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Abstract

We consider semi-supervised classification when part of the available data is unlabeled.
These unlabeled data can be useful for the classification problem when we make an assumption
relating the behavior of the regression function to that of the marginal distribution. Seeger [18]
proposed the well-known cluster assumption as a reasonable one. We propose a mathematical
formulation of this assumption and a method based on density level sets estimation that takes
advantage of it to achieve fast rates of convergence both in the number of unlabeled examples
and the number of labeled examples.

Key Words: Semi-supervised learning, statistical learning theory, classification, cluster assumption,
generalization bounds.

1 Introduction

Semi-supervised classification has been of growing interest over the past few years and many methods
have been proposed. The methods try to give an answer to the question: “How to improve classifi-
cation accuracy using unlabeled data together with the labeled data?”. Unlabeled data can be used
in different ways depending on the assumptions on the model. There are two types of assumptions.
The first one consists in assuming that we have a set of potential classifiers and we want to aggregate
them. In that case, unlabeled data is used to measure the compatibility between the classifiers and
reduces the complexity of the resulting classifier (see, e.g., [3], [4]). The second approach is the one
that we use here. It assumes that the data contains clusters that have homogeneous labels and the
unlabeled observations are used to identify these clusters. This is the so-called cluster assumption.
This idea can be put in practice in several ways giving rise to various methods. The simplest is the
one presented here: estimate the clusters, then label each cluster uniformly. Most of these methods
use Hartigan’s [11] definition of clusters, namely the connected components of the density level sets.
However, they use a parametric (usually mixture) model to estimate the underlying density which
can be far from reality. Moreover, no generalization error bounds are available for such methods. In
the same spirit, [20] and [17] propose methods that learn a distance using unlabeled data in order to
have intra-cluster distances smaller than inter-clusters distances. The whole family of graph-based
methods aims also at using unlabeled data to learn the distances between points. The edges of the
graphs reflect the proximity between points. For a detailed survey on graph methods we refer to [23].
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Finally, we mention kernel methods, where unlabeled data are used to build the kernel. Recalling
that the kernel measures proximity between points, such methods can also be viewed as learning a
distance using unlabeled data (see [6], [7], [8]).

The cluster assumption can be interpreted in another way, i.e., as the requirement that the
decision boundary has to lie in low density regions. This interpretation has been widely used in
learning since it can be used in the design of standard algorithms such as Boosting [1], [13] or SVM
[6], [7], which are closely related to kernel methods mentioned above. In these algorithms, a greater
penalization is given to decision boundaries that cross a cluster. For more details, see, e.g., [18], [23],
[8]. Although most methods make, sometimes implicitly, the cluster assumption, no formulation in
probabilistic terms has been provided so far. The formulation that we propose in this paper remains
very close to its original text formulation and allows to derive generalization error bounds. We
also discuss what can and cannot be done using unlabeled data. One of the conclusions is that
considering the whole excess-risk is too ambitious and we need to concentrate on a smaller part of
it to observe the improvement of semi-supervised classification over standard classification.

Outline of the paper. After describing the model, we formulate the cluster assumption and discuss
why and how it can improve classification performance in the next section. In Section 3, we study
the population case when the marginal density p is known, to get an idea of our target. Indeed,
such a population case corresponds in some way to the case when the amount of unlabeled data is
infinite. Section 4 contains the main result: we propose an algorithm for which we derive rates of
convergence for the λ-thresholded excess-risk as a measure of performance. An exemple of consistent
density level set estimators is given in Section 5. Section 6 is devoted to discussion on the choice of
λ and possible improvements. Proofs of the results are gathered in Section 7.

Notation. Throughout the paper, we denote by cj positive constants. We write Γc for the com-
plement of the set Γ. For two sequences (up)p and (vp)p (in that paper, p will be m or n), we

write up = O(vp) if there exists a constant C > 0 such that up ≤ Cvp and we write up = Õ(vp) if

up ≤ C(log p)αvp for some constants α > 0, C > 0. Thus, if up = Õ(vp), we have up = o(vpp
β), for

any β > 0.

2 The model

Let (X, Y ) be a random couple with joint distribution P , where X ∈ X ⊂ IRd is a vector of d
features and Y ∈ {0, 1} is a label indicating the class to which X belongs. The distribution P of
the random couple (X, Y ) is completely determined by the pair (PX , η) where PX is the marginal
distribution of X and η is the regression function of Y on X , i.e., η(x) , P (Y = 1|X = x). The goal
of classification is to predict the label Y given the value of X , i.e., to construct a measurable function
g : X → {0, 1} called a classifier. The performance of g is measured by the average classification
error

R(g) , P (g(X) 6= Y )

A minimizer of the risk R(g) over all classifiers is given by the Bayes classifier g⋆(x) = 1I{η(x)≥1/2},
where 1I{·} denotes the indicator function. Assume that we have a sample of n observations
(X1, Y1), . . . , (Xn, Yn) that are independent copies of (X, Y ). An empirical classifier is a random
function ĝn : X → {0, 1} constructed on the basis of the sample (X1, Y1), . . . , (Xn, Yn). Since g⋆ is
the best possible classifier, we measure the performance of an empirical classifier ĝn by its excess-risk

E(ĝn) = IEnR(ĝn) − R(g⋆) ,

where IEn denotes the expectation with respect to the joint distribution of (X1, Y1), . . . , (Xn, Yn).
We denote hereafter by IPn the corresponding probability.
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In many applications, a large amount of unlabeled data is available as well as a small set of
labeled data (X1, Y1), . . . , (Xn, Yn) and the goal of semi-supervised classification is to use of the
unlabeled data to improve the performance of classifiers. Thus, we observe two independent samples
Xl = {(X1, Y1), . . . , (Xn, Yn)} and Xu = {Xn+1, . . . , Xn+m}, where n is rather small and typically
m ≫ n. It is well known that in order to make use of the additional unlabeled observations, we have
to make an assumption on the dependence between the marginal distribution of X and the joint
distribution of (X, Y ). Seeger [18] formulated the rather intuitive cluster assumption as follows1

Two points x, x′ ∈ X should have the same label y if there is a path between them which
passes only through regions of relatively high PX .

This assumption, in its raw formulation cannot be exploited in the probabilistic model since (i) the
labels are random variables Y, Y ′ so that the expression “should have the same label” is meaningless
unless η takes values in {0, 1} and (ii) it is not clear what “regions of relatively high PX” are. To
match the probabilistic framework, we propose the following modifications

(i) P [Y = Y ′|X, X ′connected] ≥ P [Y 6= Y ′|X, X ′connected], where “connected” means that there
is the path between X and X ′ which passes only through regions of relatively high PX .

(ii) Define “regions of relatively high PX” in terms of density level sets.

We now need to precise the term relatively high density. Assume that PX admits a density p with
respect to the Lebesgue measure on IRd denoted hereafter by Lebd. For a fixed λ > 0, the λ-level
set of the density p is defined by

Γ(λ) , {x ∈ X : p(x) ≥ λ} . (2.1)

We are now in position to give a precise definition of the cluster assumption.

Cluster Assumption CA(λ): Fix λ > 0 and assume that the density level set Γ = Γ(λ) has
a countable number of connected components Tj = Tj(λ), j = 1, 2, . . .. Then the function
x ∈ X 7→ 1I{η(x) ≥ 1/2} takes a constant value on each of the Tj, j = 1, 2, . . ..

Note that density level sets have the monotonicity property: λ ≥ λ′, implies Γ(λ) ⊂ Γ(λ′).
In terms of the cluster assumption, it means that when λ decreases to 0, the assumption CA(λ)
becomes more restrictive. As a result, the parameter λ can be considered as a level of confidence
characterizing to which extent the cluster assumption is valid for the distribution P and its choice
is left to the user. For more details on the choice of λ, see Section 6.

A question remains: what happens outside of the set Γ(λ)? Assume that we are in the problematic
case, PX(Γc) = C > 0 such that the question makes sense. Since the cluster assumption says
nothing about what happens outside of the set Γ, we can only perform supervised classification on
Γc. Consider now a classifier ĝn,m built from labeled and unlabeled samples (Xl, Xu) pooled together.
The excess-risk of ĝn,m can be written (see [10])

E(ĝn,m) = IEn,m

∫

X

|2η(x) − 1|1I{ĝn,m(x) 6=g⋆(x)}p(x)dx ,

where IEn,m denotes the expectation with respect to the pooled sample (Xl, Xu). We denote hereafter
by IPn,m the corresponding probability. Since, the unlabeled sample is of no help to classify points
in Γc, any reasonable classifier should be based on the sample Xl so that ĝn,m(x) = ĝn(x), ∀x ∈ Γc,
and we have

E(ĝn,m) = E(ĝn) ≥ IEn

∫

Γc

|2η(x) − 1|1I{ĝn(x) 6=g⋆(x)}p(x)dx . (2.2)

1the notation is adapted to the present framework
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Since we assumed PX(Γc) = C > 0, the RHS of (2.2) is bounded from below by the optimal
rates of convergence that appear in supervised classification. These rates are typically of the order
n−α, 1/2 ≤ α ≤ 1 (see e.g. [15], [22], [2] and [5] for a comprehensive survey). Thus, unlabeled
data do not improve the rate of convergence of this part of the excess-risk. To observe the effect of
unlabeled data on the rates of convergence, we have to consider the λ-thresholded excess-risk of a
classifier ĝn,m defined by

Eλ(ĝn,m) , IEn,m

∫

Γ(λ)

|2η(x) − 1|1I{ĝn,m(x) 6=g⋆(x)}p(x)dx . (2.3)

We will therefore focus on this measure of performance. Note that for such a measure, we only need
to consider classifiers ĝn,m that are defined on Γ.

We now propose a method to obtain good upper bounds on this quantity, taking advantage of
the cluster assumption. The idea is to estimate the regions where the sign of (η − 1/2) is constant
and make a majority vote on each region.

3 Results for known marginal distribution

Consider the ideal situation where the density p is known and we observe only the labeled sample
Xl = {(X1, Y1), . . . , (Xn, Yn)}. Fix λ > 0 and assume that Γ = Γ(λ) has a countable number of
connected components:

Γ =
⊔

j≥1

Tj ,

where the Tj = Tj(λ) are non empty disjoint connected sets. Under the cluster assumption CA(λ),
the function x 7→ η(x) − 1/2 has constant sign on each Tj . Thus a simple and intuitive method for
classification is to perform a majority vote on each Tj.

For any j ≥ 1, define δj = δj(λ) ≥ 0, δj ≤ 1 by

δj ,

∫

Tj

|2η(x) − 1|p(x)dx .

The following assumption characterizes how far is η from 1/2 on every connected component Tj.

Global Margin Assumption GMA(λ): There exists δ > 0 such that, for any j ≥ 1, either δj = 0
or δj ≥ δ.

Since
∑

j δj ≤ 1, a direct consequence of the GMA is that only a finite number of δj are positive.
The GMA assumption imposes that, on average over Tj , the regression function η is away from 1/2
for any j ≥ 1 such that δj > 0. It describes the global behavior of η on each connected component
Tj as opposed to the standard margin assumption formulated in [15] and [22] which we will call
here local margin assumption (LMA). Assumption LMA characterizes the local behavior of η in a
neighborhood of 1/2. In [2], it is stated as follows

Local Margin Assumption LMA: There exist constants C0 > 0 and α ≥ 0 such that

PX (0 < |2η(X) − 1| ≤ t) ≤ C0t
α, ∀ t ≥ 0 .

It is straightforward that when there is only a finite number of connected components Tj, j = 1, . . . , J
with non-zero Lebesgue measure, GMA is a consequence of LMA. However we will see in our analysis
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that the rates of convergence depend crucially on the value of δ > 0, j = 1, 2, . . ., while deriving
GMA from LMA yields a δ depending on C0. For this reason, it is natural to introduce GMA instead
of using the well known but less flexible LMA.

We now define our classifier based on the sample Xl . For any j ≥ 1, define the random variable

Zj
n ,

n∑

i=1

(2Yi − 1) 1I{Xi∈Tj} ,

and denote by ĝj
n the function ĝj

n(x) = 1I{Zj
n>0} for all x ∈ Tj . Consider the classifier defined on Γ

by

ĝn(x) =
∑

j≥1

ĝj
n(x)1I{x∈Tj}, x ∈ Γ .

The following theorem gives exponential rates of convergence for the classifier ĝn under CA(λ).

Theorem 3.1 Fix λ > 0 and assume that CA(λ) holds. Then, the classifier ĝn satisfies

Eλ(ĝn) ≤ 2
∑

j≥1

δje
−nδ2

j /2 . (3.1)

Moreover, if GMA(λ) holds, inequality (3.1) reduces to

Eλ(ĝn) ≤ 2e−nδ2/2 . (3.2)

A rapid overview of the proof shows that the rate of convergence e−nδ2/2 cannot be improved
without further assumption. It will be our target in semi-supervised classification. However, we
need estimators of the connected components Tj, j ≥ 1. In the next section we provide the main
result on semi-supervised learning, that is when the density p is unknown but we can estimate it
using the unlabeled sample Xu.

4 Main result

We now deal with a more realistic case where the density p is unknown and so are the density level
sets which have to be estimated using the unlabeled sample Xu = {X1, . . . , Xm}. Fix λ > 0 and
assume that Γ = Γ(λ) has a countable number of connected components:

Γ =
⊔

j≥1

Tj ,

where the Tj = Tj(λ) are non empty disjoint connected sets.

4.1 Density level set estimation

Assume that the density p is uniformly bounded by a constant L(p) and that Lebd(X ) < ∞, where
Lebd denotes the Lebesgue measure on IRd. Denote by IPm and IEm respectively the probability and
the expectation w.r.t the sample Xu of size m. Assume that for any λ > 0, we use the sample Xu to
construct an estimator Ĝm = Ĝm(λ) of Γ = Γ(λ) satisfying

IEm

[
Lebd(Ĝm △ Γ)

]
→ 0, m → +∞. (4.1)

We call such estimators consistent estimators of Γ. However, the connected components of a consis-
tent estimator of Γ are not in general consistent estimators of the connected components of Γ. To
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ensure componentwise consistency, we have to make assumptions on the connected component of Γ
and those of Ĝ.

Let B(x, r) be the d-dimensional closed ball of center x ∈ IRd and radius r > 0, defined by

B(x, r) ,
{
y ∈ IRd : ‖y − x‖ ≤ r

}
,

where ‖ · ‖ denotes the Euclidean norm in IRd.

Definition 4.1 Fix r0 ≥ 0 and c0 > 0. We say that a set C ⊂ IRd is r0-connected if for any
x, x′ ∈ C, there exists a continuous map f : [0, 1] → C such that f(0) = x, f(1) = x′and for any
t ∈ [0, 1] and any r ≤ r0, we have

Lebd

(
B(f(t), r) ∩ C

)
≥ c0r

d .

A 0-connected set is simply called connected or pathwise connected.

This definition ensures that Γ has no flat parts which allows to exclude pathological cases such as the
one presented on the left of Figure 1. Now, define the distance d∞, between two closed connected
sets C1 and C2 by

d∞(C1, C2) = min
x∈C1

y∈C2

‖x − y‖

We say that a collection of connected sets C1, C2, . . . , is s0-separated if d∞(Cj , Cj′ ) ≥ s0, ∀j 6= j′

for some s0 ≥ 0. If the connected components of Γ are not s0-separated for some s0 > 0, cases
such as the one presented on Figure 1 (right) could arise. In that case, two connected components
and therefore two clusters are identified which is obviously not desirable. Therefore, the cluster
assumption should not hold for that particular level λ but it might hold for some λ′ 6= λ.

Note that the performance of a density level estimator Ĝm is measured by the quantity

IEm

[
Lebd(Ĝm △ Γ)

]
= IEm

[
Lebd(Ĝ

c
m ∩ Γ)

]
+ IEm

[
Lebd(Ĝm ∩ Γc)

]
. (4.2)

For some estimators, such as the penalized plug-in density level sets estimators presented in Section 5,
we can prove that the dominant term in the RHS of (4.2) is IEm

[
Lebd(Ĝ

c
m ∩ Γ)

]
. This ensures that

with high probability the estimator Ĝm is included in Γ. We now give a precise definition of such
estimators.

Definition 4.2 Let Ĝm be an estimator of Γ and fix α > 0. We say that the estimator Ĝm is
consistent from inside at rate m−α if it satisfies

IEm

[
Lebd(Ĝm △ Γ)

]
= Õ(m−α)

and
IEm

[
Lebd(Ĝm ∩ Γc)

]
= Õ(m−2α)

For fixed α > 0, λ > 0, let Ĝm ⊂ X be a consistent from inside estimator of Γ at rate m−α. We
begin by clipping Ĝm in the following manner. Define the set

Clip(Ĝm) =
{
x ∈ Ĝm : Lebd

(
Ĝm ∩ B(x, (log m)−1)

)
≤

(log m)−d

mα

}
.

Note that Lebd(X ) < ∞ yields

Lebd

(
Clip(Ĝm)

)
= Õ(m−α)
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and therefore the clipped set G̃m = Ĝm \ Clip(Ĝm) is also consistent from inside at rate m−α. We
now use only G̃m. It is straightforward that G̃m can be decomposed into a finit number J̃m of
connected components. We write for simplicity

G̃m =
⊔

l≥1

T̃l , (4.3)

where T̃l depends on m and λ. Denote by H̃k, k = 1, 2, . . ., the family of sets such that
⊔

l≥1

T̃l =
⊔

k≥1

H̃k , (4.4)

and d∞(H̃k, H̃k′) > 2(log m)−1, ∀ k 6= k′. It is not hard to see that the sets H̃k are uniquely defined
from T̃1, T̃2, . . .. Let J be a subset of IN⋆ = {1, 2, . . .}. Define κ(j) = {k : H̃k ∩ Tj 6= ∅} and let
D(J ) be the event on which the sets κ(j), j ∈ J are reduced to singletons {k(j)} which are disjoint,
i.e.,

D(J ) ,

{
κ(j) = {k(j)}, k(j) 6= k(j′), ∀ j, j′ ∈ J , j 6= j′

}

=
{

κ(j) = {k(j)}, (Tj ∪ H̃k(j)) ∩ (Tj′ ∪ H̃k(j′)) = ∅, ∀ j, j′ ∈ J , j 6= j′
}

.
(4.5)

In other words, on the event D(J ), there is a one-to-one correspondence between the collection
{Tj}j∈J and the collection

{
{H̃k}k∈κ(j)

}
j∈J

. Componentwise convergence of G̃m to Γ, is ensured

when D(IN⋆) has asymptotically overwhelming probability. The following proposition gives an upper
bound on the probability of the complementary of D(J ) under certain conditions including the
finiteness of J .

Proposition 4.1 Fix r0 > 0, s0 > 0 and let J be a subset of {1, 2, . . .} . Assume that {Tj}j∈J is

a s0 separated collection of r0-connected sets. Then, if Ĝm is an estimator of Γ that is consistent
from the inside at rate m−α, we have

IPm

(
Dc(J )) = Õ

(
m−α

)
.

The r0-connectedness of all Tj, j ∈ J and Lebd(X ) < ∞ entails that J is necessarily finite. Nev-
ertheless, the number of connected components of Γ can be infinite as long as there is only a finite
number of them for which δj =

∫
Tj

|2η − 1|dPX > 0.

To estimate the homogeneous regions, we will simply estimate the connected components of Γ.
In addition, when two connected components Tj and Tj′ are close with respect to the distance d∞,
we merge2 them into the same homogeneous region.

It yields the following pseudo-algorithm.'

&

$

%

Pseudo-Algorithm

1. Use the unlabeled data Xu to construct an estimator Ĝm of Γ that is consistent from
inside at rate m−α.

2. Define homogeneous regions as the unions of the connected components of G̃m = Ĝm \
Clip(Ĝm) that are closer than 2(log m)−1 for the distance d∞, accordinf to (4.3) and (4.4).

3. Assign a single label to each estimated homogeneous region by majority vote on labeled
data.

2Merging two sets means here replacing them by their union

7



r0

s0/2

Figure 1: Set that is 0-connected but not r0-connected for any r0 > 0 (left) and non-separated
connected components (right).

This method translates into two distinct error terms, one term in m and another term in n. We
apply our three-step procedure to build a classifier g̃n,m based on the pooled sample (Xl, Xu). Fix

λ > 0, α > 0 and let Ĝm be an estimator of the density level set Γ = {p ≥ λ}, that is consistent
from inside with rate m−α. For any k ≥ 1, define the random variable

Zk
n,m ,

n∑

i=1

(2Yi − 1) 1I{Xi∈H̃k}
,

where H̃k is defined in (4.4). Denote by g̃k
n,m the function g̃k

n,m(x) = 1I{Zk
n,m>0} for all x ∈ H̃k and

consider the classifier defined on X by

g̃n,m ,
∑

k≥1

g̃k
n,m(x)1I{x∈H̃k}

, x ∈ X . (4.6)

Note that the classifier g̃n,m assigns the label 0 to any x outside of G̃m. This is a notational convention
and we can assign any value to x on this set since we are only interested in the λ-thresholded excess-
risk. Nevertheless, it is more appropriate to assign a label referring to a rejection, e.g., the values
“2”or “R” (or any other value different from {0, 1}). The rejection meaning that this point should be
classified using labeled data only. However, when the amount of labeled data is too small, it might
be more reasonnable not to classify this point at all. This modification is of particular interest in
the context of classification with a rejection option when the cost of rejection is smaller than the
cost of misclassification (see, e.g., [12]).

Theorem 4.1 Fix λ > 0, α > 0, r0 > 0 and assume that CA(λ) holds. Consider an estimator Ĝm

based on Xu that is consistent from inside with rate m−α. Then if the connected components of Γ(λ)
are r0-connected and s0-separated, the classifier g̃n,m defined in (4.6) satisfies

Eλ (g̃n,m) ≤ Õ

(
m−α

1 − θ

)
+

∑

j≥1

δje
−n(θδj)

2/2 , (4.7)
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for any 0 < θ < 1. Moreover, if GMA(λ) holds, inequality (4.7) reduces to

Eλ (g̃n,m) ≤ Õ

(
m−α

1 − θ

)
+ e−n(θδ)2/2 . (4.8)

Note that, since we often have m ≫ n, the first term in the RHS of (4.7) and (4.8) can be considered
negligible so that we achieve an exponential rate of convergence in n which is almost the same (up
to the constant θ in the exponent) as in the case where the density p is known. The constant θ
seems to be natural since it balances the two terms.

5 Plug-in rules for density level sets estimation

Fix λ > 0 and recall that our goal is to estimate the connected components Tj = Tj(λ), j = 1, 2, . . .,
of Γ = Γ(λ) = {x ∈ X : p(x) ≥ λ}, using the unlabeled sample Xu of size m. A simple and intuitive
way to achieve this goal is to use plug-in estimators of Γ defined by

Γ̂ = Γ̂(λ) , {x ∈ X : p̂m(x) ≥ λ} ,

where p̂m is some estimator of p. A straightforward generalization are the penalized plug-in estimators
of Γ(λ), defined by

Γ̃ℓ = Γ̃ℓ(λ) , {x ∈ X : p̂m(x) ≥ λ + ℓ} ,

where ℓ > 0 is a penalization. Clearly Γ̃ℓ ⊂ Γ̂. Therefore the connected components of Γ̃ℓ are farther
from each other than those of Γ̂. Keeping in mind that we want estimators that are consistent from
inside we are going to consider sufficiently large penalization ℓ = ℓ(m).

Plug-in rules have a practical advantage over direct methods such as empirical excess mass
maximization (see, e.g., [16], [21], [19]). Once we have an estimator p̂m, we can compute the whole
collection {Γ̃ℓ(λ), λ > 0}, which might be of interest for the user who wants to try several values of λ.
Note also that a wide range of density estimators is available in usual software. A density estimator
can be parametric, typically based on a mixture model, or nonparametric such as histograms or
kernel density estimators.

Definition 5.1 For any λ, γ ≥ 0, a function f : X → IR is said to have γ-exponent at level λ if
there exists a constant c0 > 0 such that, for all ε > 0,

Lebd {|f(X) − λ| ≤ ε} ≤ c0ε
γ .

It is an analog of the local margin assumption but for arbitrary level λ in place of 1/2. When γ > 0
it ensures that the function f has no flat part at level λ.

The next theorem gives fast rates of convergence for penalized plug-in rules when p̂m satisfies
an exponential inequality and p has γ-exponent at level λ. Moreover, it ensures that when the
penalization ℓ is suitably chosen, the plug-in estimator is consistent from inside.

Theorem 5.1 Fix λ > 0, γ > 0 and ∆ > 0. Let p̂m be an estimator of the density p such that
PX(p̂m(X) ≥ λ) ≤ C, IPm-almost surely for some positive constant C and let P be a class of
densities on X . Assume that there exist positive constants c1, c2 and a ≤ 1, such that for PX -almost
all x ∈ X , we have

sup
p∈P

IPm (|p̂m(x) − p(x)| ≥ δ) ≤ c1e
−c2maδ2

, m−a/2 < δ < ∆ . (5.1)

Assume further that p has γ-exponent at level λ and that the penalty ℓ is chosen as

ℓ = ℓ(m) = m− a
2 log m . (5.2)

Then the plug-in estimator Γ̃ℓ is consistent from inside at rate m− γa
2 .
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Consider a kernel density estimator p̂K
m based on the sample Xu defined by

p̂K
m(x) ,

1

mhd

n+m∑

i=n+1

K

(
Xi − x

h

)
, x ∈ X , (5.3)

where h > 0 is the bandwidth parameter and K : X → IR is a kernel. If p is assumed to have Hölder
smoothness parameter β > 0 and if K and h are suitably chosen, it is a standard exercise to prove
inequality of type (5.1) with a = 2β/(2β + d). In that case, it can be shown that the rate m− γa

2 is
optimal in a minimax sense.

6 Discussion

We proposed a formulation of the cluster assumption in probabilistic terms. This formulation relies
on Hartigan’s [11] definition of clusters but it can be modified to match other definitions of clusters
in the following way.

Consider a collection of r0-connected and s0-separated sets (clusters) Tj , j = 1, 2, . . ..
Then the function x 7→ (η(x) − 1/2) has constant sign on each Tj.

We also proved that there is no hope to improve the classification performance outside of these
clusters. Based on these remarks, we defined the λ-thresholded excess-risk which can be easily
generalized to the setup of general clusters defined above. Finally we proved that when we have
consistent estimators of the clusters, it is possible to achieve exponential rates of convergence for the
λ-thresholded excess-risk. The theory developed here can be extended to any definition of clusters
as long as they can be consistently estimated.

Note that our definition of clusters is parametrized by λ which is left to the user, depending on
his trust in the cluster assumption. The choice of λ can be made by fixing PX(Γc), the probability
of the rejection region. We refer to [9] for more details. Note that data-driven choices of λ could be
easily derived if we impose a condition on the purity of the clusters, i.e. if we are given the δ in the
global margin assumption. Such a choice could be made by decreasing λ until the level of purity
is attained. However, any data-driven choice of λ has to be made using the labeled data. It would
therefore yield much worse bounds.

General open problems are: applying the cluster assumption to other definitions of clusters and
study the whole excess-risk in the framework of semi-supervised classification with a rejection option.

7 Appendix: proofs

7.1 Proof of Theorem 3.1

Using the decomposition of Γ into its connected components, we can decompose Eλ(ĝn) into

Eλ(ĝn) = IEn

∑

j≥1

∫

Tj

|2η(x) − 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx .

Fix j ∈ {1, 2, . . .} and assume w.l.o.g. that η ≥ 1/2 on Tj. It yields g⋆(x) = 1, ∀x ∈ Tj , and since
ĝn is also constant on Tj, we get

∫

Tj

|2η(x) − 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx = 1I{Zj

n≤0}

∫

Tj

(2η(x) − 1)p(x)dx

≤ δj1I{
|δj−

Z
j
n

n
|≥δj

} ,
(7.1)
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Taking expectation IEn on both sides of (7.1) we get

IEn

∫

Tj

|2η(x) − 1|1I{ĝj
n(x) 6=g⋆(x)}p(x)dx ≤ δjIPn

[∣∣δj −
Zj

n

n

∣∣ ≥ δj

]

≤ 2δje
−nδ2

j /2 ,

(7.2)

where we used Hoeffding’s inequality to get the last inequality. Summing now over j yields the
theorem.

7.2 Proof of Proposition 4.1

Define m0 , exp(1/(r0 ∧ s0)). Since the connected components Tj are r0-connected, there is only
a finite number J ≥ 1 of them. We simply denote D(J ) by D. For any j = 1, . . . , J , the r0

connectedness of Tj yields on the one hand,

A1(j) , {card[κ(j)] = 0} ⊂
{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d

}
,

A2(j) , {card[κ(j)] ≥ 2} ⊂
{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d

}
.

The previous inclusions are illustrated in Figure 2.

R

r0

H̃1

H̃2

Tj

(log m)−1

Figure 2: By construction, H̃1 and H̃2 are separated by a ball of radius (log m)−1, which is included
in B(x, r0) when m ≥ m0. So if {1, 2} ⊂ κ(j) or κ(j) = ∅, this ball is included in in Γ̃ℓ △ Γ.

On the other hand, κ(j)∩ κ(j′) 6= ∅ for some j′ 6= j when either (i) ∃ l s.t. T̃l ∩ Tj 6= ∅, T̃l ∩ Tj′ 6= ∅

or (ii) ∃ l 6= l′ s.t. T̃l ∩ Tj 6= ∅, T̃l′ ∩ Tj′ 6= ∅ and d∞(T̃l, T̃l′) < 2(log m)−1. Both cases yield the

existence of x ∈ Γc ∩ G̃m such that B(x, (log m)−1) ⊂ Γc for m ≥ m0. Therefore

Lebd(G̃m ∩ Γc) ≥ Lebd(G̃m ∩ B(x, (log m)−1))

11



By construction of G̃m, we have Lebd(B(x, (log m)−1) ∩ G̃m) ≥ m−α(log m)−d. Hence

A3(j) ,
⋃

j′ 6=j

{κ(j) ∩ κ(j′) 6= ∅} ⊂
{
Lebd(G̃m ∩ Γc) ≥ m−α(log m)−d

}

Both cases are illustrated in Figure 3.

s0

T̃lTj

Tj′

s0

T̃l T̃l′

Tj

Tj′

Figure 3: Case (i) (left) and case (ii) (right).

Now, since

Dc =

J⋃

j=1

A1(j) ∪ A2(j) ∪ A3(j),

we get

IPm(Dc) ≤ IPm

{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d

}
+ IPm

{
Lebd(G̃m ∩ Γc) ≥ m−α(log m)−d

}
.

Using the Markov inequality for both terms we obtain

IPm

{
Lebd

[
G̃m △ Γ

]
> λc(log m)−d

}
= Õ

(
m−α

)
.

and
IPm

{
Lebd(G̃m ∩ Γc) ≥ m−α(log m)−d

}
= Õ

(
m−α

)

where we used the fact that G̃m is consistent from inside with rate m−α. It yields the statement of
the proposition.

7.3 Proof of Theorem 4.1

The λ-thresholded excess-risk Eλ(g̃n,m) can be decomposed w.r.t the event D and its complement.
It yields

Eλ(g̃n,m) ≤ IEm

[
1IDIEn

(∫

Γ

|2η(x) − 1|1I{g̃n,m(x) 6=g⋆(x)}p(x)dx
∣∣∣Xu

)]
+ IPm (Dc)

We now treat the first term of the RHS of the above inequality, i.e., on the event D. Fix j ∈ {1, 2, . . .}
and assume w.l.o.g. that η ≥ 1/2 on Tj . Simply write Zk for Zk

m,n. By definition of D, there is

a one-to-one correspondence between the collection {Tj}j and the collection {H̃k}k. We denote by
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H̃j the unique element of {H̃k}k such that H̃j ∩ Tj 6= ∅. On D, for any j ≥ 1, we have,

IEn

(∫

Tj

|2η(x) − 1|1I{g̃j
n,m(x) 6=g⋆(x)}p(x)dx

∣∣∣Xu

)

≤

∫

Tj\G̃m

(2η − 1)dPX + IEn

(
1I{Zj≤0}

∫

Tj∩H̃j

(2η − 1)dPX

∣∣∣Xu

)

≤ L(p)Lebd(Tj \ G̃m) + δjIPn

(
Zj ≤ 0|Xu)

On the event D, For any 0 < θ < 1, it holds

IPn

(
Zj ≤ 0|Xu) = IPn

( ∫

Tj

(2η − 1)dPX − Zj ≥ δj |Xu

)

≤ IPn

(∣∣Zj −

∫

H̃j

(2η − 1)dPX

∣∣ ≥ θδj |Xu

)

+ 1I{
PX

[
Tj△H̃j

]
≥(1−θ)δj

} .

Using Hoeffding’s inequality to control the first term, we get

IPn

(
Zj ≤ 0|Xu) ≤ 2e−n(θδj)

2/2 + 1I{
PX

[
Tj△H̃j

]
≥(1−θ)δj

} .

Taking expectations, and summing over j, the λ-thresholded excess-risk is upper bounded by

Eλ(g̃n,m) ≤
2L(p)

1 − θ
IEm

[
Lebd(Γ △ G̃m)

]
+ 2

∑

j≥1

δje
−n(θδj)

2/2 + IPm (Dc) ,

where we used the fact that on D,

∑

j≥1

Lebd

[
Tj △ H̃j

]
≤ Lebd

[
Γ △ G̃m

]
.

From Proposition 4.1, we have IPm (Dc) = Õ (m−α) and IEm

[
Lebd(Γ △ G̃m)

]
= Õ (m−α) and the

theorem is proved.

7.4 Proof of Theorem 5.1

Recall that
Γ̃ℓ △ Γ =

(
Γ̃ℓ ∩ Γc

)
⊔

(
Γ̃c

ℓ ∩ Γ
)

.

We begin by the first term. We have

Γ̃ℓ ∩ Γc =
{
x ∈ X : p̂m(x) ≥ λ + ℓ, p(x) < λ

}
⊂

{
x ∈ X : |p̂m(x) − p(x)| ≥ ℓ

}
.

The Fubini theorem yields

IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
≤ Lebd(X ) sup

x∈X
IPm [|p̂m(x) − p(x)| ≥ ℓ] ≤ c3e

−c2maℓ2 ,

where the last inequality is obtained using (5.1) and c3 = c1Lebd(X ) > 0. Taking ℓ as in (5.2) yields
for m ≥ exp(γa/c2),

IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
≤ c3m

−γa. (7.3)
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We now prove that IEm

[
Lebd(Γ̃ℓ ∩ Γc)

]
= Õ

(
m− γa

2

)
. Consider the following decomposition where

we drop the dependence in x for notational convenience,

Γ̃c
ℓ ∩ Γ = B1 ∪ B2,

where
B1 =

{
p̂m < λ + ℓ, p ≥ λ + 2ℓ

}
⊂

{
|p̂m − p| ≥ ℓ

}

and
B2 =

{
p̂m < λ + ℓ, λ ≤ p(x) < λ + 2ℓ

}
⊂

{
|p − λ| ≤ ℓ

}
.

Using (5.1) and (5.2) in the same fashion as above we get IEm

[
Lebd(B1)

]
= Õ

(
m− γa

2

)
. The term

corresponding to B2 is controlled using the γ-exponent of density p at level λ. Indeed, we have

Lebd(B2) ≤ c0ℓ
γ ≤ c0(log m)γm− γa

2 = Õ
(
m− γa

2

)

The previous upper bounds for B1 and B2 together with (7.3) yield the consistency from inside.
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