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Abstract

The Constant Elasticity of Variance (CEV) model is mathematically
presented and then used in a Credit-Equity hybrid framework. Next, we
propose extensions to the CEV model with default: firstly by adding a
stochastic volatility diffusion uncorrelated from the stock price process,
then by more generally time changing Bessel processes and finally by
correlating stochastic volatility moves to the stock ones. Properties about
strict local and true martingales in this study are discussed. Analytical
formulas are provided and Fourier and Laplace transform techniques can
then be used to compute option prices and probabilities of default.

1 Introduction

It has been widely recognized for at least a decade that the option pricing
theory of Black and Scholes (1973) and Merton (1973) is not consistent with
market option prices and underlying dynamics. It has been noted that options
with different strikes and maturities have different implied volatilities. Indeed,
markets take into account in option prices the presence of skewness and kurtosis
in the probability distributions of log returns. In order to deal with those
effects, one could use stochastic volatility models (e.g. Heston (1993), Hull
and White (1987) or Scott (1987)). Another common alternative is to use a
deterministic time and stock price dependent volatility function, the so-called
local volatility to capture these effects. One would then build the volatility
surface by excerpting the values of this function from option prices, thanks to
the well-known Derman and Kani (1994) and Dupire (1994) formula.

∗We thank Marc Yor for all the important contributions to this paper. Any remaining

errors are our own.
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One of the first models developed after Black Merton Scholes (1973) is
the Constant Elasticity of Variance model pioneered by Cox (1975) where the
volatility is a deterministic function of the spot level; This latter model is some-
how an ancestor of local volatility models. It has very interesting features since
it suggests that common stock returns are heteroscedastic and that volatilities
implied by the Black and Scholes formula are not constant, in other words skew
exists in this model. Another interesting property is that it takes into account
the so called ”Leverage Effect” which considers the effects of financial leverage
on the variance of a stock: a stock price increase reduces the debt-equity ratio
of a firm and therefore decreases the variance of the stock’s returns (see for
instance Black (1976), Christie (1982) or Schwert (1989)). A last but not least
feature of this model is that it has a non-zero probability of hitting 0 and this
could be of importance when one is interested in modelling default by defining
bankruptcy as the stock price falling to 0.

For the last few years, the credit derivatives market has become more and
more important and the issue of modeling default has grown, giving birth to
two main classes of models. The first class is the structural models of the firm
pioneered by Merton (1974) where bankruptcy occurs if the asset value falls to
a boundary determined by outstanding liabilities. Other early work on such
models was done by Black and Cox (1976) and Geske (1977). The other class
commonly called reduced-form models is less ambitious than structural models.
They consider the time of default as an exogenous parameter that they calibrate
under a risk neutral probability to market data. These models were developed
by Artzner and Delbaen (1995), Jarrow and Turnbull (1995), Duffie, Schroder
and Skiadas (1996) and Madan and Unal (1998).

The credit risk is also a component of the equity derivatives market as it may
appear in convertible bonds or more generally in Capital Structure Arbitrage
for people that embedded it from out-of-the money puts. It is then clear that
having a consistent modeling of equity and credit is essential to eventually be
able to manage those cross-asset positions. Indeed, a market standard has been
developed during the last few years which involves a jump diffusion dynamics
for the stock price with a local probability of default for the jump factor. This
kind of model has been presented for instance in Ayache, Forsyth and Vetzal
(2003). An important drawback of this modeling is that the stock has to jump
to zero in order to default, which isn’t a realistic assumption as we can see on
several historical data and as argued in Atlan and Leblanc (2005).

The necessity to have stock price diffusions that don’t jump to zero in order
to default and still have a non-zero probability of falling to zero leads us to nat-
urally consider CEV processes. Moreover, CEV models have the advantage to
provide closed-form formulas for European vanilla options and for the probabil-
ity of default. Those computations were originally performed by Cox (1975) in
the case where the stock can default and by Emanuel and McBeth (1982) when
the stock never defaults. Then, one may want to add a stochastic volatility
process to the CEV diffusion in order to capture some volatility features such
as a smile or such as a more realistic volatility term structure. Finally, to get
more dependency between the stock price and the volatility, one may add some
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correlation.
Those guidelines lead us to study in section 2 the one-dimensional marginals,

the first-passage times below boundaries and the default of martingality of Con-
stant Elasticity of Variance processes, mainly by relating those latest to Bessel
processes. In section 3, we propose a CEV model that is stopped at its de-
fault time and we provide closed form formulas for European vanilla options,
Credit Default Swaps and Equity Default Swaps. Section 4 extends the Con-
stant Elasticity of Variance framework to a Constant Elasticity of Stochastic
Variance one by firstly adding a stochastic volatility to the CEV diffusion and
in a second time more generally consider time-changed Bessel processes with a
stochastic integrated time change. Quasi-analytical formulas conditionally on
the knowledge of the law of the time change are provided for vanilla options and
CDSs and examples are given. Section 5 adds a correlation term to the general
time-changed power of Bessel process framework, once again quasi analytical
formulas conditionally on the knowledge of the joint law of the time change
and a process related to the rate of time change are provided for probabilities
of default and for vanilla options, and computations for several examples are
shown. All the models proposed in this paper are true martingales and the
martingale property is carefully proven for the different frameworks. Finally,
section 6 concludes and presents possible extensions of this work.

Convention For strictly negative dimensions we define squared Bessel processes
up to their first hitting time of 0 after which they remain at 0.

We set this convention because we wish to consider positive Bessel processes.
For a study of negative dimension Bessel processes with negative values, we refer
to Göing-Jaeschke and Yor (2003).

2 A Mathematical Study of CEV Processes

2.1 Space and Time Transformations

A reason why Bessel processes play a large role in financial mathematics is that
they are closely related to widely used models such as Cox, Ingersoll and Ross
(1985), i.e. the CIR family of diffusions for interest rates framework, such as the
Heston (1993) stochastic volatility model or even to the Constant Elasticity of
Variance model of Cox (1976). They are more generally related to exponential
of time-changed Brownian motions thanks to Lamperti (1972) representations.

Let us now concentrate on the CIR family of diffusions: they solve the
following type of stochastic differential equations:

dXt = (a− bXt)dt+ σ
√

|Xt|dWt (1)

with X0 = x0 > 0, a ∈ R+, b ∈ R, σ > 0 and Wt a standard Brownian motion.
This equation admits a strong (e.g. adapted to the natural filtration of Wt)
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unique solution that takes values in R+.

Let us remark that squared Bessel processes of dimension δ > 0 can be seen
as a particular case of a CIR process with a = δ, b = 0 and σ = 2. We also
recall that a Bessel process Rt solves the following diffusion equation

dRt = dWt +
δ − 1

2Rt
dt

where for δ = 1, the latter δ−1
2Rt

dt must be replaced by a local time term.
One is now interested in the representation of a CIR process in terms of a

time-space transformation of a Bessel Process:

Lemma 2.1 A CIR Process Xt which solves equation (1) can be represented in
the following form:

Xt = e−btBESQ(δ,x0)(
σ2

4b
(ebt − 1)) (2)

where BESQ(δ,x0) denotes a squared Bessel Process starting from x0 at time

t = 0 of dimension δ = 4a
σ2

Proof : This lemma results from the identification of two continuous functions
f and g (with g strictly increasing and g(0) = 0) such as

Xt = f(t)BESQ(δ,x0)(g(t))

To do so, we apply Itô’s formula and Dambis (1965), Dubins-Schwarz (1965)
theorem

This relation is widely used in finance, for instance in Geman and Yor (1993)
or Delbaen and Shirakawa (2002).

Let us now introduce the commonly called CEV (Constant Elasticity of Vari-
ance), which was introduced by Cox (1975, 1996) and that solves the following
equation:

dXt = µXtdt+ σXα
t dWt (3)

with X0 = x0 > 0, α ∈ R, µ ∈ R, σ > 0 and Wt a standard brownian motion.

Lemma 2.2 A CEV Process Xt which solves equation (3) can be represented

as a power of a CIR process, indeed for β = 2(α− 1), 1/Xβ
t solves

d
( 1

Xβ
t

)

=
(

a− b
1

Xβ
t

)

dt+ Σ

√

| 1

Xβ
t

|dWt (4)

where a = β(β+1)σ2

2 , b = βµ, Σ = −βσ and .

Proof : This lemma is just an application of Itô’s Lemma.

As a consequence of Lemma 2.1 and Lemma 2.2, one obtains the following
representation for a CEV process:
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Proposition 2.3 A CEV Process Xt solution of equation (3) can be represented
in the following form:

Xt = eµtBESQ
1

2(1−α)

( 2α−1
α−1 ,x

−2(α−1)
0 )

(

(α− 1)σ2

2µ
(e2(α−1)µt − 1)

)

(5)

where BESQ(δ,x0) denotes a squared Bessel Process starting from x0 at time
t = 0 of dimension δ.

2.2 Distributions and Boundaries

We will now recall well known results about squared Bessel processes and deduce
some properties about CEV processes.

Path Properties

Proposition 2.4 According to its dimension, the squared Bessel process has
different properties:
(i) if δ ≤ 0, 0 is an absorbing point.
(ii) if δ < 2, {0} is reached a.s.
(iii) if δ ≥ 2, {0} is polar.
(iv) if δ ≤ 2, BESQ is recurrent.
(v) if δ ≥ 2, BESQ is transient.
(vi) if 0 < δ < 2, {0} is instantaneously reflecting.

Proof : The proof can be found in Revuz and Yor (2001).

As a consequence, one may give some properties of the CEV diffusions. A
topic of interest for the remaining of the paper is whether or not {0} is reached
by a CEV process.

Proposition 2.5 According to the value of α, the CEV diffusion has different
properties:
(i) if α < 1, {0} is reached a.s.
(ii) if α ≤ 1

2 , {0} is instantaneously reflecting.
(iii) if 1

2 < α < 1, {0} is an absorbing point.
(iv) if α > 1, {0} is an unreachable boundary.

Proof : It is a consequence of the previous proposition and of Proposition 2.3.

Distributional Properties

It is important to notice that the law of a squared Bessel process can be seen
in terms of non-central chi-square density:
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Lemma 2.6 For any BESQδ,x, one has:

BESQδ,x(t)
(d)
= tV (δ, x

t
) (6)

where V (a,b) is a non-central chi-square r.v. with a degrees of freedom and non-
centrality parameter b ≥ 0. Its density is given by:

fa,b(v) =
1

2
a
2

exp

(

− 1

2
(b+ v)

)

v
a
2−1

∞
∑

n=0

(

b

4

)n
vn

n!Γ(a
2 + n)

(7)

Proof : This proof results from simple properties of Laplace transforms and
can be found for instance in Delbaen and Shirakawa (2002).

We leave to the reader the calculation of the CEV density in terms of non-
central chi-square distributions.

Let us recall a useful result for the remaining of the paper on the moments
of a squared Bessel process:

Corollary 2.7 If V (a,b) is a non-central chi-square r.v. with a degrees of free-
dom and noncentrality parameter b ≥ 0, then for any real constants c and d:

E[(V (a,b))c1{V (a,b)≥d}] = e−
b
2 2c

∑

n≥0

( b

2

)n Γ(n+ a
2 + c)

n!Γ
(

a
2 + n)

G(n+
a

2
+ c,

d

2

)

(8)

where G is defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz

Proof : This calculation is a simple application of Lemma 2.6.

Finally, for the computations involved in this paper, one recalls the two
following identities on the complementary non-central chi-square distribution
function Q that one can find in Johnson and Kotz (1970):

Q(2z, 2ν, 2κ) =
∑

n≥1

g(n, κ)G(n+ ν − 1, z)

1 −Q(2κ, 2ν − 2, 2z) =
∑

n≥1

g(n+ ν − 1, κ)G(n, z)

where g(x, y) = −∂G
∂y (x, y).

First-Hitting Times

We now concentrate on the first hitting time of 0 by a Bessel process. For this
purpose, let us consider a Bessel Process R of index ν > 0 starting from 0 at
time 0, then, one has:

L1(R)
(d)
=

1

2Zν
(9)
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where L1(R) = sup{t > 0, Rt = 1} and Zν is a gamma variable with index ν
that has the following density:

P(Zν ∈ dt) =
tν−1e−t

Γ(ν)
1{t>0}dt (10)

This result is due to Getoor (1979). Thanks to results on time reversal (see
Williams (1974), Pitman and Yor (1980) and Sharpe (1980)), we have:

(R̂T0−u;u < T0(R̂))
(d)
= (Ru;u < L1(R)) (11)

where R̂ is a Bessel Process, starting from 1 at time 0 of dimension δ = 2(1− ν)
and T0(R̂) = inf{t > 0, R̂t = 0}. As a consequence, one has:

T0(R̂)
(d)
=

1

2Zν
(12)

Using the scaling property of the Squared Bessel Process, one may write:

T0(BESQ
δ
x)

(d)
=

x

2Zν
(13)

with δ = 2(1 − ν).

Hence, we are now able to state the proposition below:

Proposition 2.8 The probability of a CEV diffusion solution of equation (3)
to reach 0 at time T with α < 1 is given by:

P(T0 ≤ T |X0 = x0) = G(
1

2(1 − α)
, ζT ) (14)

where G and ξT are defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz (15)

ζT =
µx

2(1−α)
0

(1 − α)σ2(1 − e2(α−1)µT )
(16)

Proof : This proof is just a consequence of Proposition 2.3 and equation (13).

Remark 2.9 The calculation of the probability of default was originally done
by Cox (1975).

In order to compute first-passage times of scalar Markovian diffusions below
a fixed level, let us recall Itô and McKean (1974) results. If (Xt, t ≥ 0) is
scalar Markovian time-homogeneous diffusion starting from x0 at time 0 of
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infinitesimal generator L and that we define τH = inf{t ≥ 0;Xt ≤ H} for
H < x0, then for any λ > 0, we have

E[e−λτH ] =
φλ(x0)

φλ(H)

where φλ is solution of the ODE

Lφ = λφ

with the following limit conditions:
limx→∞ φλ(x) = 0
If 0 is a reflecting boundary then φλ(0+) <∞
If 0 is an absorbing boundary then φλ(0+) = ∞

As a first example, let us now consider the first-hitting time below a fixed
level 0 < y ≤ x of a Bessel process Rt of dimension δ = 2(ν + 1) starting from
x :

τy = inf{t ≥ 0;Rt ≤ y}
The law of τy (see Itô and McKean (1974), Kent (1978) or Pitman and Yor
(1980)) is obtainable from the knowledge of its Laplace transform L. One has
for any positive λ

L(λ) = E[e−λτy ]

=
x−νKν(x

√
2λ)

y−νKν(y
√

2λ)

where ν ∈ R\Z and Kν is a Modified Bessel function defined as follows:

Kν(x) =
π

2 sin(νπ)
(I−ν(x) − Iν(x))

Iν(x) =

∞
∑

k=0

(x/2)ν+2k

k!Γ(ν + k + 1)

As a second example that will be useful for the computation of EDS prices,
let us write the infinitesimal generator of a CEV process:

LCEV φ = σ2x2α d
2φ

dx2
+ µx

dφ

dx

that must solve
LCEV φ = λφ

with the following conditions:
φλ is a decreasing function, limx→∞ φλ(x) = 0

8



If α ≤ 1
2 , then φλ(0+) = ∞

If 1
2 < α < 1, then φλ(0+) <∞

We obtain the following result whose computations of the Laplace transforms
were originally performed by Davydov and Linetsky (2001):

Proposition 2.10 For a CEV process solution of (3) with α < 1 and µ 6= 0,
then

φλ(x) = xα− 1
2 exp

(

− µx2(1−α)

σ2(1 − α)

)

Wk,m

( |µ|x2(1−α)

σ2(1 − α)

)

(17)

where

k = sgn(µ)(
1

4(1 − α)
− 1

2
) − λ

2|µ|(1 − α)
and m =

1

4(1 − α)

and Wk,m is a Whittaker function

The definition of the Whittaker function can be found for instance in Abramowitz
and Stegun (1972).

2.3 Loss of Martingality

Let us now state a result on some martingale properties of Bessel processes
which play an essential role in pricing theory as is well known:

Theorem 2.11 Let Rt be a Bessel process of dimension δ starting from a 6= 0,
then:
(i) If δ ≤ 0, R2−δ

t is a true martingale up to the first hitting time of 0.
(ii) If 0 < δ < 2, the process R2−δ

t −Lt is a martingale where Lt is a continuous
increasing process carried by the zeros of (Rt, t ≥ 0).
(iii) If δ = 2, log(Rt) is a strict local martingale.
(iv) If δ > 2, R2−δ

t is a strict local martingale. Moreover, the default of mar-
tingality is

γ(δ)(t) = E[R2−δ
0 ] − E[R2−δ

t ] = a2−δ
P

(4−δ)
a (T0 ≤ t) (18)

where P
δ
a is the law of (R

(δ)
t , t ≥ 0).

Proof : (i) and (ii): Since {0} is reached a.s., we need to apply Itô’s formula
in a positive neighborhood of 0. Let us consider ǫ > 0. We have:

(ǫ+R2
t )

1− δ
2 = (ǫ+a2)1−

δ
2 +(2−δ)

∫ t

0

(ǫ+R2
s)

− δ
2RsdWs+ǫδ(1−

δ

2
)

∫ t

0

ds

(ǫ+R2
s)

δ
2 +1

Then, as ǫ tends to zero, it is easy to see the first term of the right hand side is
a true martingale for δ < 2 and that the second term of the right hand side is
increasing whose support is the zeros of (Rt, t ≥ 0) when δ ≥ 0. If δ < 0, T 2−δ

t

9



is a true martingale.
(iii): By applying Itô formula, we obtain

log(Rt) = log(R0) +

∫ t

0

dWs

Rs

We then see that log(Rt) is a local martingale. We prove that it is a strict local
martingale by first using the fact that

P
δ
a = P

δ
0 ∗ P

0
a

then writing that

E[log(Rt)] =
1

2
E[log(R2

t )] =
1

2
E[log(BESQ2,0(t) +BESQ0,a(t))]

≥ 1

2
E[log(BESQ2,0(t))]

and finally since BESQ2,0(t)
d
= 2te where e is a standard exponential, we obtain

E[log(Rt)] ≥ C +
1

2
log(t) −→t→∞ +∞

which shows that log(Rt) is not a true martingale.
(iv): To compute γ(δ), we will need the following result:

Lemma 2.12 Let (R
(δ)
t , t ≥ 0) be a Bessel process of dimension δ > 2 starting

from a 6= 0, then

P
4−δ
a|Rt∩{t<T0} =

(

R
(δ)
t

a

)2−δ

· P
δ
a|Rt

where Rt is the canonical filtration of the Bessel process and T0 the first-hitting
time of the level 0.

Proof : This property results from a double application of Girsanov Theorem
by computing

dP4−δ
a|Rt∩{t<T0}
dP2

a|Rt

and
dPδ

a|Rt

dP2
a|Rt

Then, by identification, one gets the announced result. A more general result
can be found in Yor (1992).

We may then write

E
(δ)[R2−δ

t ] = E
(4−δ)[a2−δ1{t<T0}]

and consequently compute the default of martingality.

A proof in the case 0 < δ < 2 can be found in Donati-Martin et al. (2006)
and proofs when δ > 2 exist in Elworthy, Li and Yor (1999). As a consequence,
we obtain similar results for a CEV process.
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Proposition 2.13 Let Xt be a CEV Process of elasticity α solving the following
equation

dXt = µdt+ σXα
t dWt

then:
(i) If α ≤ 1

2 , the process e−µtXt is a true martingale up to the first hitting time
of 0.
(ii) If 1

2 < α < 1, the process e−µtXt − LX
t is a martingale where LX

t is a
continuous increasing process carried by the zeros of (Xt, t ≥ 0) and consequently
e−µtXt is a true martingale up to the first hitting time of 0.
(ii) If α = 1, e−µtXt is a geometric Brownian motion and hence a martingale.
(iii) If α > 1, e−µtXt is a strictly local martingale. Moreover, the default of
martingality is

γX(t) = E[X0] − E[e−µtXt] = x0G(
1

2(α− 1)
, ζT ) (19)

where G and ζT are defined as follows:

G(x, y) =

∫

z≥y

zx−1e−z

Γ(x)
1{z>0}dz

ζT =
µx

2(1−α)
0

(α− 1)σ2(e2(α−1)µT − 1)

Proof : This is just an application of Theorem 2.11, Proposition 2.3 and equa-
tion (14).

A proof of the failure of the martingale property can be found in Lewis (1998).

Remark 2.14 For α > 1, one has ∀(t,K) ∈ R
2
+:

E[(e−µtXt −K)+] − E[(K − e−µtXt)+] + γX(t) = E[X0] −K (20)

The last equation shows that in the case of a strictly local martingale, the
Call price must incorporate the default of martingality in order to remain in a
No Arbitrage model. For a study on option pricing for strict local martingales,
we refer to Madan and Yor (2006) for continuous processes and to Chybiryakov
(2006) for jump-diffusion processes. Lewis (2000) also did this study in the
case of explosions with stochastic volatility models and in particular for a CEV
diffusion.

3 Credit-Equity Modelling

3.1 Model Implementation

Usually, in the mathematical finance literature, one defines a CEV diffusion for
the stock price dynamics S to be

dSt

St
= µdt+ σSα−1

t dWt

11



First of all, in a credit perspective, we will just consider the case α < 1 since we
are interested in models with a non-zero probability of default. Once the stock
has reached zero, the firm has bankrupted and that is the reason why we stop
the CEV diffusion at its first default time. Then from what has been proven
above, we know that the stock price process hence defined is a true martingale
and that ensures the Absence of Arbitrage and moreover the uniqueness of the
solution. Hence, the stock price diffusion now becomes under the risk-neutral
pricing measure:

dSt

St
= rdt+ σSα−1

t dWt if t < τ.

St = 0 if t ≥ τ.

where τ = T0(S) = inf{t > 0, St = 0}. In other words, the stock price process
considered is nothing else than a stopped CEV diffusion (St∧τ )t≥0.

Remark 3.1 Delbaen and Shirakawa (2002) showed the existence of a risk-
neutral probability measure whose uniqueness is only ensured on the stock price
filtration considered at time τ Fτ = σ(St, t ≤ τ). Since our purpose is to
compute the price of options whose payoffs are Fτ −measurable, we have the
uniqueness of the no-arbitrage probability.

3.2 European Vanilla Option Pricing

Lemma 2.12 states that

P
4−δ
x|Rt∩{t<T0} =

(

R
(δ)
t

x

)2−δ

· P
δ
x|Rt

(21)

Thanks to this identity, we obtain the law of the stopped CEV diffusion at a
given time. Lemma 2.6 and Corollary 2.7 enable us to compute the call and put
option price:

For the call C0 option price

C0 = e−rT
E[(ST∧τ −K)+]

= e−rT
E[(ST −K)+1T<τ ]

and the put P0 option price:

P0 = e−rT
E[(K − ST∧τ )+]

= e−rT
E[(K − ST )+1T<τ ] +Ke−rT

P(τ ≤ T )

Consequently, for the call price:

C0 = S0Q(zT , 2 +
1

1 − α
, 2ζT ) −Ke−rT (1 −Q(2ζT ,

1

1 − α
, zT ))

12



and for the put price:

P0 = Ke−rT
(

Q(2ζT ,
1

1 − α
, zT ) −G(

1

2(1 − α)
, ζT )

)

−S0(1 −Q(zT , 2 +
1

1 − α
, 2ζT )) +Ke−rT

P(τ ≤ T )

= Ke−rTQ(2ζT ,
1

1 − α
, zT ) − S0(1 −Q(zT , 2 +

1

1 − α
, 2ζT ))

where

zT =
2rK2(1−α)

σ2(1 − α)(e2(1−α)rT − 1)

ζT =
rS

2(1−α)
0

(1 − α)σ2(1 − e−2(1−α)rT )

Hence, one easily verifies that the put-call parity is satisfied. Closed-form
CEV option pricing formulas were originally computed by Cox (1975) for α < 1
and Schroder (1989) expressed those formulas in terms of non-central chi-square
distributions. Computing option prices using the squared Bessel processes dis-
tributions was done by Delbaen and Shirakawa (2002).

3.3 Pricing of Credit and Equity Default Swaps

Since we are dealing with default probabilities, it is obvious to consider deriva-
tive products relying on these probabilities. One of the most liquid protection
instruments against default is the Credit Default Swap (CDS). The buyer of the
protection agrees to pay periodical amounts until a default time (if it occurs)
and in exchange receives a cash amount which is a notional amount minus a
recovery rate in the case the company on which the contract is written, defaults.
The payoff of such kind of contract is:

ΠCDS = −
n

∑

i=1

e−rTiC1{τ>Ti} + e−rτ (1 −R)1{τ≤Tn}

where C is the periodical coupon, T1, ..., Tn the payment dates, R the recovery
rate assumed to be deterministic and τ the default time. For simplicity purposes,
we consider in this paper deterministic interest rates. The CDS Fair Price is
the expectation of the payoff conditionally to the spot price filtration taken at
the pricing time, e.g.:

CDSt(T1, Tn;C;R) = −C
n

∑

i=1

e−r(Ti−t)
P(τ > Ti|St)+(1−R)E[e−r(τ−t)1{τ≤Tn}|St]

By absence of arbitrage, one must have CDSt(T1, Tn;C;R) = 0 and then

C =
(1 −R)E[e−r(τ−t)1{τ≤Tn}|St]
∑n

i=1 e
−r(Ti−t)P(τ > Ti|St)

13



From Proposition 2.8, we know the value of (P(τ > Ti|St)1≤i≤n). It then remains
to compute the following quantity E[e−rτ1τ≤t] to be able to price the CDS
coupon C. By an integration by parts, we show that

E[e−rτ1τ≤t] = e−rt
P(τ ≤ t) + r

∫ t

0

e−rs
P(τ ≤ s)ds (22)

Otherwise, one could just obtain this expectation by directly using the density of
the first-hitting time of 0 that is provided by the differentiation of the cumulative
distribution function :

fτ (t) =
2r(1 − α)ζ

1
2(1−α)

t e−ζt

Γ( 1
2(1−α) )(e

2(1−α)rt − 1)

where ζt is defined above.
EDSs are very similar to CDSs except that payouts occur when the stock price
falls under a pre-defined level, which is often referred to as a trigger price. The
trigger price is generally between 30% and 50% of the equity stock price at the
beginning of the contract. Hence, these contracts provide a protection against a
credit event happening on the equity market for the buyer. They were initiated
by the end of 2003. At that time, it had become difficult in many countries
to structure investment-grade credit portfolios with good returns because the
CDS spreads were tightening, as reported by Sawyer (2003). Another reason
why people have interest in those contracts is because the settlement of the
default is directly observed on the stock price. Let us now define τL as the first
passage time of the stock price process under the level L < S0. Formally, we
write τL = inf{t > 0;St ≤ L}. We recall the general valuation formula of an
EDS:

EDSt(T1, Tn;C;R) = −C
n

∑

i=1

e−r(Ti−t)
P(τL > Ti|St) + E[e−r(τL−t)1{τL≤Tn}|St]

where C is the coupon, T1, ..., Tn the payment dates and r the risk-free interest
rate. Again, by absence of arbitrage, we can find the coupon price, by stating
that at the initiation of the contract:

EDSt=0(T1, Tn;C;R) = 0

Or equivalently

C =
E[e−r(τL−t)1{τL≤Tn}|St]

∑n
i=1 e

−r(Ti−t)P(τL > Ti|St)

In order to price the coupon C, one needs to evaluate:

E[e−rτL1{τL≤t}] and P(τL ≤ t)

An integration by parts gives the Laplace transform of P(τL ≤ t) for any λ > 0

∫ +∞

0

dte−λt
P(τL ≤ t) =

E[e−λτL ]

λ

14



Applying Fubini theorem, one observes that

∫ +∞

0

dte−λt
E[e−rτL1{τL≤t}] =

E[e−(r+λ)τL ]

λ

Hence using Proposition 2.10, one is able to compute the Laplace transform
of the desired quantities necessary to evaluate an EDS. One can then use numer-
ical techniques (see Abate and Whitt (1995) for instance) to inverse the Laplace
transform in order to evaluate prices.

4 Stochastic Volatility for CEV Processes

4.1 A Zero Correlation Pricing Framework

Impact of a Stochastic Time Change

Due to the very important dependency between the probability of default, the
level of volatility and the skewness, we were naturally brought to consider ex-
tensions of the CEV model that could relax the high correlation between these
three effects. More precisely, in a CEV model, if one first calibrates the implied
at-the-money volatility, then either the skewness or the CDS will be calibrated
on adjusting the elasticity parameter. Hence, to be able to get some freedom on
the volatility surface, a possible extension is to introduce a stochastic volatility
in the CEV model instead of a constant volatility. A CEV diffusion with a
stochastic volatility is actually just a power of a squared Bessel Process with a
stochastic time change instead of having a deterministic one like in Proposition
2.3.

Another extension is to consider a power of a Bessel Process time changed
by an independent increasing process. More precisely, one writes the following
process for the stock price:

St = ertBESQ
1− δ

2

(δ,x)(ξt) if t < τ. (23)

St = 0 if t ≥ τ.

where x = S
2

2−δ

0 , τ = T0(S) = inf{t > 0, St = 0} = ξ−1(T0(BESQ)) and ξt is an
strictly increasing continuous integrable process independent from the squared
Bessel process. Subordinating a continuous process by an independent Lévy
process is an idea that goes back to Clark (1973). Stochastic time changes are
somehow equivalent to adding a stochastic volatility in stock price diffusions.
The basic intuition underlying this approach could be foreseen through the
scaling property of the Brownian motion, or through Dambis (1965),Dubins
and Schwarz (1965) (DDS) theorem or even its extension to semimartingales
by Monroe (1978). More recently, Carr et al. (2003) generated uncertainty
by speeding up or slowing down the rate at which time passes with a Lévy
process. Our approach differs from the one done in the Lévy processes literature
for mathematical finance: We are not considering the exponential of a time
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changed Lévy process but a power of a time changed Bessel process. Thanks
to Lamperti representation (1972), this means that we are considering a time
changed geometric Brownian motion B. More precisely, it is known that

Rt = exp
(

BCt
+ νCt

)

and Ct =

∫ t

0

ds

R2
s

where (Rt, t ≥ 0) is a Bessel process of dimension δ = 2(1 + ν) starting from
a 6= 0. Hence the time change considered in the stock price is

Yt =

∫ ξt

0

ds

R2
s

and the stock price process as defined in equation (23) can be identified as
follows:

St = ert exp
(

− 2νBYt
− (2ν)2

2
Yt

)

As a consequence, we have now proposed a new class of time changes where
analytical computations are possible thanks to a good knowledge of Bessel pro-
cesses.
For the absence of arbitrage property, there must exist a probability under which
all the actualized stock prices are martingales. A very simple property on mar-
tingales is that a process Mt is a martingale if and only if for every bounded
stopping time T , E[MT ] = E[M0]. Nonetheless, this result is not very conve-
nient. Let us state and give a straightforward proof of the martingality of the
stock price process

Proposition 4.1 Consider Mt = BESQ
1− δ

2

(δ,x)(ξt∧τ ) where following the previ-

ous hypotheses ξt is a strictly increasing continuous integrable process indepen-
dent from BESQ, τ is the (Mt, t ≥ 0) first hitting time of 0 and BESQ(δ,x) is
a squared Bessel process of dimension δ starting from x 6= 0, then (Mt, t ≥ 0)
is a true martingale.

Proof : Let us define Rt = σ(Rs; s ≤ t). We then naturally write the canon-
ical filtrations Rξt

= σ(Rξs
; s ≤ t) and Ξt = σ(ξs; s ≤ t). For any bounded

functional F , we want to compute

E[F
(

Rξu
;u ≤ s

)(

R2−δ
ξt

−R2−δ
ξs

)

]

Since ξ is integrable and independent from R, we obtain by using Fubini theorem

E[F
(

Rξu
;u ≤ s

)(

R2−δ
ξt

−R2−δ
ξs

)

] = E

[

E[F
(

Rξu
;u ≤ s

)(

R2−δ
ξt

−R2−δ
ξs

)∣

∣ Ξt]

]

=

∫

PΞt
(da)E[F

(

Ra(u);u ≤ s
)(

R2−δ
a(t) −R2−δ

a(s)

)

]

The latest quantity is null by Theorem 2.11 and we have then shown that for
s ≤ t < τ

R2−δ
ξs

= E[R2−δ
ξt

|Rξs
]

which is the announced result.
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Pricing Vanilla Options

One can find closed-form formulas for the call and put options prices. Let us
define the two following quantities C0(x, δ,K, T ;S0) and P0(x, δ,K, T ;S0):

C0(x, δ,K, T ;S0) = S0Q(
(Ke−rT )

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
)

−Ke−rT (1 −Q(
S

2
2−δ

0

x
, 2 − δ,

(Ke−rT )
2

2−δ

x
))

P0(x, δ,K, T ;S0) = Ke−rTQ(
S

2
2−δ

0

x
, 2 − δ,

(Ke−rT )
2

2−δ

x
)

−S0(1 −Q(
(Ke−rT )

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
))

From there, one may obtain the option prices under the new general framework.

Proposition 4.2 If one has the following stock price process:

St = ertBESQ
1− δ

2

(δ,x)(ξt) if t < τ.

St = 0 if t ≥ τ.

where x = S
2

2−δ

0 , τ = T0(S) = inf{t > 0, St = 0} and ξt is a strictly increasing
continuous integrable process independent from BESQ whose probability mea-
sure is µξt

(dx), then:

C0 =

∫

R+

C0(x, δ,K, T ;S0)µξT
(dx)

P0 =

∫

R+

P0(x, δ,K, T ;S0)µξT
(dx)

Proof : Let us prove this result for the call option price, a similar result may
be obtained for the put price. One has:

C0 = e−rT
E[(ST −K)+]

= e−rT
E
(

E[(ST −K)+|σ(ξs; s ≤ T )]
)

= E[C0(ξT , δ,K, T ;S0)]

Computing the Default

Having the integrability of the change of time and knowing its density, one could
find a closed-form formula for the probability of default τ = T0(S) = inf{t >
0, St = 0} where St = ertBESQ

1− δ
2

(δ,x)(ξt). Let us now compute the probability

of default the proof of which is left to the reader:
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Proposition 4.3 If one considers a stock price process defined as follows:

St = ertBESQ
1− δ

2

(δ,x)(ξt)

then the probability of default τ = inf{t > 0, St = 0} is given by

P(τ ≤ T ) = E

[

G(1 − δ

2
,
S

2
2−δ

0

ξT
)

]

where G is the complementary Gamma function.

4.2 CESV Models

Stochastic volatility models were used in a Black and Scholes (1973) and Merton
(1973) framework mainly to capture skewness and kurtosis effects, or in terms
of implied volatility skew and smile. In a Constant Elasticity of Variance frame-
work, one would use stochastic volatility not to capture the leverage effect which
partly already exists due to the elasticity parameter but to obtain environments
for instance of low volatilities, high probabilities of default and low skew. Let us
consider an integrable jump-diffusion process (σt, t ≥ 0) to model the volatility.
We will call those diffusions Constant Elasticity of Stochastic Variance (CESV)
for the remainder of the paper. Leblanc (1997) introduced stochastic volatility
for CEV processes.

Hence, the class of models under a risk-neutral probability measure proposed
is of the following form:

dSt

St
= rdt+ σt−S

α−1
t dWt

where σ is assumed to be independent from the Brownian motion driving the
stock price returns. Next, within an equity subject to bankruptcy framework,
we are going to stop the diffusion when the stock reaches 0 just as in the previous
section. As a consequence, our diffusion becomes:

dSt

St
= rdt+ σt−S

α−1
t dWt if t < τ.

St = 0 if t ≥ τ.

where τ = T0(S) = inf{t > 0, St = 0}.
Before giving any concrete examples, let us show how CESV models can be
seen as Bessel processes with a stochastic time change. So first, let us recall
elementary results:

Lemma 4.4 Let R be a time change with s 7→ Rs continuous, strictly increas-
ing, R0 = 0 and Rt <∞, for each t ≥ 0, then for any continuous semimartingale
X and any caglad (left continuous with right limits) bounded adapted process H,
one has:

∫ Rt

0

HsdXs =

∫ t

0

HRu
dXRu

(24)
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Proof : The proof can be found in Revuz and Yor (2001).

Then, using Lemma 4.4, (DDS) theorem and Itô formula, we obtain that

St
d
= ertBESQ

1
2(1−α)

(2−1/(1−α),S
2(1−α)
0 )

(Ht∧τ )

τ = inf {t ≥ 0, St = 0}

Ht = (1 − α)2
∫ t

0

σ2
se

−2(1−α)rsds

Ht is by construction an increasing continuous integrable process.
Hence (e−rtSt, t ≥ 0) is a continuous martingale by Proposition 4.1. All the
results of the previous subsection apply and we are able to compute Vanilla
option and CDS prices conditionally on the knowledge of the law of Ht. As a
result, we showed that a CESV model is in fact a timed-changed power of Bessel
process where the subordinator is an integrated time change Ht =

∫ t

0 hsds with
a specific rate of time change ht that is defined by

ht = (1 − α)2σ2
t e

−2(1−α)rt

We now provide two examples of well-known stochastic volatility models
where we compute the law of the time change.

Heston Model Let us first consider a CIR (1985) diffusion for the volatility
process

dσ2
t = κ(θ − σ2

t )dt+ ησtdW
σ
t and σ2

0 = x > 0

where κ, θ and η are strictly positive constants and W σ is a Brownian motion
independent from W . In fact we are proposing a variation of the Heston (1993)
model by considering α 6= 1. We then want to compute the law of

Ht = (1 − α)2
∫ t

0

σ2
se

−2(1−α)rsds

More precisely, we will compute its Laplace transform, that is to say, for any
λ > 0

E[e−λHt ]

For this purpose, let us use the following result:

Lemma 4.5 If X a squared Bessel process BESQ(δ,x) starting from x 6= 0 and
of dimension δ, then for any function f : R+ → R+ such that for any t > 0:
∫ t

0
f(s)ds <∞, we have

E

[

exp
(

−
∫ t

0

Xsf(s)ds
)

]

=
1

ψ′
f (t)δ/2

exp
x

2

(

φ′f (0) −
φ′f (t)

ψ′
f (t)

)
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where φf is the unique solution of the Sturm-Liouville equation

φ′′f (s) = 2f(s)φf (s)

where s ∈ [0;∞[, φf (0) = 1, φf is positive and non-increasing and

ψf (t) = φf (t)

∫ t

0

ds

φ2
f (s)

Proof : The proof can be found in Pitman and Yor (1982).

By Lemma 2.1, we can see that

Ht
d
=

(2(1 − α)

η

)2
∫

η2

4κ
(eκt−1)

0

Xu
du

(

4κu
η2 + 1

)2[ (1−α)r
κ

+1]

where X is a BESQ( 4κθ

η2 ,x). Hence for any λ > 0,

E[e−λHt ] = E

[

exp
(

−
∫ l(t)

0

Xsfλ(s)ds
)

]

with

l(t) =
η2

4κ
(eκt − 1) and fλ(t) = λ

(2(1 − α)

η

)2(4κu

η2
+ 1

)−2[ (1−α)r
κ

+1]
(25)

Defining a = 8((1 − α)/η)2, b = 4κ/η2 and n = −2( (1−α)r
κ + 1) and using

Lemma 4.5 we are brought to the resolution of the following ordinary differential
equation

φ′′(x) − aλ(bx+ 1)nφ(x) = 0

Then under the boundary conditions, one obtains (see Polyanin and Zaitsev
(2003)):

φλ(x) =
√
bx+ 1

π
sin(νπ)I1/(n+2)

(

2
√

aλ
b(n+2) (bx+ 1)(n+2)/2

)

I−1/(n+2)

(

2
√

aλ
b(n+2)

)

+
√
bx+ 1

K1/(n+2)

(

2
√

aλ
b(n+2) (bx+ 1)(n+2)/2

)

I−1/(n+2)

(

2
√

aλ
b(n+2)

)

(26)

ψλ(x) = C1

√
bx+ 1 I1/(n+2)

( 2
√
aλ

b(n+ 2)
(bx+ 1)(n+2)/2

)

+C2

√
bx+ 1 K1/(n+2)

( 2
√
aλ

b(n+ 2)
(bx+ 1)(n+2)/2

)

(27)
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where with using the fact that I ′ν(x)Kν(x) − Iν(x)K ′
ν(x) = 1/x one has

C1 = −b(n+ 2)

2aλ
K1/(n+2)

( 2
√
aλ

b(n+ 2)

)

C2 =
b(n+ 2)

2aλ
I1/(n+2)

( 2
√
aλ

b(n+ 2)

)

We finally obtain the Laplace transform of Ht for any λ > 0

E[e−λHt ] =
1

ψ′
λ(l(t))δ/2

exp
x

2

(

φ′λ(0) − φ′λ(l(t))

ψ′
λ(l(t))

)

with δ = 4κθ
η2 .

A simpler example for the forward contract is provided in Atlan and Leblanc
(2005).

Hull and White Model Let us now consider the Hull and White (1987)
volatility diffusion that is driven by the following stochastic differential equation:

dσ2
t

σ2
t

= θdt+ ηdW σ
t

where θ and η are positive constants and W σ is a Brownian motion independent
from W . Then H may be computed and after some simplifications, we obtain:

Ht =
4(1 − α)σ2

0

η2

∫
η2t
4

0

dse2(W
σ
s +νs) (28)

where ν = 2
η2 (θ − η2

2 − 2(1 − α)r).

If we define Aν
t =

∫ t

0 exp 2(Bs + νs)ds where B is a Brownian motion, we rec-
ognize a typical quantity used for the pricing of Asian options with analytical
formulae. Thus, we can write

Ht =
4(1 − α)σ2

0

η2
Aν

η2t
4

and obtain its law using Yor (1992), more precisely we have ∀(u, v) ∈ R
2
+:

f|Aν
t
(u) =

exp
(

π2

2t − ν2t
t − 1

2u

)

u2
√

2π3t

∫ +∞

−∞
dxex(ν+1)e−

e2x

2u ψ ex

u
(t) (29)

where:

ψr(v) =

∫ ∞

0

dy exp(− y
2

2v
)e−r cosh(y) sinh(y) sin(

πy

v
) (30)
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4.3 Subordinated Bessel Models

Another way to build stochastic volatility models is to make time stochastic.
Geman, Madan and Yor (2001) recognize that asset prices may be viewed as
Brownian motions subordinated by a random clock. The random clock may
be regarded as a cumulative measure of the economic activity as said in Clark
(1973) and as estimated in Ané and Geman (2000). The time must be an
increasing process, thus it could either be a Lévy subordinator or a time integral
of a positive process. In this paper, we only consider the case of a time integral
because we need the continuity of the time change in order to compute the
first-passage time at 0 to be able to provide analytical formulas for CDS prices.
More generally, for the purpose of pricing path-dependent options, one needs
the continuity of the time change in order to simulate increments of the time
changed Bessel process. Consequently, we study the case of a time change Yt

such as

Yt =

∫ t

0

ysds

where the rate of time change (yt, t ≥ 0) is a positive stochastic process.
As we have seen in the previous subsection, considering a stochastic volatility
(σt, t ≥ 0) in the CEV diffusion is equivalent to the following rate of time change

yt =
σ2

t e
2rt
δ−2

(2 − δ)2

where δ is the dimension of the squared Bessel process. Hence, in order to
provide frameworks where one is able to compute the law of the time change,
we are going to go directly through different modellings of the rate of time
change yt.

Integrated CIR Time change As a first example, let us consider the case
where yt solves the following diffusion

dyt = κ(θ − yt)dt+ η
√
ytdW

Y
t

where WY is independent from the driving Bessel process. The Laplace trans-
form of Yt is then defined for any λ > 0 by :

E[e−λYt ] = e
κ2θt

η2
exp

(

− 2λy0/(κ+ γ coth(γt/2))
)

(

cosh(γt/2) + κ
γ sinh(γt/2)

)2κθ/η2

γ =
√

κ2 + 2η2λ

Integrated Ornstein-Uhlenbeck Time Change We now assume the rate
of time change to be the solution of the following SDE

dyt = −λytdt+ dzt

22



where (zt; t ≥ 0) is a Lévy subordinator. Let ψz denote the log characteristic
function of the subordinator zt, then

E[eiaYt ] = exp
(

iay0
1 − e−λt

λ

)

exp

(
∫ a 1−e−λt

λ

0

ψz(x)

a− λx
dx

)

(31)

Then we can compute the characteristic function of Yt for different subor-
dinators and we present here three examples that one can find in Carr et al.
(2003) for which we recall below the characteristic functions:
a) For a process with Poisson arrival rate ν of positive jumps exponentially
distributed with mean µ, we have a Lévy density that is

kz(x) =
ν

µ
e−

x
µ 1{x>0}

and a log characteristic function

ψz(x) =
ixνµ

1 − ixµ

then we obtain
∫

ψz(x)

a− λx
dx = log

(

(

x+
i

µ

)
ν

λ−iµa (a− λx)
νaµ

λaµ+iλ

)

(32)

b) Let us consider the first time a Brownian motion with drift ν reaches 1. It
is well known that this passage time follows the so-called Inverse Gaussian law
which Lévy density and log characteristic function are respectively

kz(x) =
e−

ν2x
2

√
2πx3

1{x>0}

ψz(x) = ν −
√

ν2 − 2ix

and we then get
∫

ψz(x)

a− λx
dx =

2
√
ν2 − 2ix

λ
+

2
√
ν2λ− 2ia

λ3/2
arctanh

(

√

λ(ν2 − 2ix)

ν2λ− 2ia

)

−ν log(a− λx)

λ

c) Finally, recall the Stationary Inverse Gaussian case which Lévy density and
log characteristic function are

kz(x) =
(1 + ν2x)e−

ν2x
2

2
√

2πx3
1{x>0}

ψz(x) =
iu√

ν2 − 2ix

From these definitions, we obtain
∫

ψz(x)

a− λx
dx =

√
ν2 − 2ix

λ
− 2ia

λ3/2
√
ν2λ− 2ia

arctanh

(

√

λ(ν2 − 2ix)

ν2λ− 2ia

)
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5 Correlation Adjustment

5.1 Introducing some Correlation

We propose a time-changed Bessel process as in the previous section with some
leverage in order to get more independence between skewness and credit spreads,
with respect to which we add a term that contains a negative correlation (equal
to ρ) component between the stock return and the volatility. Hence, let us
consider zt a σ(hs, s ≤ t) adapted positive integrable process such as

eρzt

E[eρzt ]

is a martingale and a general integrated time change Ht =
∫ t

0 hsds such as
E(Ht) <∞ then, we can define the stock price process as follows

St = ertBESQ2−δ
Ht∧τ

eρzt

E[eρzt ]

τ = inf{t > 0;St = 0}

where BESQ is a squared Bessel process of dimension δ < 2 starting from

S
1/(2−δ)
0 .

Let us first show that the process (e−rtSt; t ≥ 0) hence defined is a mar-
tingale. We know from Proposition 4.1 that BESQ2−δ

Ht∧τ
is a martingale. Now

because of the independence of the processes z and BESQ

< BESQ2−δ
H·∧τ

,
eρz·

E[eρz· ]
>t= 0

which ensures that (e−rtSt; t ≥ 0) is a local martingale. Let us show that it is
actually a true martingale. For this purpose, let us recall some results:

Definition 5.1 A real valued process X is of class DL if for every a > 0, the
family of random variables XT1{T<a} is uniformly integrable for all stopping
times.

We now state the following property:

Proposition 5.2 Let Mt be a local martingale such that E|M0| <∞ and such
that its negative part belongs to class DL. Then its negative part is a super-
martingale. Mt is a martingale if and only if E[Mt] = E[M0] for all t > 0.

Proof : The proof may be found in Elworthy, Li and Yor (1999).

All the financial assets being positive, one may use a simpler result than the
previous property the proof of which is left to the reader:
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Corollary 5.3 Let Mt be a positive local martingale such that E|M0| < ∞.
Then Mt is a supermartingale and it is a martingale if and only if E[Mt] =
E[M0] for all t > 0.

Consequently to prove that the actualized stock price process is a martingale
with regards to the filtration Ft = RHt

∨σ(hs; s ≤ t), we just need to show that
for any t > 0

E[e−rtSt] = S0

which is the case since

E[e−rtSt] = E[BESQ2−δ
Ht∧τ

eρzt

E[eρzt ]
] = E

[

E
[

BESQ2−δ
Ht∧τ

eρzt

E[eρzt ]

∣

∣σ(hs; s ≤ t)
]

]

= E

[

eρzt

E[eρzt ]
E
[

BESQ2−δ
Ht∧τ

∣

∣σ(hs; s ≤ t)
]

]

= E
[ eρzt

E[eρzt ]
S0

]

= S0

5.2 Pricing Credit and Equity Derivatives

The computation of the probability of default is immediate from Proposition
4.3 because

τ = inf{t ≥ 0;St = 0} = inf{t ≥ 0;BESQHt
= 0}

and then for any T > 0

P(τ ≤ T ) = E

[

G(1 − δ

2
,
S

2
2−δ

0

HT
)

]

where G is the complementary Gamma function.

Let us compute the European vanilla option prices. For this purpose, we

define C
(ρ)
0 (x, y, δ,K, T ;S0) and P

(ρ)
0 (x, y, δ,K, T ;S0):

C
(ρ)
0 (x, y, δ,K, T ;S0) = S0

eρzT

E[eρzT ]
Q(

(Ke−(rT+ρy)
E[eρzT ])

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
)

−Ke−rT (1 −Q(
S

2
2−δ

0

x
, 2 − δ,

(Ke−(rT+ρy)
E[eρzT ])

2
2−δ

x
))

P
(ρ)
0 (x, y, δ,K, T ;S0) = Ke−rTQ(

S
2

2−δ

0

x
, 2 − δ,

(Ke−(rT+ρy)
E[eρzT ])

2
2−δ

x
)

−S0
eρzT

E[eρzT ]
(1 −Q(

(Ke−(rT+ρy)
E[eρzT ])

2
2−δ

x
, 4 − δ,

S
2

2−δ

0

x
))

Then, the knowledge of the joint law µHt,zt
for any t > 0 enables us to compute

the option prices as in the previous section:

C0 =

∫

R+

∫

R+

C
(ρ)
0 (x, y, δ,K, T ;S0)µHt,zt

(dx, dy)

P0 =

∫

R+

∫

R+

P
(ρ)
0 (x, y, δ,K, T ;S0)µHt,zt

(dx, dy)
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5.3 Examples

Let us go through most of the time changes presented previously and see how
we can obtain the joint law of the couple (Ht, zt).

Integrated CIR Time change Let us consider the following dynamics

dht = κ(θ − ht)dt+ η
√

htdW
H
t

where WH and BESQ are independent and the stability condition 2κθ
η2 > 1 is

satisfied. Let us take

zt = ht + (κ− ρη2

2
)Ht

or equivalently

ρzt = ρ(h0 + κθt) + ρη

∫ t

0

√

hsdW
H
s − ρη2

2

∫ t

0

hsds

Hence, it is obvious that
eρzt

E[eρzt ]

is a local martingale and it is known that it is a martingale as one may check
using the Laplace transform below, that

E[exp(ρη

∫ t

0

√

hsdW
H
s − ρη2

2

∫ t

0

hsds)] = 1

In order to compute credit and equity derivatives prices, we then compute for
any positive λ, µ the Laplace transform of

E[e−λHt−µht ]

It is well known (see Karatzas and Shreve (1991) or Lamberton and Lapeyre
(1995)) that

E[e−λHt−µht ] =
e

κ2θt

η2

(

cosh(γt/2) + κ+µη2

γ sinh(γt/2)
)2κθ/η2 exp

(

− h0B(t, λ, µ)
)

B(t, λ, µ) =
µ
(

γ cosh(γt
2 ) − κ sinh(γt

2 )
)

+ 2λ sinh(γt
2 )

γ cosh(γt
2 ) + (κ+ λη2) sinh(γt

2 )

γ =
√

κ2 + 2η2λ

Heston CESV with correlation In the same class of models, let us now
construct z in terms of the solution of the following stochastic differential equa-
tion

dσ2
t = κ(θ − σ2

t )dt+ ησtdW
H
t and σ2

0 = x.
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First, h is defined by

ht =
σ2

t e
2rt/(δ−2)

(2 − δ)2

Then, following the same method as in the integrated CIR time change case,
we choose z as:

zt = ht + (κ− 2r

δ − 2
− ρη2

2
)Ht

Consequently, eρzt

E[eρzt ] is a martingale.

Hence, it remains to evaluate for any positive t the Laplace transform of
(Ht, zt), that is to say for any positive λ, µ

E[e−λHt−µht ]

In order to compute the above quantity, we use the following result which ex-
tends Lemma 4.6 that one can find in Pitman and Yor (1982).

Lemma 5.4 If X a squared Bessel process BESQ(δ,x) starting from x 6= 0 and
of dimension δ, then for any functions f and g : R+ → R+ such that for any

t > 0:
∫ t

0
f(s)ds <∞, we have

E

[

exp
(

−
∫ t

0

Xsf(s)ds− g(t)Xt

)

]

=
1

(ψ′
f (t) + 2g(t)ψf (t))δ/2

×

exp
x

2

(

φ′f (0) −
φ′f (t) + 2g(t)φf (t)

ψ′
f (t) + 2g(t)ψf (t)

)

where φf is the unique solution of the Sturm-Liouville equation

φ′′f (s) = 2f(s)φf (s)

where s ∈ [0;∞[, φf (0) = 1, φf is positive and non-increasing and

ψf (t) = φf (t)

∫ t

0

ds

φ2
f (s)

Taking

g(t) =
µ

(2 − δ)2

(

η2

4κt+ η2

)1+ 2r
κ(2−δ)

in the above Lemma, we obtain that for any positive λ, µ

E[e−λHt−µht ] =
1

(ψ′
λ(l(t)) + 2 µ

(2−δ)2 e
−(κ+ 2r

2−δ
)tψλ(l(t)))δ/2

×

exp
x

2

(

φ′λ(0) −
φ′λ(l(t)) + 2 µ

(2−δ)2 e
−(κ+ 2r

2−δ
)tφλ(l(t))

ψ′
λ(l(t)) + 2 µ

(2−δ)2 e
−(κ+ 2r

2−δ
)tψλ(l(t))

)

where noting α = δ−1
δ−2 , the functions φλ, ψλ and l are defined respectively in

(25),(26) and (27).
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Integrated Ornstein-Uhlenbeck Time Change We consider the stochas-
tic time change Ht =

∫ t

0 hsds and assume that (ht; t ≥ 0) is given by

dht = −λhtdt+ dzt

where (zt; t ≥ 0) is a Lévy subordinator. Carr et al. (2003) compute the
characteristic function Φ(t, a, b) of (Ht, zt) for any t > 0 and it is given by

E[eiaHt+ibzt ] = exp
(

iah0
1 − e−λt

λ

)

exp

(
∫ b+a 1−e−λt

λ

b

ψz(x)

a+ λb− λx
dx

)

(33)

for any (a, b) ∈ R
2
+ where ψz is the log characteristic function of the subordina-

tor. Let us first notice that

E[eρzt ] = exp(tψz(−iρ))

We quickly recall the computations of Φ(t, a, b) for different subordinators:
a) For a process with Poisson arrival rate ν of positive jumps exponentially
distributed with mean µ, we obtain

∫

ψz(x)

a+ λb− λx
dx = log

(

(

x+
i

µ

)
ν

λ−iµ(a+λb) ((a+ λb) − λx)
ν(a+λb)µ

λ(a+λb)µ+iλ

)

b) For an Inverse Gaussian subordinator of parameter ν, we have

∫

ψz(x)

a+ λb − λx
dx =

2
√
ν2 − 2ix

λ

+
2
√

ν2λ− 2i(a+ λb)

λ3/2
arctanh

(

√

λ(ν2 − 2ix)

ν2λ− 2i(a+ λb)

)

−ν log((a+ λb) − λx)

λ

c) For the Stationary Inverse Gaussian of parameter ν, we write

∫

ψz(x)

a+ λb− λx
dx =

√
ν2 − 2ix

λ

− 2i(a+ λb)

λ3/2
√

ν2λ− 2i(a+ λb)
arctanh

(

√

λ(ν2 − 2ix)

ν2λ− 2i(a+ λb)

)
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6 Conclusion

Twelve continuous stochastic stock price models were built in this paper for
equity-credit modelling purposes, all derived from the Constant Elasticity of
Variance model, and as a consequence from Bessel processes. They all exploit
the ability of Bessel processes to be positive, for those of dimension lower than 2
to reach 0 and for a certain power of a given Bessel process to be a martingale.
We first propose to add a stochastic volatility diffusion to the CEV model, then
more generally to stochastically time change a Bessel process in order to obtain
a stochastic volatility effect, motivated by known arguments that go back to
Clark (1973). Next, in order to add some correlation between the stock price
process and the stochastic volatility, we extend our framework by multiplying
the Bessel process by exponentials of the volatility and correcting it by its mean
in accordance with arbitrage considerations to obtain martingale models that
are martingales with respect to the joint filtration of the time-changed Bessel
process and the stochastic time change itself. Hence, among the different models
proposed based on the CEV with default model, there were first the Constant
Elasticity of Stochastic Variance ones (CESV) taking a Hull and White (1987)
stochastic volatility as well as a Heston (1993) one. We then proposed inte-
grated time change models, by considering an integrated CIR time change and
an Integrated Ornstein-Uhlenbeck time change (see Carr et al. (2003)) with
different subordinators for the process driving the diffusion. We finally added
correlation between stock price returns and volatilities to the models presented
previously and provided quasi-analytical formulas for option and CDS prices for
all of them. Let us note that we discussed the true and local strict martingale
properties of CEV processes, that we naturally extended to the time change
framework.
The models presented and discussed in this paper are not specifically designed
to cope just with Equity-Credit frameworks but they also can be used for in-
stance for FX-rates hybrid modelling by specifying stochastic interest rates. We
can also note that a Poisson jump to default process can be added to the CEV-
like framework in order to deal with credit spreads for short-term maturities.
Campi, Polbennikov and Sbuelz (2005) and Carr and Linetsky (2005) precisely
considered a CEV model with deterministic volatilities and hazard rates. The
latest paper can easily be generalized to fit in our time-changed Bessel frame-
works. Since our goal was to concentrate on continuous diffusions, we leave the
addition of a jump to default for further research.
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