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Abstract

This paper is devoted to the mathematical study of some divergences based on

the mutual information well-suited to categorical random vectors. These diver-

gences are generalizations of the “entropy distance”and“information distance”.

Their main characteristic is that they combine a complexity term and the mu-

tual information. We then introduce the notion of (normalized) information-

based divergence, propose several examples and discuss their mathematical

properties.

Keywords and phrases. Information theory, entropy distance, information distance, tri-

angular inequality.
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1 Introduction

Shannon information theory, usually just called information theory was introduced in

1948, Shannon (1948). The theory aims at providing a means for measuring information.

More precisely, the amount of information in an object may be measured by its entropy

and may be interpreted as the length of the description of the object by some encoding

way. In the Shannon approach, the objects to be encoded are assumed to be outcomes of

a known source. Shannon theory also provides the notion of mutual information (related

to two objects) which plays a central role in many applications, from lossy compression

to machine learning methods.

Several authors noticed that it would be useful to modify the mutual information

such that the resulting quantity becomes a metric in a strict sense. As a first example,

Crutchfield (1990), Hillman (1998) introduced the entropy distance defined as the sum

of the conditional entropies. Other interesting measures are the information distance

Bennett et al. (1998) and its normalized version named similarity metric introduced by

Li et al. (2004) in the context of the Kolmogorov complexity theory. More precisely,

the information distance is defined as the maximum of the conditional Kolmogorov

complexities. The similarity metric is universal in the sense defined by the authors

and is not computable, since it is based on the uncomputable notion of Kolmogorov

complexity.

Recent papers have demonstrated useful application of suitable version of the sim-

ilarity metric in areas as diverse as genomics, virology, languages, literature, music,

handwritten digits and astronomy, Cilibrasi and Vitányi (2005b). To apply the metric

to real data, the authors have to replace the use of the noncomputable Kolmogorov

complexity by an approximation using standard real-world compressors : GenCompress

for genomics, Li et al. (2001), the Normalized Compression Distance (NCD) for music

clustering, Cilibrasi et al. (2003), the Normalized Google Distance (NGD) for automatic

meaning discovery, Cilibrasi and Vitányi (2005a), are examples of effective compressors.

To include the information distance and the similarity metric in a framework based on

information theory concepts, we make use of the principle that expected Kolmogorov

complexity equals Shannon entropy and interested reader can refer to Grünwald and

Vitányi (2004), Leung-Yan-Cheong and Cover (1978), Hammer et al. (2000) for more

details. Consequently, the entropy and information distances are both expressed in terms
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of conditional entropies: the first one as the sum and the second one as the maximum.

Kraskov et al. (2003) gives a proof of the triangular inequality for these distances and

their respective normalized versions.

In the supervised learning framework, the use of some selection method of covariables

amoung a large number is required when it is assumed that the data size is too small

with respect to the number of the available covariables in order to apply any existing

discriminant analysis method. Such a problem has been widely treated, Liu and Motoda

(1998). The approach undertaken by Robineau (2004) is mainly based on three kinds

of methodological tools. The first one is a supervised quantization method consisting in

the simplification of covariables too complex (in particular with a too large number of

possible values). Indeed, our main belief is that, in order to predict the class variable

generally representing a small number of categories of data, each possibly predictive

covariable must not be too complex. The second one is a more usual step by step

selection method combining the simplified covariables together in order to detect cluster

of data of the same class. The last one is aimed at detecting redundancy among the

covariables set. These three tasks may be realized using the entropy or information

distances (or their normalized versions). Let us emphasize some properties allowing

to understand the usefulness of these criterions in such a context. The entropy and

information distances can be rewritten as the difference between a complexity term

(respectively the joint entropy and the maximum of the marginal entropies) and the

mutual information. Moreover, both are independence measures with the particular

property to be minimal (in fact equal to 0) when random vectors share exactly the same

information. Robineau (2004) proposes then to extend the definition of the entropy

and information distances by introducing the notion of information-based divergence

∆
X ,Y

between two categorical random vectors X and Y defined as the difference of

some complexity term C
X ,Y

and the mutual information I
X ,Y

and such that C
X ,Y

is an

upper bound of I
X ,Y

reached when X and Y share exactly the same information. The

notion of normalized information-based divergence δ
X ,Y

derives directly by dividing the

associated information-based divergence ∆
X ,Y

by the complexity term C
X ,Y

. Particular

examples are given by the normalized versions of the entropy and information distances.

The paper is organized as follows. In Section 2, we recall the definition and their

main properties of the entropy and information distances (and their normalized version).
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Similarly to Granger et al. (2004), we extract the main characteristics to define some

general concept of information divergence which could be theoretically applied in a more

general setting (continuous, discrete, . . . ). Section 3 concentrates itself on categorical

data (and in particular discrete) random vectors, as it is usually the case in most of ap-

plications using entropy or information distance. We give the definition of (normalized)

information-based divergence and propose several examples. We propose some sufficient

condition for these divergences to verify a triangular’s type inequality. Finally, we point

out that the notion of information-based divergence is useful to detect redundancy.

2 Normalized entropy distance and normalized informa-

tion distance

We denote by X,Y and Z three non deterministic categorical random vectors (in par-

ticular discrete-valued random vectors).

2.1 Some notation

We denote by H
X

(when it exists) the Shannon entropy of X given by

H
X

= −
∑

x∈ΩX

pX(x) log(pX(x)) with pX(x) = P(X = x),

In the same way, one can define the joint entropy of X and Y denoted by H
X ,Y

, the

conditional entropy of X (resp. Y ) by Y (resp. X) denoted by H
X |Y

(resp. H
Y |X

).

Finally, we denote by I
X ,Y

the mutual information between the random vectors X and

Y . When these different quantities exist, the following relations hold (see e.g. Cover

and Thomas (1991)):

H
X ,Y

= H
X

+ H
Y |X

= H
Y

+ H
X |Y

(1)

I
X ,Y

= H
X
− H

X |Y
= H

Y
− H

Y |X
= H

X
+ H

Y
− H

X ,Y
(2)

2.2 Definition and characteristics

We now shall present some measures allowing to overcome some drawbacks of the mutual

information. As a first generalization, several authors noticed that it would be useful to
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modify the mutual information such that the resulting quantity becomes a metric in a

strict sense. Two such measures exist and are well-known in the litterature. The first one

called “entropy distance” is derived from the domain of information theory. The second

one called “information distance”originates in works around the Kolmogorov complexity.

Both measures are defined (when they exist) for two random vectors X and Y by:

• Entropy distance:

D
E

X ,Y
= H

X |Y
+ H

Y |X
(3)

• Information distance:

D
I

X ,Y
= max

(

H
X |Y

,H
Y |X

)

. (4)

Both measures are indeed some modifications of mutual information since from (1)

and (2), we have

D
E

X ,Y
= H

X ,Y
− I

X ,Y
and D

I

X ,Y
= max (H

X
,H

Y
) − I

X ,Y
. (5)

The quantities H
X ,Y

and max (H
X

,H
Y

) are upper-bounds of the mutual information

I
X ,Y

that are reached when X and Y share exactly the same information. In other

words, these two measures are nonnegative and vanish if and only if H
Y |X

= H
X |Y

= 0

expressing the fact that X (resp. Y ) predicts Y (resp. X) with probability 1.

These measures satisfy

D
E

X ,Y
≤ H

X ,Y
and D

I

X ,Y
≤ max (H

X
,H

Y
) , (6)

where the equality holds if the vectorsX and Y are independent. As noticed by Kaltchenko

(2004), Li and Vitányi (1997) argued that in Bioinformatics an unnormalized distance

may not be a proper evolutionary distance measure. It would put two long and complex

sequences that differ only by a tiny fraction of the total information as dissimilar as two

short sequences that differ by the same absolute amount and are completely random

with respect to one another. To overcome this problem within the algorithmic frame-

work Li and Vitányi (1997) form two normalized versions of distances D
E

and D
I

. Their

Shannon version have been proposed and studied by Kraskov et al. (2003)

Definition 1 When they exist, one defines the two following measures:
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• Normalized entropy distance:

dE
X ,Y

=
H

X |Y
+ H

Y |X

H
X ,Y

• Normalized information distance:

d
I

X ,Y
=

max
(

H
X |Y

,H
Y |X

)

max (H
X

,H
Y

)

Since H
X ,Y

= 0 ⇔ H
X

= H
Y

= 0 ⇔ max (H
X

,H
Y

) = 0, we set by convention dE
X ,Y

= 0

(resp. d
I

X ,Y
= 0) when H

X
= H

Y
= 0.

We are encouraged to define the following class of equivalence: the vectors X and

Y are said to be equivalent if X (resp. Y ) predicts Y (resp. X) with probability 1 and

one will denote

X ∼ Y ⇔ H
Y |X

= H
X |Y

= 0 ⇔ I
X ,Y

= H
X ,Y

= H
X

= H
Y

(7)

Since X and Y are not deterministic this leads to the following equivalences

dE
X ,Y

= 0 ⇔ d
I

X ,Y
= 0 ⇔X ∼ Y .

From (1) and (2), one can obtain the following expressions for these two measures al-

lowing some new interpretations.

Proposition 1 We have the following expressions for dE
X ,Y

and d
I

X ,Y
.

dE
X ,Y

= 1 −
I

X ,Y

H
X ,Y

(8)

d
I

X ,Y
= 1 −

I
X ,Y

max (H
X

,H
Y

)
(9)

= max

(

H
X |Y

H
X

,
H

Y |X

H
Y

)

(10)

Proposition 2 The measures dE et d
I

constitute two distances bounded by 1.

To our knowledge, these results have been proved by Kraskov et al. (2003). Proofs

are very similar to proofs of Li et al. (2003) who consider the algorithmic version of these

distances. The proof is then omitted, but in Section 3.3, we propose a result extending

this one in the sense that we give conditions on measures that can be written as (8)

and (9) to constitute a metric.
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2.3 Concept of information divergence

We can exhibit from the previous study related to D
I

, D
E

, d
I

and dE , some character-

istics useful for an attempt to define the concept of information divergence denoted by

∆
X ,Y

in a more general setting. Let us first consider a similarity measure IX,Y (not

necessarily the mutual information) minimal (in fact equal to 0) when X and Y are in-

dependent, and maximal when the distributions of X given Y = y and Y given X = x

are trivial. An information divergence ∆
X ,Y

could satisfy the following properties:

[P1] symmetry: ∆
X ,Y

= ∆
Y ,X

.

[P2] nonnegativeness: ∆
X ,Y

≥ 0.

[P3] ∆
X ,Y

is minimum (i.e. ∆
X ,Y

= 0) if and only if X and Y share exactly the

same information (i.e. IX,Y is maximal).

[P4] ∆
X ,Y

is maximum if and only if X and Y are independent (i.e. IX,Y = 0).

Other supplementary properties could be that ∆
X ,Y

:

[P5] is normalized: ∆
X ,Y

∈ [0, 1] and ∆
X ,Y

= 1 when X and Y are independent.

[P6] satisfies a triangular inequality: ∆
X ,Y

≤ ∆
X ,Z

+ ∆
Z ,Y

.

[P7] invariant under continuous and strictly increasing transformations ϕ(·), ψ(·)
of the vectors X and Y , whenever they are quantitative random vectors.

There exists a large litterature on the discussion of criteria satisying the previous

stated properties. We may cite Ullah (1996), or a recent work of Granger et al. (2004)

who propose to detect the dependence between two possibly nonlinear processes through

the Bhattacharya-Matusita-Hellinger measure of dependence given by

Sρ =
1

2

∫ ∫

(

√

f1(x,y) −
√

f2(x,y)
)2

dxdy,

where f1 (resp. f2) is the joint density (resp. the product of marginal densities) of X

and Y . This measure, that has the other advantage to be applicable to continuous or

discrete variables, satisfies properties [P1]-[P7] (in fact let us precise that [P7] is only

valid if ϕ(·) = ψ(·)).
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In some framework where the purpose is to predict some reference variable, one may

find interesting to work with a divergence ∆
X ,Y

which combines the minimization of a

nonnegative complexity term denoted by CX,Y and the maximization of a nonnegative

information term IX,Y . The quantity CX,Y is called a complexity term since it is

assumed to be expressed as a function of HX, HY and HX,Y measuring in some way

respectively the complexity of vectors X, Y and (X,Y ). In other words, we may expect

[P8] When X1 and X2 have the same complexity (in the sense that CY ,X1 =

CY ,X2): ∆
Y ,X1

< ∆
Y ,X2

whenever X1 has a better knowledge about Y than X2

(i.e. IY ,X1 > IY ,X2).

[P9] When X1 and X2 have the same knowledge about Y (i.e. IY ,X1 = IY ,X2):

∆
Y ,X1

< ∆
Y ,X2

wheneverX1 is simpler than X2 in the sense that CY ,X1 < CY ,X2.

Moreover, in this particular situation the fact that

[P9bis] CY ,X1 < CY ,X2 must be equivalent to HX1 < HX2 .

[P10] When X1 and X2 share almost exactly the same information (i.e. IX1,X2

is almost maximal and ∆
X1,X2

≃ 0) then the difference between the divergences

∆
Y ,X1

and ∆
Y ,X2

is almost zero (i.e. ∆
Y ,X1

≃ ∆
Y ,X2

).

A class of candidates that satisfy both of the previous statements could be of the form:

∆
X ,Y

=
CX,Y − IX,Y

WX,Y
, (11)

where WX,Y is a positive term. When WX,Y = CX,Y we obtain a normalized informa-

tion divergence. The properties [P2]-[P3] and the form (11) implies that CX,Y is an

upper bound of IX,Y reached when X and Y share exactly the same information.

In the rest of this paper we concentrate ourself on criteria described by (11) that are

in addition well-suited to categorical random variables (and in particular discrete random

variables). In such a framework, we shall only describe some entropic-based criteria (i.e.

HX = H
X

), and so the information term will be set to the mutual information I
X ,Y

.
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3 Information-based divergences and their normalized ver-

sions

We denote by X,Y and Z three non deterministic categorical random vectors (in par-

ticular discrete-valued random vectors).

3.1 Definition and examples

Definition 2 Two criteria ∆ and δ are respectively called an information-based diver-

gence and a normalized information-based divergence (in short IB-divergence and NIB-

divergence ) if they can respectively be written

∆
X ,Y

= C
X ,Y

− I
X ,Y

(12)

δ
X ,Y

=
C

X ,Y
− I

X ,Y

C
X ,Y

= 1 −
I

X ,Y

C
X ,Y

(13)

where the term C
X ,Y

constitutes a normalization term satisfying

(i) C
X ,Y

> 0.

(ii) C
X ,Y

= C
Y ,X

(iii) I
X ,Y

≤ C
X ,Y

and this bound is achieved if the random vectors X and Y are

equivalent, i.e. if X ∼ Y .

This definition implies automatically that an IB-divergence ∆
X ,Y

(resp. a NIB-

divergence δ
X ,Y

) satisfies properties [P1]-[P4] (resp. [P1]-[P5]). In the rest of the

paper, we impose on the term C
X ,Y

to be expressed as

C
X ,Y

= fC

(

H
X |Y

,H
Y |X

, I
X ,Y

)

, (14)

where fC(·, ·, ·) is a nonnegative function. Under such an expression of C
X ,Y

, the property

[P7] is ensured since the conditional entropies and the mutual information depend only

on the joint probability distribution of the categorical random vectors X and Y .

From now on, we propose a series of examples for which we adopt the following con-

vention: an IB-divergence (resp. a NIB-divergence ) satisfying the triangular inequality

is denoted D (resp. d ) rather than ∆ (resp. δ ) . Moreover, each example will be
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particularized by some discriminating additonal letter in the same manner as D
E

and

D
I

(resp. dE and d
I

) which clearly constitute IB-divergences (resp. NIB-divergences).

In Robineau (2004), we investigate about two new entropic criteria naturally ex-

pressed by

δD
X ,Y

=
1

2

(

H
X |Y

H
X

+
H

Y |X

H
Y

)

and δS
X ,Y

=
H

X |Y
+ H

Y |X

H
X

+ H
Y

.

which can be rewritten as NIB-divergences:

δD
X ,Y

= 1 −
I

X ,Y

CD
X ,Y

with CD
X ,Y

=

(

1

2

(

1

H
X

+
1

H
Y

))−1

(15)

δS
X ,Y

= 1 −
I

X ,Y

CS
X ,Y

with CS
X ,Y

=
1

2
(H

X
+ H

Y
) . (16)

Their non normalized version are expressed as ∆D
X ,Y

= CD
X ,Y

−I
X ,Y

and DS
X ,Y

= CS
X ,Y

−
I

X ,Y
. To be convinced that the measures δD and δS lie in [0, 1], let us notice that

these two measures are particular cases of the following family of IB-divergence or NIB-

divergence with normalization terms of the form:

C
X ,Y

= g−1

(

1

2
(g(H

X
) + g(H

Y
))

)

(17)

where g(·) is any nonnegative monotone function on R
+. Indeed, by assuming that g(·)

is an increasing function for example, we have

I
X ,Y

= g−1

(

1

2

(

g(I
X ,Y

) + g(I
X ,Y

)
)

)

≤ g−1

(

1

2
(g(H

X
) + g(H

Y
))

)

.

By choosing g(·) = (·)α for some α > 0, the normalization term is given by C
X ,Y

=

2−1/α||(H
X

,H
Y

)||α, where ||x||α = (
∑n

i=1 |xi|α)1/α denotes the norm of some vector x

of length n. Note that, when α = +∞, we retrieve the distances D
I

and d
I

. Another

family can be obtained by choosing the normalization term as follows:

C
X ,Y

= g−1

(

√

g(H
X

) × g(H
Y

)

)

(18)

Among both of these families, we shall consider the following IB-divergences ∆R , ∆P

and NIB-divergences δR , δP with respective normalization terms:

CR
X ,Y

=

(

√

H
X

+
√

H
Y

2

)2

(19)

CP
X ,Y

=
√

H
X
× H

Y
. (20)
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Let us now propose a result to arrange the different examples considered in this

paper:

Proposition 3 For any ∆(1), ∆(2) IB-divergences or any δ(1), δ(2) NIB-divergences with

respective normalization terms C(1) and C(2), the following equivalence holds:

∆(1)
X ,Y

≤ ∆(1)
X ,Y

⇐⇒ δ(1)
X ,Y

≤ δ(1)
X ,Y

⇐⇒ C(1)
X ,Y

≤ C(2)
X ,Y

. (21)

Due to

CD
X ,Y

≤ CP
X ,Y

≤ CR
X ,Y

≤ CS
X ,Y

≤ CI
X ,Y

≤ CE
X ,Y

(22)

the respective IB-divergences and NIB-divergences are then ordered according to equa-

tion (21).

Proof. Equation (21) is direct. To obtain (22) it is sufficient to see that

2H
X

H
Y

H
X

+ H
Y

≤
√

H
X

H
Y
≤
(

√

H
X

+
√

H
Y

2

)2

≤ H
X

+ H
Y

2
≤ max(H

X
,H

Y
) ≤ H

X ,Y

The following proposition gives a larger class of examples of IB-divergences and NIB-

divergences.

Proposition 4 Let (α(j))j=1,...,J be some vector of probability weights for some J ≥ 1.

(i) Let ∆(1), . . . ,∆(J), J IB-divergences, and let δ(1), . . . , δ(J), J NIB-divergences,

then the measures defined by

∆
X ,Y

=

J
∑

j=1

α(j) ∆(j)
X ,Y

and δ
X ,Y

=

J
∑

j=1

α(j) δ(j)
X ,Y

(23)

are respectively an IB-divergence and a NIB-divergence with normalization term given

by

C
X ,Y

=





J
∑

j=1

α(j)

C
(j)
X ,Y





−1

. (24)

(ii) Let ∆(1), . . . ,∆(j), J IB-divergences and δ(1), . . . , δ(j), J NIB-divergences with

normalization terms C(1)
X ,Y

, . . . , C(J)
X ,Y

then the measures defined by

∆
X ,Y

= C
X ,Y

− I
X ,Y

and δ
X ,Y

= 1 −
I

X ,Y

C
X ,Y

, with C
X ,Y

=

J
∑

j=1

α(j) C(j)
X ,Y

(25)
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are also respectively an IB-divergence and a NIB-divergence.

The proof is immediate.

Given some normalization term of the form (14), the property [P3] may be expressed

by: fC(x, y, z) = z ⇔ x = y = 0. In fact, [P3] should be extended to the more useful

assumption: ∆
X ,Y

is near from minimum 0 if and only if X and Y share almost the

same information. This may be translated by:

[P3bis] The following implications hold: given any z ≥ 0,

• for all γ > 0 there exists ε > 0 such that for all x, y ≥ 0

|fC(x, y, z) − z| ≤ ε =⇒ max(x, y) ≤ γ. (26)

• for all ε > 0 there exists γ > 0 such that for all x, y ≥ 0

max(x, y) ≤ γ =⇒ |fC(x, y, z) − z| ≤ ε. (27)

Equation (27) derives from the continuity of fC . Moreover, we assert that any normal-

ization term C of the form (17) or (18) including the whole of our examples satisfies (26)

and so [P3bis] by assuming, in addition, that the function g(·) (and then g−1(·)) is

continuous. Let us concentrate on normalization terms C of the form (17): the following

implications hold

g−1

(

g(x + z) + g(y + z)

2

)

− z → 0

=⇒ 1

2
(g(x + z) − g(z)) +

1

2
(g(y + z) − g(z)) → 0

=⇒ max(x, y) → 0.

For normalization terms C of the form (18):

g−1
(

√

g(x + z) × g(y + z)
)

− z → 0

=⇒
(

log(g(x + z)) − log(g(z))
)

+
(

log(g(y + z)) − log(g(z))
)

→ 0

=⇒ max(x, y) → 0.
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3.2 Prediction problem framework

We pay attention on properties related to the prediction of some fixed random vector Y .

Recall that our purpose is to find the random vectorX that minimizes ∆
Y ,X

(resp. δ
Y ,X

)

which combines a complexity term C
X ,Y

(to minimize) and an information term I
X ,Y

(to maximize). Let us imagine that we already get some X1 and its associated measure

∆
Y ,X1

(resp. δ
Y ,X1

). After evaluating ∆
Y ,X2

(resp. δ
Y ,X2

), we may be interested in

describing the conditions under which X2 is better or worse than X1:

Proposition 5 Two situations may occur

Case 1: we choose X2 instead of X1 when

∆
Y ,X2

< ∆
Y ,X1

⇐⇒ C
Y ,X2

− C
Y ,X1

< I
Y ,X2

− I
Y ,X1

(28)

δ
Y ,X2

< δ
Y ,X1

⇐⇒
C

Y ,X2
− C

Y ,X1

C
Y ,X1

<
I

Y,X2
− I

Y,X1

I
Y,X1

(29)

Case 2: we keep X1 and reject X2 when

∆
Y ,X2

≥ ∆
Y ,X1

⇐⇒ C
Y ,X2

− C
Y ,X1

≥ I
Y ,X2

− I
Y ,X1

(30)

δ
Y ,X2

≥ δ
Y ,X1

⇐⇒
C

Y ,X2
− C

Y ,X1

C
Y ,X1

≥
I

Y,X2
− I

Y,X1

I
Y,X1

(31)

Tab. 1 summarizes the computations of absolute and relative differences of complexity

increments for the examples presented in the previous section.

This result implies automatically that the properties [P8] and [P9] are satisfied. Let

us comment more precisely the previous proposition:

• Case 1 holds when

1. X2 is simpler than X1 (i.e. C
Y ,X2

− C
Y ,X1

< 0) and X2 is at least as

informative as X1 (i.e. I
Y ,X2

− I
Y ,X1

≥ 0).

2. X2 and X1 have the same complexity (i.e. C
Y ,X2

− C
Y ,X1

= 0) and X2 is

more informative than X1 (i.e. I
Y ,X2

− I
Y ,X1

> 0).

3. X2 is simpler and less informative than X1 and such that the absolute (resp.

relative) excess of complexity is lower than the absolute (resp. relative) gain of

information that is C
Y ,X2

−C
Y ,X1

< I
Y ,X2

−I
Y ,X1

< 0 (resp.
C

Y ,X2
−C

Y ,X1
C

Y ,X1

<

I
Y ,X2

−I
Y ,X1

I
Y ,X1

< 0).
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4. X2 is more complex and more informative thanX1 and such that the absolute

(resp. relative) excess of complexity is lower than the absolute (resp. relative)

gain of information that is 0 < C
Y ,X2

− C
Y ,X1

< I
Y ,X2

− I
Y ,X1

(resp. 0 <
C

Y ,X2
−C

Y ,X1
C

Y ,X1

<
I
Y ,X2

−I
Y ,X1

I
Y ,X1

).

• Case 2 holds when

1. X2 is at least as complex as X1 (i.e. C
Y ,X2

− C
Y ,X1

≥ 0) and X2 is at most

as informative as X1 (i.e. I
Y ,X2

− I
Y ,X1

≤ 0).

2. X2 is simpler and less informative than X1, and such that the absolute (resp.

relative) excess of complexity is greater than or equal to the absolute (resp.

relative) gain of information that is 0 > C
Y ,X2

−C
Y ,X1

≥ I
Y ,X2

− I
Y ,X1

(resp.

0 >
C

Y ,X2
−C

Y ,X1
C

Y ,X1

≥
I
Y ,X2

−I
Y ,X1

I
Y ,X1

).

3. X2 is more complex and more informative thanX1, and such that the absolute

(resp. relative) excess of complexity is greater than or equal to the absolute

(resp. relative) gain of information that is C
Y ,X2

−C
Y ,X1

≥ I
Y ,X2

−I
Y ,X1

> 0

(resp.
C

Y ,X2
−C

Y ,X1
C

Y ,X1

≥
I
Y ,X2

−I
Y ,X1

I
Y ,X1

> 0).

More specifically, two frameworks may be of special interest:

• X2 is as informative as X1 (i.e. I
Y ,X1

= I
Y ,X2

): we expect to select the random

variable with the smallest entropy. This is effectively what happens when [P9bis]

is satisfied. We assert that for all the examples considered in the previous section

[P9bis] is true. Indeed, from Tab. 1, [P9bis] holds for the normalization terms

C• with • = I, S,R, P,D in the general case and for CE in this framework since

H
Y ,X2

− H
Y ,X1

= H
X2

− H
X1

.

• X1 = g(X2) with g some surjective (but not injective) mapping: X2 is more

complex than X1 and X2 is at least as informative as X1. Consequently, this case

is not trivial since both absolute (resp. relative) excess of complexity and absolute

(resp. relative) gain of information are competing. Let us give two important

examples of such a context.

1. quantization problem: given a quantized version X1 of some (continuous)

random variable with its associated partition A1, the problem is to know
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whether some new quantized version X2 with an associated partition A2 finer

than A1 should be preferred to predict Y .

2. variables selection problem: suppose one wants to construct an ascending

selection method. The vector X1 could represent some selected set of covari-

ables and X2 = (X1,X
′
2) a larger set of covariables. The aim is so to know

if X ′
2 should be integrated to the selected set or not.

Some simple algorithms of quantization and selection methods are proposed in Robineau

(2004) using these results.

C
X ,Y

Expression of C
Y ,X1

− C
Y ,X2

Expression of
C

Y ,X1
−C

Y ,X2
C

Y ,X1

CE
X ,Y

H
Y ,X2

− H
Y ,X1

H
Y ,X2

−H
Y ,X1

H
Y ,X1

CI
X ,Y

max(H
Y

, H
X2

) − max(H
Y

, H
X1

)
max(H

Y
,H

X2
)−max(H

Y
,H

X1
)

max(H
Y

,H
X1

)

CS
X ,Y

1
2

(

H
X2

− H
X1

) H
X1

H
X1

+H
Y

× H
X2

−H
X1

H
X1

CR
X ,Y

1
4

(

H
X2

− H
X1

)

+

√
H

Y

2

(
√

H
X2

−
√

H
X1

)

(

H
X2

−H
X1

)

+2
√

H
Y

(

√

H
X2

−
√

H
X1

)

(√
H

Y
+
√

H
X1

)2

CP
X ,Y

√

H
Y

(
√

H
X2

−
√

H
X1

)

√

H
X2

−
√

H
X1

√

H
X1

CD
X ,Y

2H2
Y

(H
Y

+H
X1

)(H
Y

+H
X2

)

(

H
X2

− H
X1

)

H
Y

H
Y

+H
X2

× H
X2

−H
X1

H
X1

Table 1: Expressions of the absolute and relative increments of normalization terms for

the different examples considered.

3.3 Around the triangular inequality’s property

The question arises now whether an IB-divergence or a NIB-divergence satisfies the prop-

erty [P6] that is a triangular inequality. The following proposition establishes sufficient

conditions for such measures to constitute a metric.
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Lemma 6

H
X ,Y

≤ H
X ,Z

+ H
Y ,Z

− H
Z

(32)

I
X ,Y

≥ I
X ,Z

+ I
Y ,Z

− H
Z

(33)

Proof. From general properties on entropy, one can obtain

H
X ,Y

≤ H
X ,Y ,Z

= H
X ,Z

+ H
Y |X ,Z

≤ H
X ,Z

+ H
Y |Z

= H
X ,Z

+ H
Y ,Z

− H
Z
. (34)

Equation (33) directly derives from (2).

Proposition 7 Assume the normalization term defining an IB-divergence satisfies the

following property:

(i)

C
X ,Y

≤ C
X ,Z

+ C
Y ,Z

− H
Z
. (35)

Then, the associated IB-divergence satisfies the triangular inequality, that is

∆
X ,Y

≤ ∆
X ,Z

+ ∆
Y ,Z

. (36)

In addition, if C satisfies

(ii)

C
X ,Z

≥ max (H
X

,H
Z
) , (37)

then the associated NIB-divergence satisfies also a triangular inequality, that is

δ
X ,Y

≤ δ
X ,Z

+ δ
Y ,Z

. (38)

Proof. Since the following quantity

A = −(C
X ,Y

− I
X ,Y

) + (C
X ,Z

− I
X ,Z

) + (C
Y ,Z

− I
Y ,Z

),

is nonnegative from (33) and (35), we have immediately (36). Moreover, the following

equation is valid

δ
X ,Y

≤ 1 −
I

X ,Y

C
X ,Y

+ A
, (39)

Now, it is also easy to see from (37) that

A + C
X ,Y

≥ C
X ,Z

+ C
Y ,Z

− H
Z
≥ max

(

C
X ,Z

, C
Y ,Z

)

.
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From (39) it follows

δ
X ,Y

≤
C

X ,Z
− I

X ,Z
+ C

Y ,Z
− I

Y ,Z

max
(

C
X ,Z

, C
Y ,Z

) ≤
C

X ,Z
− I

X ,Z

C
X ,Z

+
C

Y ,Z
− I

Y ,Z

C
Y ,Z

= δ
X ,Z

+ δ
Y ,Z

.

Remark 1 In Proposition 7, there is no implication between (35) and (37). Indeed, one

may check that the NIB-divergence δS satisfies the first one but not the second one. Now

consider a NIB-divergence with normalization term C
X ,Y

= max (H
X

,H
Y

)+H
X |Y

H
Y |X

.

By choosing X,Y and Z such that H
X |Y

= H
Y |X

= I
X ,Y

= H
Z
/3 = H

X ,Y
/3 > 2, one

asserts that (37) is satisfied but not (35).

Remark 2 Let us consider a NIB-divergence δ with normalization term C
X ,Y

= C ′
X ,Y

+

max (H
X

,H
Y

) such that C ′
X ,Y

≥ 0 (necessarily C ′
X ,Y

= 0 whenever X ∼ Y ). Then, ∆

and δ satisfy a triangular inequality if C ′ also satisfies a triangular inequality. However,

this is not a necessary condition. Indeed, the triangular inequality is not satisfied for the

same example of the previous remark with C ′
X ,Y

= H
X |Y

H
Y |X

for which C ′
X ,Z

= C ′
Y ,Z

=

0 whereas C ′
X ,Y

> 0.

Let us now propose some examples and consequences through the following corollary.

Corollary 8

(i) The measures D
E

, D
I

and DS satisfy the condition (35) and so are metrics.

(ii) The measures dE and d
I

satisfy the conditions (35) and (37) and so are metrics.

(iii) Let (α(j))j=1,...,J be some vector of probability weights for some J ≥ 1. Let

∆(1), . . . ,∆(J), J IB-divergences (resp. δ(1), . . . , δ(J), J NIB-divergences) with normal-

ization terms C(1)
X ,Y

, . . . , C(J)
X ,Y

satisfying (35) (resp. (35) and (37)) then these measures

defined by (25) satisfy a triangular inequality.

Proof. (i) and (ii) Equation (32) corresponds exactly to (35) for CE
X ,Y

= H
X ,Y

. And

since H
X ,Z

≥ max (H
X

,H
Z
), we have proved that D

E

and dE are metrics. Concerning

D
I

and d
I

, the normalization term corresponds to CI
X ,Y

= max (H
X

,H
Y

). Thus it is

sufficient to prove (35) which is quite obvious. Indeed,

max (H
X

,H
Z
) + max (H

Y
,H

Z
) − H

Z
≥ max (H

X
,H

Y
) .
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Concerning, DS it is easily checked that the associated normalization term satisfies

CS
X ,Y

− CS
X ,Z

− CS
Y ,Z

+ H
Z

= 0.

(iii) trivial.

We did not state in the previous corollary the obvious following result : let δ(1), . . . , δ(J),

J NIB-divergences satisfying the triangular inequality (38), then the measure defined

by (23), that is as a linear combination, satisfies also (38). A similar result can be

written for IB-divergences that are metrics.

The measure ∆D (and so δD) does not satisfy the condition (35). Indeed, let us

choose X, Y and Z such that H
X

= H
Y

= 1
3H

Z
> 0, then

CD
X ,Z

+ CD
Y ,Z

− H
Z
− CD

X ,Y
= −H

X
< 0,

which is in contradiction with (35). Moreover, if X, Y and Z are such that H
X

= H
Y

=
1
4H

Z
> 0, then

CP
X ,Z

+ CP
Y ,Z

− H
Z
− CP

X ,Y
= −1

4
H

Z
< 0.

And since CR
X ,Y

= 1
2CP

X ,Y
+ 1

2CS
X ,Y

, the same choice of X, Y and Z leads to

CR
X ,Z

+ CR
Y ,Z

− H
Z
− CR

X ,Y
=

1

2

(

CP
X ,Z

+ CP
Y ,Z

− H
Z
− CP

X ,Y

)

= −1

8
H

Z
< 0.

Both of the previous equations imply that ∆P
X ,Y

and ∆R
X ,Y

(and so δ
X ,Y

and δR
X ,Y

) do

not satisfy the condition (35).

One can also wonder if the NIB-divergence δS defined by (16) satisfies (35) and (37).

The associated normalization term, C
X ,Y

= 1
2 (H

X
+ H

Y
), clearly satisfies (35) but

not (37). And so, concerning this measure we do not know if it satisfies a triangular

inequality but our tool cannot be applied to prove it. However, for this measure we

manage to obtain a weaker result which has nevertheless a nice interpretation.

Proposition 9 Let us consider the following assumptions on a normalization term:

there exists a constant c ≥ 1 such that

c C
X ,Z

+ c C
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

≥ C
X ,Y

(40)

c C
X ,Z

+ c C
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

≥ max
(

C
X ,Y

, C
X ,Z

, C
Y ,Z

)

. (41)

If an IB-divergence satisfies (40) or a NIB-divergence satisfies (41), then

∆
X ,Y

≤ c ×
(

∆
X ,Z

+ ∆
Y ,Z

)

or δ
X ,Y

≤ c ×
(

δ
X ,Z

+ δ
Y ,Z

)

. (42)
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Proof. In fact, by introducing

A =
(

C
X ,Y

− I
X ,Y

)

+ c × (C
X ,Z

− I
X ,Z

) + c × (C
Y ,Z

− I
Y ,Z

)

the inequality (41) stands for the two following assumptions which are direct generaliza-

tions of assumptions of Proposition 7:

C
X ,Y

≤ c C
X ,Z

+ c C
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

(43)

c C
X ,Z

+ (c − 1)C
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

≥ 0 (44)

From (43) and (33), one may assert that

A ≥ c C
X ,Z

+ c C
Y ,Z

− C
X ,Y

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

≥ 0,

which implies that the result is valid for ∆. Now, from (44) one can write

A + C
X ,Y

≥ max
(

C
X ,Z

, C
Y ,Z

)

which leads to

δ
X ,Y

≤
c ×

(

C
X ,Z

− I
X ,Z

)

+ c ×
(

C
Y ,Z

− I
Y ,Z

)

max
(

C
X ,Z

, C
Y ,Z

) ≤ c × δ
X ,Z

+ c × δ
Y ,Z

.

Corollary 10

(i) The NIB-divergence δS satisfies (42) with c = 2.

(ii) The NIB-divergence with normalization term defined by

C
X ,Y

= α max (H
X

,H
Y

) + (1 − α)
H

X
+ H

Y

2

for some α > 0, satisfies (42) with the constant c = 2
1+α . In particular, when α = 1

2

(resp. α → 1), we have c = 4
3 (resp. c → 1).

(iii) Let us give δ(1)
X ,Y

and δ(2)
X ,Y

two NIB-divergences with normalization term C(1)
X ,Y

and C(2)
X ,Y

such that

δ(1)
X ,Y

≤ δ(2)
X ,Y

⇐⇒ C(1)
X ,Y

≤ C(2)
X ,Y

.

Assume δ(1) satisfies (42) for some constant κ, and assume C(2) satisfies (43) for some

constant c ≤ κ, then δ(2) satisfies (42) with the constant c = κ.

(iv) The IB-divergence (resp. NIB-divergence) with normalization term CR
X ,Y

=
(√

H
X

+
√

H
Y

2

)2

satisfies (40) (resp. (41)) with c = 2 (resp. with c = 4).
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As an example of (iii) consider the NIB-divergence with normalization term defined

for some α > 0 by

C
X ,Y

= αH
X ,Y

+ (1 − α)
H

X
+ H

Y

2
.

Then, thanks to (ii), this NIB-divergence satisfies (42) with the constant c = 2
1+α .

Proof. (i) Let us denote by A the following quantity for some c ≥ 1.

A = c C
X ,Z

+ (c − 1)C
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

When C
X ,Z

= 1
2 (H

X
+ H

Z
), this leads to

A =
c

2
H

X
+

c − 1

2
H

Y
+

(

c − 3

2

)

H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

.

In the independent case, the best constant is c = 3/2. So we are ensured that c ≥ 3/2.

It is impossible to prove that c = 3/2 implies A ≥ 0. Since I
Y ,Z

≤ 1/2(H
Y

+ H
Z
), one

may obtain

A ≥ c

2
H

X
+
( c

2
− 1
)

H
Z
− (c − 1)I

X ,Z
.

Again, we obtain that c ≥ 2. And when c = 2, it follows that: A ≥ H
X
− I

X ,Z
≥ 0.

(ii) Again the two normalization terms satisfy (43) with c = 1. So let us concentrate

on (44). We have

A = cα max (H
X

,H
Z
) + c

1 − α

2
(H

X
+ H

Z
) + (c − 1)α max (H

Y
,H

Z
)

+ (c − 1)
1 − α

2
(H

Y
+ H

Z
) − H

Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

.

After some further calculation, we obtain

A ≥ c
1 − α

2
H

X
+

(

c
1 + α

2
− 1

)

H
Z
− (c − 1)I

X ,Z
.

In the independent case, the best constant is c = 2/(1 + α), so we are ensured that

c ≥ 2/(1 + α). And when c = 2/(1 + α), we have

A ≥ 1 − α

1 + α

(

H
X
− I

X ,Z

)

≥ 0,

which implies that (44) is satisfied.

(iii) The proof is omitted.
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(iv) Let us first prove that for the penalization term defined by CR
X ,Y

=

(√
H

X
+
√

H
Y

2

)2

the condition (35) is not always satisfied. For example, let us give X,Y and Z such

that H
X

= 1,H
Y

= 4 and H
Z

= 2 then

CR
X ,Z

+ CR
Y ,Z

− H
Z
− CR

X ,Y
=

√

5

2
+

√
10 − 2 −

√

17

2
< 0.

Now, let A denote the following quantity

A = 2CR
X ,Z

+ 2CR
Y ,Z

− H
Z
−
(

I
X ,Z

+ I
Y ,Z

)

.

Since I
X ,Z

≤ min (H
X

,H
Z
) ≤

√

H
X

H
Z
, we obtain

A =
1

2
H

X
+

1

2
H

Y
+
√

H
X

H
Z

+
√

H
Y

H
Z
−
(

I
X ,Z

+ I
Y ,Z

)

≥ H
X

+ H
Y

2

≥
(

√

H
X

+
√

H
Y

2

)2

= CR
X ,Y

,

which yields the result. The fact that the associated NIB-divergence satisfies (41) with

c = 4 is left to the reader.

Remark 3 The tool presented in Proposition 9 cannot be applied to the IB-divergence

∆D and the NIB-divergence δD. Indeed, let us give some c ≥ 1 and let us consider the

quantity

A = c CD
X ,Z

+ c CD
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

with CD
X ,Y

= 2
(

1
H

X

+ 1
H

Y

)−1
=

2H
X

H
Y

H
X

+H
Y

. In fact, one can always find X,Y ,Z such

that for all c ≥ 1, the quantity A is negative. Indeed, let us choose Z independent of X

and Y and such that H
Z

+ H
X

= 6cH
X

and H
Z

+ H
Y

= 6cH
Y

. Then, it is easy to

see that A = H
Z

(

1
3 + 1

3 − 1
)

≤ 0. In the same manner, the tool is inapplicable to the

IB-divergence ∆P and the NIB-divergence δP . Indeed, let us give Z independent of X

and Y and such that H
X

= H
Y

= 1
9c2

H
Z
, then

A = c CP
X ,Z

+ c CP
Y ,Z

− H
Z
− (c − 1)

(

I
X ,Z

+ I
Y ,Z

)

= −1

3
H

Z
< 0.

The following result is an extension of Proposition 9 well-suited to be applied to δD.
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Proposition 11 Let us assume that there exists two positive integer I and J such that

a NIB-divergence δ
X ,Y

can be expressed as:

δ
X ,Y

=

I
∑

i=1

S
(i)
X,Y

U
(i)
X,Y

=

J
∑

j=1

α(j)

(

1 −
I

X ,Y

C
(j)
X ,Y

)

where
(

α(j)
)

j=1,···,J is some vector of probability weights. By denoting SX,Y =
∑I

i=1 S
(i)
X,Y

and UX,Y = maxi=1,···,I U
(i)
X,Y , if there exists some real number c ≥ 1 such that for any

j = 1, · · · , J the following assumptions are satisfied:

(i) A(j) = I
X ,Y

− C(j)
X ,Y

+ c (SX,Z + SZ,Y ) ≥ 0.

(ii) A(j) + C(j)
X ,Y

≥ max(UX,Z, UZ,Y ).

then the equation (42) is valid for δ
X ,Y

.

After noticing that

δ
X ,Y

= 1 −
I

X ,Y

C
X ,Y

with C
X ,Y

=





J
∑

j=1

α(j)

C
(j)
X ,Y





−1

the different normalization terms, C(j), do not need to be symmetric as long as C
X ,Y

is symmetric. The measure δD is exactly constructed like this. Indeed, δD is such that

C(1)
X ,Y

= H
X

, C(2)
X ,Y

= H
Y

and C
X ,Y

= 2
(

1
H

X

+ 1
H

Y

)−1
, that is obviously symmetric.

Proof. Using assumptions (i) and (ii), one can prove that for all j = 1, . . . , J

1 −
I

X ,Y

C
(j)
X ,Y

≤ 1 −
I

X ,Y

C
(j)
X ,Y + A(j)

≤ c
SX,Z + SY ,Z

max(UX,Z, UZ,Y )

≤ c × (δ
X ,Z

+ δ
Y ,Z

).

It follows that

δ
X ,Y

=

J
∑

j=1

α(j)

(

1 −
I

X ,Y

C
(j)
X ,Y

)

≤
J
∑

j=1

α(j) × c × (δ
X ,Z

+ δ
Y ,Z

) = c × (δ
X ,Z

+ δ
Y ,Z

).

Corollary 12 The measure δD satisfies (42) with the constant c = 2.
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Proof. We have

δD
X ,Y

=
1

2

(

H
X |Y

H
X

+
H

Y |X

H
Y

)

=
1

2

(

1 −
I

X ,Y

H
X

+ 1 −
I

X ,Y

H
Y

)

By identification with notation introduced in Proposition 11, we have I = J = 2, S
(1)
X,Y =

1
2H

X |Y
, S

(2)
X,Y = 1

2H
Y |X

, U
(1)
X,Y = H

X
, U

(2)
X,Y = H

Y
, C(1)

X ,Y
= H

X
and C(2)

X ,Y
= H

Y
. Let

us fix c to the value 2. We have

A(1) = I
X ,Y

− H
X

+
(

H
X |Z

+ H
Z |X

+ H
Y |Z

+ H
Z |Y

)

Clearly,

A(1) = H
Y
− H

X ,Y
+ 2H

X ,Z
+ 2H

Y ,Z
− H

X
− H

Y
− 2H

Z

≥ H
X ,Z

+ H
Y ,Z

− H
X
− H

Z
,

≥ 0.

And one also has

H
X

+ A(1) ≥ H
X ,Z

+ H
Y ,Z

− H
Z
≥ max (H

X
,H

Y
,H

Z
) = max (UX,Z, UY ,Z) .

It follows that A(1) fullfills conditions (i) and (ii) of Proposition 11 with c = 2. The

proof is strictly similar for A(2).

We summarize the different results obtained for our examples in Tab. 2

D
E

, dE D
I

, d
I

DS δS ∆R δR ∆P , δP ∆D δD

c = 1 c = 1 c = 1 c ≤ 2 c ≤ 2 c ≤ 4 c = +∞ c = +∞ c = 2

Table 2: Values of the parameter c ensuring an inequality of the form (42). A value

c = 1 indicates that the considered measure constitutes a metric and a value c = +∞
asserts that we proved that for any c ≥ 1 Equation (40) is not valid.

3.4 Around the redundancy of two random vectors X1 and X2

In the future use of an IB-divergence or NIB-divergence, one would expect that if two

discrete-valued random vectors X1 and X2 have the same (or almost the same) infor-

mation with respect to an IB-divergence or NIB-divergence, then both have the same



Normalized information-based divergences 24

effect on another vector Y . This requirement, expressed by the property [P10], could

be used for example in a variables selection problem in the context of discrimination to

detect redundant variables.

We may hope that [P10] holds whenever [P3bis] is satisfied. Let us start to write

I
X1,X2

= H
X1

− H
X1|X2

= H
X2

− H
X2|X1

, then

|H
X2

− H
X1

| = |H
X2|X1

− H
X1|X2

| ≤ max(H
X2|X1

,H
X1|X2

).

Otherwise, H
Y ,X1,X2

= H
Y ,X1

+ H
X2|(Y ,X1)

= H
Y ,X2

+ H
X1|(Y ,X2)

, and so

|H
Y ,X2

− H
Y ,X1

| = |H
X2|(Y ,X1)

− H
X1|(Y ,X2)

|

≤ max(H
X2|(Y ,X1)

,H
X1|(Y ,X2)

) ≤ max(H
X2|X1

,H
X1|X2

).

Now,

|∆
Y ,X1

− ∆
Y ,X2

| ≤ |C
Y ,X1

− C
Y ,X2

| + |I
Y ,X1

− I
Y ,X2

|

≤ |C
Y ,X1

− C
Y ,X2

| + |H
X2

− H
X1

| + |H
Y ,X2

− H
Y ,X1

|

≤ |C
Y ,X1

− C
Y ,X2

| + 2 × max(H
X2|X1

,H
X1|X2

).

From [P3bis] and the continuity of fC(·, ·, ·), we may state

∆
X1,X2

→ 0 =⇒ max(H
X2|X1

,H
X1|X2

) → 0

=⇒ |C
Y ,X1

− C
Y ,X2

| → 0.

Finally, we obtain

∆
X1,X2

→ 0 =⇒ |∆
Y ,X1

− ∆
Y ,X2

| → 0.

In order to make the property [P10] applicable for practical purpose, we may find

interesting to have a bound of the difference |∆
Y ,X1

− ∆
Y ,X2

| (resp. |δ
Y ,X1

− δ
Y ,X2

|)
expressed in terms of ∆

X1,X2
(resp. δ

X1,X2
). More precisely, the question may arise

whether there exists a function h(·) satisfying h(x) → 0 as x → 0 and such that |∆
Y ,X1

−
∆

Y ,X2
| ≤ h(∆

X1,X2
) (resp. |δ

Y ,X1
− δ

Y ,X2
| ≤ h(δ

X1,X2
)).

As a first answer, let us precise that if the IB-divergence or NIB-divergence satisfies a

triangular inequality then this result is easily obtained with h(x) = x, since the triangular

inequality for ∆ or δ implies that

|∆
Y ,X1

− ∆
Y ,X2

| ≤ ∆
X1,X2

or |δ
Y ,X1

− δ
Y ,X2

| ≤ δ
X1,X2

.
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A priori, if an IB-divergence or NIB-divergence satisfies only an inequality like (42) with

some c > 1, then this property does no more seem to be true: indeed, for all Y ,X1 and

X2, one may prove for a NIB-divergence by instance that

|δ
Y ,X1

− δ
Y ,X2

| ≤ c × δ
X1,X2

+ (c − 1)min
(

δ
Y ,X1

, δ
Y ,X2

)

.

The right-hand side of the previous inequality is not in general small when δ
X1,X2

is

small. Actually, this apparent disappointing result only expresses that a “redundant”

property cannot (always) be derived from a triangular’s type inequality. By directly

taking into account our objective, we can state a finer result for NIB-divergences.

Proposition 13 Let us assume that there exists a real number ε0 ∈ [0, 1[ and a positive

decreasing continuous function α(·) defined for any ε ∈ [0, ε0] satisfying α(ε) → 1 as

ε → 0, such that:

C
X1,X2

≥ α(ε)max
(

H
X1

,H
X2

)

(45)

holds for all X1,X2 such that δ
X1,X2

= ε ≤ ε0. Then, for any Y

∣

∣

∣δ
Y ,X1

− δ
Y ,X2

∣

∣

∣ ≤ 1

α(ε0)

(

1

(1 − ε)α(ε)
− 1

)

. (46)

Proof. First of all let us note that

min
(

H
X1

,H
X2

)

≥ I
X1,X2

= (1 − ε)C
X1,X2

≥ (1 − ε)α(ε)max
(

H
X1

,H
X2

)

. (47)

We have,

∣

∣

∣
δ

Y ,X1
− δ

Y ,X2

∣

∣

∣
=

∣

∣

∣

∣

∣

I
Y ,X1

C
Y ,X1

−
I

Y ,X2

C
Y ,X2

∣

∣

∣

∣

∣

≤

∣

∣

∣I
Y ,X1

− I
Y ,X2

∣

∣

∣

min
(

C
Y ,X1

, C
Y ,X2

) .

On the one hand, we have

I
Y ,X1

≥ I
Y ,X2

+ I
X1,X2

− H
Z
.

One can deduce

∣

∣

∣I
Y ,X1

− I
Y ,X2

∣

∣

∣ ≤ max
(

H
X1

,H
X2

)

− I
X1,X2

= max
(

H
X1|X2

,H
X2|X1

)

≤ max
(

H
X1

,H
X2

)

(1 − (1 − ε)α(ε)) (48)
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On the other hand from assumption (45), we have

min
(

C
Y ,X1

, C
Y ,X2

)

≥ α(ε0)min
(

H
X1

,H
X2

)

. (49)

Hence, we obtain

∣

∣

∣
δ

Y ,X1
− δ

Y ,X2

∣

∣

∣
≤ 1 − (1 − ε)α(ε)

α(ε0)

max
(

H
X1

,H
X2

)

min
(

H
X1

,H
X2

) , from (48) and (49)

≤ 1 − (1 − ε)α(ε)

α(ε0)(1 − ε)α(ε)
from (47),

which ends the proof.

Remark 4 The previous result is valid for all NIB-divergences with normalization term

such that C
X1,X2

≥ max
(

H
X1

,H
X2

)

. In particular, it can be applied for the NIB-

divergence C
X1,X2

= max
(

H
X1

,H
X2

)

+ H
X1|X2

H
X2|X1

, for which Remark 1 stated that

it was not a metric.

Corollary 14 The assumption (45) applied respectively to CS, CR, CP and CD is ex-

pressed by

CS
X1,X2

≥ 1

1 + ε
max

(

H
X1

,H
X2

)

, when δS
X1,X2

= ε ≤ ε0 < 1 (50)

CR
X1,X2

≥
(

1

2 −
√

1 − ε

)2

max
(

H
X1

,H
X2

)

, when δR
X1,X2

= ε ≤ ε0 < 1 (51)

CP
X1,X2

≥ (1 − ε)max
(

H
X1

,H
X2

)

, when δP
X1,X2

= ε ≤ ε0 < 1 (52)

CD
X1,X2

≥ 1 − 2ε

1 − ε
max

(

H
X1

,H
X2

)

, when δD
X1,X2

= ε ≤ ε0 <
1

2
(53)

which leads to

∣

∣

∣δS
Y ,X1

− δS
Y ,X2

∣

∣

∣ ≤ (1 + ε0) ×
2ε

1 − ε
(54)

∣

∣

∣
δR

Y ,X1
− δR

Y ,X2

∣

∣

∣
≤ 4

(

2 −
√

1 − ε0

)2 × 1 −
√

1 − ε

1 − ε
(55)

∣

∣

∣
δP

Y ,X1
− δP

Y ,X2

∣

∣

∣
≤ 1

1 − ε0
× ε(2 − ε)

(1 − ε)2
(56)

∣

∣

∣
δD

Y ,X1
− δD

Y ,X2

∣

∣

∣
≤ 1 − ε0

1 − 2ε0
× 2ε

1 − 2ε
(57)
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Proof. Let us first prove (50): we have H
X1

≥ I
X1,X2

= (1 − ε)CS
X1,X2

which leads to

H
X1

≥ 1−ε
1+εHX2

and finally to

CS
X1,X2

=
1

2

(

H
X1

+ H
X2

)

≥ 1

1 + ε
max

(

H
X1

,H
X2

)

.

To prove (51), let us note that H
X1

≥ (1 − ε)CR
X1,X2

leads to
√

H
X1

≥
√

1−ε
2−

√
1−ε

√

H
X2

and finally to

CR
X ,Y

=





√

H
X1

+
√

H
X2

2





2

≥
(

1

2 −
√

1 − ε

)2

max
(

H
X1

,H
X2

)

.

To prove (52), let us note that H
X1

≥ (1 − ε)CP
X1,X2

leads to
√

H
X1

≥ (1 − ε)
√

H
X2

and finally to

CP
X ,Y

=
√

H
X1

× H
X2

≥ (1 − ε)max
(

H
X1

,H
X2

)

.

To prove (53), let us note that H
X1

≥ CD
X1,X2

= 2

(

1
H

X1

+ 1
H

X2

)−1

leads to 1
H

X1

≤
1

1−2ε
1

H
X2

and finally to

CD
X1,X2

= 2

(

1

H
X1

+
1

H
X2

)−1

≥ 1 − 2ε

1 − ε
max

(

H
X1

,H
X2

)

,

as soon as ε ≤ ε0 < 1
2 .

Remark 5 Let us give a NIB-divergence satisfying the following condition C
X ,Y

≥ κ ×
max(H

X
,H

Y
) for some κ > 0 then, by taking again the proof of Proposition 13, we can

prove that

|δ
Y ,X1

− δ
Y ,X2

| ≤ 1

κ
×

d
I

X1,X2

1 − dI

X1,X2

.

A class of examples satisfying the previous condition is given by normalization terms

defined for some α > 0 by C
X ,Y

= ||(H
X

,H
Y

)||α (α = 1 and α = 1/2 correspond respec-

tively to δS
X ,Y

and δR
X ,Y

). Indeed, for this class we have C
X ,Y

≥ 2−1/α max(H
X

,H
Y

).
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