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We investigate subgrid modeling of anisotropic rotating turbulence with a dynamic equation of

structure functions of the filtered velocity field. The local volume-averaged structure function

equation of rotating turbulence is introduced and an eddy viscosity subgrid model is obtained. The

resulting subgrid model is similar to that of the study of Cui et al. fPhys. Fluids 16, 2835 s2004dg.
It is directly related to the transfer term: the third-order structure function. This term can be

computed dynamically during large eddy simulations sLESd. Tests are successfully carried out in
LES of decaying, rotating, homogeneous turbulence at high Reynolds numbers. Results are in

excellent agreement when compared with those of Cambon et al. fJ. Fluid Mech. 337, 303

s1997dg. © 2005 American Institute of Physics. fDOI: 10.1063/1.2130748g

I. INTRODUCTION

A new, dynamic subgrid eddy viscosity model
1 sCui,

Zhou, Zhang, and Shao, hereafter referred to as the “CZZS”

modeld has recently been derived in which the Kolmogorov

equation of the filtered velocity field constitutes the theoret-

ical background. The model has been successfully used in

large eddy simulations of homogeneous, isotropic turbulence

and channel flow. The Kolmogorov equation of the filtered

velocity field is able to provide the right energy transfer be-

tween resolved and unresolved scales. Based on this previous

work,
1
we now extend the study to anisotropic rotating tur-

bulence. The main effects of rotating turbulence are s1d the

spectral energy transfer is reduced and s2d the turbulence is

anisotropic. The higher the rotation rate, the more pro-

nounced the anisotropy and reduction of energy transfer. The

kinetic energy spectrum is believed to behave as K−3 for high

rotation rates sYang and Domaradzki2d, with K being the

wave number. For an extensive review of rotating turbu-

lence, the reader is referred to a recent paper of Cambon

et al.
3
To our knowledge, in the framework of subgrid mod-

eling, there are few formal anisotropic formulations of sub-

grid eddy viscosity ssee Cottet4,5d. In this study, we use an

anisotropic formulation of the structure function equations

for rotating turbulence, and derive an eddy viscosity which

includes the anisotropy in the energy transfer between re-

solved and unresolved scales. This model is then tested in

rotating and decaying homogeneous turbulence at high Rey-

nolds numbers. Results are compared with those of Cambon

et al.
6
Particular attention is paid to the spectral transfer re-

duction versus micro-Rossby number and to the spectral

slope of the kinetic energy spectrum, since these quantitative

comparisons are available.

II. FORMULATION OF THE SUBGRID EDDY
VISCOSITY FOR ROTATING TURBULENCE

The energy cascade of isotropic turbulence is well de-

scribed by the classic Kolmogorov equation. The Kolmog-

orov equation of the filtered velocity field represents the cor-

rect energy transfer between resolved and unresolved scales

sCZZS, Ref. 1d. However, both classic and modified Kol-
mogorov equations are only valid in isotropic turbulence.

Recently, Hill
7
and Casciola et al.

8
derived a volume-

averaged Kolmogorov equation which is valid in both isotro-

pic and anisotropic turbulence. We have since derived the

volume-averaged Kolmogorov equation for filtered velocity

fields, and propose a new subgrid eddy viscosity model for

anisotropic and rotating turbulence.

The governing equation of LES for homogeneous rotat-

ing turbulence can be written as

]ūi
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= −
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in which V is the rotation rate in the x3 direction, and tij

= ūiū j−uiu j is the subgrid stress. To derive the dynamic equa-

tion for structure functions, i.e., the equation for the covari-

ance of a velocity increment, Dūi= ūist ,xd− ūist ,x−rd, the
following equation is needed for ūist ,x−rd:
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in which the superscript 8 denotes quantities at point x8=x

−r.
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Subtracting Eq. s1d from Eq. s3d, and keeping in mind
that ]ūi8 /]xi=0 and ]ūi /]xi8=0, we get
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]Dūi

]xk8

= −
]p̄

]xi

+
]p̄8

]xi

+ n
]2Dūi
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Multiplying Eq. s5d by Dūi, we find
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Note that the final term of the last equation equals zero, since

eik3=−eki3. This means that the rotation effect is implicitly

involved in the energy transfer. Similarly, in spectral space,

the effect of rotation is also implicitly included in the transfer

term. The rotation cannot change the total turbulent energy,

but can transfer kinetic energy among different velocity com-

ponents and make the turbulence anisotropic. Taking the en-

semble average of Eq. s6d, note that ] /]xi=] /]ri, ] /]xi8

=−] /]ri, ]kpuil /]xi=0, and ]kp8ui8l /]xi8=0. In homogeneous

turbulence, the governing equation for the second order

structure function for rotating turbulence is
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The continuity equation is used, i.e., ]Dūi /]xi=]Dūi /]xi8=0,

in the derivation of the above equation. In Eq. s7d, D̄ii

= kDūiDūil and D̄iik= kDūiDūiDūkl are second- and third-order
structure functions, respectively, and ē=nk]ūi /]xk]ūi /]xkl is
the molecular dissipation of resolved scale turbulence. For

unfiltered isotropic turbulence, Eq. s7d can be simplified to

the classic Kolmogorov equation by use of tensor rules; how-

ever, in anisotropic turbulence, such as rotating turbulence,

both D̄ii and D̄iik are functions of the vector r. We show that

the last two terms can be further simplified when an eddy

viscosity is assumed for the subgrid stress tensor tij

tij = − 2ntS̄ij + tkkdij/3. s8d

In the above expression, S̄ij is the deformation tensor of the

resolved scales. Subgrid eddy viscosity is assumed to be spa-

tially constant for homogeneous turbulence. This eddy vis-

cosity may be subsequently time dependent for unsteady

flow.

The last two terms of Eq. s7d can be expressed as

Tii = 2KDūi
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Note that the isotropic part of the subgrid stress does not

contribute to Tii in homogeneous turbulence for the same

reason as pressure does not contribute to the energy transfer

in homogeneous turbulence. We insert the subgrid stress into

the above equation to obtain the final expression of Tii as

Tii = 2nt

]2D̄ii
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+ 4ntK ]ūi

]xk

]ūi

]xk

L . s10d

Inserting Eq. s10d into Eq. s7d, we have
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Following Hill
7
and Casciola et al.,

8
we take volume integra-

tion over a sphere with radius r

E
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In virtue of the Green-Ostrograsky integration formula, the

volume integration can be transferred to the surface integra-

tion

E
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where dAsrd is the element surface of the sphere. Inserting
the above two identities into Eq. s12d, we have
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]ūi

]xk

LV

, s15d

in which the superscript V and Sr denote the volume and

surface average, respectively, e.g., D̄ii
V=1/VeVD̄iidv and D̄ii

Sr
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=1/SrrSr
D̄iidAsrd. For a sphere, Sr /V=3/r. The volume-

averaged equation can be written as
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Neglecting molecular viscosity for high Reynolds number

turbulence, and dropping the time derivative term for small r,

we have the subgrid eddy viscosity for anisotropic turbu-

lence

nt =
3Diir

s

6
]Dii

]r

s − 4K ]ūi

]xk

]ūi

]xk

L
. s17d

III. NUMERICAL APPLICATIONS: LES OF ROTATING
DECAYING HOMOGENEOUS TURBULENCE

A. Numerical method

The numerical method used is a classic pseudospectral

method. Due to the particular spectral cutoff filter in this

numerical method, there is an increasing effect of the trun-

cation of triadic interaction near the cutoff wave number,

namely the CUSP effect. Since our subgrid eddy viscosity is

assumed to be spatially constant and wave-number indepen-

dent, the CUSP effect, in addition to the subgrid eddy vis-

cosity, is accounted for by a correction from Chollet
9
illus-

trated in Fig. 1. This correction leads to an increase of the

subgrid dissipation of about 30%. In order to simulate infi-

nite Reynolds number turbulence, the molecular viscosity is

set to zero. The initial field is generated using the method of

Rogallo
10
with a von Kármán spectrum. The numerical do-

main is a rectangular box. In the direction of rotation, the

box length is 4 times larger. As rotation is present, the length

scale growth is greater in this direction. The fourth-order

Runge-Kutta method is used for time advance. The time step

is set to be sufficiently small to allow the inertial wave reso-

lution.

B. Time relaxation

The eddy viscosity is directly connected to the third-

order structure functions. Third-order structure functions

may vary rapidly in time while turbulent dissipation is slow.

The third-order term is connected to a convection time at

filter size, and the subgrid viscous term is connected to the

time variation of second-order structure functions. As the

aim of the present paper is to simulate high Reynolds decay-

ing rotating turbulence, a time relaxation is used.

Subgrid eddy viscosity is relaxed over a time period TM.

At time step n+1, nt
n+1 is computed as follows:

nt
n+1 = S1 − Dt

TM

Dnt
n +

Dt

TM

nt
n+1, s18d

where Dt is the time step.

The time period TM is assumed to be the time variation

of the second-order structure function at filter size D. TM can

be evaluated with Eq. s7d at the filter size r=D:

fD̄iig = u8
2,

fD̄iikg = u8
3,

fntg =
D
2

Tvis

,

F ]D̄ii

]t
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2
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F ]D̄iik
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G = u8

3

D
,
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D
2

Tvis

u8
2

D
2
. s19d

TM is then estimated by

1

TM

=
u8

D
+

1

Tvis

, s20d

where Tvis is evaluated during simulation with the instanta-

neous eddy viscosity. At t=0, the value of the subgrid eddy

viscosity is initiated by the value of the asymptotic isotropic

skewness model sAISM modeld fexpression s5.5d in Cui

et al.
1g, and the value of the skewness was set to −0.49.

C. Decaying high Reynolds turbulence

At first the validity of the model equation s17d is as-

sessed in decaying isotropic turbulence. A 643 cubic numeri-

cal grid is used. Figure 2 shows the time evolution of re-

solved scale turbulent kinetic energy. The classic power law,

t−n, with n<1.25, is obtained in a short time. In order to

check the long-time behavior of the present subgrid eddy

viscosity, the simulation is run for more than 106 initial turn-

FIG. 1. CUSP effect correction of Chollet sRef. 9d in a 963384*394 LES

run.
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over times. The effect of the integral length-scale growth

blocked by the numerical box due to the “infrared cutoff”

wave number is studied in detail by Touil et al.
11
In the

present simulation, this effect is correctly recovered. As an

example, at the final decay stage, the power law is shifted to

t−2. This result is also consistent with the experimental study

of Skrbek and Stalp.
12
Moreover, as shown in Fig. 3, after

the length-scale saturation, nondimensional spectra

EsKde f
−2/3K5/3 exhibit the clear range of a Kolmogorov spec-

trum. The averaged Kolmogorov constant over the plateau is

1.8. We conclude that the present model is able to perform

high Reynolds homogeneous turbulence simulations.

D. Rotating turbulence results

For the large eddy simulation of a decaying rotating high

Reynolds homogeneous turbulence, a precomputation of

purely decaying isotropic turbulence is performed. The pre-

computation is run until the time decay of large-scale kinetic

energy k reaches a reliable power law; solid body rotation is

then switched on.

Figure 4 shows the time variation of the large-scale ki-

netic energy for different rotation rates. The numerical grid is

a 643643256 rectangular box. As the rotation reduces the

spectral energy transfer, the decay of the turbulent kinetic

energy is slower. This phenomenon is more pronounced

when the rotation rate increases. The time variation of sub-

grid eddy viscosity is also plotted in Fig. 5. Subgrid viscosity

is initially reduced when rotation is switched on. It then de-

cays slower than in the nonrotation case. At the end of com-

putation, the level of the subgrid viscosity is larger than in

the case of rotating turbulence. This is due to the fact that the

kinetic energy decays much faster in nonrotating turbulence,

and that the level of subgrid eddy viscosity is related to the

subgrid energy. To quantify these reductions, the ratio of the

FIG. 2. Time variation of large-scale kinetic energy in a 643 LES run.

FIG. 3. Spectral behavior after the length-scale saturation, at different times

in a 643 LES run.

FIG. 4. Time variation of large-scale kinetic energy, for different rotation

rates in a 643643256 LES run.

FIG. 5. Time variation of subgrid eddy viscosity, for different rotation rates

in a 643643256 LES run.
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derivative skewness Sk /Sk sat V=0d versus the rotation rate
is checked. The derivative skewness quantifies the mecha-

nisms of energy transfer and energy dissipation. It is usually

related to the small-scale turbulence. In LES, small scales are

not present. The derivative skewness represents the mecha-

nisms of energy transfer and subgrid dissipation. In both

cases, the derivative skewness is a balance between energy

transfer and dissipation mechanisms. A good LES should be

able to correctly reproduce the modification of this balance

by rotation. Although a direct comparison of the value of the

derivative skewness between LES and direct numeric simu-

lation is meaningless, comparison of its variation under the

influence of rotation can indicate the ability of the self-

adjustment of a subgrid model to the rotation effect.

In a decaying turbulence, when rotation is applied, the

skewness is reduced with time while the Rossby number

increases. Cambon et al.
6
propose a scaling law for the skew-

ness reduction. The derivative skewness Sk versus the micro-

Rossby number Ro
v is linked by the following relationship:

Sk

Skst = 0d
=

1.0

s1 + 2Ro
v−2d0.5

, s21d

where Skst=0d is the value reached by the nonrotation pre-

computation, and Ro
v is evaluated by se /kVdsk2 /ned0.5. The

turbulent dissipation e is replaced by e f, the molecular vis-

cosity n by nt, and the large-scale kinetic energy k is used in

LES.

For comparison, the AISM model
1
and the isotropic

CZZS model
1
are also used. Computations are performed on

a 643643256 numerical grid. Figure 6 shows the time

variation of the velocity derivative skewness versus the in-

verse of the instantaneous micro-Rossby number. The rota-

tion rate is V=10, corresponding to an initial micro-Rossby

FIG. 6. Skewness variation vs micro-Rossby number with rotation rate V

=10. A comparison between AISM, isotropic CZZS, and the present model

in a 643643256 LES run.

FIG. 7. Skewness variation vs micro-Rossby number with a rotation rate of

V=10. The solid line represents the Cambon et al. sRef. 6d model, and

circles the present model in a 963963384 LES run.

FIG. 8. Skewness variation vs micro-Rossby number with different initial

rotation rates. The solid line represents the Cambon et al. sRef. 6d model,
and symbols the present model in a 643643256 LES run.

FIG. 9. Time variation of spectrum with a rotation rate of V=10 in a 96

3963384 LES run.
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number of 1.82. At the end of the computation, the micro-

Rossby number is nearly 0.71. At the beginning, when rota-

tion is applied, all three models produce a sudden skewness

reduction to the level predicted by the scaling law, Sk /Skst
=0d<0.75. However, the time variations are quite different
for the three models. Whereas the micro-Rossby number de-

creases with time, the AISM remains at nearly the same

level. The CZZS model however, shows a small reduction in

skewness. Neither follows the scaling law. Only the present

model s17d fits the scaling law well; the behavior at the criti-
cal micro-Rossby number, Ro

v=1, is excellent.

A finer grid with 963963384 nodes is also used to

check the influence of the resolution. The initial micro-

Rossby number is nearly 2.0. When the computation ends,

the final micro-Rossby number is approximately 0.22. As in

Fig. 7, the fit of the Cambon et al.
6
scaling law is excellent,

and also much better than that when a 643643256 grid is

used.

Different values of the rotation rate, V

=5,10,20,40,80,160, covering an initial micro-Rossby

number from approximately 4.0 to 0.1, are then used for

different runs on the 643643256 numerical grid. Results

are plotted in Fig. 8. The scaling law of Cambon et al.
6
is

verified by the present LES simulation. At very small micro-

Rossby numbers, the skewness presents large oscillations.

This phenomenon is also present in the study of Cambon

et al.
6

Spectral behavior is also checked on the three-

dimensional isotropic kinetic energy spectrum EsKd. Figures
9 and 10 show the time evolution of EsKd for initial rotation
rates of V=10 and 100, respectively. The corresponding ini-

tial micro-Rossby numbers are nearly 2.22 and 0.222. At the

end of the computation, the micro-Rossby numbers are about

0.222 and 0.0667, respectively. Results correspond to a 96

3963384 LES runs. Once the rotation is switched on, the

spectral slope shifts from nearly −5/3 to −3. For the lower

rotation rate, an intermediate slope −2 is observed. In the

case of smaller micro-Rossby number, it seems that the slope

is close to −3. K−3 compensated spectra at the end of com-

putation are shown in Figs. 11 and 12, corresponding to the

low and the high rotation rates. A plateau seems to exist in

both cases, but more obviously for the high rotation rate

case. These results are also consistent with the recent study

of Yang and Domaradzki.
2

IV. CONCLUDING REMARKS

Local volume integrated filtered velocity structure func-

tion equations are introduced for subgrid modeling of aniso-

tropic rotating turbulence, and a dynamic subgrid eddy vis-

cosity is proposed. The model is successfully tested in LES

of high Reynolds decaying rotating homogeneous turbu-

lence. This model is able to simulate rotating homogeneous

turbulence at very high rotation rate swith a micro-Rossby

number smaller than 0.1d. The model can also reproduce the
most important feature of the rotating turbulence: the reduc-

FIG. 10. Time variation of spectrum with a rotation rate of V=100 in a

963963384 LES run.

FIG. 11. Compensated spectrum with a rotation rate of V=10 at the end of

computation in a 963963384 LES run.

FIG. 12. Compensated spectrum with a rotation rate of V=100 at the end of

computation in a 963963384 LES run.
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tion of the spectral transfer. A quantitative comparison with

the study of Cambon et al.
6
demonstrates the necessity of the

present approach.
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