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Generalization error bounds in semi-supervised classification

under the cluster assumption

Philippe Rigollet ∗

September 21, 2006

Abstract

We consider semi-supervised classification when part of the available data is unlabeled. These
unlabeled data can be useful for the classification problem when we make an assumption relating
the behavior of the regression function to that of the marginal distribution. Seeger Seeger (2000)
proposed the well-known cluster assumption as a reasonable one. We propose a mathematical
formulation of this assumption and a method based on density level sets estimation that takes
advantage of it to achieve fast rates of convergence both in the number of unlabeled examples
and the number of labeled examples.

Key Words: Semi-supervised learning, statistical learning theory, classification, cluster assumption,
generalization bounds.

1 Introduction

Semi-supervised classification has been of growing interest over the past few years and many methods
have been proposed. The methods try to give an answer to the question: “How to improve classifi-
cation accuracy using unlabeled data together with the labeled data?”. Unlabeled data can be used
in different ways depending on the assumptions on the model. There are mainly two approaches
to solve this problem. The first one consists in assuming that we have a set of potential classifiers
and we want to aggregate them. In that case, unlabeled data is used to measure the compatibility
between the classifiers and reduces the complexity of the resulting classifier (see, e.g., Balcan and
Blum, 2005; Blum and Mitchell, 1998). The second approach is the one that we use here. It assumes
that the data contains clusters that have homogeneous labels and the unlabeled observations are used
to identify these clusters. This is the so-called cluster assumption. This idea can be put in practice
in several ways giving rise to various methods. The simplest is the one presented here: estimate the
clusters, then label each cluster uniformly. Most of these methods use Hartigan’s (Hartigan, 1975)
definition of clusters, namely the connected components of the density level sets. However, they
use a parametric (usually mixture) model to estimate the underlying density which can be far from
reality. Moreover, no generalization error bounds are available for such methods. In the same spirit,
Tipping (1999) and Rattray (2000) propose methods that learn a distance using unlabeled data
in order to have intra-cluster distances smaller than inter-clusters distances. The whole family of
graph-based methods aims also at using unlabeled data to learn the distances between points. The
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edges of the graphs reflect the proximity between points. For a detailed survey on graph methods
we refer to Zhu (2005). Finally, we mention kernel methods, where unlabeled data are used to build
the kernel. Recalling that the kernel measures proximity between points, such methods can also be
viewed as learning a distance using unlabeled data (see Bousquet et al., 2004; Chapelle and Zien,
2005; Chapelle et al., 2006).

The cluster assumption can be interpreted in another way, i.e., as the requirement that the
decision boundary has to lie in low density regions. This interpretation has been widely used in
learning since it can be used in the design of standard algorithms such as Boosting (d’Alché Buc
et al., 2001; Hertz et al., 2004) or SVM (Bousquet et al., 2004; Chapelle and Zien, 2005), which
are closely related to kernel methods mentioned above. In these algorithms, a greater penalization
is given to decision boundaries that cross a cluster. For more details, see, e.g., Seeger (2000); Zhu
(2005); Chapelle et al. (2006). Although most methods make, sometimes implicitly, the cluster
assumption, no formulation in probabilistic terms has been provided so far. The formulation that
we propose in this paper remains very close to its original text formulation and allows to derive
generalization error bounds. We also discuss what can and cannot be done using unlabeled data.
One of the conclusions is that considering the whole excess-risk is too ambitious and we need to
concentrate on a smaller part of it to observe the improvement of semi-supervised classification over
standard classification.

Outline of the paper. After describing the model, we formulate the cluster assumption and discuss
why and how it can improve classification performance in the Section 2. The main result of this
section is Proposition 2.1 which essentially states that the effect of unlabeled data on the rates
of convergence cannot be observed observed on the whole excess-risk. We therefore introduce the
cluster excess-risk which corresponds to a part of the excess-risk that is interesting for this problem.
In Section 3, we study the population when the clusters are perfectly known, to get an idea of our
target. Indeed, such a population case corresponds in some way to the case when the amount of
unlabeled data is infinite. Section 4 contains the main result: after having defined the clusters in
terms of density level sets, we propose an algorithm for which we derive rates of convergence for
the cluster excess-risk as a measure of performance. An example of consistent density level set
estimators is given in Section 5. Section 6 is devoted to discussion on the choice of λ and possible
improvements. Proofs of the results are gathered in Section 7.

Notation. Throughout the paper, we denote positive constants by cj. We write Γc for the com-
plement of the set Γ. For two sequences (up)p and (vp)p (in that paper, p will be m or n), we

write up = O(vp) if there exists a constant C > 0 such that up ≤ Cvp and we write up = Õ(vp) if
up ≤ C(log p)αvp for some constants α > 0, C > 0. Moreover, we write up = o(vp), if there exists
a non negative sequence (εp)p that tends to 0 when p tends to infinity and such that |up| ≤ εp|vp|.
Thus, if up = Õ(vp), we have up = o(vpp

β), for any β > 0.

2 The model

Let (X, Y ) be a random couple with joint distribution P , where X ∈ X ⊂ IRd is a vector of d
features and Y ∈ {0, 1} is a label indicating the class to which X belongs. The distribution P of
the random couple (X, Y ) is completely determined by the pair (PX , η) where PX is the marginal
distribution of X and η is the regression function of Y on X , i.e., η(x) , P (Y = 1|X = x). The goal
of classification is to predict the label Y given the value of X , i.e., to construct a measurable function
g : X → {0, 1} called a classifier. The performance of g is measured by the average classification
error

R(g) , P (g(X) 6= Y ) .
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A minimizer of the risk R(g) over all classifiers is given by the Bayes classifier g⋆(x) = 1I{η(x)≥1/2},
where 1I{·} denotes the indicator function. Assume that we have a sample of n observations
(X1, Y1), . . . , (Xn, Yn) that are independent copies of (X, Y ). An empirical classifier is a random
function ĝn : X → {0, 1} constructed on the basis of the sample (X1, Y1), . . . , (Xn, Yn). Since g⋆ is
the best possible classifier, we measure the performance of an empirical classifier ĝn by its excess-risk

E(ĝn) = IEnR(ĝn)−R(g⋆) ,

where IEn denotes the expectation with respect to the joint distribution of the sample (X1, Y1), . . . , (Xn, Yn).
We denote hereafter by IPn the corresponding probability.

In many applications, a large amount of unlabeled data is available as well as a small set of
labeled data (X1, Y1), . . . , (Xn, Yn) and the goal of semi-supervised classification is to use unlabeled
data to improve the performance of classifiers. Thus, we observe two independent samples Xl =
{(X1, Y1), . . . , (Xn, Yn)} and Xu = {Xn+1, . . . , Xn+m}, where n is rather small and typically m≫ n.
Most existing theoretical studies of supervised classification use empirical processes theory (Devroye
et al., 1996; Vapnik, 1998; van de Geer, 2000; Boucheron et al., 2005) to obtain rates of convergence
for the excess-risk that are polynomial in n. Typically these rates are of the order O(1/

√
n) and

can be as small as Õ(1/n) under some low noise assumptions (cf., e.g., Tsybakov, 2004; Audibert
and Tsybakov, 2005). However, simulations indicate that much faster rates should be attainable
when the unlabeled data is used to identify homogeneous clusters. Of course, it is well known that
in order to make use of the additional unlabeled observations, we have to make an assumption on
the dependence between the marginal distribution of X and the joint distribution of (X, Y ). Seeger
(2000) formulated the rather intuitive cluster assumption as follows1

Two points x, x′ ∈ X should have the same label y if there is a path between them which
passes only through regions of relatively high PX .

This assumption, in its raw formulation cannot be exploited in the probabilistic model since (i) the
labels are random variables Y, Y ′ so that the expression “should have the same label” is meaningless
unless η takes values in {0, 1} and (ii) it is not clear what “regions of relatively high PX” are. To
match the probabilistic framework, we propose the following modifications

(i) P [Y = Y ′|X, X ′ ∈ C] ≥ P [Y 6= Y ′|X, X ′ ∈ C], where C is a cluster.

(ii) Define “regions of relatively high PX” in terms of density level sets.

Assume for the moment that we know what the clusters are, so that we do not have to define them
in terms of density level sets. This will be done in Section 4. Let T1, T2, . . . , be a countable family
of subsets of X . We now make the assumption that the Tj ’s are clusters of homogeneous data.

Cluster Assumption (CA1) Let Tj, j = 1, 2, . . . , be a collection of measurable sets such that
Tj ⊂ X , j = 1, 2, . . . Then the function x ∈ X 7→ 1I{η(x) ≥ 1/2} takes a constant value on each
of the Tj , j = 1, 2, . . ..

It is not hard to see that the cluster assumption (CA1) is equivalent to the following assumption.

Let Tj, j = 1, 2, . . . , be a collection of measurable sets such that Tj ⊂ X , j = 1, 2, . . . Then, for any
j = 1, 2, . . ., we have

P [Y = Y ′|X, X ′ ∈ Tj] ≥ P [Y 6= Y ′|X, X ′ ∈ Tj] .

1the notation is adapted to the present framework
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A question remains: what happens outside of the clusters? Define the union of the clusters,

C =
⋃

j≥1

Tj (2.1)

and assume that we are in the problematic case, PX(Cc) > 0 such that the question makes sense.
Since the cluster assumption (CA1) says nothing about what happens outside of the set C, we
can only perform supervised classification on Cc. Consider a classifier ĝn,m built from labeled and
unlabeled samples (Xl, Xu) pooled together. The excess-risk of ĝn,m can be written (see Devroye
et al., 1996),

E(ĝn,m) = IEn,m

∫

X

|2η(x) − 1|1I{ĝn,m(x) 6=g⋆(x)}p(x)dx ,

where IEn,m denotes the expectation with respect to the pooled sample (Xl, Xu). We denote hereafter
by IPn,m the corresponding probability. Since, the unlabeled sample is of no help to classify points
in Cc, any reasonable classifier should be based on the sample Xl so that ĝn,m(x) = ĝn(x), ∀x ∈ Cc,
and we have

E(ĝn,m) ≥ IEn

∫

Cc

|2η(x)− 1|1I{ĝn(x) 6=g⋆(x)}p(x)dx . (2.2)

Since we assumed PX(Cc) 6= 0, the RHS of (2.2) is bounded from below by the optimal rates of
convergence that appear in supervised classification.

Recall that the distribution P of the random couple (X, Y ) is completely characterized by the
couple (PX , η) where PX is the marginal distribution of X and η is the regression function of Y on
X . Thus, any class of distributions D can be decomposed as D = M× Ξ where M is a class of
marginal distributions on X and Ξ is a class of regression functions on X with values in [0, 1].

Proposition 2.1 Fix n, m ≥ 1 and let C be a measurable subset of X . Assume that the class
D = M× Ξ is such that for any η ∈ Ξ and any x ∈ Cc the value of η(x) is independent of PX .
Then, for any marginal distribution P 0

X ∈ M, we have

inf
Tn

sup
η∈Ξ

IEn

∫

Cc

|2η − 1|1I{Tn 6=g⋆}dP 0
X ≤ inf

Tn,m

sup
P∈D

IEn,m

∫

Cc

|2η − 1|1I{Tn,m 6=g⋆}dPX , (2.3)

where infTn,m
denotes the infimum over all classifiers based on the pooled sample (Xl, Xu) and infTn

denotes the infimum over all classifiers based only on the labeled sample Xl.

The main consequence of Proposition 2.1 is that even when the cluster assumption (CA1) is valid
the unlabeled data are useless to improve the rates of convergence. If the classM is reasonably large
and satisfies P 0

X(Cc) > 0, the left hand side in (2.3) can be bounded from below by the minimax rate
of convergence with respect to n, over the class D. Indeed a careful check of the proofs of minimax
lower bounds reveals that they are constructed using a single marginal P 0

X that is well chosen. These
rates are typically of the order n−α, 0 < α ≤ 1 (see e.g. Mammen and Tsybakov (1999); Tsybakov
(2004); Audibert and Tsybakov (2005) and Boucheron et al. (2005) for a comprehensive survey).

Thus, unlabeled data do not improve the rate of convergence of this part of the excess-risk. To
observe the effect of unlabeled data on the rates of convergence, we have to consider the cluster
excess-risk of a classifier ĝn,m defined by

EC(ĝn,m) , IEn,m

∫

C

|2η(x)− 1|1I{ĝn,m(x) 6=g⋆(x)}p(x)dx . (2.4)

We will therefore focus on this measure of performance. The cluster excess-risk can also be
expressed in terms of an excess-risk. To that end, define the set G of all classifiers restricted to C:

G =
{
g : C → {0, 1}, g measurable

}
.
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The performance of a classifier g ∈ G is measured by the average classification error on C

RC(g) = P
(
g(X) 6= Y, X ∈ C

)

A minimizer of RC(·) over G is given g⋆
|C(x) = 1I{η(x)≥1/2}, x ∈ C, i.e., the restriction of the Bayes

classifier to C. Now it can be easily shown that for any classifier g ∈ G we have,

RC(g)−RC(g⋆
|C) =

∫

C

|2η(x)− 1|1I{g(x) 6=g⋆
|C

(x)}p(x)dx . (2.5)

Taking expectations on both sides of (2.5) with g = ĝn,m, it follows that

IEn,mRC(ĝn,m)−RC(g⋆
|C) = EC(ĝn,m) .

Therefore, cluster excess-risk equals the excess-risk of classifiers in G. In the sequel, we only consider
classifiers ĝn,m ∈ G, i.e., classifiers that are defined on C.

We now propose a method to obtain good upper bounds on the cluster excess-risk, taking ad-
vantage of the cluster assumption (CA1). The idea is to estimate the regions where the sign of
(η − 1/2) is constant and make a majority vote on each region.

3 Results for known clusters

Consider the ideal situation where the family T1, T2, . . ., is known and we observe only the labeled
sample Xl = {(X1, Y1), . . . , (Xn, Yn)}. Define

C =
⋃

j≥1

Tj .

Under the cluster assumption (CA1), the function x 7→ η(x) − 1/2 has constant sign on each Tj .
Thus a simple and intuitive method for classification is to perform a majority vote on each Tj .

For any j ≥ 1, define δj ≥ 0, δj ≤ 1 by

δj =

∫

Tj

|2η(x) − 1|PX(dx) .

We now define our classifier based on the sample Xl . For any j ≥ 1, define the random variable

Zj
n =

n∑

i=1

(2Yi − 1) 1I{Xi∈Tj} ,

and denote by ĝj
n the function ĝj

n(x) = 1I{Zj
n>0} for all x ∈ Tj . Consider the classifier defined on C

by

ĝn(x) =
∑

j≥1

ĝj
n(x)1I{x∈Tj}, x ∈ C .

The following theorem gives an exponential rate of convergence for the cluster excess-risk of the
classifier ĝn under (CA1).

Theorem 3.1 Let Tj, j ≥ 1 be a family of measurable sets that satisfy Assumption (CA1). Then,
the classifier ĝn defined above satisfies

EC(ĝn) ≤ 2
∑

j≥1

δje
−nδ2

j /2 . (3.1)
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Moreover, if there exists δ > 0 such that δ = infj{δj : δj > 0}, we obtain an exponential rate of
convergence:

EC(ĝn) ≤ 2e−nδ2/2 . (3.2)

A rapid overview of the proof shows that the rate of convergence e−nδ2/2 cannot be improved
without further assumption. It will be our target in semi-supervised classification. However, we
need estimators of the clusters Tj , j = 1, 2, . . .. In the next section we provide the main result on
semi-supervised learning, that is when the clusters are unknown but we can estimate them using
the unlabeled sample Xu.

4 Main result

We now deal with a more realistic case where the clusters T1, T2, . . . , are unknown and we have to
estimate them using the unlabeled sample Xu = {X1, . . . , Xm}. We begin by giving a definition
of the clusters in terms of density level sets. In this section, we assume that X is connected (see
definition below) and has finite Lebesgue measure.

4.1 Definition of the clusters

Following Hartigan (1975), we propose a definition of clusters that is also compatible with the
expression “regions of relatively high PX” proposed by Seeger (2000).

Assume that PX admits a density p with respect to the Lebesgue measure on IRd denoted
hereafter by Lebd. For a fixed λ > 0, the λ-level set of the density p is defined by

Γ(λ) = {x ∈ X : p(x) ≥ λ} . (4.1)

On these sets, the density is relatively high. The cluster assumption involves also a notion of
connectedness of a set. A set C ⊂ IRd is said to be connected (or pathwise connected) if, for any
x, x′ ∈ C, there exists a continuous map f : [0, 1]→ C, such that f(0) = x and f(1) = x′. A direct
consequence of this definition is that a connected set cannot be defined up to a set of null Lebesgue
measure. Indeed, consider for example the case d = 1 and C = [0, 1]. This set is obviously connected

(take the map f equal to the identity on [0, 1]) but the set C̃ = C \ {1/2} is no more connected

even though C and C̃ only differ by a set of null Lebesgue measure. In our setup we want to impose
connectedness on certain subsets of the λ-level set of the density p which is actually defined up to a
set of null Lebesgue measure. To overcome this problem, we introduce the following notions.

Let B(x, r) be the d-dimensional closed ball of center x ∈ IRd and radius r > 0, defined by

B(x, r) =
{
y ∈ IRd : ‖y − x‖ ≤ r

}
,

where ‖ · ‖ denotes the Euclidean norm in IRd.

Definition 4.1 Fix r0 > 0, c0 > 0 and let d̄ be an integer such that d̄ ≥ d. Let C be a measurable
subset of X . For two points x, x′ ∈ C, we say that x is r0-connected to x′ in C and we write x

r0←→
C

x′

if there exists a continuous map f : [0, 1] → X such that f(0) = x, f(1) = x′ and for any t ∈ [0, 1]
and any 0 < r ≤ r0, we have

Lebd

(
B(f(t), r) ∩ C

)
≥ c0r

d̄ .

Moreover, we say that C is a standard set, if for any x ∈ C, we have x
r0←→
C

x.
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Remark that the definition of a standard set has been introduced by Cuevas and Fraiman (1997).
This definition ensures that the set C has no “flat” parts which allows to exclude pathological cases
such as the one presented on the left hand side of Figure 1. Remark also that the path f takes values
in X which is connected, so that removing sets of null Lebesgue measure from C does not affect the
r0-connectedness of its elements, contrary to the usual notion of connectedness defined above.

When C is standard, the following lemma holds.

Lemma 4.1 If the set C is standard, then the binary relation
r0←→
C

is an equivalence relation and

C can be partitioned into its classes of equivalence.

Before considering the classes of equivalence of the relation
r0←→
C

, for some set C ⊂ X we make sure

that there is only a finite number of them. To that end, we introduce the notion of s0-separated
sets.

Define the pseudo-distance distance d∞, between two sets C1 and C2 by

d∞(C1, C2) = inf
x∈C1

y∈C2

‖x− y‖

We say that two sets C1, C2 . . . , are s0-separated if d∞(C1, C2) ≥ s0, for some s0 ≥ 0. On the right
hand side of Figure 1, we show an example of two sets that are not s0-separated.

Proposition 4.1 Fix r0 > 0, s0 > 0 and assume that C is a standard set such that the classes of
equivalence of the relation

r0←→
C

are two by two s0-separated. Then there exists a partition C1, . . . CJ

of C, where the Cj are such that

• For any j = 1, . . . , J and any x, x′ ∈ Cj, we have x
r0←→
C

x′ and

• For any j 6= j′ and any x ∈ Cj , x
′ ∈ Cj′ , x is not r0-connected to x′ in C.

We call C1, . . . , CJ the r0-connected components of C.

We now formulate the cluster assumption when the clusters are defined in terms of density level
sets. In the rest of the section, fix λ > 0 and let Γ denote the λ-level set of the density p.

Cluster Assumption (CA2) Fix s0 > 0, r0 > 0, c0 > 0 and assume that Γ admits a version that

is standard and such that the classes of equivalence of the relation
r0←→
Γ

are two by two s0-

separated. Denote by T1, . . . , TJ the r0-connected components of this version of Γ. Then the
function x ∈ X 7→ 1I{η(x) ≥ 1/2} takes a constant value on each of the Tj, j = 1, . . . J .

4.2 Estimation of the clusters

Assume that p is uniformly bounded by a constant L(p) and that Lebd(X ) <∞. Denote by IPm and
IEm respectively the probability and the expectation w.r.t the sample Xu of size m. Assume that
we use the sample Xu to construct an estimator Ĝm of Γ satisfying

IEm

[
Lebd(Ĝm △ Γ)

]
→ 0, m→ +∞ , (4.2)

where △ is the sign for the symmetric difference. We call such estimators consistent estimators of
Γ. However, for any r0 > 0, the r0-connected components of a consistent estimator of Γ are not
in general consistent estimators of the r0-connected components of Γ. To ensure componentwise
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consistency, we make assumptions on the estimator Ĝm. Note that the performance of a density
level estimator Ĝm is measured by the quantity

IEm

[
Lebd(Ĝm △ Γ)

]
= IEm

[
Lebd(Ĝ

c
m ∩ Γ)

]
+ IEm

[
Lebd(Ĝm ∩ Γc)

]
. (4.3)

For some estimators, such as the penalized plug-in density level sets estimators presented in Section 5,
we can prove that the dominant term in the RHS of (4.3) is IEm

[
Lebd(Ĝ

c
m ∩ Γ)

]
. It yields that the

probability of having Γ included in the consistent estimator Ĝm is negligible. We now give a precise
definition of such estimators.

Definition 4.2 Let Ĝm be an estimator of Γ and fix α > 0. We say that the estimator Ĝm is
consistent from inside at rate m−α if it satisfies

IEm

[
Lebd(Ĝm △ Γ)

]
= Õ(m−α)

and
IEm

[
Lebd(Ĝm ∩ Γc)

]
= Õ(m−2α)

For a fixed α > 0, let Ĝm ⊂ X be an estimator of Γ that is consistent from inside at rate m−α

and recall that we want to estimate the r0-connected components of Γ. To this end, we apply the
following transformations to the estimator Ĝm:

1. Clipping In this step we remove some elements from Ĝm and obtain a clipped set G̃m. Since
Ĝm is an estimator of Γ that is consistent from inside, it ensures that any connected subset
of G̃m is included in one of the r0-connected components of Γ except on an event of negligible
probability. In other words, it ensures that we do not estimate the union of two r0-connected
components of Γ by a single r0-connected component of Ĝm.

2. Merging In this step we want to prevent ourselves from estimating a single r0-connected compo-
nent of Γ by several closer and closer disjoint connected sets. The idea used here is to estimate
the r0-connected components of Γ by the connected components of the clipped set G̃m. When
two connected components of G̃m are too close we merge them by taking their union.

We now describe the clipping step in more details. Define the set

Clip(Ĝm) =
{
x ∈ Ĝm : Lebd

(
Ĝm ∩ B(x, (log m)−1)

)
≤ (log m)−d

mα

}
.

Since for sufficiently large m, we have (log m)−dm−α ≤ r0 eventually, Clip(Ĝm) is such that none of
its elements is r0-connected to itself in Ĝm. In the sequel, we will only consider the clipped version
of Ĝm defined by G̃m = Ĝm \ Clip(Ĝm).

Proposition 4.2 Fix α > 0. Assume that Lebd(X ) < ∞ and let Ĝm be an estimator of Γ that
is consistent from inside at rate m−α. Then, the clipped estimator G̃m = Ĝm \ Clip(Ĝm) is also
consistent from inside a rate m−α and has a finite number J̃m of connected components.

Denote by T̃1, . . . , T̃J̃m
the connected components of G̃m, where J̃m is the number of connected

components of G̃m. This number depends on Xu and is therefore random.
We now describe the merging step. For simplicity we present it in terms of a recursive pseudo-

algorithm. For any j = 1, . . . , J̃m, define the set of integers

N (j) =
{
k ∈ {1, . . . , J̃m} : d∞(T̃j , T̃k) ≤ 2(log m)−1

}
,

Consider the following pseudo-algorithm.
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Merging

• Initialize: Z = {1, . . . , J̃m}, j = 0, k = 0 .

• While Z 6= ∅, do:

j ← min(Z) ,

k ← k + 1 ,

H̃k =
⋃

l∈N (j)

T̃j ,

Z ← Z \ N (j) ,

• K̃m = k .

Remark that since j ∈ N (j), the pseudo-algorithm stops after at most J̃m iterations. The family
of sets H̃1, . . . , H̃K̃m

is such that d∞(H̃k, H̃k′) > 2(logm)−1, ∀ k 6= k′. The H̃k’s correspond to the

estimators of the r0-connected components of Γ. The next proposition states that that the H̃k’s are
consistent estimators of the r0-connected components of Γ(λ).

Let J be a subset of {1, . . . , J}. Define κ(j) = {k = 1, . . . , K̃m : H̃k ∩ Tj 6= ∅} and let D(J ) be
the event on which the sets κ(j), j ∈ J are reduced to singletons {k(j)} that are disjoint, i.e.,

D(J ) =
{

κ(j) = {k(j)}, k(j) 6= k(j′), ∀ j, j′ ∈ J , j 6= j′
}

=
{

κ(j) = {k(j)}, (Tj ∪ H̃k(j)) ∩ (Tj′ ∪ H̃k(j′)) = ∅, ∀ j, j′ ∈ J , j 6= j′
}

.
(4.4)

In other words, on the event D(J ), there is a one-to-one correspondence between the collection
{Tj}j∈J and the collection

{
{H̃k}k∈κ(j)

}
j∈J

. Componentwise convergence of G̃m to Γ, is ensured

when D({1, . . . , J}) has asymptotically overwhelming probability. The following proposition gives
an upper bound on the probability of the complement of the event D(J ).

Proposition 4.3 Fix r0 > 0, s0 > 0 and assume that there exists a version of Γ that admits a
decomposition into a number J ≥ 1 of r0-connected components Γ =

⋃J
j=1 Tj where the {Tj}j=1,...,J

are two by two s0-separated. Consider an estimator Ĝm of Γ that is consistent from inside at
rate m−α. Denote by {H̃k}k=1,...,K̃m

the family of sets obtained by the clipping and merging steps
described above. Then, for any J ⊂ {1, . . . , J}, we have

IPm

(
Dc(J )) = Õ

(
m−α

)
,

where D(J ) is defined in (4.4).

4.3 Labeling the clusters

To estimate the homogeneous regions, we will simply estimate the connected components of Γ and
apply the clipping and merging steps described above. Then we make a majority vote on each
homogeneous region. It yields the following procedure.

9



r0

s0/2

Figure 1: Set that is 0-connected but not r0-connected for any r0 > 0 (left) and non-separated
connected components (right).

Three-step procedure

1. Use the unlabeled data Xu to construct an estimator Ĝm of Γ that is consistent from
inside at rate m−α.

2. Define homogeneous regions as the unions of the connected components of G̃m =
Ĝm \ Clip(Ĝm) (clipping step) that are closer than 2(log m)−1 for the distance d∞
using pseudo-algorithm Merging.

3. Assign a single label to each estimated homogeneous region by majority vote on
labeled data.

This method translates into two distinct error terms, one term in m and another term in n. We
apply our three-step procedure to build a classifier g̃n,m based on the pooled sample (Xl, Xu). Fix

α > 0 and let Ĝm be an estimator of the density level set Γ, that is consistent from inside at rate
m−α. For any 1 ≤ k ≤ K̃m, define the random variable

Zk
n,m =

n∑

i=1

(2Yi − 1) 1I{Xi∈H̃k}
,

where H̃k is obtained by the clipping and merging steps defined in the previous subsection. Denote
by g̃k

n,m the function g̃k
n,m(x) = 1I{Zk

n,m>0} for all x ∈ H̃k and consider the classifier defined on X by

g̃n,m(x) =

K̃m∑

k=1

g̃k
n,m(x)1I{x∈H̃k}

, x ∈ X . (4.5)

Note that the classifier g̃n,m assigns label 0 to any x outside of G̃m. This is a notational convention
and we can assign any value to x on this set since we are only interested in the cluster excess-risk.
Nevertheless, it is more appropriate to assign a label referring to a rejection, e.g., the values “2”or

10



“R” (or any other value different from {0, 1}). The rejection meaning that this point should be
classified using labeled data only. However, when the amount of labeled data is too small, it might
be more reasonable not to classify this point at all. This modification is of particular interest in the
context of classification with a rejection option when the cost of rejection is smaller than the cost
of misclassification (see, e.g., Herbei and Wegkamp, 2006). Remark that when there is only a finite
number of clusters, there exists δ > 0 such that

δ = min
j=1,...,J

δj . (4.6)

Theorem 4.1 Fix α > 0, r0 > 0 and assume that (CA2) holds. Consider an estimator Ĝm of Γ,
based on Xu that is consistent from inside at rate m−α. Then, the classifier g̃n,m defined in (4.5)
satisfies

EΓ (g̃n,m) ≤ Õ

(
m−α

1− θ

)
+

J∑

j=1

δje
−n(θδj)

2/2 ,≤ Õ

(
m−α

1− θ

)
+ e−n(θδ)2/2 (4.7)

for any 0 < θ < 1 and where δ > 0 is defined in (4.6).

Note that, since we often have m ≫ n, the first term in the RHS of (4.7) can be considered
negligible so that we achieve an exponential rate of convergence in n which is almost the same (up
to the constant θ in the exponent) as in the case where the clusters are completely known. The
constant θ seems to be natural since it balances the two terms.

5 Plug-in rules for density level sets estimation

Fix λ > 0 and recall that our goal is to use the unlabeled sample Xu of size m to construct an
estimator Ĝm of Γ = Γ(λ) = {x ∈ X : p(x) ≥ λ}, that is consistent from inside at rate m−α for
some α > 0 that should be as large as possible. A simple and intuitive way to achieve this goal is to
use plug-in estimators of Γ defined by

Γ̂ = Γ̂(λ) = {x ∈ X : p̂m(x) ≥ λ} ,

where p̂m is some estimator of p. A straightforward generalization are the penalized plug-in estimators
of Γ(λ), defined by

Γ̃ℓ = Γ̃ℓ(λ) = {x ∈ X : p̂m(x) ≥ λ + ℓ} ,

where ℓ > 0 is a penalization. Clearly, we have Γ̃ℓ ⊂ Γ̂. Keeping in mind that we want estimators
that are consistent from inside we are going to consider sufficiently large penalization ℓ = ℓ(m).

Plug-in rules is not the only choice for density level set estimation. Direct methods such as
empirical excess mass maximization (see, e.g., Polonik, 1995; Tsybakov, 1997; Steinwart et al.,
2005) are also popular. One advantage of plug-in rules over direct methods is that once we have an
estimator p̂m, we can compute the whole collection {Γ̃ℓ(λ), λ > 0}, which might be of interest for
the user who wants to try several values of λ. Note also that a wide range of density estimators is
available in usual software. A density estimator can be parametric, typically based on a mixture
model, or nonparametric such as histograms or kernel density estimators.

The next assumption has been introduced in Polonik (1995). It is an analog of the margin
assumption formulated in Mammen and Tsybakov (1999) and Tsybakov (2004) but for arbitrary
level λ in place of 1/2.

Definition 5.1 For any λ, γ ≥ 0, a function f : X → IR is said to have γ-exponent at level λ if
there exists a constant c⋆ > 0 such that, for all ε > 0,

Lebd {x ∈ X : |f(x) − λ| ≤ ε} ≤ c⋆εγ .

11



When γ > 0 it ensures that the function f has no flat part at level λ.
The next theorem gives fast rates of convergence for penalized plug-in rules when p̂m satisfies

an exponential inequality and p has γ-exponent at level λ. Moreover, it ensures that when the
penalization ℓ is suitably chosen, the plug-in estimator is consistent from inside.

Theorem 5.1 Fix λ > 0, γ > 0 and ∆ > 0. Let p̂m be an estimator of the density p based on the
sample Xu of size m ≥ 1 and let P be a class of densities on X . Assume that there exist positive
constants c1, c2 and a ≤ 1, such that for PX-almost all x ∈ X , we have

sup
p∈P

IPm (|p̂m(x) − p(x)| ≥ δ) ≤ c1e
−c2maδ2

, m−a/2 < δ < ∆ . (5.1)

Assume further that p has γ-exponent at level λ for any p ∈ P and that the penalty ℓ is chosen as

ℓ = ℓ(m) = m− a
2 log m . (5.2)

Then the plug-in estimator Γ̃ℓ is consistent from inside at rate m− γa
2 for any p ∈ P.

Consider a kernel density estimator p̂K
m based on the sample Xu defined by

p̂K
m(x) =

1

mhd

n+m∑

i=n+1

K

(
Xi − x

h

)
, x ∈ X , (5.3)

where h > 0 is the bandwidth parameter and K : IRd → IR is a kernel. If p is assumed to have
Hölder smoothness parameter β > 0 and if K and h are suitably chosen, it is a standard exercise
to prove inequality of type (5.1) with a = 2β/(2β + d). In that case, it can be shown that the rate
m− γa

2 is optimal in a minimax sense (see Rigollet and Vert, 2006).

6 Discussion

We proposed a formulation of the cluster assumption in probabilistic terms. This formulation relies
on Hartigan’s (Hartigan, 1975) definition of clusters but it can be modified to match other definitions
of clusters.

We also proved that there is no hope to improve the classification performance outside of these
clusters. Based on these remarks, we defined the cluster excess-risk which can be easily generalized
to the setup of general clusters defined above. Finally we proved that when we have consistent
estimators of the clusters, it is possible to achieve exponential rates of convergence for the cluster
excess-risk. The theory developed here can be extended to any definition of clusters as long as they
can be consistently estimated.

Note that our definition of clusters is parametrized by λ which is left to the user, depending
on his trust in the cluster assumption. Indeed, density level sets have the monotonicity property:
λ ≥ λ′, implies Γ(λ) ⊂ Γ(λ′). In terms of the cluster assumption, it means that when λ decreases
to 0, the assumption (CA2) concerns bigger and bigger sets Γ(λ) and in that sense, it becomes
more and more restrictive. As a result, the parameter λ can be considered as a level of confidence
characterizing to which extent the cluster assumption is valid for the distribution P and its choice
is left to the user.

The choice of λ can be made by fixing PX(C), where C is defined in (2.1), the probability of the
rejection region. We refer to Cuevas et al. (2001) for more details. Note that data-driven choices of
λ could be easily derived if we impose a condition on the purity of the clusters, i.e., if we are given
the δ in (4.6). Such a choice could be made by decreasing λ until the level of purity is attained.

12



However, any data-driven choice of λ has to be made using the labeled data. It would therefore
yield much worse bounds when n≪ m.

This paper is an attempt to give a proper mathematical framework for the cluster assumption
proposed in Seeger (2000). As mentioned above, the definition of clusters we use here is one among
several available and it could be interesting to modify the formulation of the cluster assumption to
match other definitions of cluster. In particular, the definition of cluster as r0-connected components
of the λ-level set of the density leaves the problem of choosing λ correctly.

7 Proofs

7.1 Proof of Proposition 2.1

Since the distribution of the unlabeled sample Xu does not depend on η, we have for any marginal
distribution PX ,

sup
η∈Ξ

IEn,m

∫

Cc

|2η − 1|1I{Tn,m 6=g⋆}dPX = sup
η∈Ξ

IEmIEn

[ ∫

Cc

|2η − 1|1I{Tn,m 6=g⋆}dPX

∣∣Xu

]

= IEm sup
η∈Ξ

IEn

[ ∫

Cc

|2η − 1|1I{Tn,m 6=g⋆}dPX

∣∣Xu

]

≥ inf
Tn

sup
η∈Ξ

IEn

∫

Cc

|2η − 1|1I{Tn 6=g⋆}dPX ,

where in the last inequality, we used the fact that conditionally on Xu, the classifier Tn,m only
depends on Xl and can therefore be written Tn.

7.2 Proof of Theorem 3.1

We can decompose EC(ĝn) into

EC(ĝn) = IEn

∑

j≥1

∫

Tj

|2η(x)− 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx .

Fix j ∈ {1, 2, . . .} and assume w.l.o.g. that η ≥ 1/2 on Tj. It yields g⋆(x) = 1, ∀x ∈ Tj , and since
ĝn is also constant on Tj, we get

∫

Tj

|2η(x)− 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx = 1I{Zj

n≤0}

∫

Tj

(2η(x)− 1)p(x)dx

≤ δj1I{
|δj−

Z
j
n

n
|≥δj

} .
(7.1)

Taking expectation IEn on both sides of (7.1) we get

IEn

∫

Tj

|2η(x)− 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx ≤ δjIPn

[∣∣δj −
Zj

n

n

∣∣ ≥ δj

]

≤ 2δje
−nδ2

j /2 ,

(7.2)

where we used Hoeffding’s inequality to get the last bound. Summing now over j yields the theorem.
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7.3 Proof of Lemma 4.1

We have to prove three points: reflexivity, symmetry and transitivity. Reflexivity is obvious from
the definition of a standard set. Next, remark that if x

r0←→
C

x′, there exists a continuous map

f1 : [0, 1]→ X such that f1(0) = x, f1(1) = x′ and for any t ∈ [0, 1] and any 0 < r ≤ r0, we have

Lebd

(
B(f1(t), r) ∩ C

)
≥ c0r

d̄ .

To prove symmetry, it is sufficient to consider the continuous map f̃1 defined by f̃1(t) = f1(1− t) for

any t ∈ [0, 1]. We now prove transitivity. Assume also that x′ r0←→
C

x′′, i.e., there exists a continuous

map f2 : [0, 1] → X such that f2(0) = x′, f2(1) = x′′ and for any t ∈ [0, 1] and any 0 < r ≤ r0, we
have

Lebd

(
B(f2(t), r) ∩ C

)
≥ c0r

d̄ .

Define now the map f : [0, 1]→ X by:

f(t) =

{
f1(2t) if t ∈ [0, 1/2]
f2(2t− 1) if t ∈ [1/2, 1]

This map is obviously continuous on [0, 1] and satisfies f(0) = x, f(1) = x′′. Moreover, for any
t ∈ [0, 1], we have

Lebd

(
B(f(t), r) ∩ C

)
≥ c0r

d̄ .

The second assertion in the lemma is trivial.

7.4 Proof of Proposition 4.1

From Lemma 4.1, we know that C can be decomposed into is classes of equivalence. Fix k ≥ 1 and
assume that there is at least k classes of equivalence that we denote by C1, . . . , Ck. Since the classes
are assumed to be s0-separated, for any 1 ≤ j ≤ k, for any xj ∈ Cj , the Euclidean balls B(xj , s/2)
are disjoint. Thus

∞ > Lebd(X ) ≥
k∑

j=1

Lebd

[
B(xj, s0/2) ∩ X

]
≥

k∑

j=1

Lebd

[
B(xj, s0/2) ∩ C

]
≥ ck ,

for a positive constant c. Thus we must have a finite decomposition.

7.5 Proof of Proposition 4.2

Consider a regular grid G on IRd with step size 1/ log(m) and let c1 > 0 be a constant such that the
Euclidean balls of centers in G̃ = G ∩ Clip(Ĝm) cover the set Ĝm. Since Lebd(X ) <∞, there exists
a constant c2 > 0 such that card{G̃} ≤ c2(log m)d. Therefore

Lebd(Clip(Ĝm)) ≤
∑

x∈G̃

Lebd

(
B(x, 1/ log(m)) ∩ Ĝm

)
≤ c2(log m)d̄−d

mα
.

So the rate of convergence G̃m is the same as that of Ĝm. We conclude the proof by observing that
G̃m ⊂ Ĝm, so that G̃m is also consistent from inside.
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7.6 Proof of Proposition 4.3

Define m0 = exp(1/(r0 ∧ s0)) and denote D(J ) by D. For any j = 1, . . . , J , the r0 connectedness of
Tj yields on the one hand,

A1(j) = {card[κ(j)] = 0} ⊂
{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d̄

}
,

A2(j) = {card[κ(j)] ≥ 2} ⊂
{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d̄

}
.

The previous inclusions are illustrated in Figure 2.

R

r0

H̃1

H̃2

Tj

(log m)−1

Figure 2: By construction, H̃1 and H̃2 are separated by a ball of radius (log m)−1, which is included
in B(x, r0) when m ≥ m0. So if {1, 2} ⊂ κ(j) or κ(j) = ∅, this ball is included in in G̃m △ Γ.

On the other hand, κ(j)∩ κ(j′) 6= ∅ for some j′ 6= j when either (i) ∃ l s.t. T̃l ∩ Tj 6= ∅, T̃l ∩ Tj′ 6= ∅
or (ii) ∃ l 6= l′ s.t. T̃l ∩ Tj 6= ∅, T̃l′ ∩ Tj′ 6= ∅ and d∞(T̃l, T̃l′) < 2(log m)−1. Both cases yield the

existence of x ∈ Γc ∩ G̃m such that B(x, (log m)−1) ⊂ Γc for m ≥ m0. Therefore

Lebd(G̃m ∩ Γc) ≥ Lebd(G̃m ∩ B(x, (log m)−1)) .

Since x ∈ G̃m, we have Lebd(Ĝm ∩ B(x, (log m)−1)) ≥ m−α(log m)−d. On the other hand, we have

Lebd(G̃m ∩ B(x,
1

log m
)) = Lebd(Ĝm ∩ B(x,

1

log m
))− Lebd(Clip(Ĝm) ∩ B(x,

1

log m
))

≥ m−α(log m)−d − Lebd(Ĝm ∩ Γc)

≥ m−α(log m)−d − c3m
−2α

≥ c4m
−α(log m)−d ,

where we used the fact that Ĝm is consistent from inside at rate m−α . Hence,

A3(j) =
⋃

j′ 6=j

{κ(j) ∩ κ(j′) 6= ∅} ⊂
{
Lebd(G̃m ∩ Γc) ≥ c5m

−α(log m)−d
}

.
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s0

T̃lTj

Tj′

s0

T̃l T̃l′

Tj

Tj′

Figure 3: Case (i) (left) and case (ii) (right).

Both cases are illustrated in Figure 3.
Now, since

Dc =

J⋃

j=1

A1(j) ∪A2(j) ∪A3(j),

we get

IPm(Dc) ≤ IPm

{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d̄

}
+ IPm

{
Lebd(G̃m ∩ Γc) ≥ c5m

−α(log m)−d
}

.

Using the Markov inequality for both terms we obtain

IPm

{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d̄

}
= Õ

(
m−α

)
.

and
IPm

{
Lebd(G̃m ∩ Γc) ≥ c5m

−α(log m)−d
}

= Õ
(
m−α

)

where we used the fact that G̃m is consistent from inside with rate m−α. It yields the statement of
the proposition.

7.7 Proof of Theorem 4.1

The cluster excess-risk EΓ(g̃n,m) can be decomposed w.r.t the event D and its complement. It yields

EΓ(g̃n,m) ≤ IEm

[
1IDIEn

(∫

Γ

|2η(x)− 1|1I{g̃n,m(x) 6=g⋆(x)}p(x)dx
∣∣∣Xu

)]
+ IPm (Dc) .

We now treat the first term of the RHS of the above inequality, i.e., on the event D. Fix j ∈ {1, . . . , J}
and assume w.l.o.g. that η ≥ 1/2 on Tj . Simply write Zk for Zk

m,n. By definition of D, there is

a one-to-one correspondence between the collection {Tj}j and the collection {H̃k}k. We denote by

H̃j the unique element of {H̃k}k such that H̃j ∩ Tj 6= ∅. On D, for any j = 1, . . . , J , we have,

IEn

(∫

Tj

|2η(x) − 1|1I{g̃j
n,m(x) 6=g⋆(x)}p(x)dx

∣∣∣Xu

)

≤
∫

Tj\G̃m

(2η − 1)dPX + IEn

(
1I{Zj≤0}

∫

Tj∩H̃j

(2η − 1)dPX

∣∣∣Xu

)

≤ L(p)Lebd(Tj \ G̃m) + δjIPn

(
Zj ≤ 0|Xu) .
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On the event D, for any 0 < θ < 1, it holds

IPn

(
Zj ≤ 0|Xu) = IPn

( ∫

Tj

(2η − 1)dPX − Zj ≥ δj |Xu

)

≤ IPn

(∣∣Zj −
∫

H̃j

(2η − 1)dPX

∣∣ ≥ θδj |Xu

)

+ 1In

PX

[
Tj△H̃j

]
≥(1−θ)δj

o .

Using Hoeffding’s inequality to control the first term, we get

IPn

(
Zj ≤ 0|Xu) ≤ 2e−n(θδj)

2/2 + 1In

PX

[
Tj△H̃j

]
≥(1−θ)δj

o .

Taking expectations, and summing over j, the cluster excess-risk is upper bounded by

EΓ(g̃n,m) ≤ 2L(p)

1− θ
IEm

[
Lebd(Γ △ G̃m)

]
+ 2

J∑

j=1

δje
−n(θδj)

2/2 + IPm (Dc) ,

where we used the fact that on D,

J∑

j=1

Lebd

[
Tj △ H̃j

]
≤ Lebd

[
Γ △ G̃m

]
.

From Proposition 4.3, we have IPm (Dc) = Õ (m−α) and IEm

[
Lebd(Γ △ G̃m)

]
= Õ (m−α) and the

theorem is proved.

7.8 Proof of Theorem 5.1

Recall that
Γ̃ℓ △ Γ =

(
Γ̃ℓ ∩ Γc

)
∪

(
Γ̃c

ℓ ∩ Γ
)

.

We begin by the first term. We have

Γ̃ℓ ∩ Γc =
{
x ∈ X : p̂m(x) ≥ λ + ℓ, p(x) < λ

}
⊂

{
x ∈ X : |p̂m(x) − p(x)| ≥ ℓ

}
.

The Fubini theorem yields

IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
≤ Lebd(X ) sup

x∈X
IPm [|p̂m(x) − p(x)| ≥ ℓ] ≤ c6e

−c2maℓ2 ,

where the last inequality is obtained using (5.1) and c6 = c1Lebd(X ) > 0. Taking ℓ as in (5.2) yields
for m ≥ exp(γa/c2),

IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
≤ c6m

−γa. (7.3)

We now prove that IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
= Õ

(
m− γa

2

)
. Consider the following decomposition where

we drop the dependence in x for notational convenience,

Γ̃c
ℓ ∩ Γ = B1 ∪B2,

where
B1 =

{
p̂m < λ + ℓ, p ≥ λ + 2ℓ

}
⊂

{
|p̂m − p| ≥ ℓ

}
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and
B2 =

{
p̂m < λ + ℓ, λ ≤ p(x) < λ + 2ℓ

}
⊂

{
|p− λ| ≤ ℓ

}
.

Using (5.1) and (5.2) in the same fashion as above we get IEm

[
Lebd(B1)

]
= Õ

(
m−γa

)
. The term

corresponding to B2 is controlled using the γ-exponent of density p at level λ. Indeed, we have

Lebd(B2) ≤ c⋆ℓγ = c⋆(log m)γm−γa
2 = Õ

(
m− γa

2

)
.

The previous upper bounds for Lebd(B1) and Lebd(B2) together with (7.3) yield the consistency
from inside.
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