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Abstract

We study the behavior at infinity, with respect to the space variable, of solutions
to the magnetohydrodynamics equations in R

d. We prove that if the initial magnetic
field decays sufficiently fast, then the plasma flow behaves as a solution of the free
nonstationnary Navier–Stokes equations when |x| → +∞, and that the magnetic field
will govern the decay of the plasma, if it is poorly localized at the beginning of the evo-
lution. Our main tools are boundedness criteria for convolution operators in weighted
spaces.

Keywords: decay at infinity, instantaneous spreading, magnetohydrodynamics, MHD,
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1 Introduction

The magnetohydrodynamics equations are a well-known model in plasma physics, describing
the interactions between a magnetic field and a fluid made of moving electrically charged
particles. A common example of an application of this model is the design of tokamaks:
the purpose of these machines is to confine a plasma in a region, with a density and a
temperature large enough to entertain thermonuclear fusion reactions. This can be achieved,
at least during a small time interval, by applying strong magnetic fields. We refer to [12]
for other applications of this model, in particular to the study of the dynamics of the solar
corona.

In non-dimensional form, the magnetohydrodynamics equations can be written in the
following way:





∂u

∂t
+ (u · ∇)u − S(B · ∇)B + ∇

(
p +

S

2
|B|2

)
=

1

Re
∆u

∂B

∂t
+ (u · ∇)B − (B · ∇)u =

1

Rm
∆B

div u = div B = 0

u(0) = u0 and B(0) = B0.

(MHD)

Here the unknowns are the velocity field u of the fluid, the pressure p and the magnetic
field B, all defined in R

d (d ≥ 2). The positive constants Re and Rm are respectively the
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Reynolds number and the magnetic Reynolds number; moreover S = M2/(ReRm), where M
is the Hartman number. After rescaling u and B, we can assume that S = Re = 1. With
minor loss of generality, from now on we shall also assume that Rm = 1. All the results
however remain valid in the general case with simple modifications in the constants.

In the particular case B ≡ 0, the system (MHD) reduces to the celebrated Navier–Stokes
equations. Just as in this particular case, global weak solutions to (MHD) do exist, but
their unicity, as well their smoothness in the case of smooth data, remains an open problem
for d ≥ 3. Partial regularity results, which provide bounds of the Hausdorff dimension
of the possible singular set of weak solutions, have been obtained in [7]. Constantin and
Fefferman’s theory [5] relating the regularity of the flow to the directions of the vorticity
has been extended to magnetohydrodynamics in [8]. A construction of forward selfsimilar
solutions is given in [9], where the nonexistence of backward selfsimilar solutions is also
discussed. Moreover, the asymptotic behavior of the solutions for t → +∞ is quite well
understood: for example, [13] provides the optimal decay rates of the L2 norm of u and B
for a large class of flows.

On the other hand, nothing seems to have been done to study the decay of solutions
of (MHD) with respect to the space variable. In this paper, motivated by recent results
obtained by several authors for the Navier–Stokes equations (see, e.g., [1], [2], [6], [11] and
[14]), we would like to describe in which way the presence of the magnetic field affects the
spatial localization of the velocity field.

Definitions and notations. We start by introducing the notion of decay rate at infinity
in a weak sense, which generalizes the usual notion of pointwise decay rate in the framework
of locally square integrable functions. A simple motivation is that the L2

loc regularity is the
minimal one for which the system (MHD) makes sense.

1. Let f ∈ L2
loc(R

d). We define the L2 decay rate as |x| → +∞ of f , as

η(f) = sup

{
η ∈ R ; lim

R→+∞
R2η

∫

1≤|x|≤2

|f(Rx)|2 dx = 0

}
. (1.1)

If η = η(f) is finite then we will write f
L2

∼ |x|−η when |x| → +∞. On the other hand,

when we write f
L2

= O(|x|−η) when |x| → +∞, we mean that η(f) ≥ η. Of course,

any measurable function such that |f(x)| ≤ C(1 + |x|)−η satisfies f
L2

= O(|x|−η) when
|x| → +∞.

2. For a ∈ [1, +∞] and α ∈ R, the space La
α(Rd) is the Banach space normed by

‖f‖La
α

=

(∫

Rd

|f(x)|a(1 + |x|)aα dx

)1/a

if 1 ≤ a < +∞ (1.2a)

and, if a = +∞, by
‖f‖L∞

α
= ess sup

x∈Rd

|f(x)|(1 + |x|)α. (1.2b)

From the localization point of view the two spaces La
α(Rd) and Lb

β(Rd) must be con-
sidered as equivalent, when

α +
d

a
= β +

d

b
.
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Indeed, if f ∈ La
α(Rd) and a ≥ 2, then f

L2

= O
(
|x|−(α+d/a)

)
when |x| → +∞. Hölder

inequality implies that
La

α ⊂ Lb
β (1.3)

whenever α + d/a > β + d/b and a ≥ b. It also implies that

η(f) = sup

{
α +

d

a
; a ≥ 2 and f ∈ La

α

}
(1.4)

for any f ∈ L2
loc(R

d).

We shall use the following additional notations :

3. If A and B are two expressions containing a parameter α, then when we write

A ≤ B − εα,

we mean that A ≤ B if α = 0 and A < B if α 6= 0. We shall also often write expressions
of the form A ≤ B − ε1/a meaning that the inequality must be strict for finite a and
can be large when a = +∞.

4. The positive part of a real number will be denoted by (·)+ = max{·, 0}.

Main results. We are concerned with the persistence problem of the spatial localization
of the magnetic and the velocity fields. Our main results (Theorem 1.1 and 1.3 below) aim
to answer the following questions. Consider a localization condition like

(u0, B0) ∈ Lp0

ϑ0
(Rd) × Lp1

ϑ1
(Rd). (1.5)

Will the unique solution of (MHD) preserve such a condition in some future time interval ?
Depending on the parameters, the answer can be positive or negative. In case of a negative
answer, can we still ensure that the spatial localization of the solution is conserved in the

weak sense ? In other words, we would like to know whether

u(t)
L2

= O
(
|x|−(ϑ0+d/p0)

)
and B(t)

L2

= O
(
|x|−(ϑ1+d/p1)

)
when |x| → +∞.

Again, this condition may be conserved, or instantaneously break down.

We will prove the following:

Theorem 1.1 Let u0 ∈ Lp0

ϑ0
(Rd), B0 ∈ Lp1

ϑ1
(Rd) be two divergence-free vector fields in R

d

(d ≥ 2). Assume that

{
ϑ0 ≥ 0

d < p0 ≤ +∞ and

{
ϑ1 ≥ 0

d < p1 ≤ +∞.
(1.6a)

Let us also assume that

δ + εδ ≤ η0 ≤ min
{
d + 1 ; 2η1 − δ

}
, (1.6b)

with η0 = ϑ0 +d/p0, η1 = ϑ1 +d/p1 and δ =
(

2d
p1

− 1
)+

. Finally, define p∗0 = min{p0 ; d
δ
−εδ}.
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Then there exists T > 0 and a unique mild solution (u, B) of (MHD) in C([0, T ]; Lp∗0×Lp1).
This solution satisfies

u(t)
L2

= O
(
|x|−η0

)
and B(t)

L2

= O
(
|x|−η1

)
when |x| → +∞. (1.7)

If d = 2, the time T can be arbitrarily large.

Moreover, if (u0, B0) also belongs to Lp̃0

ϑ̃0
×Lp̃1

ϑ̃1
, with the corresponding indices satisfying

assumptions (1.6), then the lifetimes in Lp∗0 × Lp1 and Lp̃0
∗ × Lp̃1 agree and both maximal

solutions are actually the same one.

Next we discuss the optimality of the above restrictions. Such restrictions are of two
kinds: there are a few conditions related to the well-posedness of the system, and a condition
(namely, the upper bound for η0 in (1.6b)) which is related to the spatial localization of the
solution. Here, we will only focus on this condition. The following theorem implies that the
restriction η0 ≤ d + 1 is sharp. We expect that the other restriction is also sharp, or at least
that η0 ≤ 2η1 for stable weak solutions. But we were not able to prove such a result.

Theorem 1.2 Let (u, B) ∈ C([0, T ]; L2(Rd) × L2(Rd)) a solution to (MHD) such that

sup
t∈[0,T ]

|u(t, x)| L2

= O
(
|x|−(d+1+ε)

)
(1.8a)

and sup
t∈[0,T ]

|B(t, x)| L2

= O
(
|x|−(d+1+ε)/2

)
(1.8b)

for some ε > 0. Then, for all t ∈ [0, T ], there exists a constant C(t) ≥ 0 such that the
components of u(t) and B(t) satisfy the following integral identity :

∫

Rd

(ujuk − BjBk)(t, x) dx = δj,k C(t), (j, k = 1, . . . , d) (1.9)

with δj,k = 1 if j = k and δj,k = 0 otherwise.

By Theorem 1.3 below, condition (1.8b) will be fulfilled as soon as u0 and B0 belong to
Lp

ϑ(Rd), with p > d and ϑ + d
p

= (d + 1 + ε)/2, for some ǫ > 0. This means that if we start

with a well localized initial datum (u0, B0), but such that (1.9) does not hold for t = 0, then
condition (1.8a) must brake down.

On the other hand, the integral identities (1.9) are obviously unstable. Neverthless, in
section 5 we shall see that a class of exceptional solutions satisfying (1.9) does exist. Inside
this class, one can exhibit solutions such that u decays much faster than in the generic case.

Physical interpretation of Theorem 1.1. This theorem reinforces mathematically some
facts that can be observed in the applications. Three conclusions can be drawn:

1. Any spatial localization assumption on the magnetic field will be conserved by the
flow. Indeed, the L2 decay rate η1 can be arbitrarily large. The spatial localization of
the velocity field is also conserved, but there are some limitations to this property.
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1
p

{
η1 ≤ (d + 1)/2

p1 ≥ 2d

0 1/d2/p1

2θ1

2η1

θ

d + 1

2θ1

{
η1 ≤ (d + 1 + δ)/2

d < p1 < 2d

2/p1

δ

θ

2η1

1/dδ/d0

1
p

d + 1

2η1 − δ

{
η1 ≥ (d + 1 + δ)/2

p1 > d

θ

2η1

d + 1

1
p1/d0

Fig.1 The figures show the admissible
values for (p0, ϑ0) allowing (1.7) to hold,
once (p1, ϑ1) is given (all gray regions).

Above : Slowly decaying magnetic field.
The results depends slightly on the regu-

larity of B through δ =
(

2d
p1

− 1
)+

.

Down-Left : Fast decaying magnetic
field. The velocity field behaves at infin-
ity as the solution of Navier–Stokes equa-
tions with the same initial datum u0 (see
[14]).

The dark gray regions correspond to ini-
tial data for wich we will prove in addi-
tion that u ∈ L∞([0, T ]; Lp0

ϑ0
). The dash-

dotted lines illustrate the barriers used in
the proof of §4.3.

2. For poorly localized magnetic fields (namely η1 ≤ (d + 1 + δ)/2), the behavior of u
when |x| → +∞ is governed by the decay of the magnetic field. As 0 ≤ δ < 1 in (1.6b),
the maximal L2 decay rate of u that can be conserved by the flow exceeds 2η1 − 1.
When p1 ≥ 2d, one has δ = 0 and this rate is improved up to twice that of B0. The
pathological lower bound on η0 disappears too. Roughly speaking, requiring p1 to be
larger (for a given L2 decay rate η1 = ϑ1 + d/p1 of the magnetic field) means that the
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behavior at infinity of B0 is closer and closer to that of a function that decays as |x|−η1 ,
in the usual pointwise sense.

3. For sufficiently fast decaying magnetic fields, the decay of u is not affected by B, but
is provided by the fundamental laws of hydrodynamics. The reason is the following:
for magnetic fields such that η1 ≥ (d + 1 + δ)/2, our limitations on the L2 decay rate
at infinity of the velocity field (1.6b) boil down to the only restriction η0 ≤ d+1. This
is exactly the same restriction that appears for the Navier–Stokes equations. Indeed,
we know from F. Vigneron’s result [14] that the mild solution of the Navier–Stokes
equations remains in Lp0

ϑ0
(Rd) if the initial velocity belongs to such space and

ϑ0 + d/p0 ≤ d + 1 − ε1/p0
.

This condition in known to be sharp. One may notice however that, thanks to (1.4),
the equality case is possible even if p0 < +∞, provided that stability is asserted as in
(1.7).

A more physical explanation for the above conclusions is the following1. The induction
equation means that the magnetic field lines are transported by the flow while simultaneously
undergoing resistive diffusion. This transport-diffusion process guarantees that, where the
velocity vanishes, the magnetic field will not spatially spread out during small time intervals,
since the mechanism of diffusion is quite slow. As for the fluid flow, the magnetic field acts
upon it only through the Lorentz force: whenever this disappears the velocity acts in a purely
Navier–Stokes way; thus, the spatial spreading of the initial velocity is essentially governed
by the competition between diffusion, whose effect is important only for large time, and
incompressibility, that immediately prevents the flow from remaining too localized.

Stability in weighted spaces. Conclusion (1.7) does not mean that

(u, B) ∈ L∞
(
[0, T ] ; Lp0

ϑ0
× Lp1

ϑ1

)
.

Actually, we do not know if this property holds when u0 ∈ Lp0

ϑ0
and (p0, ϑ0) is in the light-gray

regions of Fig.1. However, if (p0, ϑ0) is in a dark-gray region, then such property does hold.
This is essentially the statement of our next theorem. It extends to the case of non-vanishing
magnetic fields, the result established in [14] for the Navier–Stokes equations.

Theorem 1.3 Let u0 ∈ Lp0

ϑ0
(Rd), B0 ∈ Lp1

ϑ1
(Rd) be two divergence-free vector fields in R

d

(d ≥ 2). Assume that ϑ0, ϑ1 ≥ 0, d < p0 ≤ +∞ and

2

p1
<

1

p0
+

1

d
. (1.10a)

Then there exist T > 0 (if d = 2, one may take T = +∞) and a unique mild solution of
(MHD)

(u, B) ∈ C ([0, T ]; Lp0 × Lp1) . (1.10b)

If, in addition, the decay rates of u0 and B0 defined by η0 = ϑ0 + d/p0 and η1 = ϑ1 + d/p1

satisfy

η0 ≤ min

{
d + 1 − ε1/p0

; 2η1 − ε2ϑ1−ϑ0 ; 2η1 +
d

p0

− 2d

p1

}
, (1.11a)

1This explanation was suggested to us by the Referee.
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then we have more precisely

(u, B) ∈ C
(
[0, T ]; Lp0

ϑ0
× Lp1

ϑ1

)
. (1.11b)

Moreover, if (u0, B0) also belongs to Lp̃0

ϑ̃0
× Lp̃1

ϑ̃1
, with new indices again satisfying (1.10a)

and (1.11a), then the lifetimes in Lp0

ϑ0
× Lp1

ϑ1
and Lp̃0

ϑ̃0
× Lp̃1

ϑ̃1
are the same and both maximal

solutions agree.

The assumption (1.10a) is not really related to spatial localization problems, but rather
to well-posedness issues of the equations, and in particular, to the invariance of the equation
under the natural scaling

uλ(t, x) = λu(λ2t, λx), Bλ(t, x) = λB(λ2t, λx) (λ > 0).

We expect that Theorem 1.3 remains true in limit cases p = d, or 2d
p1

= 1
p1

+ 1
d

(with several

modifications in the proof). We did not treat these limit cases since they would require Kato’s
two-norm approach for proving the boundedness of the operators involved, as described in
[3, chap. 3] or [4] for the Navier–Stokes equations. The proof would be more complicated,
without providing any substantial clarification of the spatial localization problem.

Let us also observe that one could replace the weights (1 + |x|)ϑ with homogeneous
weights. But in this case the conditions to be imposed on the parameters would be much
more restrictive, e.g.

ϑ +
d

p
< 1.

Again, this would not help to understand the spatial localization of the fields.

Main methods and organization of the paper. We shall first prove Theorem 1.3 and
later deduce Theorem 1.1 as a corollary of the natural embedding (1.3) between weighted
spaces. The idea consists in observing that the assumptions (1.6), together with the inclusion
(1.3), ensure that the initial datum belongs to the product of two larger Lebesgue spaces, in
which we can prove the existence and uniqueness of a mild solution.

Our proof of Theorem 1.3 consists in applying the contraction mapping principle to the
integral form of (MHD), in a suitable ball of the space C([0, T ], Lp0

ϑ0
× Lp1

ϑ1
). This is why we

refer to (u, B) as a mild solution. The only difficulty is establishing the bicontinuity of the
bilinear operator involved.

For small values of η0, the bicontinuity would be a straightforward consequence of the
well-known Young convolution inequality in weighted Lebesgue spaces (recalled in [14, §2.2]).
But this argument does not go through when η0 is close to the upper bound of (1.11a), since
the kernel of the operator governing the evolution of the velocity field decays too slowly at
infinity. In this case, the proof requires more careful estimates. The main one is given by
Proposition 3.1 below.

Several generalizations of the weighted convolution inequalities are known (see, e.g., the
recent boundedness criterion for asymmetric kernel operators [14, §2.3], which applies to
Navier–Stokes). However, we could not deduce the bicontinuity of the bilinear operator by
applying directly any known inequality, unless we put additional artificial restrictions on the
parameters.

The main issue with the spatial localization of magnetohydrodynamics fields is that the
system cannot be treated as a scalar equation. When dealing with the Navier–Stokes system,
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one may often reduce the problem to a single equation, because all the components of the
kernels of the Navier–Stokes operators satisfy the same estimates. This is no longer true
for (MHD). In the following, we shall derive sharp bounds for the magnetohydrodynamics
kernels and take advantage of the fact that a few components decay much faster than the
others.

This paper is organized as follows. Section 2 contains some generalities on magnetohy-
drodynamics. In Section 3 we study the boundedness of convolution operators in weighted
spaces. We use these results in Section 4, proving first the local existence of a unique solution
in weighted spaces (1.11b), then the fact that lifetimes do not depend on the choice of the
indices. Then we deduce Theorem 1.1 as a corollary.

Theorem 1.2 will be proved in Section 5, using a Fourier transform method developed in
[2]. Section 5 also contains the description of a method for obtaining special solutions, such
that the velocity field is more localized than in (1.6b). Those solutions are however unstable.

Remark 1.4 When we deal with the space C([0, T ]; Lp0

ϑ0
× Lp1

ϑ1
), with p0 = +∞ or p1 =

+∞, the continuity at t = 0 must be understood in the weak sense, as is usually done in
nonseparable spaces.

2 The integral form of the equations

Let P be the Leray-Hopf projector onto the divergence-free vector field, defined by

Pf = f −∇∆−1(div f).

Applying P to the first equation of (MHD) and then the Duhamel formula, we obtain the
integral equations





u(t) = et∆u0 −
∫ t

0

e(t−s)∆
P div(u ⊗ u − B ⊗ B)(s) ds

B(t) = et∆B0 −
∫ t

0

e(t−s)∆ div(u ⊗ B − B ⊗ u)(s) ds

div u0 = div B0 = 0

(IE)

where et∆ is the heat semigroup (recall that the Reynolds numbers and the Hartman numbers
have been set equal to 1). The semigroup method that we use in this paper to solve (IE)
provides mild solutions of (MHD) that are in fact smooth for strictly positive t.

We denote respectively by F k
j,h(t, x) and Gk

j,h(t, x) (j, h, k = 1, . . . , d) the components of
the kernels of the matricial operators et∆

P∇ and et∆∇. Thus,

F̂ k
j,h(ξ, t) = e−t|ξ|2ξh(δj,k − ξjξk|ξ|−2). (2.1)

This expression of the symbol allows us to see that

F (t, x) = t−(d+1)/2 Φ(x/
√

t),

with |Φ(x)| ≤ C(1 + |x|)−(d+1).
(2.2a)
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This low decay rate of Φ is due to the fact that F (t, ·) 6∈ L1
1(R

d) ; otherwise F̂ (t, ·) would be
a C1 function on R

d. On the other hand,

G(t, x) = t−(d+1)/2 Ψ(x/
√

t),

with Ψ ∈ S(Rd) (the Schwartz class).
(2.2b)

Let us introduce the bilinear operators on R
d-vector fields U and B whose kth component

is

U
k(f, g)(t, x) =

∑

j,h

∫ t

0

F k
j,h(t − s) ∗

(
f j ⊗ gh

)
(s) ds

B
k(f, g)(t, x) =

∑

j,h

∫ t

0

Gk
j,h(t − s) ∗

(
f j ⊗ gh

)
(s) ds,

and the bilinear operator V = (V1, V2) on R
2d-vector fields v = (v1, v2) defined by

V1(v, w) = U(v1, w1) − U(v2, w2)

V2(v, w) = B(v1, w2) − B(v2, w1).

Here and below, for v ∈ R
2d, we denote by v1 the first d components and by v2 the last d

components.

With these notations and setting v = (u, B), v0 = (u0, B0), the system (IE) can be
rewritten as

v = et∆v0 − V(v, v). (2.3)

As it is well known (we refer, e.g., to [3, Lemma 1.2.6]), if X is a Banach space, then for
solving an equation like (2.3) one just needs to check that

et∆v0 ∈ C([0, T ]; X) (2.4a)

and
V : C([0, T ]; X) × C([0, T ]; X) → C([0, T ]; X), (2.4b)

with the operator norm of V tending to 0 as T → 0. Then the existence of a solution
v ∈ C([0, T ]; X) is ensured, at least for T > 0 small enough.

In order to prove Theorem 1.3 we shall take X = Lp0

ϑ0
× Lp1

ϑ1
. In this setting, condition

(2.4a), the unicity and the continuity of the solution with respect to the time variable are
all straightforward. Therefore, our attention will now be exclusively devoted to the more
subtle problem of the bicontinuity of V in L∞([0, T ]; Lp0

ϑ0
× Lp1

ϑ1
).

We need three estimates, namely

‖U(u, u)(t)‖Lp0,ϑ0 ≤ CT‖u‖2
C([0,T ],Lp0,ϑ0 ) (2.5a)

‖U(B, B)(t)‖Lp0,ϑ0 ≤ CT‖B‖2
C([0,T ],Lp1,ϑ1 ) (2.5b)

‖B(u, B)(t)‖Lp1,ϑ1 ≤ CT‖u‖C([0,T ],Lp0,ϑ0 )‖B‖C([0,T ],Lp1,ϑ1 ) (2.5c)
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for all 0 ≤ t ≤ T and some constant CT such that CT → 0 as T → 0. These bounds will not
rely on the specific structure of the operators U and B, but only on the decay properties of
their respective kernels:

|F (t, x)| ≤ C(
√

t + |x|)−(d+1)

|G(t, x)| ≤ CN

√
t
N−d−1

(
√

t + |x|)−N
(2.6)

for all N ≥ 0.
We start by observing that by Hölder inequality,

‖u ⊗ u‖
L

p0/2
2ϑ0

≤ ‖u‖2
L

p0
ϑ0

‖B ⊗ B‖
L

p1/2
2ϑ1

≤ ‖B‖2
L

p1
ϑ1

‖u ⊗ B‖
L

H(p0,p1)
ϑ0+ϑ1

≤ ‖u‖L
p0
ϑ0

‖B‖L
p1
ϑ1

where 1
H(p0,p1)

= 1
p0

+ 1
p1

denotes the Hölder exponent (the assumptions of Theorem 1.3 imply

that p0, p1 ≥ 2). Set λ =
√

t and

ΓN
λ (x) = (λ + |x|)−N . (2.7)

Then the only thing that we have to do to obtain (2.5a)-(2.5c) is to establish that for all
0 < λ ≤ 1:

‖Γd+1
λ ∗ f‖L

p0
ϑ0

≤ Cλσ0‖f‖
L

p0/2
2ϑ0

, (2.8a)

‖Γd+1
λ ∗ f‖L

p0
ϑ0

≤ Cλσ′
0‖f‖

L
p1/2
2ϑ1

(2.8b)

and ‖ΓN
λ ∗ f‖L

p1
ϑ1

≤ Cλσ1‖f‖
L

H(p0,p1)
ϑ0+ϑ1

(2.8c)

with an arbitrarily large N ≥ 0 and exponent σ0, σ′
0, σ1 such that

σ0 > −2, σ′
0 > −2, σ1 > −N + d − 1. (2.9)

The constant C > 0 has to be independent of λ. Assumption (2.9) ensures that the integrals

∫ T

0

‖F (t − s) ∗ (u ⊗ u) (s)‖L
p0
ϑ0

ds,

∫ T

0

‖F (t − s) ∗ (B ⊗ B) (s)‖L
p0
ϑ0

ds

and ∫ T

0

‖G(t − s) ∗ (u ⊗ B) (s)‖L
p1
ϑ1

ds

converge.

3 Convolution estimates in weighted spaces

The fundamental estimates (2.8a)-(2.8c) will be a simple consequence of the following propo-
sition.
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Proposition 3.1 Let a, p ∈ [1; +∞] and α, ϑ ≥ 0. For any real numbers λ > 0 and N ≥ 1
let us set

ΓN
λ (x) = (λ + |x|)−N .

Let also f ∈ La
α(Rd) and N > d.

1. Then ΓN
λ ∗ f ∈ Lp

ϑ(R
d), provided that

ϑ ≤ α and ϑ +
d

p
≤ min

{
N − ε1/p ; α +

d

a
− εα−ϑ

}
. (3.1)

Moreover, if N 6= d(1 + 1
p
− 1

a
), then there exists C > 0 such that

‖ΓN
λ ∗ f‖Lp

ϑ
≤ Cλ−N(1 + λ)N‖f‖La

α
. (3.2)

2. If one assumes in addition that
1

a
<

1

p
+

1

d
, (3.3)

then there exists ǫ > 0 and two constants C, m > 0 such that

‖ΓN
λ ∗ f‖Lp

ϑ
≤ Cλ−N+d−1+ǫ(1 + λ)m‖f‖La

α
. (3.4)

When N = d(1+ 1
p
− 1

a
), the bounds (3.2) and (3.4) hold with an additional factor (1+| log λ|)

in the right-hand sides. In (3.2) and (3.4) the constant C may depend on ϑ, a, α, N and d,
but it does not depend on λ or f .

Remark 3.2 We shall see in the proof that we can take

ǫ = min

{
d

p
− d

a
+ 1 ;

N − d + 1

2

}
,

m = max

{
N − d + 1 − 2ǫ ; −N + d

(
1

p
− 1

a
+ 1

)}
.

Proof. We start by observing that by Hölder’s inequality,

‖f‖Lq ≤ C‖f‖La
α

if
1

a
≤ 1

q
≤ min

{
1 ;

1

a
+

α

d
− εα

}
. (3.5)

Next we have

(1 + |x|)ϑ |ΓN
λ ∗ f(x)| ≤

[∫

Rd

ΓN
λ (x − y)|f(y)| dy

]
(1 + |x|)ϑ = Iϑ,λ(x) + Jϑ,λ(x) + Kϑ,λ(x),

with the following definitions :

Iϑ,λ(x) =

(∫

|y|≥|x|/2

ΓN
λ (x − y)|f(y)| dy

)
(1 + |x|)ϑ,

Jϑ,λ(x) =

(∫

|y|≤|x|/2

ΓN
λ (x − y)|f(y)| dy

)
(1 + |x|)ϑ 1B(0,1)(x),

Kϑ,λ(x) =

(∫

|y|≤|x|/2

ΓN
λ (x − y)|f(y)| dy

)
(1 + |x|)ϑ 1B(0,1)c(x).

Here and below, B(0, 1) denotes the unit ball and 1E is the indicator function of a set
E ⊂ R

d.
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The bound for Kϑ,λ. Since |y| ≤ |x|/2, we have

(λ + |x − y|)−N ≤ 2N(λ + |x|)−N .

Hence, using (3.5) with 1
q′

= 1 − 1
q

=
(
1 − α

d
− 1

a
+ εα

)+
,

0 ≤ Kϑ,λ(x) ≤ C (λ + |x|)−(N−ϑ)

∫

|y|≤ |x|
2

|f(y)| dy

≤ C (λ + |x|)−(N−ϑ) ‖f‖Lq ‖1B(0,|x|/2)‖Lq′

≤ C (λ + |x|)−(N−ϑ) |x|[d−(α+ d
a
)+εα]+‖f‖La

α
.

As |x| ≥ 1, it follows that ‖Kϑ,λ‖Lp ≤ C ‖f‖La
α
, uniformly for λ > 0, provided that

ϑ +
d

p
≤ N −

[
d −

(
α +

d

a

)
+ εα

]+

− ε1/p. (3.6)

Since N > d, this condition is weaker than (3.1).

The bound for Jϑ,λ. Using (3.5) again, but with q = a, gives us

0 ≤ Jϑ,λ(x) ≤ C 1B(0,1)(x) (λ + |x|)−N

∫

|y|≤
|x|
2

|f(y)| dy

≤ C 1B(0,1)(x) (λ + |x|)−N |x|d(1−1/a) ‖f‖La,

whence

‖Jϑ,λ‖Lp ≤ C

[
λ−Np

∫

|x|≤λ

|x|dp(1−1/a) dx + 1{λ<1}

∫

λ≤|x|≤1

|x|−Np+dp(1−1/a) dx

]1/p

‖f‖La .

Thus, for all ϑ ≥ 0 and p ∈ [1, +∞], we have

‖Jϑ,λ‖Lp ≤ C
(
1 + λ−N+d+ d

p
− d

a

)
‖f‖La if N 6= d

(
1 +

1

p
− 1

a

)
, (3.7a)

and ‖Jϑ,λ‖Lp ≤ C (1 + | log λ|) ‖f‖La if N = d

(
1 +

1

p
− 1

a

)
. (3.7b)

Note that ‖Jϑ,λ‖Lp is bounded by the right-hand side of (3.2). Moreover, if 1
a

< 1
p

+ 1
d
, then

‖Jϑ,λ‖Lp is also bounded by the right-hand side of (3.4), provided that 0 < ǫ ≤ d(1
p
− 1

a
+ 1

d
).

The bound for Iϑ,λ. Set F (x) = (1 + |x|)α |f(x)|, so that F ∈ La(Rd) and

0 ≤ Iϑ,λ(x) ≤ C (1 + |x|)−(α−ϑ)

∫

Rd

ΓN
λ (x − y)F (y) dy.

But ΓN
λ ∈ Lb

β(Rd) for all b ∈ [1; +∞] and β ≥ 0 such that β + d
b
≤ N − ε1/b. Moreover, one

has
‖ΓN

λ ‖Lb
β
≤ Cλ−N+ d

b (1 + λ)β. (3.8)

The remaining part of the proof of Proposition 3.1 relies on the following lemma.
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Lemma 3.3 Let a, b, p ∈ [1; +∞] and α, β, ϑ ≥ 0. For f ∈ La
α(Rd), g ∈ Lb

β(Rd), define

Iϑ(x) = (1 + |x|)−(α−ϑ) F ∗ g(x)

with F (x) = (1 + |x|)α |f(x)|. If there exists s ∈ [1, +∞] such that:




ϑ ≤ α

d

s
≤ min

{
d

a
;

(
α +

d

a

)
−
(

ϑ +
d

p

)
− εα−ϑ ; d

(
1 − 1

b

)}

d

s
≥ max

{
d

a
− d

p
;

[
d −

(
β +

d

b

)
+ εβ

]+
} (3.9a)

then Iϑ ∈ Lp(Rd) and
‖Iϑ‖Lp ≤ C‖f‖La

α
‖g‖Lb

β
. (3.9b)

Proof. According to (3.5), we have g ∈ Ls′(Rd) for all s′ ∈ [1; +∞] such that

1

b
≤ 1

s′
≤ min

{
1 ;

1

b
+

β

d
− εβ

}
.

Let 1
s
+ 1

s′
= 1. We now use that 1

a
− 1

s
≥ 0. The Young exponent Y(a, s′) of a and s′ is well

defined by 1
Y(a,s′)

= 1
a
− 1

s
. Moreover, one has F ∗ g ∈ LY(a,s′)(Rd), i.e.

Iϑ ∈ L
Y(a,s′)
α−ϑ .

Since ϑ ≤ α, (3.5) implies that Iϑ ∈ Lp(Rd) for all p such that

1

a
− 1

s
≤ 1

p
≤ min

{
1 ;

1

a
− 1

s
+

α − ϑ

d
− εα−ϑ

}
,

and (3.9b) is satisfied. �

Let us now come back to the proof of Proposition 3.1. We are going to apply the lemma
with g = ΓN

λ , Iϑ = Iϑ,λ, b = +∞ and β = N .

– If 1
a
≤ 1

p
, then we further choose s = +∞ and conditions (3.9a) boil down (recall that

N > d) to the only restriction ϑ + d
p
≤ α + d

a
− εα−ϑ.

– If 1
a

> 1
p
, then we choose 1

s
= 1

a
− 1

p
. In this case conditions (3.9a) boil down to ϑ ≤ α.

The first part of Proposition 3.1 now follows from the bounds obtained for Iϑ,λ, Jϑ,λ and
Kϑ,λ.

To prove (3.4), we fix ǫ such that 0 < ǫ ≤ N−d+1
2

. Then we apply Lemma 3.3 again with
g = ΓN

λ and Iϑ = Iϑ,λ, but with b and β defined by

d

b
= d − 1 + ǫ, and β = N − d + 1 − 2ǫ.

By (3.8), one has ΓN
λ ∈ Lb

β(Rd) with ‖ΓN
λ ‖Lb

β
≤ λ−N+d−1+ǫφ(λ) and φ ∈ L∞

loc([0; +∞)).
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As before,

– if 1
a
≤ 1

p
, then we choose s = +∞ in (3.9a) and Lemma 3.3 implies that

‖Iϑ,λ‖Lb
β
≤ λ−N+d−1+ǫφ(λ)‖f‖La

α
, (3.10)

provided that ϑ + d
p
≤ α + d

a
− εα−ϑ.

– If 1
a

> 1
p
, then 1

s
= 1

a
− 1

p
leads again to (3.10), provided that ϑ ≤ α and 1

a
≤ 1

p
+ 1

d
− ǫ

d
.

The proof of Proposition 3.1 is now complete. �

4 End of the proof of Theorems 1.1 and 1.3

4.1 Existence of a unique mild solution in weighted spaces

We are now in a position to prove Theorem 1.3.

Under the assumptions of Theorem 1.3, one applies (3.4) with N = d + 1 and with

ǫ = 1 − d
p0

or ǫ = 1 −
(

2d
p1

− d
p0

)+
respectively; assumption (3.3) is ensured by (1.10a). This

proves (2.8a) and (2.8b) with

σ0 = −1 − d

p0
and σ′

0 = −1 −
(

2d

p1
− d

p0

)+

.

A new application of (3.4) with any N such that N ≥ max{d + 1 ; ϑ1 + d
p1
} + ε1/p1 and

ǫ = 1 − d
p0

yields (2.8c) with σ1 = −N + d − d/p0.

With the preceeding values of σ0, σ
′
0 and σ1, the assumption (1.10a) implies (2.9). As

indicated in section 2, this yields (2.4b) and ensures that the operator norm of V tends to
zero as a power of T , when T → 0 :

9V9C([0,T ];X) ≤ C max

{
T 1+

σ0
2 ; T 1+

σ′
0
2 ; T 1+ 1

2
(σ1+N−d−1)

}
.

This ensures finally the conclusions (1.10b) and (1.11b) of Theorem 1.3.
More precisely, our argument proves that under the assumptions of Theorem 1.3, the

maximal lifetime T ∗ of the mild solution in X = Lp0

ϑ0
× Lp1

ϑ1
satisfies

T ∗ ≥ c min

{
1 ; ‖(u0, B0)‖

−2/(1− d
p0

)

X ; ‖(u0, B0)‖
−2/
(
1−
[

2d
p1

− d
p0

]+)
X

}
, (4.1)

with a constant c > 0, depending on all the parameters, but not on u0 or on B0.

4.2 Comparison of lifetimes in Theorem 1.3

It only remains to establish that lifetimes are independent of the admissible pairs of indices
chosen to construct the solution.

14



Proposition 4.1 Let u0 ∈ Lp0

ϑ0
(Rd) ∩ Lp̃0

ϑ̃0
(Rd) and B0 ∈ Lp1

ϑ1
(Rd). Set η0 = ϑ0 + d/p0,

η̃0 = ϑ̃0 + d/p̃0 and η1 = ϑ1 + d/p1. Assume that d ≥ 2 and





d < p0, p̃0 ≤ +∞
2

p1
< min

{
1

p0
+

1

d
;

1

p̃0
+

1

d

}

η0 ≤ min

{
d + 1 − ε1/p0

; 2η1 − ε2ϑ1−ϑ0 ; 2η1 +
d

p0

− 2d

p1

}

η̃0 ≤ min

{
d + 1 − ε1/p̃0 ; 2η1 − ε2ϑ1−ϑ̃0

; 2η1 +
d

p̃0
− 2d

p1

}
.

(4.2)

Let T ∗ and T̃ be the lifetimes of the solution (u, B) of (mhd) emanating from (u0, B0) in the
respective weighted spaces, i.e.

T ∗ = sup
{

T > 0 s.t. (u, B) ∈ C([0, T ]; Lp0

ϑ0
× Lp1

ϑ1
)
}

,

T̃ = sup
{

T > 0 s.t. (u, B) ∈ C([0, T ]; Lp̃0

ϑ̃0
× Lp1

ϑ1
)
}

.

Then T̃ = T ∗.

Proof. The structure of the proof is similar to that of [14]. Let us assume that we have, for

example, T̃ < T ∗. Unicity of mild solutions ensures that they agree on [0, T̃ [. We are going
to prove that

sup
t∈[0,T̃ [

(
‖u(t)‖

L
p̃0
ϑ̃0

+ ‖B(t)‖L
p1
ϑ1

)
< +∞.

Then (4.1) would imply that the mild solution (u, B) in Lp̃0

ϑ̃0
× Lp1

ϑ1
could be extended beyond

T̃ , and that would contradict the definition of T̃ .

First of all, let us recall (see, e.g., [14, §2.2]) that there exists a constant C0 > 0 depending
only on d and ϑ, such that

sup
τ∈[0,T̃ ]

‖eτ∆v‖L
p1
ϑ1

≤ C0 (1 + T̃ )ϑ1/2 ‖v‖L
p1
ϑ1

. (4.3)

In the following, we set A = C0 (1 + T̃ )ϑ1/2.

Note also that we can obviously assume that u 6≡ 0 in [0, T̃ ].

The bound for B. By the second of the integral equations (IE), one has for 0 ≤ s ≤ t < T̃ :

B(t) = e(t−s)∆B(s) −
∫ t

s

G(t − τ) ∗ (u ⊗ B − B ⊗ u) (τ) dτ.

Proposition 3.1 applied to the upper bound of G given by (2.6), with ǫ = 1 − d
p0

in (3.4),
yields

∀ τ ≤ t ≤ T̃ , ‖G(t − τ) ∗ (u ⊗ B) (τ)‖L
p1
ϑ1

≤ K(t − τ)−σ‖ (u ⊗ B) (τ)‖
L

H(p0,p1)
ϑ0+ϑ1
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where σ = 1
2
(1 + d

p0
) and K is a constant, possibly depending on T ∗ and all the parameters

contained in (4.2), but not on T̃ . Note that σ < 1. Thus, for all t ∈ [0; T̃ ],

‖B(t)‖L
p1
ϑ1

≤ A ‖B(s)‖L
p1
ϑ1

+ K
(t − s)1−σ

1 − σ
sup

τ∈[s,t]

‖u(τ)‖L
p0
ϑ0

· sup
τ∈[s,t]

‖B(τ)‖L
p1
ϑ1

. (4.4)

Now let (Tn)n≥0 be the increasing sequence defined by

Tn = n∆ with ∆ =

(
2K

1 − σ
sup

τ∈[0,T̃ ]

‖u(τ)‖L
p0
ϑ0

)−1/(1−σ)

and N ∈ N such that TN ≤ T̃ < TN+1. For 0 ≤ n ≤ N , let In be the interval [Tn, Tn+1]∩[0, T̃ [
and

Mn = sup
τ∈In

‖B(τ)‖L
p1
ϑ1

.

Applying (4.4) with s = Tn and t ∈ In for n = 0, . . . , N , we get

M0 ≤ 2A‖B0‖L
p1
ϑ1

and Mn ≤ 2AMn−1 (1 ≤ n ≤ N),

whence
sup

t∈[0,T̃ [

‖B(t)‖L
p1
ϑ1

= max
0≤n≤N

Mn ≤ (2A)N+1‖B0‖L
p1
ϑ1

.

Finally, this leads to :

sup
t∈[0,T̃ [

‖B(t)‖L
p1
ϑ1

≤ C ‖B0‖L
p1
ϑ1

exp

((
1 + T̃ sup

s∈[0,T̃ ]

‖u(s)‖
2/(1− d

p0
)

L
p0
ϑ0

)(
1 + ϑ1 log(1 + T̃ )

))
.

(4.5)

The right-hand side is finite because we assumed T̃ < T ∗.

The bound for u. For 0 ≤ s ≤ t < T̃ , one has

u(t) = e(t−s)∆u(s) −
∫ t

s

F (t − τ) ∗ (u ⊗ u)(τ) dτ +

∫ t

s

F (t − τ) ∗ (B ⊗ B)(τ) dτ.

Proposition 3.1, applied this time to the upper bound of F given by (2.6), yields

‖u(t)‖
L

p̃0
ϑ̃0

≤ A‖u(s)‖
L

p̃0
ϑ̃0

+ K
(t − s)1−σ

1 − σ
sup

τ∈[s,t]

‖u(τ)‖L
p0
ϑ0

· sup
τ∈[s,t]

‖u(τ)‖
L

p̃0
ϑ̃0

+ K
(t − s)1−σ̃

1 − σ̃

(
sup

τ∈[s,t]

‖B(τ)‖L
p1
ϑ1

)2

with σ = 1
2
(1 + d

p0
) and σ̃ = 1

2
(1 + (2d

p1
− d

p0
)+). Note that σ is the same as before and

that σ̃ < 1; K depends on T ∗ and all the parameters, except T̃ . The last term is uniformly
bounded by

L =
K T̃ 1−σ̃

1 − σ̃

(
sup

τ∈[0,T̃ [

‖B(τ)‖L
p1
ϑ1

)2
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which is a finite constant because (4.5) holds. Define (Tn)n≥0 and In as before. Let also

M̃n = sup
τ∈In

‖u(τ)‖
L

p̃0
ϑ̃0

.

Recall that N is the integer part of T̃ /∆. Then, for 1 ≤ i ≤ N , one has

M̃0 ≤ 2A ‖u0‖L
p̃0
ϑ̃0

+ 2L and M̃n ≤ 2A M̃n−1 + 2L,

hence

sup
t∈[0,T̃ [

‖u(t)‖
L

p̃0
ϑ̃0

= max
0≤n≤N

M̃n ≤ (2A)N+1 ‖u0‖L
p̃0
ϑ̃0

+ 2L
[
1 + . . . + (2A)N−1 + (2A)N

]
< +∞.

Combined with (4.1) and (4.5), this estimate ensures that T̃ ≥ T ∗. Exchanging the roles

of T̃ and T ∗, one finally obtains that T̃ = T ∗. �

An analogous result holds if we assume instead u0 ∈ Lp0

ϑ0
(Rd) and B0 ∈ Lp1

ϑ1
(Rd)∩Lp̃1

ϑ̃1
(Rd),

with obvious modifications in (4.2) :




d < p0 ≤ +∞

max

{
2

p1

;
2

p̃1

}
<

1

p0

+
1

d

η0 ≤ min
{
d + 1 − ε1/p0

; 2η1 − ε2ϑ1−ϑ0 ; 2η̃1 − ε2ϑ1−ϑ0

}
.

η0 ≤ min

{
2η1 +

d

p0
− 2d

p1
; 2η̃1 +

d

p0
− 2d

p̃1

}
.

(4.2’)

Theorem 1.3 is now established.

4.3 The proof of Theorem 1.1

Let p0, p1 and ϑ0, ϑ1 such that (1.6a) and (1.6b) hold.

If ϑ0 ≤ 2ϑ1, p0 ≤ d/δ − εδ and η0 ≤ d + 1 − ε1/p0 , then (1.10a) and (1.11a) hold, and
there is nothing more to prove since Theorem 1.3 already gives a stronger conclusion.

In all the other cases and for any ǫ > 0, our assumptions yield an embedding Lp0

ϑ0
⊂ Lq

µ

such that Theorem 1.3 may be applied to

(u0, B0) ∈ Lq
µ × Lp1

ϑ1

and with

µ +
d

q
= η0 − ǫ.

It follows that u
L2

= O(|x|−(η0−ǫ)) and B
L2

= O(|x|−η1) when |x| → +∞. Letting ǫ → 0, this
will conclude the proof of Theorem 1.1.

Let us be more precise about the embedding Lp0

ϑ0
⊂ Lq

µ. Actually, various choices are
possible for (q, µ). We have chosen the indices that are represented on the interpolation
diagram (see Fig. 1 p. 5) by a dash-dotted line.
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If the magnetic field decays sufficiently fast, namely if η1 ≥ (d + 1 + δ)/2, the only case
not included in Theorem 1.3 is that of η0 = d + 1 with p0 finite. In this case, one may take

(q, µ) = (p0, ϑ0 − ǫ).

Let us now assume that η1 ≤ (d + 1 + δ)/2 and, for the moment, that p1 ≥ 2d. Then the
cases to be dealt with correspond either to ϑ0 > 2ϑ1 or to η0 = 2η1, or to both.

– If ϑ0 > 2ϑ1, then

d

q
= ϑ0 − 2ϑ1 +

d

p0
− ǫ and µ = 2ϑ1

are suitable, even if η0 = 2η1.
– If ϑ0 ≤ 2ϑ1 and η0 = 2η1, one may again choose (q, µ) = (p0, ϑ0 − ǫ).

Finally, if d < p1 < 2d and η1 ≤ (d + 1 + δ)/2, one may use the following barrier :

d

q
= 1 − (1 − δ)κ µ = 2ϑ1(1 − κ) and κ = 1 − η0 − δ − ǫ

2(η1 − δ)
·

The proof of Theorem 1.1 is now complete. �

5 Instantaneous spreading of rapidly decreasing fields

This section is included for completeness and contains the proof of theorem 1.2, and some
remarks about exceptional solutions to (MHD) that decay extremely fast.

5.1 Proof of theorem 1.2

Following [2], we define E as the space of all functions f ∈ L1
loc(R

d) such that

‖f‖E =
def

∫

|x|≤1

|f(x)| dx + sup
R≥1

R

∫

|x|≥R

|f(x)| dx (5.1)

is finite, and

lim
R→+∞

R

∫

|x|≥R

|f(x)| dx = 0.

Hölder inequality implies that :

Lp0

ϑ0
(Rd) ⊂ E whenever





ϑ0 +
d

p0
≥ d + 1 (p0 < +∞) or

ϑ0 > d + 1 (p0 = +∞).

Let us prove that ‖u‖E cannot remain uniformly bounded during a positive time interval,
unless the orthogonality relations (1.9) are satisfied.

Proposition 5.1 Let (u, B) ∈ C([0, T ]; L2(Rd) × L2(Rd)) a solution to (MHD) such that
u0 ∈ E. Assume that

u ∈ L∞([0, T ]; E) (5.2a)

|u|2 + |B|2 ∈ L∞([0, T ]; E). (5.2b)
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Then there exists a constant c ≥ 0 such that the components of the initial data satisfy

∀j, k ∈ {1, . . . , d},
∫

Rd

uj
0u

k
0 − Bj

0B
k
0 = c δj,k, (5.3)

where δj,k = 1 if j = k and 0 otherwise.

Proof. The proof will only be sketched briefly since it is a straightforward adaptation of [2].
Let us write the first equation of (MHD) in the following form (recall that S and Re can be
set equal to 1):

u(t) − et∆u0 +
d∑

j=1

∫ t

0

e(t−s)∆ ∂j(u
ju − BjB) ds = −

∫ t

0

e(t−s)∆ ∇P (s) ds, (5.4)

where P = p + |B|2

2
is the total pressure. Arguing as in [2], we see that (5.2) imply that all

the terms in the left-hand side of (5.4) belong to L∞([0, T ]; E). Thus, we have

∇P̃ ∈ L∞([0, T ]; E) with P̃ (t) =

∫ t

0

e(t−s)∆ P (s) ds.

Let

ũj,k(t) =

∫ t

0

e(t−s)∆ ujuk(s) ds

and

B̃j,k(t) =

∫ t

0

e(t−s)∆ BjBk(s) ds.

Taking the divergence in (5.4) yields

−∆P̃ =
d∑

j,k=1

∂j∂k(ũ
j,k − B̃j,k).

One now deduces (5.3), applying Lemma 2.3 and Proposition 2.4 of [2]. �

The proof of Theorem 1.2 is now very easy. Thanks to (1.3) and (1.4), assumptions (1.8a)
and (1.8b) imply the existence of ε′ > ε′′ > 0 such that

sup
t∈[0,T ]

|u(t, ·)| ∈ L2
d
2
+1+ε′

⊂ L1
1+ε′′ ⊂ E.

Moreover, the definition of the L2 decay rate at infinity (1.1) implies that

lim
R→∞

Rd+2+2ε′
∫

R≤|x|≤2R

|u(t, x)|2 dx = 0

and

lim
R→∞

R1+ε′
∫

R≤|x|≤2R

|B(t, x)|2 dx = 0,

uniformly for t ∈ [0, T ]. Therefore

sup
t∈[0,T ]

(
|u(t, ·)|2 + |B(t, ·)|2

)
∈ L1

1+ε′′ ⊂ E.

Conclusion (1.9) now follows from proposition 5.1.
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5.2 Solutions of (MHD) with an exceptional spatial behavior

We finally observe that solutions that decay faster than predicted by Theorem 1.3 do exist.

Such solutions can be constructed starting with properly symmetric initial data. Assume,
e.g., that u0 and B0 are rapidly decreasing in the usual pointwise sense when |x| → +∞
(faster than any inverse polynomial) and that Au0(x) = u0(Ax), AB0(x) = B0(Ax) for all
x ∈ R

d and all matrix A ∈ G, where G is a subgroup of the orthogonal group O(d). Then
the solution of (MHD) will inherit this property as far as it exists, the system being invariant
under rotations. If the group G is rich enough, then these symmetry relations ensure the
validity of conditions (1.9). Moreover the decay rate of the velocity field of the corresponding
solution will depend on the symmetry group to which (u0, B0) belongs.

In dimension d = 2, 3 and for the Navier–Stokes equations, the optimal decay rates of the
solution have been computed in [1] for each symmetry group. With simple modifications in
the proofs, one could show that the same decay rates hold for the solution of (MHD). This
is not surprising: indeed, since the magnetic field decays fast when |x| → +∞, the decay of
the velocity field is governed only by the decay rate of the kernels F k

j,h, defined by (2.1), and
by the possible corresponding cancellations. These kernels are the same ones that appear in
the Navier–Stokes system as well.

Thus, for example, in dimension d = 2 and when G is the cyclic group of order n, one
has

∀t ∈ [0, T ∗), u(t, x) = O(|x|−(n+1))

in the usual pointwise sense, when |x| → +∞. In particular, the property of being simul-
taneously completely invariant under rotations (i.e. G = SO(2)) and rapidly decreasing at
infinity will be conserved by (u, B) during the evolution, if such property already holds for
(u0, B0).

In dimension three, the largest decay rates of the velocity field (i.e. like |x|−8 as x → +∞)
are obtained with the symmetry groups of the icosahedron. Those symmetric solutions are
however unstable: in general, the velocity field of an infinitesimal perturbation of a highly
symmetric flow will decay much more slowly at infinity.

References

[1] L. Brandolese, Space-time decay of Navier–Stokes flows invariant under rotations, Math.
Ann. 329, 685–706 (2004).

[2] L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier–Stokes system
in the whole space, ESAIM Contr. Optim. Calc. Var. 8, 273–285 (2002)

[3] M. Cannone, Ondelettes, paraproduits et Navier–Stokes, Diderot Editeur (1995).

[4] M. Cannone, G. Karch, Smooth or singular solutions to the Navier–Stokes system ? ,
J. Diff. Eq. 197, 247–274 (2004).

[5] P. Constantin, C. Fefferman, Directions of the vorticity and the problem of global
regularity for Navier–Stokes equations, Indiana Univ. Math J. 42, 775–789 (1993).

[6] C. He, T. Miyakawa, On L1 summability and asymptotic profiles for smooth solutions
to Navier–Stokes equations in a 3D exterior domain, Math. Z. 245, 387–417 (2003).

20



[7] C. He, Z. Xin, Partial regularity of suitable weak solutions to the incompressible mag-
netohydrodynamic equations, J. of Funct. Anal., to appear (2005).

[8] C. He, Z. Xin, On the regularity of weak solutions on the magnetohydrodynamics equa-
tions, J. Diff. Eq. 213, 235–254 (2005).

[9] C. He, Z. Xin, On self-similar solutions of the of the magnetohydrodynamic equations,
Institute of applied mathematics, Beijing (China), preprint (2004).

[10] B.B. Kadomtsev, Tokamak plasma: a complex physical system, Institute of Physics
Publishing, Bristol, 1992.

[11] T. Miyakawa, On space time decay properties of nonstationary incompressible Navier–
Stokes flows in R

n, Funkcial. Ekvac., 32/2, 541–557 (2000).

[12] E.R. Priest, Solar magnetohydrodynamics, Geophysics and astrophysics monographs,
21, D. Reidel Publishing, Dodrecht, 1982.
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Université Claude Bernard Lyon 1.
21 avenue Claude Bernard
F-69622 Villeurbanne Cedex
FRANCE
brandolese@math.univ-lyon1.fr

† François Vigneron
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