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We study numerically the instability of a confined rotating gas flow subject to periodic strain along

the axis of rotation, under the low Mach number approximation. An axisymmetric time-stepping

spectral Galerkin-type code is used to investigate the viscous basic flow and its stability. Parametric

resonance can lead to instability of this flow via the growth of inertial modes coupled by the

oscillating strain. The marginal stability curve compares well with earlier experimental and

�asymptotic� analytical results in the case of the axisymmetric inertial mode �1,1,0�. The resulting

flow is dominated by a time-oscillating toroidal vortex and differs very little from the theoretical

mode. Two different nonlinear regimes are found, one with saturation to a constant modal

amplitude, the other with weak periodic modulation. We also show evidence of the presence of an

azimuthal circulation, apparently responsible for the observed modulation. © 2005 American

Institute of Physics. �DOI: 10.1063/1.2130746�

I. INTRODUCTION

Rotating flows are known to support inertial oscillations

whose frequencies are less than twice the basic rotation rate.
1

These oscillations play a key role in the understanding of the

dynamics of rotating flows, especially for the long-standing

issue of flow breakdown commonly observed in experi-

ments. However, the study of such inertial modes in confined

geometries is made difficult by the fact that these inertial

modes decay monotonically under the action of molecular

viscosity, hence they are not observable on a long time scale.

For the past few decades, several experiments have shown

evidence of the existence of such modes forced either di-

rectly or by means of an indirect resonance mechanism. The

former case refers to studies in a rotating closed cylinder

subject to precession effects.
2,3

The latter concerns essen-

tially the phenomenon known as “elliptic instability,” where

the basic flow is rotating in a cylindrical geometry slightly

deformed in an elliptical way by imposing small eccentricity

to the boundaries in the plane orthogonal to the axis of

rotation.
4–6

Seen from the rotating frame, the ellipticity of

the boundaries is equivalent to a lateral deformation rate

which is applied periodically in time. In this configuration,

the instability manifests itself through the growth of a pair of

nonaxisymmetric inertial modes resonantly coupled by the

elliptical distortion.
6

Nonlinear evolution leads to a sudden

breakdown of the flow and a disorderly, apparently turbulent

regime. Subsequently, the flow relaminarizes, the initial in-

stability kicks back in, and a cycle of disorderly and orderly

phases is observed.
7

Here we propose a mechanism for the growth of axisym-

metric modes by applying to a uniformly rotating flow a

deformation rate whose principal direction is parallel to the

rotation axis. This configuration was first studied by Man-

sour and Lundgren.
8

They performed a linear stability analy-

sis of such a flow under the assumption of low Mach num-

ber, and in the absence of walls and viscosity. Their analysis

revealed that the flow is generally unstable when the forcing

frequency � lies in the range �0:4��, where � stands for the

rotation rate. We examine the case of viscous flow inside a

closed circular cylinder rotating about its axis, periodically

compressed by means of a piston �see Fig. 1�. The piston is

supposed to rotate at the same angular frequency as the cyl-

inder itself. Piston motion thus induces time variations of the

height h�t� of the cylinder as h�t�=h0�1+� cos �0t�, where h0

is the mean height of the cylinder, �0 is the angular fre-

quency of the forcing, and � is a parameter measuring the

amplitude of the forcing �note that space and time are non-

dimensionalized, respectively, by the radius a of the cylinder

and by the rotation time �2��−1�. In the absence of viscosity,

the basic flow corresponding to such a configuration is an

axial oscillation of the fluid in the rotating frame with fre-

quency �0. Adding small viscosity to the problem, no ana-

lytical solution can be found. Nevertheless, we expect the

corresponding basic flow to be also oscillatory with fre-

quency �0, with velocity gradients confined to thin O�Re−1/2�
boundary layers. A complete stability analysis of this basic

flow was performed by Racz
9

under the assumption of as-

ymptotically small � and large Re=O��−2�, where Re

=2�a2 /� is a Reynolds number based on the rotation rate.

Linear stability analysis leads to a parametric resonance

condition: two inertial modes � and � can be coupled by the

oscillation of the piston if their angular frequencies, respec-

tively ���� and ����, obey the following relation:

����� − ����� = �0 + O���. �1�

This relation provides an inertial mode selection crite-

rion which allows, by carefully selecting the forcing fre-

quency, to destabilize a chosen pair of inertial modes. It is

consistent with Mansour and Lundgren’s prediction, except

that the potentially unstable modal frequencies only form a
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discrete but dense set in �0:4�� rather than a continuum of

frequencies. Viscosity acts both as a high wave-number filter

�hence reducing the density of modes� and as a stabilizing

effect, so that for each mode pair there is a critical piston

amplitude, decreasing with increasing rotation rate, below

which the basic flow is always stable. In the case of axisym-

metric modes, Racz’s analysis shows that one given inertial

mode � of frequency ���� can only be linearly coupled with

its conjugate mode �* of frequency ���*�=−����, so that a

potentially unstable pair of axisymmetric modes represents

only one real physical entity, leading to a subharmonic re-

sponse at exactly half the forcing frequency. For an O�1�
mean aspect ratio of the cylinder, the most unstable pair of

inertial modes is generally an axisymmetric one, so it ap-

pears worth restricting our attention to an axisymmetric con-

figuration first. Weakly nonlinear theory using an expansion

of the modal amplitudes in powers of O��1/2� showed that the

amplitude of the most unstable mode pair saturates at order

of magnitude O��1/2�, hence dominating the piston oscilla-

tions, which are of order O���. Nonlinear mode-mode cou-

pling generates �=0 and �=2���� frequencies of order O���.
Among these are geostrophic modes ��=0�, which modify

the mean flow. Several kinds of dynamics are predicted ac-

cording to the values of the parameters, ranging from stabil-

ity of the basic flow through instability with saturation of the

modal amplitude, to amplitude modulation and even diver-

gence. Complementary to this analytical work, an experi-

mental study was carried out by Graftieaux
10,11

using a ro-

tating glass cylinder along with laser Doppler anemometry

�LDA� and particle image velocimetry �PIV� measurements.

Experimental data reproduce well the main features of the

instability mechanism predicted analytically.

Guided by these former works, the purpose of this study

is to perform a numerical simulation of the configuration

studied by Racz in order to describe the principal features of

the instability. We focus attention on the most unstable axi-

symmetric mode corresponding to the aspect ratio of the cyl-

inder used in Graftieaux’s experiment. Our objective is a

better comprehension of the spatial structure of the basic

flow, a determination of the instability regions in parameter

space, a review of the possible long-time dynamics of the

flow, and a discussion of the relevance of the basis of invis-

cid modes for the theoretical description of the dynamics.

The plan of this paper is as follows. Section II introduces

the mathematical formulation of the problem under a low

Mach approximation, including the change of coordinates,

which enables use of a truncated Galerkin expansion scheme

for the numerical simulation. Section II C describes the nu-

merical technique used with details about the special treat-

ment of the flow singularities in the corners. Section III pre-

sents the results that are then discussed in Sec. IV.

II. FORMULATION

A. Equations of the problem

We consider the motion of a viscous fluid inside a closed

circular cylinder of radius a and height h�t�, one of whose

extremities oscillates axially by means of a piston, the flow

domain being r�a, 0�z�h�t�. The whole setup is rotating

at constant angular velocity � about the z axis, which coin-

cides with the cylinder axis. We assume that the Mach num-

ber M based on both the rotation rate and piston frequency is

small. In addition, we assume for simplicity sake that the

walls are adiabatic and that the initial conditions are homo-

geneous. These assumptions
9

enable us to decouple the ther-

modynamic aspects of the problem and to consider at leading

order in O�M2� a viscous flow with spatially homogeneous

�but time-dependent� variables such as density, temperature,

and viscosity. From here on, we nondimensionalize all quan-

tities using the cylinder radius a as length scale and �2��−1

as time scale. The equations of motion in the rotating frame,

expressed in the velocity-pressure formulation �v , p�, read

� · v =
ḣ

h
, �2�

�v

�t
+ �v · ��v = − �p +

1

R�t�
�2

v − ez � v , �3�

where R�t�=2�a2 /��t� is a time-dependent Reynolds num-

ber, which reflects the time-varying kinematic viscosity ��t�,
and ez is the unit vector in the z direction. Along with these

equations, there are viscous boundary conditions expressing

no-slip at the fixed and moving boundaries,

v = 0 �r = 1� , �4�

v = 0 �z = 0� , �5�

v =
dh

dt
ez �z = h�t��. �6�

The nondimensionalized height of the cylinder is as-

sumed to vary according to the harmonic law h�t�=h0�1
+� cos �0t�. In order to deal with a constant parameter, we

FIG. 1. Cylindrical configuration with notation.
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use the Reynolds number based on the value of the viscosity

for the nonmoving piston case �Re=2�a2 /���=0, which cor-

responds roughly to the mean value of R�t�. The number of

independent nondimensional parameters is thus brought to

four: the mean Reynolds number Re, the mean geometrical

aspect ratio of the cylinder h0, the angular forcing frequency

�0, and the forcing amplitude �.

B. Inertial waves

Let us consider, in the case �=0 of nonmoving bound-

aries, the inviscid version of the system �2� and �3� linearized

around the equilibrium state v=0, p= p0. This problem ad-

mits separable solutions
1

of the form �v , p− p0�
= �u��� ,	����e−i����

t, where for a given solution,

ur�x� = iN��kJn��kr� −
n

r
Jn�kr��cos�m
z

h0

�ein�, �7�

u��x� = N�kJn��kr� −
n�

r
Jn�kr��cos�m
z

h0

�ein�, �8�

uz�x� = iN
�k2h0

m

Jn�kr�sin�m
z

h0

�ein�, �9�

	�x� = N�1 − �2�Jn�kr�cos�m
z

h0

�ein�. �10�

Here, the angular frequency ���� and radial wave num-

ber k��� of each mode can be obtained from

� = ± �1 + � kh0

m

�2	−1/2

, �11�

�kJn��k� = nJn�k�. �12�

For given values of the integers m and n, there is a discrete

infinity of ����, k����0, which may be indexed by an integer


=1,2 , . . . so that the k��� are in increasing order. These

eigenmodes of the unforced inviscid system, called inertial

modes or sometimes Kelvin modes, are the inviscid counter-

part of the viscous structures which appear spontaneously

through an instability mechanism. They form an orthogonal

basis indexed by the integer multilabel �= �
 ,m ,n�, where


, m, and n are related to the number of radial, axial, and

azimuthal nodes. The coefficient N��� is used to normalize

u��� with respect to the L2 norm. In the axisymmetric case,

corresponding to the value n=0, inviscid inertial modes con-

sist of an array of oscillating vortices of fixed toroidal form.

The degenerate family n=0, m=0 corresponds to pure azi-

muthal motion, unsteady and independent of the axial vari-

able z. Such inertial modes are called geostrophic. Note that

the corresponding eigenvalue problem in the presence of vis-

cosity has no analytical solution, and that the related viscous

eigenmodes do not form an orthogonal basis, thus they are

not the easiest quantities to be handled analytically for the

purpose of this study. For asymptotically large values of Re,

differences between the viscous modes and the related invis-

cid ones are effectively localized near the boundaries in Ek-

man layers of thickness O�Re−1/2�. Outside these layers, the

modifications due to viscosity represent a weak secondary

flow of relative magnitude O�Re−1/2�.12
Angular frequencies

are complex, the imaginary part representing the O�Re−1/2�
modal viscous decay. Although there is no exact analytical

value for these inertial decay rates, asymptotic models exist

in the literature,
9,13

which all yield the same value for the

axisymmetric modes, and more precise values can be ob-

tained numerically by solving the related viscous eigenvalue

problem.
13,14

At sufficiently large Reynolds numbers, of or-

der 102 for the lowest-order modes, the classification

�
 ,m ,n� still holds and Greenspan’s asymptotic estimates

are valid.
14

C. Numerical method

The time-dependent flow domain 
x= �x ,y ,z�, x2+y2

�1, 0�z�h�t�� is first turned into the fixed one 
X
= �X ,Y ,Z�, X2+Y2�1, 0�Z�h0� by the coordinate

transformation

X = x, Y = y, Z =
h0

h�t�
z , �13�

and the velocity field v is made divergence-free with respect

to the variables X by removing the piston-induced vertical

velocity

VX = vx, VY = vy, VZ =
h0

h�t�
�vz −

z

h

dh

dt
�. �14�

Finally, bringing together all terms deriving from a gradient

leads to the modified pressure variable

� = p +
1

2h

d2h

dt2
z2. �15�

The system of partial differential equations describing

the evolution of V�X , t� now reads

� · V = 0, �16�

�V

�t
+ �V · ��V = − �� − eZ � V +

1

R
DV

+ ez� �

�t
+ V · �−

1

R
D��1 − � h

h0

�2	VZ,

�17�

where all the differential operators refer to the new variable

X, and the Laplacian operator D is now expressed by D

=�X
2 +�Y

2 + �h0 /h�2�Z
2. The change of variables leads to a modi-

fication of the boundary conditions

V = −
Z

h

dh

dt
ez �r = 1� , �18�

V = 0 �Z = 0,h0�. �19�

The above system of equations was solved using Galerkin-

type spectral expansion, whose fast convergence properties

are well adapted to stability problems such as the one treated

here. The main difficulty with spectral methods is that the

exponential rate of convergence is only obtainable for infi-
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nitely smooth fields, whereas in practice the order of conver-

gence is proportional to the number of finite derivatives of

the solution.
15

The present problem is singular in the sense

that the boundary conditions �18� and �19� impose disconti-

nuity of the velocity components in the piston corner �r=1,

Z=h0�, as well as discontinuity of the first spatial derivatives

of the velocity in the other corner �r=1, Z=0�. In practice,

this singularity is resolved by the presence of a very thin gap

between the piston and the side wall, eliminating the infinite

peak of pressure,
16

but the correct representation of the flow

inside the gap is a difficult task that is beyond the scope of

this paper. Numerical algorithms such as finite volume, finite

difference, or Chebyshev-Tau methods treat the singularity

problem by locally smoothing the discontinuities in the

boundary conditions,
17

which act as a local model for the

dynamical behavior in the vicinity of the gap region. In con-

trast to these techniques, the method used in this study is

aimed at solving the singular problem itself instead of an-

other regularized well-posed problem. The main idea is to

split the velocity field V in two parts. The first part, called

the singular part, is constructed analytically so that it pos-

sesses exactly the same boundary conditions as V, and mim-

ics the singularity at the cylinder corner. The regularity of the

second part allows an efficient use of a Galerkin spectral

scheme. This decomposition reads

V�X,t� = −
ḣ�t�
h�t�

V0�X� + �
�

A��t����X�. �20�

The singular field V0 is constructed by interpolation of

local solutions of the viscous linear Stokes problem �

��2
v=0 in each corner region with adequate singular

boundary conditions.
18

This technique makes sure that the

singular part respects the structure of the real solution V in

the spatial regions sufficiently near the corners, where the

assumption of a Stokes flow holds. Note that since the sin-

gular part in Eq. �20� satisfies the boundary conditions �18�
and �19�, the spectral expansion represents a velocity field

which is zero at the walls. The meridian components of the

divergence-free basis functions �����=�n,m� derive from a me-

ridian streamfunction �� using the formula

�r
� =

1

r

���

�Z
, �Z

� = −
1

r

���

�r
. �21�

Both ��
� and �� are products of Chebyshev poly-

nomials Tn�r�=cos�n cos−1�r�� and Tm�2Z /h0−1�
=cos�m cos−1�2Z /h0−1�� �n and m being positive integers�,
known for their property to represent economically strong

gradients in near-wall regions. They are weighted with poly-

nomial prefactors chosen so that the basis functions exactly

satisfy the boundary conditions of zero velocity. Their ex-

pression reads

��n,m� = 
0 �n odd�

r2�1 − r2�2Z2�Z − h0�2Tn�r�Tm�2Z

h0

− 1� �n even� �
�22�

u�
�n,m� = 
�1 − r2�Z�Z − h0�Tn�r�Tm�2Z

h0

− 1� �n odd�

0 �n even� .
�

�23�

Projection of Eqs. �17� onto the divergence-free func-

tional basis defined above transforms the problem into a dy-

namical system for the spectral amplitudes A�n,m��t� of the

form

d

dt
�

�

����t�A��t� = �
�

� 1

R�t�
D���t� + C���A��t� + N��t�

+ f��t� , �24�

where C and D stand, respectively, for the linear spectral

time-dependent operators representing viscous diffusion and

rotation effects, f expresses the forcing by the singular field

�which is zero in the absence of piston motion�, and N is the

nonlinear term. The infinite sum is truncated by retaining

only the values of n and m up to a given value M. The

spectral coefficients as well as the nonlinear term are evalu-

ated in physical space using a two-dimensional �2D� Rom-

berg integration scheme. Then the solution vector A�t� is

advanced in time using an implicit Adams-Moulton scheme

for the forcing term and the linear term, and an explicit

Adams-Bashforth scheme for the nonlinear term. Time dis-

cretization using a finite time step �t reduces the integration

of the dynamical system in time to the linear system

��n+1 −
5

12
�tLn+1�An+1 = ��n +

8

12
�tLn�An −

�t

12
�Ln−1An−1�

+
�t

12
�5fn+1 + 8fn − fn−1�

+
�t

2
�3Nn − Nn−1�. �25�

Lack of symmetry as well as the nonsparse structure of

the operator on the left-hand side lead to the use of the

BiCG-Stab algorithm for the inversion of the system at every

time step. The nonorthogonality of the functional basis with

respect to the L2 scalar product makes the matrix ����t�
=���r

�er+��
�e�+ �h /h0�2�Z

�eZ� ·��d3X ill-conditioned. Solv-

ing the system �25� at every time step is made possible by

using a constant preconditioning by ��0
−1=��t���=0, in other

words by the Gram-Schmidt matrix related to the functional

basis. Convergence was verified by doubling the resolution,

revealing that M =32 and 400 time steps per piston period

proved sufficient for Re�2·104.

III. RESULTS

A numerical investigation of the four-dimensional pa-

rameter space has been carried out for an aspect ratio h0

=1.18 and a piston displacement �=0.131. This was moti-

vated by the experimental conditions initially chosen by

Graftieaux. In this configuration, the most unstable mode

�stricto senso a pair of conjugate axisymmetric modes� is

�1,1,0�, whose inviscid angular frequency �1,1,0 is close to
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0.57. Starting from an initial flow at rest inside the cylinder,

long-time calculations were performed with forcing at vari-

ous angular frequencies �0 mostly close to 2�1,1,0, motivated

by Racz’s analysis.

A. Basic flow

For Re less than a critical value a little above 5000 or

values of �0 sufficiently far from 2�1,1,0, the frequency spec-

tra associated with every velocity component always had the

same qualitative form. All the spectra are dominated by a

strong peak at dominant angular frequency �0 and include

higher-order harmonics, as shown in Fig. 2. This corresponds

to a periodic flow of period 2
 /�0 after a transient phase of

about 20 piston cycles. Outside the boundary layers, the azi-

muthal component v� is very nearly in phase quadrature with

vZ and vr, a classic illustration of Coriolis effects in rotating

flows. This �0-periodic flow is the axisymmetric basic flow

whose instability is the subject of this paper.

The basic flow is known analytically only under the as-

sumption of zero viscosity, in which case in the rotating

frame it consists of an axial oscillation induced by piston

motion at frequency �0 and with velocity ḣ /hzez. The axial

velocity component is plotted in Fig. 3, which also shows

numerical and experimental results of Graftieaux.
11

Note that

the near-wall structure of the flow is not available by experi-

mental means. All velocity profiles coincide until the dis-

tance to the wall is smaller than 1% of the cylinder radius,

reflecting the presence of an inviscid core and the sidewall

boundary layer. The velocity discontinuity at the piston cor-

ner induces a vorticity line source, giving rise to a localized

toroidal corner vortex �see Fig. 4�. Whereas the sense of

rotation of the vortex changes periodically in time, its posi-

tion and size do not vary and no ejection phenomena were

noticed. The oscillatory boundary layer along the lateral wall

r=1 can be thought of as an oscillatory Stokes layer since the

Coriolis force vanishes for flows mainly parallel to the rota-

tion axis. A vortical secondary flow of magnitude weaker

than the corner vortex is found outside the near-wall regions,

as well as a weak unsteady Ekman layer on top and bottom

of the cylinder. These Ekman layers are characterized by an

angular deviation of the velocity components near the

boundary. Note that the forcing angular frequency �0

�2��1,1,0��1.15 is greater than 1, which excludes direct

resonant excitation of inertial modes, since their frequencies

are bounded by unity. The case �0�1 induces a direct re-

sponse of the flow in term of inertial waves along conical jets

following characteristic surfaces.
14

The study of such a flow

and its consequences on the instability mechanism will be

discussed in a future paper.

FIG. 3. Axial velocity profile as a function of z /h for several values of r.

Comparison with the inviscid and the experimental profile by Graftieaux

�Ref. 11� at r=0. a=70 mm, h0=1.18, �=0.131, �0=1.523, �

=18.85 rad s−1, Re=9989.

FIG. 2. Frequency spectrum for each velocity component of the basic flow,

at �r ,Z�= �0.094,h0 /2� for �0=1.05 and Re=1000, after the transient phase.

FIG. 4. Plane through the cylinder

axis showing the instantaneous differ-

ence between the viscous and inviscid

basic flow �h0=1.18, �=0.131, Re

=9989, �0=1.523�.
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B. Instability of the mode „1,1,0…

For values of Re above the critical threshold and �0

sufficiently near the resonant value 2��1,1,0�, the frequency

spectra of all three velocity components clearly show the

appearance of a dominant peak at angular frequency �0 /2,

whereas the distribution of the spectral amplitudes of the

harmonics of the piston is very similar to the basic flow.

Plots of velocity versus time show a slow exponential growth

of the envelope of the signal while the flow oscillates rapidly

at angular frequency �0 /2 �see Fig. 5�. This slow growth

regime can be interpreted as a linear instability regime of the

basic flow studied in the previous section. After a long tran-

sient phase, whose duration is strongly dependent on the

value of the parameters Re and �0, the oscillations attain a

saturation amplitude. For values of Re sufficiently close to

the instability threshold, the envelope saturates at a constant

amplitude, as in the case Re=6000 �see top of Fig. 5�. A

slight increase of Re leads to a weak periodic modulation of

the envelope, indicating a possible Hopf bifurcation �see Fig.

5�. Simulations were performed up to Re=12 000, and had

similar characteristics to the case shown here. No case of

amplitude divergence has been observed.

1. Linear stability and the neutral curve

The Prony algorithm
19

was applied to the velocity data

for the exponential transient phase to calculate the complex

exponential growth rates �. Among the values of � given by

the algorithm, there was a cluster very near to Im���=�0 /2,

of which the one having the largest real part was selected.

This value of Re��� was interpreted as the linear growth rate

of the instability. The results are illustrated in Table I. Nu-

merical interpolation of these data enables reconstruction of

a marginal stability curve in the parameter space ��0−Re�,
corresponding to Re���=0. The marginal curve takes the

form of a narrow instability tongue centered on 2�1,1,0 and

separating stable regions �Re below the curve� from unstable

ones �Re above the curve�. Figure 6 shows the comparison

between the numerical marginal curve, the experimental one,

and the analytical one, derived from an assumption of as-

ymptotically small �.
9

The correspondence between the the-

oretical and the numerical estimates is striking given that �

=0.131 seems perhaps at first glance too large a value to

ensure the validity of the asymptotic theory. The departure

between critical instability thresholds does not exceed 3%

for Re and 0.4% for �0. Quantitative departure from the

experimental results appears larger, of order 17%. It has not

yet been possible to identify the precise reasons for this.

However, it may be noted that experimental studies for su-

percritical bifurcations typically overestimate the stability

threshold because the modal amplitude is too small to be

measurable. Furthermore, the difference could be influenced

by thermal effects �not taken into account in the theoretical

model� or by a pressure drop in the core of the flow due to

possible leakage at the cylinder corner. Nevertheless, all the

results in Fig. 6 tend to confirm the hypothesis of a paramet-

ric resonance mechanism involving mode coupling by piston

motion, responsible for a subharmonic response of the sys-

FIG. 5. Axial velocity at �r ,Z�= �0.094,h0 /2� for �0

=1.15 and Re=6000 �top�, Re=8500 �middle�, and Re

=10 000 �bottom�.
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tem at half the forcing frequency. The existence of an insta-

bility threshold with respect to Re illustrates the stabilizing

effect of viscosity.

2. Saturation and spatial structure

We now want to determine how closely the flow result-

ing from instability can be represented by the inertial mode

�1,1,0�. Focusing on the case Re=6000, �0=1.15, as can be

seen from the frequency spectra �see Fig. 7�, the flow oscil-

lates at various frequencies, among them the frequency of the

growing structure at �0 /2, the piston frequency �0, and mul-

tiple harmonics resulting from nonlinear interactions be-

tween these two dominant frequencies. Note that the ampli-

tude of the �0 /2-peak is considerably higher than those of

the piston harmonics, in accord with the small � asymptotic

analysis.
9

The saturated flow was filtered in frequency space

around the frequency �0 /2 to get rid of other frequency com-

ponents and transformed back to the time domain. The main

effect of filtering is to remove the axial flow directly induced

by piston motion as well as the corresponding oscillatory

Stokes layer on the lateral surface of the cylinder. Figure 8

shows the filtered velocity field in the meridian plane, the

instantaneous height of the cylinder having been respected in

order to show the relative phases of the oscillating vortex

flow resulting from instability and the piston motion. In con-

trast to the basic flow where the meridian velocity is in phase

with the piston motion, here the meridian velocity field cor-

responding to the filtered field is out of phase with the piston.

The phase difference � can be determined from the complex

frequency spectra by subtracting the complex argument of

the �0 component from that of the �0 /2 component,

� = �arg V̂Z�� =
�0

2
� − arg V̂Z�� = �0�� , �26�

which yields the result cos �=0.807. This value is very close

to the theoretical result cos �=0.779 coming from the analy-

sis of the amplitude equations in Ref. 9 in the case of a fixed

point.

The spatial structure of the resulting harmonic flow may

be compared with �i� the inertial mode �1,1,0� obtained from

�7�–�9� and �ii� the inertial mode �1,1,0� obtained numeri-

cally from the viscous eigenvalue problem for the same

value of Re.
14

Let us denote by uF the filtered flow resulting

from simulation and ue the complex eigenmode with which it

is compared, either viscous or inviscid. The comparison was

done by least-squares minimizing the quantity

TABLE I. Linear growth rate of the inertial mode �1,1,0� extracted from numerical simulation using the Prony

algorithm, as a function of the forcing angular frequency �0 and the Reynolds number Re. h0=1.18, �
=0.131.

�0 1.13 1.14 1.15 1.16 1.17

Re=4937.5 −2.00�10−3 −8.14�10−4 −6.98�10−4 −1.65�10−3 −3.66�10−3

Re=5375 −1.51�10−3 −3.52�10−4 −2.56�10−4 −1.23�10−3 −3.26�10−3

Re=5812.5 3.81�10−4 1.52�10−3 1.59�10−3 6.09�10−4 −1.43�10−3

Re=6250 1.48�10−3 2.56�10−3 2.57�10−3 1.51�10−3 −6.17�10−4

Re=6687.5 2.46�10−3 3.58�10−3 3.54�10−3 2.34�10−3 −1.59�10−5

Re=7125 3.32�10−3 4.39�10−3 4.31�10−3 3.07�10−3 6.67�10−4

Re=7562.5 4.08�10−3 5.06�10−3 4.89�10−3 3.56�10−3 1.08�10−3

Re=8000 4.83�10−3 5.75�10−3 5.51�10−3 4.11�10−3 1.56�10−3

FIG. 6. Marginal stability curve for the inertial mode

�1,1,0� for h0=1.18, �=0.131, in the parameter plan

��0-Re�.
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� =

� �uF − Re�Aue��
2d3X

� �uF�2d3X

, �27�

with respect to the unknown complex modal amplitude A.

Figures 9 and 10 show a comparison between uF and the

purely modal flow Re�Aue� and indicate that the inertial

mode �1,1,0� is a good approximation of the harmonic flow

in the core of the cylinder. The largest departure occurs for

uZ in Fig. 10 toward the cylinder axis. A similar result was

obtained experimentally.
10,11

The angular deviation of the ve-

locity field in both the top and bottom Ekman layers is also

verified, both their thickness and structure matching those

from the viscous mode.

A quantitative measure of the departure from the inviscid

mode �1,1,0� was achieved by projection onto the inviscid

inertial modes. The related basis set of eigenfunctions is

complete in the sense that any solenoidal field u whose nor-

mal component vanishes at the boundaries can be expanded

in the form

u = �
�

B�u���, �28�

where the coefficients B� can be determined using orthonor-

mality as

B� =� u · u���*d3X. �29�

The modal energy factor, i.e., the energy fraction of a

given mode � for a real-valued vector field u, can be deter-

mined for a nongeostrophic mode by

b��� =
2�B��2

� �u�2
d3X �30�

and for a �real� axisymmetric geostrophic mode � by

b��� =
�B��2

� �u�2
d3X. �31�

Note the factor of 2 in formula �30� reflecting the fact that

nongeostrophic modes are complex and associated with com-

plex conjugates. Numerical determination of the modal en-

ergy factor b�1,1,0� when u=V�X , t� yields a value oscillating

between 61% and 78% during a piston cycle. When applied

to the flow uF, the value of b�1,1,0� rises to the constant value

94%. In the case Re=8500, characterized by periodic modu-

lation, an evaluation of the modal energy factor associated

with uF yields a value b�1,1,0� oscillating around 94±0.3%.

The optimization of the quantity � defined in �27� when ue is

the viscous eigenmode �1,1,0� yields approximately 3%. It

follows that the flow resulting from instability can be repre-

sented by the inviscid mode �1,1,0� with an error of only 6%,

and by the viscous mode �1,1,0� with an error of 3%.

The values of the coefficients b�
,m,0� coming from pro-

jection onto other inviscid modes, listed in Table II, show

that a large number of weakly energetic modes have roughly

similar contributions. This is as predicted analytically,
9

where terms of higher order than the first lead to multimode

excitation. In particular, the O��� terms do not contain the

frequency �0 /2 and are thus removed by filtering, whereas

the O��3/2� term has both nonlinear and viscous

contributions.

3. Geostrophic flow

Whereas all velocity components exhibit a very nearly

zero mean value in the case of the basic flow identified in

Sec. I, the azimuthal velocity in the unstable case oscillates

around a clearly nonzero mean value. The velocity field at

Re=6000 and Re=8500 was averaged in time over one

modal cycle �i.e., two piston cycles�, yielding a flow �V�t,

which is dominantly azimuthal with only weak dependence

on the axial coordinate Z. This may be related to the weakly

nonlinear analysis of Racz,
9

which indicates that the azi-

muthal flow at order O��� consists of quadratic mode-mode

interaction terms and geostrophic components, the latter aris-

ing from forcing at O��2�. Based on their analysis, this azi-

muthal flow u�
�2�

can be shown to be

V�
�2��r,Z,t� = ��a�2�U1�r� + U2�r�sin��0t + ��

+ U3�r�cos�2
Z

h0

�	 , �32�

where a stands for the theoretical amplitude of the unstable

mode �1,1,0� and U1, U2, and U3 are radial functions whose

analytical expression is known.
14

Whereas U1 contains only

geostrophic contributions, both U2 and U3 arise from mode-

mode interactions. The presence of U2 is removed by aver-

aging in time. Figure 11 shows a comparison between

��a�2U1�r� and the azimuthal flow �V��r��t,Z computed from

our code, averaged in the Z direction and defined by

FIG. 7. Frequency spectrum of VZ �r= ��0.094,Z=h0 /2��, for �0=1.15 and

Re=6000, calculated after removing the transient phase. Angular frequen-

cies are normalized by the piston angular frequency �0.
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�V��t,Z�r� =
1

h0

�
0

h0

�V��t�r,Z�dZ. �33�

Both azimuthal fields show a clear maximum near the

cylinder axis, partially compensated by a deficit near the

wall. The velocity excess predicted by the numerical code is

more concentrated toward the axis, with a maximum located

at r=0.14, whereas weakly nonlinear theory predicts this

maximum at r=0.3. It is interesting to compare with the

measured mean azimuthal velocity field obtained by

Kobine.
20

Although the inertial modes �whose nonlinear in-

teraction generates the flow� are different, the results are

similar: Kobine fits a power law of the form r−c in the range

0.1�r�0.5 and interprets the result as showing a confined

vortex flow. In our case, the nearly linear dependency of the

azimuthal component as a function of 0.1�r�0.6 in the

simulation suggests a concentrated vortex near the axis and

approximately uniform vorticity of opposite sign further out.

The axial dependence of �V�t is shown by plotting the

difference �V��t�r ,Z�− �V��t,Z�r� and comparing with its the-

oretical counterpart �u�
�2��t�r ,Z�− �u�

�2��Z,t�r�. As shown in Fig.

12, there is a positive maximum near the midplane Z=h0 /2

of the cylinder and negative values toward the top and bot-

tom walls. In the theoretical case, this variation reflects the

cos 2
Z /h0 term in Eq. �32�. A boundary layer is evident

FIG. 8. Plane through the cylinder axis showing the

velocity field filtered at angular frequency �0 /2, h0

=1.18, �=0.131, �0=1.15, Re=8500.
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close to the top and bottom walls, characterized by an angu-

lar deviation of the velocity field, and preventing the time-

averaged flow from being purely azimuthal. Note that the

departure between theory and simulation is larger than in the

case of the leading-order flow. It may be useful to recall that

the terms neglected in the asymptotic expansion �32� are

only an order of magnitude O��1/2� smaller than the retained

terms. With �1/2 close to 0.36, this may explain the relatively

large difference between theory and numerics.

IV. DISCUSSION

We have performed an axisymmetric numerical simula-

tion of the flow inside a finite rotating gas cylinder subject to

periodic compression along its axis of revolution. The veloc-

ity singularities in the corner regions are treated by removing

an analytically constructed singular flow that contains all the

singularities of the flow, the remaining part of this decompo-

sition being expanded on a Galerkin functional basis. In con-

trast to earlier analytical and experimental studies, numerical

FIG. 9. Axial dependency of the velocity components of the saturated flow

filtered at modal frequency, compared to the viscous and inviscid �1,1,0�
modes, at r=0.4258. h0=1.18, �=0.131, �0=1.15, Re=6000.

FIG. 10. Radial dependency of the velocity components of the saturated

flow filtered at modal frequency, compared to the viscous and inviscid

�1,1,0� modes, at Z=0.32h0, h0=1.18, �=0.131, �0=1.15, Re=6000.
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simulation offers an accurate way of exploring the near-wall

viscous structure of the basic flow. This flow is found to be

stable if the Reynolds number is low enough and/or if the

system is far from resonance. Seen from the rotating frame, it

consists of dominantly axial oscillations of the fluid. Viscous

effects induce a boundary layer of thickness O�Re−1/2�.
These results support the asymptotic analysis of Racz,

9,14

who concluded that, for small �, viscous effects on the basic

flow, essentially confined to the walls, have no influence on

the instability of the overall flow at leading order.

Focusing on the instability of the axisymmetric inertial

mode �1,1,0�, the simulations have confirmed the existence

of a parametric instability, as shown by the marginal stability

diagram in Fig. 6. This mode is found to be linearly unstable

if the forcing frequency lies in a band centered around twice

the modal frequency �which implies �0 in the interval

�0:4�� for instability, consistent with Mansour and

Lundgren
8�. Viscosity leads to an instability threshold whose

value compares well with that given by theory. Numerical

exploration of the instability has shown three different non-

linear regimes: �i� stability of the basic flow, �ii� instability of

the basic flow leading to a saturated inertial mode with con-

stant amplitude, and �iii� instability with weak periodic

modulation of the unstable mode amplitude. The saturated

case Re=6000, �0=1.15 was studied extensively, showing

that the modal energy factor of the inviscid inertial mode

�1,1,0� is only a few percent less than unity.

This study has also shown, in the unstable case, the pres-

ence of a O��� azimuthal circulation resulting from nonlinear

mode-mode interactions and geostrophic mode forcing. This

circulation, observed to be positive near the cylinder axis and

negative near the walls, is associated with axisymmetric geo-

strophic modes. The presence of geostrophic components

giving rise to a nonzero mean azimuthal flow played an im-

portant role in Ref. 9 and has also been noted in the case of

other instabilities based on resonant inertial-mode interac-

tions, either of parametric type
21

or due to resonant direct

forcing.
2,3,20,22

In these latter experimental studies, the azi-

muthal flow is observed to grow until breakdown occurs.

This is not the case here where no breakdown is observed,

and where the amplitude of the geostrophic flow fits well

with the results of Racz.
9

However, geostrophic modes do

play a role in amplitude modulation that can be explained by

the following qualitative scenario:
2,9

beginning in the linear

regime, the unstable mode pair grows and is affected by

nonlinearity once its amplitude reaches O��1/2�, at which

time the geostrophic flow has been driven to O���. The re-

sulting O��� modification of the mean azimuthal velocity is

sufficient to shift the natural frequency of the unstable mode

by an amount comparable with the frequency bandwidth for

instability.
14

This resonant detuning can be enough to resta-

bilize the flow.

The three different regimes observed numerically com-

pare well with the experimental observations of Graftieaux
11

in the case �=0.131. The dynamics of the flow seems rather

less rich than predicted by the nonlinear equations of weakly

nonlinear analysis.
9

The most striking difference is that the

amplitude modulations observed numerically are much

weaker than the analytical predictions. As the distance from

the instability threshold increases, Racz reports a growing

modulation amplitude, and even possible exponential diver-

gence �observed neither numerically nor experimentally�. As

the modulation increases, particularly just before divergence,

it becomes so large that the asymptotic expansions are secu-

lar, with nominally higher-order terms comparable with lead-

ing order. When this happens, weakly nonlinear analysis is of

course no longer applicable.

These results are reminiscent of other, previously stud-

ied, parametric instabilities giving rise to a subharmonic re-

sponse to periodic forcing. Among them are the pendulum

with vertically oscillating suspension and Faraday surfaceFIG. 11. Mean azimuthal velocity �u��t,Z �r�.

FIG. 12. Axial dependence of the departure �u��t �r ,Z�− �u�
�2��Z,t �r� at r

=0.3 for Re=6000.

TABLE II. Modal energy factor of the filtered flow for Re=6000, �0

=1.15.

% m=0 m=1 m=2 m=3


=1 0.008 93.6 0.019 0.51


=2 0.009 1 0.39 0.1


=3 0.013 0.48 0.16 0.08


=4 0.0025 0.076 0.035 0.002
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waves in a vertically oscillating tank. Closer to the context of

periodically deformed rotating flows, the mechanism pre-

sented in this study is analogous to the elliptic instability

with deformation applied along the rotation axis rather than

in a plane orthogonal to it. The mode selection criterion is

found to have much the same features and the action of vis-

cosity is similar.
6,7

However, in our case, the forcing fre-

quency can be varied independently of the rotation rate, thus

giving meaning to the notion of being more or less “far from

resonance.” Whereas the elliptic instability intrinsically in-

volves nonaxisymmetric inertial modes, the configuration

with axial periodic strain makes possible the excitation of

purely axisymmetric modes. An interesting issue is whether

an inertial mode, once excited, can be subject to a secondary

instability involving other inertial contributions than the un-

stable mode itself and the geostrophic components. Mason

and Kerswell
23

showed numerically that a saturated nonaxi-

symmetric inertial mode is unstable to finite-amplitude per-

turbations, and related the resonant inertial triads to vortex

breakdown commonly observed in elliptical configurations.

In contrast to their study, the mode excited here is an axi-

symmetric one. Numerical simulation does not show second-

ary instability, but the axisymmetric nature of the algorithm

prevents us from taking into account nonaxisymmetric per-

turbations. However, the inertial mode has been found ex-

perimentally to be stable for the same parameter values, from

which we may conclude that it is not subject to secondary

instability.
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APPENDIX: SOME ELEMENTS OF WEAKLY
NONLINEAR THEORY

In this appendix, we give a brief summary of the basic

elements of the weakly nonlinear theory referred to in the

paper.
9

The velocity perturbation is expanded in terms of the

inviscid Kelvin modes and exact equations derived for the

modal amplitudes using modal orthogonality. These equa-

tions are intractable as they stand, but asymptotic analysis is

possible in the limit of small � and large Re �of order �−2�.
For simplicity sake, we restrict attention to the axisym-

metric case studied in the paper. In that case, it is found that,

to leading order, instability leads to growth of a single �pri-

mary� mode and its complex conjugate. The resonance con-

dition, necessary but not sufficient for instability, is that the

piston frequency, �0, be order � or less from twice the pri-

mary modal frequency, 2�. Modal time evolution is found to

be affected significantly by nonlinearity once the primary

modal amplitude grows to order �1/2, hence asymptotic ex-

pansions for all modal amplitudes as power series in �1/2 are

used, with the leading-order term zero except for the primary

mode and its conjugate.

At leading order and on a rapid-time scale, the primary

mode simply oscillates with its inviscid, linear frequency,

unaffected by piston motion. However, the �complex� oscil-

lation amplitude is a function of the slow-time variable T

=�t and an amplitude equation arises at order �3/2. Prior to

that, at order �, no secularity occurs, but other modes are

present, including the geostrophic �zero-frequency� ones,

which play an important role later. At order �3/2, the slow-

time primary amplitude equation appears as a nonsecularity

condition and contains the infinity of O��� �real� geostrophic

mode amplitudes, A�. Deriving equations for the latter re-

quires going to still the next order, �2.

The resulting system of equations has the form

da

dT
= i�Ca* + �1

2
i� − D + 2i�

�

��A��a + iG�a�2a ,

�A1�

dA�

dT
= − D�A� + iC�̂��a2 − a*2� + ���a�2, �A2�

where a and a* represent the primary mode amplitude and its

complex conjugate, � is the mode frequency, C is a coupling

coefficient due to piston motion, � is a parameter measuring

FIG. 13. Amplitude �modulus� of primary mode ac-

cording to weakly nonlinear theory, Re=104, h0=2,

�0=2��1,1,0�, for �=0.08,0.085,0.087,0.093,0.17.
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the scaled departure of piston frequency from exact subhar-

monic resonance, and D and D� are viscous modal damping

coefficients. All other terms are nonlinear: those in �A1� ex-

press detuning of the primary modal frequency by the geo-

strophic flow and cubic interactions of the primary mode

with itself, while those in �A2� correspond to different types

of quadratic forcing of the geostrophic modes by the primary

mode. Comparatively simple analytical expressions for all

coefficients in �A1� and �A2� have been derived, but are too

lengthy to give here.

Dropping the nonlinear terms yields the linear theory in

which the geostrophic modes do not appear in �A1�, which is

then easily analytically solved. A linear stability criterion re-

sults, leading to the neutral curve referred to in the text. In

the nonlinear regime, numerical solution of the amplitude

equations �truncating the infinity of geostrophic

amplitudes—negligible differences being observed above

about 10� shows different behavior depending on the param-

eter values: �a� saturation to constant �a� and A�, with phase

locking to the piston, �b� a periodic limit cycle, �c� appar-

ently aperiodic large-time oscillations, or �d� exponential di-

vergence of the modal amplitudes to infinity. Clearly, the

latter behavior calls into question the weakly nonlinear ap-

proach used, as indeed do the large values of modal ampli-

tudes found in some periodic and aperiodic cases.

Some sample results of numerical integration of the am-

plitude equations are shown in Figs. 13 and 14.
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FIG. 14. Trajectory in the phase plane ��a� , �A��� ac-

cording to weakly nonlinear theory, where �A��
= ��i=1�A��2�1/2, Re=104, h0=2, �0=2��1,1,0�, for �
=0.08,0.085,0.087.
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