈ L2([0, T ]). The crucial point is that the functions of the space I
H+ 1

2

0+

(

L2([0, T ])
)

are absolutely continuous when H > 1
2 . For these functions φ, the inverse operator K−1

H is
given by

K−1
H φ = sH− 1

2D
H− 1

2

0+ s
1

2
−Hφ′.

When H > 1
2 , we introduce the operator OH on L2([0, T ]) defined by

(OHϕ)(s) :=

(

d

dt
KH

)

(ϕ)(s) = sH− 1

2 I
H− 1

2

0+ s
1

2
−Hϕ(s). (4)

Let f : [a, b] → R be α-Hölder continuous and g : [a, b] → R be β-Hölder continuous
with α+ β > 1. Then, for any s, t ∈ [a, b], the Young integral [21]

∫ t
s fdg exists and we can

express it in terms of fractional derivatives (see [22]): for any γ ∈ (1 − β, α), we have

∫ t

s
fdg = (−1)γ

∫ t

s
Dγ

s+f(x)D1−γ
t− gt−(x)dx, (5)

where gt−(x) = g(x) − g(t). In particular, we deduce that:

∀s < t ∈ [a, b],

∣

∣

∣

∣

∫ t

s
(f(r) − f(s))dg(r)

∣

∣

∣

∣

≤ κ|f |α|g|β |t− s|α+β, (6)

where κ is a constant depending only on a, b, α and β, and if h : [a, b] → R and µ ∈ (0, 1],

|h|µ = sup
a≤s<t≤b

|h(t) − h(s)|

|t− s|µ
.

2.3 Malliavin calculus

Let S be the set of all smooth cylindrical random variables, i.e. which writes
F = f(B(φ1), . . . , B(φn)) where n ≥ 1, f : R

n → R is a smooth function with compact
support and φi ∈ H. The Malliavin derivative of F w.r.t. B is the element of L2(Ω;H)
defined by

DB
s F =

n
∑

i=1

∂f

∂xi
(B(φ1), . . . , B(φn))φi(s), s ∈ [0, T ].

In particular DB
s Bt = 1[0,t](s). As usual, D

1,2 denotes the closure of the set of smooth
random variables with respect to the norm

‖F‖2
1,2 = E

[

F 2
]

+ E
[

|DB
· F |

2
H

]

.

The Malliavin derivative DB verifies the chain rule: if ϕ : R
n → R is C1

b and if (Fi)i=1,...,n

is a sequence of elements of D
1,2 then ϕ(F1, . . . , Fn) ∈ D

1,2 and we have, for any s ∈ [0, T ]:

DB
s ϕ(F1, . . . , Fn) =

n
∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DB

s Fi.
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The divergence operator δB is the adjoint of the derivative operator DB . If a random
variable u ∈ L2(Ω,H) belongs to the domain of the divergence operator, that is if it verifies

|E〈DBF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S,

then δB(u) is defined by the duality relationship

E(FδB(u)) = E〈DBF, u〉H,

for every F ∈ D
1,2.

2.4 Pathwise integration with respect to B

If X = (Xt)t∈[0,T ] and Z = (Zt)t∈[0,T ] are two continuous processes, we define the
forward integral of Z w.r.t. X, in the sense of Russo-Vallois, by

∫ •

0
ZsdXs = lim

ε→0
ucp ε−1

∫ •

0
Zs(Xs+ε −Xs)ds, t ∈ [0, T ], (7)

provided the limit exists. Here ”ucp” means ”uniform convergence in probability”. If X
(resp. Z) has a.s. Hölder continuous paths of order α (resp. β) with α + β > 1 then
∫ •
0 ZsdXs exists and coincides with the usual Young integral (see [16], Proposition 2.12).

2.5 Stochastic differential equation driven by B

Here we assume that H > 1/2. We denote by Ck
b the set of all functions whose

derivatives from order 1 to order k are bounded. If σ ∈ C2
b and if b ∈ C1

b , then the equation

Xt = x0 +

∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs) ds, t ∈ [0, T ] (8)

admits a unique solution X in the set of processes whose paths are Hölder continuous of
order α > 1 − H. Here, the integral w.r.t. B is in the sense of Russo-Vallois, see (7).
Moreover, we have a Doss-Sussmann [6, 18] type representation:

Xt = φ(At, Bt), t ∈ [0, T ],

where φ and A are given respectively by

∂φ

∂x2
(x1, x2) = σ(φ(x1, x2)), φ(x1, 0) = x1, x1, x2 ∈ R

and

A′
t = exp

(

−

∫ Bt

0
σ′(φ(At, s))ds

)

b(φ(At, Bt)), A0 = x0, t ∈ [0, T ].

Using this representation, we can show that X belongs to D
1,2 and that

DB
s Xt = σ(Xs)exp

(
∫ t

s
b′(Xu)du+

∫ t

s
σ′(Xu)dBu

)

1[0,t](s), s, t ∈ [0, T ].

(see [11], proof of Theorem B).
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3 Notions related to stochastic derivatives

Let (Zt)t∈[0,T ] be a stochastic process defined on (Ω,F ,P). In the sequel, we always
assume that for any t ∈ [0, T ], Zt ∈ L2(Ω,F ,P). For all t ∈ (0, T ) and h 6= 0 such that
t+ h ∈ (0, T ), we set:

∆hZt =
Zt+h − Zt

h
.

3.1 Stochastic derivatives in a strong sense

Definition 1 Set t ∈ (0, T ). We say that At (resp. Bt) is a good forward σ-field (resp.
good backward σ-field) for Z at t if E[∆hZt|A

t] (resp. E[∆−hZt|B
t]) converges in probability

when h ↓ 0+. In these cases, we define the so-called forward and backward derivatives

DAt

+ Zt = lim
h↓0+

E[∆hZt |A
t], (9)

DBt

− Zt = lim
h↓0+

E[∆−hZt |B
t]. (10)

The set of all good forward σ-fields (resp. good backward σ-fields) for Z at time

t is denoted by M
+(t)
Z (resp. M

−(t)
Z ). The more M±(t) is high, the more Z is regular at

time t. For instance, one has obviously that {∅,Ω} ∈ M
+(t)
Z (resp. ∈ M

−(t)
Z ) if and only if

s 7→ E(Zs) is right differentiable (resp. left differentiable) at time t. At the opposite, one

has that F ∈ M
+(t)
Z (resp. ∈ M

−(t)
Z ) if and only if s 7→ Zs is a.s. right differentiable (resp.

left differentiable) at time t.

Definition 2 We say that (At,Bt)t∈(0,T ) is a good collection of σ-fields for Z if for any
t ∈ (0, T ), At is a good forward σ-field and Bt is a good backward σ-field for Z. If At = Bt,
we write (At,Bt) = At for simplicity.

On one hand, we may introduce the following:

Definition 3 Set t ∈ (0, T ). We say that At (resp. Bt) is a non degenerated forward
σ-field (resp. non degenerated backward σ-field) for Z if it is good and if

for any c ∈ R, P(DAt

+ Zt = c) = 0 (resp. P(DBt

− Zt = c) = 0). (11)

For instance, if Z is a process such that s 7→ E(Zs) is differentiable in t ∈ (0, T )
then {∅,Ω} is a good forward and backward σ-field but is degenerated. Let us also note
that the condition (11) is obviously equivalent to Var(DAt

+ Zt) 6= 0 (resp. Var(DBt

− Zt) 6= 0)

when DAt

+ Zt ∈ L2(Ω) (resp. DBt

− Zt ∈ L2(Ω)).

On the other hand, one could hope that such stochastic derivatives conserve the
property which holds for ordinary derivatives on functions: ”it can discriminate the con-
stants among the other processes”. So we introduce:

7



Definition 4 We say that (At,Bt)t∈(0,T ) is a very good collection of σ-fields for Z if
(At,Bt)t∈(0,T ) is a good collection of σ-fields for Z and if it satisfies the following prop-
erty:

(

∀t ∈ (0, T ), DAt

+ Zt = DBt

− Zt = 0
)

⇒ Z is a.s. a constant process on [0,T].

An obvious example of a very good collection of σ-fields for a process with differen-
tiable paths is {At = F , t ∈ (0, T )}. If Z is a process such that s 7→ E(Zs) is differentiable
on (0, T ) then the collection {At = {∅,Ω}, t ∈ [0, T ]} is good but, in general, not very good.

Let us now consider a more advanced example. Let B = (Bt)t∈[0,T ] be a fractional
Brownian motion with Hurst index H ∈ (1/2, 1). Let us denote by Pt the σ-field generated
by Bs for 0 ≤ s ≤ t and, if g : R → R, by T g

t the σ-field generated by g(Bt).

Example 1 For any t ∈ (0, T ), Pt is not a good forward σ-field for B.

We refer to Proposition 10 in [5] for a proof. This result is extended to the case of Volterra
processes in this paper, see Proposition 2.

Example 2 For any even function g : R → R and for any t ∈ (0, T ), T g
t is a good (but

degenerated) forward and backward σ-field for B.

Proof: Since B and −B have the same law, we have that E[∆hBt|g(Bt)] = 0 for any
t ∈ (0, T ) and h 6= 0 such that t+ h ∈ (0, T ). The conclusion follows easily.

2

Example 3 For any t ∈ (0, T ), T id
t is a good and non degenerated backward and forward

σ-field for B.

Proof: Using a linear Gaussian regression, we can write

E[∆hBt|Bt] =
(1 + h/t)2H − 1 − (h/t)2H

2
Bt −−−→

h→0
H
Bt

t
in probability.

Since Var(H t−1Bt) > 0, T id
t is non-degenerated.

2

Thus, for the fractional Brownian motion, stochastic derivatives w.r.t. the present
(that is w.r.t. T id

t ) turns out to be an adequate tool (see section 5 below, for a more precise
study).
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3.2 Stochastic derivatives in a weak sense

A way to weaken Definition 1 is to consider stochastic derivatives as follows:

Definition 5 Set t ∈ (0, T ) and let A be a sub-σ-field of F . We say that Z is weak forward
differentiable w.r.t. A at t if

lim
h↓0+

E[V∆hZt] exists,

for all random variable V belonging to a dense subspace of the closed subspace L2(Ω,A,P) ⊂
L2(Ω,F ,P).
We similarly define the notion of weak backward differentiation w.r.t. A at t by considering
∆−hZt instead of ∆hZt.

If the process Z is weak forward differentiable at t and is such that the sequence
(∆hZt)h is bounded in L2(Ω), then we can associate a weak forward stochastic derivative
w.r.t. A at t. Indeed, in that case, let us denote by Θ the dense subspace involved. The
linear form ψ : V 7→ limh↓0+ E[V∆hZt] defined on Θ ⊂ L2(Ω,A,P) is continuous and so can
be extended in a unique continuous linear form on L2(Ω,A,P), still denoted by ψ. Thus
there exists a unique Z ′

t ∈ L2(Ω,A,P) such that ψ(V ) = E[Z ′
tV ]. One can easily show that

Z ′
t does not depend on Θ. We will say that Z ′

t is the weak forward stochastic derivative of
Z w.r.t. A at t.

Remark 1 The boundedness of (∆hZt)h in L2(Ω) may appear as a quite restrictive con-
dition (for instance, it is not satisfied for a fractional Brownian motion). But it allows to
relate our notion with the usual notion of weak limit.

If At (resp. Bt) is a good forward (resp. backward) σ-field for Z at t and if moreover
the convergence (9) (resp. (10)) also holds in L2, then Z is weak forward (resp. backward)
differentiable w.r.t. At (resp. Bt) at t. But the converse is not true in general.

Let Υ be the set of the so-called fractional diffusions X = (Xt)t∈[0,T ] defined by

Xt = x0 +

∫ t

0
σsdBs +

∫ t

0
bsds, t ∈ [0, T ]. (12)

Here σ and b are processes which are adapted w.r.t. the natural filtration associated to X
and satisfying the following conditions: σ ∈ Cα a.s. with α > 1 −H and b ∈ L1([0, T ]) a.s.

Lemma 1 The decomposition (12) is unique: if

x0 +

∫ t

0
σsdBs +

∫ t

0
bsds = x̃0 +

∫ t

0
σ̃sdBs +

∫ t

0
b̃sds, t ∈ [0, T ] (13)

then x0 = x̃0, σ = σ̃ and b = b̃.

9



Proof: The equality x0 = x̃0 is obvious and (13) is then equivalent to

∫ t

0
(σs − σ̃s)dBs =

∫ t

0
(b̃s − bs)ds, t ∈ [0, T ]

which implies, by setting tk = kT
n :

(

|σtk − σ̃tk ||Btk+1
−Btk |

)1/H

=
∣

∣

∣

∫ tk+1

tk
(bs − b̃s)ds +

∫ tk+1

tk
(σs − σtk)dBs +

∫ tk+1

tk
(σ̃s − σ̃tk)dBs

∣

∣

∣

1/H

≤ C

[

∣

∣

∣

∫ tk+1

tk
(bs − b̃s)ds

∣

∣

∣

1/H
+

∣

∣

∣

∫ tk+1

tk
(σs − σtk)dBs

∣

∣

∣

1/H
+

∣

∣

∣

∫ tk+1

tk
(σ̃s − σ̃tk)dBs

∣

∣

∣

1/H
]

.

We easily deduce, using (6), that

lim
n→∞

n−1
∑

k=0

|σtk − σ̃tk |
1/H |Btk+1

−Btk |
1/H = 0 in probability.

But, on the other hand, it is easy to obtain (see, for instance, Theorem 4.4 in [8]) that:

lim
n→∞

n−1
∑

k=0

|σtk − σ̃tk |
1/H |Btk+1

−Btk |
1/H =

∫ T

0
|σs − σ̃s|

1/Hds in probability.

We deduce that σ = σ̃ and then b = b̃.
2

In section 4, we will see that the past of X ∈ Υ before time t is not, in general, a good
forward σ-field at time t. At the opposite, we will see in section 5 that the present of X ∈ Υ
is, in general, a good forward σ-field.

However, X is weak forward differentiable for a large class of σ-fields. Let ℘ be the
set all sub-σ-fields A ⊂ F such that L2(Ω,A,P) ∩ S is dense in L2(Ω,A,P). For instance,
any σ-field which writes A[r,s] = ς(Bv, r ≤ v ≤ s) belongs to ℘ (see e.g. [13] p.24).

Proposition 1 Let A ∈ ℘. Let X ∈ Υ be given by (12) satisfying the following conditions:

b ∈ L1(Ω×[0, T ],P⊗dt), for any t ∈ (0, T ): σt ∈ D
1,2 with E

∫ T
0

∫ T
0 |DB

s σt||u−s|
2H−2duds <

+∞, and finally E(|σ|pα) < +∞ for some p > 1 and α > 1 −H. Then X is weak forward
and backward differentiable for almost every t ∈ (0, T ) w.r.t. A.

Proof: For simplicity, we only prove the forward case, the backward case being similar.
We write

Xt+h −Xt = σt(Bt+h −Bt) +

∫ t+h

t
bsds+

∫ t+h

t
(σs − σt)dBs. (14)
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First of all, we treat the second term of the r.h.s. of (14). Let V ∈ L2(Ω,A,P)∩ S.
Since V is bounded and b ∈ L1(Ω × [0, T ]), the function s 7→ E [V bs] belongs to L1([0, T ])
and the Fubini theorem yields:

E

[

V

∫ t+h

t
bs ds

]

=

∫ t+h

t
E [V bs] ds. (15)

Therefore, using a Lebesgue theorem (see e.g. 11.51 and 11.55 pp. 360-362 in [20]), we
deduce that for almost every t ∈ (0, T ):

lim
h↓0

1

h

∫ t+h

t
E [V bs] ds = E [V bt] .

Afterwards, using the inequality (6) and the hypothesis E(|σ|pα) < +∞, the following
limit holds:

lim
h→0

1

h
E

[

V

∫ t+h

t
(σs − σt)dBs

]

= 0. (16)

Finally, we show that the limit

lim
h↓0

E[σt V ∆hBt]

exists. Since σtV ∈ D
1,2 (see Exercice 1.2.13 in [12]), we have

E[σt(Bt+h −Bt)V ] = E[δB(1[t,t+h])σt V ]

= E[σt 〈1[t,t+h],D
BV 〉H] + E

[

V 〈1[t,t+h],D
Bσt〉H

]

.

The condition E
∫ T
0

∫ T
0 |DB

s σt||u− s|2H−2duds < +∞ allows to write

E[σt(Bt+h −Bt)V ] = H(2H − 1)E

[

σt

∫ T

0
DB

s V

∫ t+h

t
|v − s|2H−2dvds

]

+ H(2H − 1)E

[

V

∫ T

0
DB

s σt

∫ t+h

t
|v − s|2H−2dvds

]

,

and to conclude, by Fubini and Lebesgue theorems again, that

lim
h→0

h−1 E[σt(Bt+h −Bt)V ]

exists for almost every t ∈ (0, T ) and equals

H(2H − 1)E

[

σt

∫ T

0
DB

s V |t− s|2H−2ds+ V

∫ T

0
DB

s σt|t− s|2H−2ds

]

.

2
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4 Stochastic derivatives of Nelson’s type

Let Z be a stochastic process defined on (Ω,F ,P). We define the past of Z before
time t:

PZ
t := ς(Zs, 0 ≤ s ≤ t)

and the future of Z after time t:

FZ
t := ς(Zs, t ≤ s ≤ T ).

If PZ
t and FZ

t are respectively good forward and backward σ-fields for Z, we call

D
PZ

t

+ Zt and D
FZ

t

− Zt respectively the forward and backward stochastic derivatives of Nelson’s
type in reference of Nelson’s work [10]. In the sequel, we denote them by DP

+Zt and DF
−Zt

for simplicity.

4.1 The case of Wiener diffusions

We denote by Λ the space of diffusion processesX satisfying the following conditions:

1. X solves the stochastic differential equation :

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, (17)

where x0 ∈ R
d, b : [0, T ]×R

d → R
d and σ : [0, T ]×R

d → R
d⊗R

d are Borel measurable
functions satisfying the hypothesis : there exists a constant K > 0 such that for every
x, y ∈ R

d we have

supt (|σ(t, x) − σ(t, y)| + |b(t, x) − b(t, y)|) ≤ K |x− y| ,
supt (|σ(t, x)| + |b(t, x)|) ≤ K(1 + |x|).

2. For any t ∈ (0, T ), Xt has a density pt.

3. Setting aij = (σσ∗)ij, for any i, j ∈ {1, · · · , n}, for any t0 ∈ (0, T ), for any bounded
open set O ⊂ R

d,
∫ T

t0

∫

O
|∂j(aij(t, x)pt(x))| dxdt < +∞.

4. The functions b and δ(t, x) 7→ 1
pt(x)∂j(aij(t, x)pt(x)) are bounded, belong to C1,2([0, T ]×

R
d), and have all its first and second order derivatives bounded (we use the usual con-

vention that the term involving 1
pt(x) is 0 if pt(x) = 0).

These conditions are introduced in [9] and ensure the existence of a drift and a diffu-
sion coefficient for the time reversed process X t := XT−t. Föllmer focuses in [7] Proposition
2.5 on the important relation between drifts and derivatives of Nelson’s type. It allows him
to compute the drift of the time reversal of a Brownian diffusion with a constant diffusion
coefficient both in the Markov and non Markov case (see Theorem 3.10 and 4.7 in [7]).

For a Markov diffusion with a rather general diffusion coefficient, we have the fol-
lowing

12



Theorem 1 Let X ∈ Λ given by (17). Then X is a Markov diffusion with respect to PX

and FX . Moreover, PX and FX are good and, in general, non degenerated:

DP
+Xt = b(t,Xt),

(DF
−Xt)i = bi(t,Xt) −

1

pt(Xt)

∑

j

∂j(aij(t,Xt)pt(Xt))

where the convention that the term involving 1
pt(x) is 0 if pt(x) = 0.

We refer to [4] for a proof: it is based on the proof of Proposition 4.1 in [19] and Theorem
2.3 in [9].

4.2 The case of fractional Brownian motion and of Volterra processes

Let K be an L2-kernel, that is a function K : [0, T ] × [0, T ] → R verifying

∫

[0,T ]2
K(t, s)2dtds < +∞.

We denote by ∂+K
∂t the right derivative of K with respect to t (with the convention that it

equals to +∞ if it does not exist).
We assume moreover that K is Volterra: that is it vanishes on {(t, s) ∈ [0, T ]2 : s >

t}, and is non degenerated: that is the family {K(t, ·), t ∈ [0, T ]} is free and span a vector
space dense in L2([0, T ]). For such a kernel K, we associate the so-called Volterra process

Gt =

∫ t

0
K(t, s)dWs, 0 ≤ t ≤ T (18)

whereW denotes a standard Brownian motion. Assumptions made onK imply in particular
that the natural filtrations associated toW and G are the same (see for instance [2], Remark
3).

Proposition 2 Let t ∈ (0, T ) and G be a Volterra process associated to a non degenerated
Volterra kernel K satisfying the condition:

K(t+ h, ·) −K(t, ·)

h
−−→
h↓0

∂+K

∂t
in L2([0, t]). (19)

The forward Nelson derivative DP
+Gt exists if and only if

∫ t
0

∂+K
∂t (t, s)2ds < +∞. In

this case, we have DP
+Gt =

∫ t
0

∂+K
∂t (t, s)dWs and PG

t is non degenerated if and only if
∫ t
0

∂+K
∂t (t, s)2ds > 0.

13



Proof: We adapt the proof of [5], Proposition 10. Using the representation (18), we deduce
that

E
[

∆hGt |P
G
t

]

= E
[

∆hGt |P
W
t

]

=
1

h

∫ t

0
[K(t+ h, s) −K(t, s)]dWs =: Zh.

Remark that Z = (Zh)h>0 is a centered Gaussian process. First assume that
∫ t
0

∂+K
∂t (t, s)2ds =

+∞. It is classical that, if Zh converges in probability as h ↓ 0, then Var(Zh) converges as
h ↓ 0. But, from Fatou’s lemma, we deduce

lim
h↓0

Var(Zh) ≥

∫ t

0

∂+K

∂t
(t, s)2ds = +∞.

Thus, Zh does not converge in probability as h ↓ 0. Conversely, assume that
∫ t
0

∂+K
∂t (t, s)2ds <

+∞. In this case, the assumption (19) implies that Zh →
∫ t
0

∂+K
∂t (t, s)dWs in probability,

as h ↓ 0. In other words, DP
+Gt exists and equals

∫ t
0

∂+K
∂t (t, s)dWs. We easily deduce that

PG
t is non degenerated if and only if

∫ t
0

∂+K
∂t (t, s)2ds > 0.

2

The result of Proposition 10 in [5] is then a particular case: if B denotes a fractional
Brownian motion with Hurst index H ∈ (0, 1/2)∪ (1/2, 1) and if t ∈ (0, T ), then DP

+Bt does

not exist. Indeed, we have Bt =
∫ t
0 KH(t, s)dWs where KH is the non-degenerated Volterra

kernel given by (3) and verifying

∂KH

∂t
(t, s) = cH

(

t

s

)H−1/2

(t− s)H−3/2.

Remark 2 For a stochastic process Z, let us define

ξ(Z) = Leb{t ∈ [0, T ], DP
+Zt exists}. (20)

For instance, if B is a fractional Brownian motion with Hurst index H ∈ (0, 1), then
ξ(B) = T if H = 1/2 and ξ(B) = 0 otherwise. A real c ∈ [0, T ] being fixed, it is in fact not
difficult, by using Proposition 2, to construct a continuous process Z such that ξ(Z) = c.
For instance, we can consider the Volterra process associated to the Volterra kernel

K(t, s) =

{

(t− s)H(t) if s ≤ t
0 otherwise

with H(t) =

{

0 if t ≤ c
(t− c) ∧ 1/4 if t > c

.

The study of backward derivatives seems to be much difficult. Among these difficul-
ties, we mention the fact that it is not easy to obtain backward representation of fractional
diffusions (see [5]). However, for a fractional Brownian motion, we are able to prove the
following proposition:
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Proposition 3 Set H > 1/2. The limit

lim
h↓0

E

[

Bt −Bt−h

h

∣

∣

∣

∣

FB
t

]

exists neither as an element in Lp(Ω) for any p ∈ [1,∞) nor as an almost sure limit.

Proof: We fix t ∈ (0, T ). We set

Gh := E

[

Bt −Bt−h

h

∣

∣

∣

∣

FB
t

]

and Zh := E

[

Bt −Bt−h

h

∣

∣

∣

∣

Bt, Bt+h

]

.

Since (Gh)h>0 is a family of Gaussian random variables, it only suffices to prove that Var(Gh)
diverges when h goes to 0.

We have : Zh = E [Gh|Bt, Bt+h] . So, by Jensen inequality, Z2
h ≤ E

[

G2
h|Bt, Bt+h

]

and Var(Zh) ≤ Var(Gh). Let us show that limh↓0 Var(Zh) = +∞.
The covariance matrix of the Gaussian vector (Bt−h −Bt, Bt, Bt+h) reads

(

a v
v∗ M

)

where a = Var(Bt−h −Bt), v =
(

R(t− h, t) −R(t, t) ;R(t− h, t+ h) −R(t, t+ h)
)

and

M =

(

R(t, t) R(t, t+ h)
R(t, t+ h) R(t+ h, t+ h)

)

.

Since dh := R(t, t)R(t + h, t + h) − R(t + h, t)2 6= 0, M is invertible. Therefore
hZh = vM−1Q∗ where Q = (Bt, Bt+h). Since M = E[Q∗Q], we deduce that

Var(hZh) = E[vM−1Q∗(vM−1Q∗)∗] = vM−1v∗.

Hence

Var(hZh) =
1

dh

(

R(t+ h, t+ h)v2
1 − 2R(t+ h, t)v1v2 +R(t, t)v2

2

)

.

This expression is homogeneous in t2H , so we henceforth work with t = 1. Tedious compu-
tations give dh ∼ h2H as h ↓ 0. Moreover we note that v2 = v1 +ch2H where c is a constant
depending only on H. Thus

dh Var(hZh) = v1 ch2H(1 − (1 + h)2H + h2H) + h2Hv2
1 + c2 h4h.

Since 2H > 1 and the function x 7→ x2H is derivable, the quantities v1

h and 1−(1+h)2H+h2H

h

converge as h ↓ 0. But 2H < 2 and h4H

h2h2H = h2H−2 → +∞ as h ↓ 0. Thus

lim
h↓0

Var(Zh) = +∞

which concludes the proof.
2

15



4.3 The case of fractional diffusions

Proposition 4 Let X ∈ Υ given by (12) and satisfying the following conditions:

E
(

∫ T
0 |bs|ds

)

< +∞ and E(|σ|pα) < +∞ for some p > 1 and α > 1 − H. If, for any

t ∈ (0, T ), σt 6= 0 a.s. then for almost all t ∈ (0, T ), PX
t is not a good forward σ-field for

X.

Proof: We will need the following obvious lemma:

Lemma 2 Let (Xn) be a sequence of L2-random variables such that Xn → X as n→ ∞, in
probability. For any σ-field A, we have that E[Xn | A] → E[X | A] as n→ ∞, in probability.

Proof of Lemma 2: It is well-known that Yn → Y in probability if and only if E(|Yn − Y | ∧
1) → 0. Let ε > 0 and set Ωε,n = {|Xn −X| > ε/2}. We have

E(|E[Xn | A] − E[X | A]| ∧ 1) ≤ P(Ωε,n) + ε/2.

Since Xn → X in probability, there exists N ∈ N such that n ≥ N ⇒ P(Ωε,n) ≤ ε/2. The
conclusion follows easily.

2

Now, let us go back to the proof of Proposition 4. We can write

Bt =

∫ t

0

1

σs
dXs −

∫ t

0

bs
σs
ds.

In particular, PB
t ⊂ PX

t .
Assume that

E
[

∆hBt | P
X
t

]

converges in probability as h ↓ 0. Thanks to Lemma 2, we deduce that

E
[

∆hBt | P
B
t

]

= E
[

E[∆hBt | P
X
t ] | PB

t

]

converges in probability as h ↓ 0. It is a contradiction with Proposition 10 in [5] or Propo-
sition 2 of this paper, and so E[∆hBt | P

X
t ] does not converge in probability as h ↓ 0.

Consider the expression (14). The hypothesis E
∫ T
0 |bs|ds < +∞ allows us to use the

techniques of the proof of Proposition 2.5 in [7] to show that 1
hE[

∫ t+h
t bsds|P

X
t ] converges in

probability for almost all t. Using now the inequality (6) and the hypothesis E(|σ|pα) < +∞,
we can finally conclude that PX

t is not a good forward σ-field for X at almost all time t.
2
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4.4 The case of fractional differential equations with analytic volatility

Proposition 5 Let X ∈ Ξ given by (8) and t ∈ (0, T ). We assume moreover that σ is a
real analytic function. Then PX

t is a good forward σ-field for X if and only if σ ≡ 0. In
this case, PX = {PX

t , t ∈ (0, T )} is a very good collection of σ-fields and PX
t is degenerated

for any t ∈ (0, T ).

Proof: It σ ≡ 0 then X is deterministic, and differentiable in t. Consequently, PX
t is

a good forward σ-field but is degenerated. Assume now that σ 6≡ 0. According to the
Bouleau-Hirsch optimal criterium for fractional differential equations (see [11], Theorem
B), we have that the law of Xt is absolutely continuous w.r.t. the Lebesgue measure for
any t (we have indeed intσ−1({0}) = ∅). We deduce that P(σ(Xt) = 0) = 0 for any t, since
Leb(σ−1({0})) = 0 (σ has only isolated zeros). Proposition 4 allows to conclude that PX

t

is not a good forward σ-field.
2

Remark 3 The case where σ is not assumed analytical seems more difficult to reach. We
conjecture however that, in this case, PX

t is a good forward σ-field for X if and only if
t < tx where tx is the deterministic time defined by

tx = inf{t ≥ 0 : xt 6∈ int σ−1({0})}

with (xt)t∈[0,T ] the solution to xt = x0 +
∫ t
0 b(xs)ds. If this conjecture is true, we would

have that ξ(X) = tx, see (20).

5 Stochastic derivatives with respect to the present

5.1 Definition

A consequence of Proposition 2 is that the σ-field PX
t generated by Xs, 0 ≤ s ≤ t

(the past of X) is not an adequate tool when we work with the fractional Brownian motion.
Moreover, we can stress on the following important fact: the Markov property of a Wiener
diffusion X ∈ Λd implies that to take expectations w.r.t. PX

t produces the same effect as
to take expectations only w.r.t. Xt. The following definition is then natural.

Definition 6 Let Z = (Zt)t∈[0,T ] be a stochastic process defined on a complete probability

space (Ω,F ,P) and, for any t ∈ (0, T ), T Z
t be the σ-field generated by Zt. We say that

Z admits a forward (resp. backward) stochastic derivative w.r.t. the present t ∈ (0, T ) if

T Z
t is a good forward (resp. backward) σ-field for Z. In this case, we set DT

+Zt := D
T Z

t

+ Zt

(resp. DT
−Zt := D

T Z
t

− Zt).
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Example 4 Let B be a fractional Brownian motion with Hurst index H ∈ (0, 1) and
t ∈ (0, T ). Then

DT
+Bt =







H t−1Bt if H > 1/2
0 if H = 1/2

does not exist if H < 1/2
and

DT
−Zt =







H t−1Bt if H > 1/2
t−1Bt if H = 1/2

does not exist if H < 1/2

(see also Example 3). In particular, we would say that the fractional Brownian motion with
Hurst index H > 1/2 is more regular than the Brownian motion (H = 1/2), because of the
equality between the forward and backward derivatives in the case H > 1/2 contrary to
the case H = 1/2. We can identify the cause of these different regularities: the covariance
function RH is differentiable along the diagonal (t, t) in the case H > 1/2 while it is not
when H = 1/2.

5.2 Case of fractional differential equations

We denote by Ξ the set of fractional differential equations, that is the subset of Υ
whose elements are processes X = (Xt)t∈[0,T ] solution of (8) with σ ∈ C2

b and b ∈ C1
b .

In the sequel, we compute DT
±Xt for X ∈ Ξ and t ∈ (0, T ). Let us begin by a simple

case.

Proposition 6 Let X ∈ Ξ given by (8) and t ∈ (0, T ). Assume moreover that σ and b
are proportional. Then X admits a forward and a backward stochastic derivative w.r.t. the
present t, given by

DT
+Xt = DT

−Xt = H t−1σ(Xt)Bt + b(Xt). (21)

In particular, the present T X
t is non degenerated if and only if σ(x0) 6= 0 and the collection

of σ-fields T X = {T X
t , t ∈ (0, T )} is very good.

Proof: We make only the proof for DT
+Xt, the computation for DT

−Xt being similar. Assume
that b(x) = r σ(x) with r ∈ R. Then Xt = f(Bt + rt) with f : R → R defined by f(0) = x0

and f ′ = σ(f). If σ(x0) = 0 then Xt ≡ x0 and DT
+Xt = 0 = σ(Xt)Ht

−1Bt + b(Xt).
If σ(x0) 6= 0 then it is classical that f is strictly monotonous. We can then write Bt =
f−1(Xt)− rt. In particular, the random variables which are measurable with respect to Xt,
are measurable with respect to Bt, and vice-versa. On the other hand, by using a linear
Gaussian regression, it is easy to show that DT

+Bt = H t−1Bt (see also Example 3). Finally,
convergences (15) and (16) and equality (14) allow to conclude that we have (21).

Now, let us prove that the present is non degenerated for X if and only if σ(x0) 6= 0.
When σ(x0) = 0, it is clear that the present is degenerated (see the first part of this proof).
On the other hand, if the present is degenerated, then there exists c ∈ R such that

H t−1σ ◦ f(Bt + rt)Bt + r σ ◦ f(Bt + rt) = c.

18



By rearranging, we obtain that σ◦f(X)(X+α) = β for some α, β ∈ R and withX = Bt+rt.
By using the fact thatX has a strictly positive density on R, we deduce that σ◦f(x)(x+α) =
β for any x ∈ R. Necessarily, β = 0 (with x = −α) and then f ′ = σ ◦ f = 0. We deduce
that f is constant and then that f ≡ x0, that is σ(x0) = 0.

Finally, if H t−1σ(Xt)Bt + b(Xt) = σ(Xt)(H t−1Bt + r) = 0 a.s. for any t, then
σ(Xt) = 0 = b(Xt) a.s. for any t and Xt ≡ x0 a.s. for any t, see (8). In other words, the
collection of σ-fields T X = {T X

t , t ∈ (0, T )} is very good. 2

Let us now describe a more general case.

Theorem 2 Let X ∈ Ξ given by (8) and t ∈ (0, T ). Assume moreover that b ∈ C2
b and

that σ ∈ C2
b is elliptic, that is verifies infx∈R |σ(x)| > 0. Then X admits a forward and a

backward stochastic derivative w.r.t. the present t, given by

DT
+Xt = DT

−Xt

= b(Xt) +H
σ(Xt)

t

{
∫ Xt

0

dy

σ(y)

−E

[
∫ t

0

b

σ
(Xs)ds+

∫ t

0

∫ t

0
βH

r (s)δBrds− t

∫ t

0
βH

r (t)δBr

∣

∣

∣

∣

Xt

]}

(22)

where

βH
r (t) =

(

OH

∫ r

0

b′σ − bσ′

σ
(Xs)1s≥· ds

)

(t).

Recall that OH is defined by (4).

Proof: Remark first that βH
r (t) belongs to the domain of the divergence operator δB , due to

the additional hypothesis on b and σ. We only make the proof for DT
+Xt, the computation

for DT
−Xt being similar.

First step. Assume that σ ≡ 1. Using the transfer principle and the isometry KH , it
holds that

Xt =

∫ t

0
KH(t, s)dYs

where

Yt = Wt +

∫ t

0
ardr.

Here, we set

ar =

(

K−1
H

∫ ·

0
b(Xs)ds

)

(r).

We know (see [14], Theorem 2) that the process X = (Xt)t∈[0,T ] is a fractional Brownian
motion under the new probability measure Q = G ·P where

δG = exp

(

−

∫ T

0
asdWs −

1

2

∫ T

0
a2

sds

)

.
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Using the integration by part of Malliavin calculus, we can write, for g : R → R ∈ C1
b :

E [(Xt+h −Xt)g(Xt)] = EQ

[

G−1g(Xt)δ
X (1[t,t+h])

]

= EQ

[

G−1〈1[t,t+h],D
Xg(Xt)〉H

]

+EQ

[

g(Xt)〈1[t,t+h],D
XG−1〉H

]

= E[g′(Xt)]〈1[t,t+h],1[0,t]〉H

+E
[

Gg(Xt)〈K
∗
H1[t,t+h],K

∗
HD

XG−1〉L2

]

.

But K∗
HD

XG−1 = DYG−1 (transfer principle). Since

δG−1 = exp

(
∫ T

0
asdYs −

1

2

∫ T

0
a2

sds

)

,

we have

G×DY
t (G−1) = at +

∫ T

0
DY

t as dYs −

∫ T

0
asD

Y
t as ds

= at +

∫ T

0
DY

t as dWs.

Moreover
∫ T

0
DY

s ar dWr =

∫ T

0
(K∗

HD
X
s a)(r) dWr =

∫ T

0
DX

s arδBr := Φ(s),

and
(K∗

H1[0,t])(s) = KH(t, s)1[0,t](s).

Therefore

〈K∗
H1[t,t+h], GK

∗
HD

XG−1〉L2 = (KHa)(t+ h) − (KHa)(t)

+ (KHΦ) (t+ h) − (KHΦ) (t)

=

∫ t+h

t
b(Xu)du+ (KHΦ) (t+ h) − (KHΦ) (t).

By the stochastic Fubini theorem, we have (OHΦ)(t) =
∫ T
0 (OHD

X
· ar)(t)δBr. We

set

βH
r (t) = (OHD

X
· ar)(t) =

(

OH

∫ r

0
b′(Xs)1s≥· ds

)

(t).

We then deduce

E [(Xt+h −Xt)g(Xt)] = E[g′(Xt)]〈1[t,t+h],1[0,t]〉H

+ E

[

g(Xt)

(
∫ t+h

t
b(Xs)ds +

∫ t+h

t

∫ T

0
βH

r (s)δBrds

)]

. (23)
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By developing E[Xt g(Xt)] as in (23), we obtain

t2H E[g′(Xt)] = E

[

g(Xt)

(

Xt −

∫ t

0
b(Xs)ds −

∫ t

0

∫ T

0
βH

r (s)δBrds

)]

.

Then:

E[∆hXt |Xt] = h−1 〈1[t,t+h],1[0,t]〉H
(

Xt − E
[

∫ t
0 b(Xs)ds+

∫ t
0

∫ T
0 βH

r (s)δBrds
∣

∣

∣
Xt

])

+h−1 E
[

∫ t+h
t b(Xs)ds+

∫ t+h
t

∫ T
0 βH

r (s)δBrds
∣

∣

∣
Xt

]

.

We deduce that E[∆hXt |Xt] converges in probability, as h ↓ 0, to

b(Xt) +
H

t
Xt −

H

t
E

[
∫ t

0
b(Xs)ds+

∫ t

0

∫ T

0
βH

r (s)δBrds−

∫ T

0
βH

r (t)δBr

∣

∣

∣

∣

Xt

]

.

Since limh↓0 E[∆hXt |Xt] does not depend on T , we finally obtain (22) in the par-
ticular case where σ ≡ 1, by letting T ↓ t.

Second step. Assume that σ does not vanish. Set Yt = h(Xt) where h(x) =
∫ x
0

dy
σ(y) .

Using the change of variable formula, we obtain that Y verifies

Yt = y0 +Bt +

∫ t

0

b

σ
◦ h−1(Ys)ds, t ∈ [0, T ].

Since, on the one hand, the σ-fields generated by Xt and Yt are the same and, on the other
hand, X has α-Hölder continuous paths with α > 1/2, we have

DT
+Xt = σ(Xt)D

T
+Yt.

The expression (22) is then a consequence of the first step of the proof.
2

Remark 4 When σ does not vanish and b ≡ r σ with r ∈ R, we can apply either Proposition
6 or Theorem 2 to compute DT

±Xt. Of course, the conclusions are the same. Indeed, since

we have, in this case, b′σ − bσ′ ≡ 0 and
∫ Xt

0
dy

σ(y) = Bt + r t (since Xt = f(Bt + r t) with f

verifying f ′ = σ ◦ f), formula (22) can be simplified in (21).

Compared to the case where σ and b are proportional, it is here more difficult to
decide if the present (that is the collection of σ-fields generated by Xt) is very good or not.

In the framework of the stochastic embedding of dynamical systems introduced in
[3], the set of processes, called set of Nelson differentiable processes, which satisfy the equal-
ity between a stochastic forward and stochastic backward derivatives plays a fundamental
role (see [4], Chapters 3 and 7). We stress on the fact that solutions of stochastic differen-
tiable equations driven by a fractional Brownian motion with H > 1/2 provide examples of

21



non absolutely continuous Nelson differentiable processes.
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