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Abstract An extensive experimental study of indentation and crack ar-
rest statistics is presented for four different brittle materials (alumina, sili-
con carbide, silicon nitride, glass). Evidence is given that the crack length
statistics is described by a universal (i.e., material independent) distribu-
tion. The latter directly derives from results obtained when modeling crack
propagation as a depinning phenomenon. Crack arrest (or effective tough-
ness) statistics appears to be fully characterized by two parameters, namely,
an asymptotic crack length (or macroscopic toughness) value and a power
law size dependent width. The experimental knowledge of the crack arrest
statistics at one given scale thus gives access to its knowledge at all scales.

Key words Brittle fracture, Crack arrest, Heterogeneity, Depinning, In-
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1 Introduction

Indentation tests are widely used to estimate material properties such as
hardness and toughness. These tests are local and non destructive. The
application on the surface of a diamond pyramid with a force F creates
an irreversible mark for any type of material and a network of cracks for
brittle solids [Lawn, 1993] whose shape and direction depend on the tip
geometry (Knoop, Vickers, Berkovich – see Fig. 1 for a Vickers indentor).
The projected area A of the permanent print defines the Meyer hardness
H = F/A. The toughness measurement mainly relies on the existence on
an intermediate scaling law between the stress intensity factor (SIF) K and
the length c of the cracks generated during the test K ∝ F/c3/2 with a
geometry and material dependent prefactor. This scaling is easily recovered
in the framework of linear elastic fracture mechanics. Assuming a point
force F (thus a stress field F/r2), the elastic energy released in a volume c3

due to the presence of radial cracks of radius c is estimated to be F 2/Ec.
The energy release rate associated with a surface increase dS ∝ cdc is thus
G = K2/E ∝ F 2/Ec3 so that K ∝ F/c3/2.

The propagation being stable, the indentation cracks are arrested for a
length such that the SIF equals the toughness K = Kc. Simple dimensional
analysis shows that the above scaling holds when the plastic strain is ne-
glected. However, even when plasticity is considered a similar scaling may
hold. Lawn et al. [1980] used a plastic cavity model to estimate the residual
stresses induced by indentation and proposed the following estimate for the
toughness

Kc = χR
F

c3/2
, χR = ξ0(cotΦ)2/3

√

E

H

where E and H are respectively the Young’s modulus and the hardness,
and Φ is the half-angle of the indentor. Last, ξ0 is a dimensionless con-
stant that remains slightly dependent on the plastic constitutive law of the
material. Ample experimental data show that for large loads, such a scal-
ing relation between F and c holds [Ponton and Rawlings, 1989a]. In the
case of a Vickers indentation, one usually considers that this is the case
for radial cracks for which c/a > 2, where a is the half diagonal of the
plastic mark and c is the crack length. For smaller cracks, (i.e., for smaller
c/a ratio) deviations are systematically observed, but among the long list
of proposed relations [Ponton and Rawlings, 1989a] between F and c no
general conclusions are derived in this regime. Note that for such lengths,
possible Palmqvist (or lateral) cracks may have been generated.

A key question has been raised in particular by Cook et al. [1985]. Is
it valid to extrapolate the toughness value obtained at a microscopic scale
with the indentation test to the large scale of macroscopic cracks? One
limitation that is easily be foreseen is the effect of microstructure. At a
small scale, the heterogeneous nature of the material may give rise to a
local toughness variability (e.g., nature of the phases, orientation of grains,
grain boundaries, intrinsic heterogeneity). What will be the macroscopic
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consequences of such a variability? A phenomenological approach to this
question consists in introducing the so-called R-curve effect, where the ap-
parent toughness depends explicitly on the crack length. Cook et al. [1985]
proposed to introduce a shielding effect at the scale of the microstructure
to give a phenomenological account to this phenomenon.

Beyond this systematic size effect, the local disorder induces a statisti-
cal scatter of the toughness measurements. Such a statistical scatter is well
known in the context of strength measurements [Weibull, 1939] and appears
at the initiation step. The fluctuations thus reflect the defect distribution
within the material [Jayatilaka and Trustrum, 1977], especially at its sur-
face for glass [Kurkjian, 1985]. In the case of indentation with a sharp tip,
initiation usually takes place below the surface on defects which are either
structural or induced by the plastic deformation.

The propagation being stable i.e., the SIF at the crack tip decreases with
c thus the crack stops as soon as the SIF is less than or equal to the tough-
ness. In cases of large cracks and easy initiation, the scatter on toughness
measurements is thus considered as independent of the initiation step and
directly induced by the effect of the microstructural disorder on the crack
arrest. Note however that a delayed or late initiation step due for instance to
a very homogeneous material and defect free surface may be responsible for
an additional scatter (this is especially the case for monocrystals where the
crack propagation and arrest may result from elasto-dynamic effects after
an initiation step that would allow for a large elastic energy being stored at
the onset of fracture). The present study only focuses on the effect of micro-
scopic disorder on the toughness measurements statistics in a quasi-static
regime.

Though not directly in the context of indentation, the recent years have
seen a growing interest for the study of fracture in heterogeneous materi-
als [Herrmann and Roux, 1990]. It appears that many results obtained in
the simple framework of the propagation of a plane crack is applied in the
more complex case of the indentation geometry. Historically, the apparent
universality of the scaling law characterizing the roughness of crack sur-
faces [Bouchaud, 1997] has motivated the use of models initially developed
in the Statistical Physics community. The physics of a crack front arrested
by an array of obstacles [Gao and Rice, 1989] is very similar to the one of a
triple contact line in wetting experiments [Joanny and de Gennes, 1984] and
is described as a depinning transition [Schmittbuhl et al., 1995]. In recent
papers such depinning models were used i) to estimate the dependence of
the macroscopic toughness on the details of the microscopic disorder [Roux
et al., 2003] and ii) to propose a material independent description of the
indentation crack arrest statistics [Charles et al., 2004].

It appears in particular that a precise description of the distribution
of the toughness effectively “seen” by a front of extension L propagating
through a heterogeneous material characterized by a toughness disorder at
the microscopic scale ξ is obtained. Independently of the details of the mi-
croscopic disorder, this effective toughness distribution p(Kc, L/ξ) is char-
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acterized by a universal functional form depending on two parameters only,
namely, an asymptotic toughness K∗ and the standard deviation Σ of an
effective toughness distribution

p

(

Kc,
L

ξ

)

= ψ

(

K∗ −Kc

Σ

)

where K∗ is an intrinsic (constant) parameter of the material while Σ is
size dependent, Σ = Σ0(L/ξ)

−1/ν depends only on the standard deviation
Σ0 of the microscopic toughness distribution and on the relative length
of the front L/ξ, ν being here a non trivial universal exponent [Skoe et
al., 2002]. For crack fronts of infinite extension, the distribution converges
toward a Dirac distribution at the macroscopic toughness value K∗. For
all forms of microscopic toughness distribution, the statistical distribution
of the “mesoscopic” toughness will follow the above universal form with a
unique function ψ as soon as L/ξ ≫ 1. This result is adapted to the specific
case of indentation, and henceforth it will give rise to a universal form of
the crack arrest length distribution [Charles et al., 2004].

The aim of the present paper is to test the validity of the latter pre-
dictions on a series of indentation experiments on various brittle materials
(glass, alumina, silicon carbide and silicon nitride). The paper is organized
as follows. The statistical modeling of crack pinning is briefly introduced
and adapted to indentation. After presenting the experimental material
and methods, the experimental results concerning the statistics of crack
lengths at various load levels are analyzed within the previous theoretical
framework.

2 Summary of the propagation model

A semi-infinite mode-I crack in an infinite medium propagating along a
weak heterogeneous and virtual interface is considered. The heterogeneity is
modeled by a random field of local toughness, with a small-scale correlation
length ξ above which correlations are neglected. As the system is loaded by
external forces up to the onset of crack propagation, the crack front does
not remain straight, but rather displays corrugations so as to adjust the
local SIF to the facing toughness. The difficulty of the problem essentially
arises from the coupling between the crack front morphology, h(x) and the
local SIF, K(x). The latter is taken into account through the first order
perturbation computation [Gao and Rice, 1989]

K(x) = K0

(

1 +
1

π

∫

∞

−∞

h(x) − h(x′)

(x− x′)2
dx′
)

(1)

where K0 is the SIF that would be obtained in similar loading conditions
for a straight crack front. Let us simply list here the main results concerning
this model as obtained in previous studies [Skoe et al., 2002; Roux et al.,
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2003]. For small disorder amplitude, small system size, and/or long correla-
tion length of the toughness along the crack propagation direction, a regime
of “weak pinning” is encountered where the crack front has a smooth change,
and the macroscopic toughness is simply equal to the geometrical average
of the local toughness. More interestingly, the most common situation, i.e.,
the generic one for a large system as compared to the heterogeneity scale,
is a regime of “strong pinning”. The latter is a second order phase transi-
tion where the control parameter is the macroscopic stress intensity factor.
The critical point corresponds to the macroscopic toughness below which
crack propagation is arrested and above which it is sustained forever. This
criticality of the crack propagation onset comes along with standard fea-
tures of second-order phase transitions such as the absence of characteristic
length scales, self-similarity, scaling with universal critical exponents, a set
of properties that are exploited in the sequel.

One of the first characteristic features is the occurrence of a corre-
lated roughness of the crack front morphology with a long range corre-
lation. The absence of length scale imposes a self-affine roughness where
the front h(x) remains statistically invariant in the affine transformation
x → λx; h → λζh. The roughness or Hurst exponent, ζ, is one critical ex-
ponent whose value — determined from numerical simulations — amounts
to ζ ≈ 0.39 [Rosso and Krauth, 2002; Vandembroucq and Roux, 2004]. The
global roughness

w(L) = (〈h(x)2〉 − 〈h(x)〉2L)1/2 (2)

therefore scales with the system size as w(L) ∝ Lζ . Note that experimental
roughness measurements on interfacial propagating fronts were shown to
exhibit a self-affine character with a roughness exponent ζ ≈ 0.5 − 0.6
Schmittbuhl and Måløy [1995] larger than the above numerical value ζ ≈
0.39. In the following we use the latter value in order to test te validity of
our model on experimental data.

The statistical distribution of instantaneous depinning force is non-
universal. It reflects both the crack front morphology and the statistical
distribution of local toughness. However, the depinning is organized in space
and time in such a way that the front advance proceeds by a series of unsta-
ble jumps from one stable configuration to the next with a large (scale free,
and hence power law) statistical distribution of such avalanches. The lat-
ter displays a hierarchical structure consisting of embedded sub-avalanches
with a self-similar statistical distribution. The interesting feature is that the
statistical distribution of depinning forces or toughness Kc, p(Kc, ℓ), condi-
tioned by the avalanche size (or more precisely by a characteristic distance
ℓ along the crack front) obeys some important scaling properties:

– The most important, is that as ℓ tends to infinity, the distribution tends
to a Dirac distribution

p(Kc, ℓ) −→ δ(Kc −K∗) (3)
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where K∗ is the thermodynamic limit of the toughness. It is thus re-
trieved that for an infinite system size (relative to the size of the het-
erogeneities along the interface) the system converges toward a homo-
geneous one characterized by a deterministic toughness K∗.

– The way the convergence toward this deterministic limit occurs is further
characterized. For a finite characteristic length scale ℓ, the distribution
p(Kc, ℓ) has a standard deviationΣ(ℓ) = (〈K2

c 〉−〈Kc〉
2)1/2 that vanishes

for diverging ℓ as

Σ(ℓ) ∝ Σ0

(

ℓ

ξ

)

−1/ν

(4)

where ν = 1/(1− ζ) ≈ 1.64 is a universal exponent. Moreover, these two
moments are sufficient to characterize the entire force distribution.

– The reduced toughness defined as u = (K∗ − Kc)(ℓ/ξ)
1/ν is observed

(for large ℓ) to follow a universal distribution

p(Kc, ℓ) =

(

ℓ

ξ

)1/ν

ψ(u) (5)

where ψ is universal, that is ℓ-independent, but more importantly also
independent of the details of the local toughness distribution. In the
above definition, ψ is defined at the scale ξ of the microscopic disor-
der, its shape is universal and its variance is equal to Σ2

0 , which is the
only relevant microscopic parameter. For small arguments u ≪ 1, ψ(u)
behaves as a power law

ψ(u) ≈ A0
uβ

Σβ+1
0

(6)

where A0 is a constant of the order of unity and β = ζ/(1 − ζ) ≈ 0.64
is again a critical exponent. For large arguments ψ decays sharply to 0
(i.e., faster than any power law).

– However, the record in time of the macroscopic toughness displays long
range time correlations, which forbid all practical use of the above result
without resorting to a more detailed study. These correlations are how-
ever exhausted past a characteristic propagation distance that exactly
matches the front roughness. The condition for negligible correlations in
the crack propagation is that the crack front has been renewed over its
entire extension. Thus for a system size L, the distribution p(Kc, ℓ = L)
both displays the universal shape given by ψ, and the absence of cor-
relations along the crack propagation axis which makes the information
exploitable and useful.

It is highly non trivial that only two parameters K∗ and Σ (for a refer-
ence scale L) are sufficient to account for the entire distribution for any sta-
tistical distribution of local toughness. Using cautiously a loose analogy, this
behavior is reminiscent of the central limit theorem, concerning the distribu-
tion of the average SN of N random numbers SN = 1/N

∑

xi. The macro-
scopic toughness limit, K∗, would play the role as 〈x〉, the variance of SN
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decreases as a power-law ofN , as the variance of the toughness does with the
crack length, and the rescaled distribution of (SN −〈SN 〉)/

√

〈S2
N 〉 − 〈SN 〉2

follows a universal (here Gaussian) distribution comparable to ψ in the sense
of its independence with respect to the distribution of xi or local toughness.
In the following, this scaling property is exploited in the indentation geom-
etry to develop a unified analysis of crack arrest statistics.

3 Application to indentation crack arrest

A very simple approach to crack arrest statistics is developed within a one-
dimensional picture. Assuming a crack propagating across a layered mate-
rial, the crack length statistics is written as [Chudnovsky and Kunin, 1987;
Jeulin, 1994; Charles and Hild, 2002; Charles et al., 2003]

Q(c) =

c/ξ
∏

i=1

F [K(iξ)] ≈ exp

(

1

ξ

∫ c

0

logF [K(x)]dx

)

(7)

where Q(c) is the probability of having a crack length greater than c, F [Kc]
the probability that the toughness be less than Kc, K(x) the value of the
SIF at location x and ξ is the width of one layer or the correlation length in
case of a random continuous toughness field. This result simply relies on the
statistical independence of the toughness value between successive layers.
It also allows one to account for the dependence of the SIF on the crack
length. However, as such, it is dependent on the material properties through
the entire function F , and the interpretation of the length scale ξ although
clear for a layered system remains to be clarified for more heterogeneous
systems.

Let us now address the question of crack arrest in a Vickers indentation
experiment, considering a radial crack system. From the above section, some
fundamental results are at hand to reduce significantly the specificity of the
problem applied to a given material. One particularity of the problem is that
the (radial) crack is semi-circular of radius c and hence the crack length L is
proportional to its propagation distance c. In the modeling of the problem
as one-dimensional (i.e., simply parameterized by c), to avoid correlations
in the global critical SIF one has to resort to a coarse-grained discrete
description. The crack front is correlated over its entire length L = πc and
over a width w ∝ σ0ξ

1−ζLζ where σ0 = Σ0/K
∗ corresponds to the standard

deviation of the relative toughness fluctuations at the microscopic scale ξ. In
the indentation geometry, the crack is thus regarded as propagating through
a series of discrete shells whose width depends on the radius as w ∝ cζ .
Moreover, each of these shells, will have a different statistical distribution
of toughness (same K∗ but different width c−1/ν). Yet, these unexpected
features are taken into account rigorously, and one arrives (see [Charles et
al., 2004] for details) at the full expression of the crack length probability
distribution.
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Let us first introduce c∗, the crack radius which would occur if the
toughness were homogeneous at its thermodynamic asymptotic value K∗,
i.e., K(c∗) = K∗. As mentioned earlier, in the present case of indentation,
the toughness disorder induces a systematic R-curve effect. The larger the
applied mass, the larger the apparent toughness (although the upper bound
does not change with the crack size, whereas the mean value does). For
a given applied mass, the value c∗ is a lower bound on the crack size at
arrest. For a large crack size as compared to the scale of heterogeneities, the
propagation probability is written as

Q(c) ≈ exp

{

−A0 σ
ζ−2

1−ζ

0

(

c∗

ξ

)2−ζ

×

∫ c

c∗

( r

c∗

)1−ζ
(

K∗ −K(r)

K∗

)
1

1−ζ dr

c∗

}

(8)

where again A0 is a constant of the order of unity.
Let us further assume that the SIF follows a power law decrease with

the crack radius K(c) ∝ F/cm, where asymptotically (for large loads) m =
3/2. In fact, one may argue that this essentially elastic-brittle description
(m = 3/2) has to be corrected by a dimensionless function of the ratio
c/a to account for plasticity effects for c/a < 2. Lacking a safe experimental
background for justifying such a systematic effect, an effective general power
law dependence is introduced, and reverts to the value m = 3/2 for large
loads or as a first estimate for m

Q(c) ≈ exp

{

−A0 σ
ζ−2

1−ζ

0

(

c∗

ξ

)2−ζ

×

∫ x

1

u1−ζ
(

1 − u−m
)1/(1−ζ)

du

}

(9)

with x = c/c∗. The integral in Eq. (9) is recast in a more compact form

Q(c) = exp



−A0

(

c∗/ξ

σ
1/1−ζ
0

)2−ζ

B

(

ζ − 2

m
,
2 − ζ

1 − ζ
,
( c

c∗

)

−m
)



 (10)

where B is based on an incomplete beta function

B(µ, η, x) =
µ(1 − η)

η

∫ 1

x

τµ−1(1 − τ)η−1dτ (11)

The width of the distribution thus only depends i) on the system size c∗/ξ
and ii) on the strength σ0 of the relative toughness disorder at the micro-
scopic scale.

It may be noted that the same type of distribution was chosen a priori
by Charles and Hild [2002]. Equation (9) therefore constitutes an a posteriori
validation, even though the “grain size” is no longer constant in the present
analysis. Let us also recall that 2 − ζ ≈ 1.61 [Rosso and Krauth, 2002;
Vandembroucq and Roux, 2004].
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4 Experimental material and methods

The previous analytical results are now tested against experimental data.
Several indentation tests, with different applied masses M (i.e., F ∝ M),
have been performed (M = 0.2 kg, 0.3 kg, 0.5 kg and 1 kg) on four different
brittle materials, namely alumina (Al2O3), silicon nitride (Si3N4), silicon
carbide (SiC) and sodalime silicate glass. The microstructure of alumina is
made of fine-grain (i.e., 10µm) alumina polycrystals with an inter-granular
glassy phase. A microanalysis shows that the latter contains SiO2, CaO and
Al2O3 components. Silicon nitride is isostatically pressed with an average
grain size close to 3 µm. The silicon carbide material is sintered. The pow-
der was pressed and heated to 2000 degrees Celsius. During this step, small
quantities of boron carbide have been added to improve the sintering pro-
cess. A small porosity is induced by this manufacturing process. The SiC
microstructure consists of grains whose characteristic length is estimated to
4 µm. Last, the studied glass is a standard float grade, of typical composi-
tion 72 wt% SiO2, 14 wt% Na2O, 9.5 wt% CaO, 4.5 wt% MgO, with traces
of K2O, Fe203, and Al2O3. Beyond the nanometer scale glass is regarded as
homogeneous.

After each indentation test, the length c of the cracks and the diago-
nal 2a of the plastic print are measured. For the chosen loading range, it
was checked that the radial-median crack system is predominant, following
a c/a criterion [Ponton and Rawlings, 1989a,b]. In the case of alumina,
additional observations have been performed to check that indentation-
generated cracks (for an applied mass of 1 kg) remained connected to the
plastic mark after polishing, thus discriminating the radial-median crack
system from a Palmqvist one. Consequently only indentation results related
to a ratio c/2a greater than 1 are used with the only exception of results
obtained on Si3N4 for which all crack lengths are such that c/2a < 1. In
the latter case, the Palmqvist crack system is likely to be predominant.
The questions of the identification and the effect of the crack system on
the statistical analysis presented in this paper are discussed in Section 6.1
in more details. For each series of tests performed with the same load, the
measured crack lengths ci are associated to an experimental propagation
probability Q(ci). The crack lengths are ranked in ascending order (i.e.,
c1 < c2 < . . . < cN ) and the corresponding experimental probability is
evaluated as Q(ci) = 1 − i/(N + 1), where N is the number of measured
crack radii for the considered applied mass.

Before any indentation test, the given material sample has been polished.
This allows one to present an almost perfectly planar surface below the in-
dentor and to better control the perpendicularity of the surface with respect
to the indentation axis. Furthermore, this additional polishing process sub-
stantially decreases possible surface residual stresses which would affect the
crack propagation conditions, and introduce some bias in the crack length
measurements.
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Beyond uncertainties due to the sample preparation, the measured
indentation-generated crack length is strongly dependent on both the obser-
vation equipment and the experimentalist. To account for these parameters,
one may compare data obtained with two different indentors on the same
material and under the same conditions. It appears that the measured crack
length strongly depends on the optical observation, but its influence on the
measured crack length scatter is rather low. Last, one compares results ob-
tained by two different operators measuring the same crack length, in order
to evaluate its influence in the definition of the crack tip location. Again,
although the measured absolute crack length may be operator-dependent,
the scatter remains comparable.

5 Identification results

In the following analysis, data obtained on a sodalime silicate glass are
analyzed to discuss different identification strategies. Equation (9) is simply
rewritten as

Q(c) = exp

[

−A (c∗)2−ζB

(

ζ − 2

m
,
2 − ζ

1 − ζ
,
( c

c∗

)

−m
)]

(12)

where

A = A0

(

ξσ
1/1−ζ
0

)ζ−2

(13)

Only two parameters are to be identified, namely the scale parameter A
and the characteristic radius c∗ provided the value for m is known. A least
squares technique is used to determine the unknown parameters by mini-
mizing the difference between the measured and modeled propagation prob-
abilities. Furthermore, a rescaling procedure is followed to collapse all the
experimental data onto a single master curve. The rescaled propagation
probability Q̃ is defined as

Q̃ = Qq (14)

and the dimensionless crack radius c̃

c̃ =
c

c∗
(15)

where q will depend on the type of identification procedure. Different strate-
gies are followed to analyze the experimental data.

5.1 Step 1: Test of the distribution shape

The first test concerns the ability of the proposed scaling form to account for
the shape of the arrest length distribution, for each individual material and
load level treated independently. For this purpose, them exponent is set to its
asymptotic value m = 3/2. Figure 2 shows experimental data obtained for
sodalime silicate glass with the four different masses and the corresponding
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identification for each load. A good agreement is obtained in terms of overall
distribution, thereby validating the general form of the distribution given in
Eq. (9). Both parameters depend upon the applied mass as shown in Fig. 3.
Figure 4 shows the result of the rescaling procedure. In this approach, the
power q is defined as

q =
B0

A(c∗)2−ζ
(16)

in which B0 is chosen as the geometric average of the products A(c∗)2−ζ for
all the applied masses. It is noted that out of 458 measurement points, only
18 are such that c/c∗ < 1 (none is expected theoretically).

5.2 Step 2: Test of the objectivity of material parameters

In the next identification stage, it is assumed that the parameter A is load-
independent, as expected from Eq. (9), and characteristic of the material.
Thus a further check of the prediction is that a single value for all load levels
should account for all distributions. The constancy of A is thus prescribed
during the identification stage. In contrast, the radius c∗ is still assumed
to be load-dependent. It is to be noted that c∗ is the result of an intrinsic
material parameter K∗, together with a relationship between K, F and
the crack radius modeled by a power law of exponent m. As one dealt
experimentally with rather short cracks, the latter relation may deviate
from the simple power law dependence, m = 3/2. Thus at this stage, m is
still set to its asymptotic value, but c∗ is considered as a free parameter
determined for each load.

Figure 5 shows the result of the identification. A good agreement is
obtained, even though not as good as in the previous case (as naturally
expected because the functional form is more constrained). The value of
A1/(2−ζ) is found to be equal to 0.57 µm−1. Let us recall that this value is
not directly read as an (inverse) characteristic correlation length that would
signal the physical size of heterogeneities. The amplitude of the microscopic
toughness distribution, σ0 does contribute to A. Figure 6 shows the depen-
dence of the characteristic radius c∗ with the applied mass M . The observed
dependence is close to what is expected from the model [i.e., c∗ ∝ M2/3

through the definition of a stress intensity factor K∗ ∝ M/(c∗)3/2]. Since
the parameter A is constant, the power q of the rescaled propagation prob-
ability is now given by

q =
(c0
c∗

)2−ζ

(17)

in which c0 is chosen as the geometric average of the characteristic radii c∗

for all the applied masses. Figure 7 shows the prediction for the indentation
experiments on glass. Only nine points are such that c/c∗ < 1.
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5.3 Step 3: Complete test of the prediction

The final test would consist in enforcing the K(c) dependence with m = 3/2
in the identification procedure. It leads to a significant degradation of the
quality of the results. As mentioned earlier, in most of the test cases, the
ratio of the crack length to the half diagonal of the plastic imprint is too
small to trust the asymptotic K(c) law. As observed in the previous step,
Fig. 6, c∗ deviates from the expected power law of exponent 1/m = 2/3.
Such deviations are not surprising when dealing with small values of the
ratio c/a, plasticity being thus the main dissipation mechanism.

However, one also notes that an effective power law fits the data quite
nicely. Let us insist on the fact that this is a purely empirical observation,
which is not supported by any theoretical argument, nor by the literature
that proposes numerous conflicting laws [Ponton and Rawlings, 1989a]. If
one introduces m′ the exponent such that

c∗ ∝M1/m′

(18)

one measures 1/m′ ≈ 0.8 for glass (Fig. 6). Note that the scaling K ∝
M/c3/2 is only expected to hold for c/a > 2; c/a dependent corrections
to scaling being necessary when c/2a is closer to unity. The value of the
effective exponent 1/m is thus expected to approach 2/3 as the ratio c/a
increases. See also Subsection 6.1 for a detailed discussion about the depen-
dence of m on the nature of the crack system.

Such an observation is however unsatisfactory in the sense that a power
law dependence involving m has already been used in the derivation of the
functional forms which allowed one to estimate m′. Thus, as a final self-
consistency requirement, it is proposed to determine the best parameter m
such that the observed m′ matches its starting value m. This self-consistent
m value is determined numerically using a fixed point algorithm, i.e., setting
m to a previously determined m′ until convergence. In one iteration the
value of the power is unaltered for three representative digits. Furthermore,
the predictions are very close to those obtained in Figs. 5 and 7 since the
initial value m′ is already very close (i.e., 99 %) to its converged estimate.

5.4 Application to four different brittle materials

The results obtained for the four different brittle materials (Al2O3, SiC,
Si3N4, glass) are presented when using the above described statistical treat-
ments.

5.4.1 Step 1 By following the first identification stage, one obtains the
following results:
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– for alumina, when one operator and one indentation machine is used
(Fig. 8-top) and two operators and two different machines (Fig. 8-
bottom). A very good agreement is obtained in both cases and no sig-
nificant deviation is observed when two operators and two indentors are
used when compared to a single set of measurements.

– for silicon nitride when one operator and one indentation machine is
used (Fig. 9). Note here that despite the fact that the crack lengths are
characterized by a low c/a ratio, the experimental results are very well
described by the analytical expression (9) obtained while setting m to
3/2 only valid a priori for c/a > 2.

– for silicon carbide when one operator and one indentation machine is
used (Fig. 10-top) and two operators and two different machines (Fig. 10-
bottom). It is noted that the two sets of results are again very close.

– for glass when one operator and one indentation machine is used (Fig. 11-
top) and two operators and two different machines (Fig. 11-bottom). It
is noted that the two sets of results are also very close.

This first identification stage gives very good results. For all materials,
the crack length distributions obtained for various loads collapse onto a sin-
gle master curve. Comparing Figs. 8, 9, 10, 11 one observes that the width
of the distributions varies noticeably from material to material. The median
crack length cm/c

∗ such that Q(cm) = 0.5 is measured to be cm/c
∗ ≈ 1.7

for Al2O3, 1.35 for Si3N4, 1.5 for SiC and 1.15− 1.2 for glass. As discussed
above, the width of the crack length distribution depends upon two pa-
rameters. It first decreases with the system size (c∗/ξ) so that the finer
the microstructure (or the smaller the toughness) the narrower the distri-
bution. Second, it depends on the width of the toughness disorder at the
microscopic scale. The stronger the toughness disorder, the larger the distri-
bution. In the present case, not surprisingly, glass which is characterized by
a low toughness and a very small correlation length for the disorder gives the
narrowest distribution. Conversely the largest distribution is obtained for
the alumina ceramic which has the coarser microstructure and the highest
toughness of the tested materials (except silicon nitride).

5.4.2 Step 2 By using the second identification stage, one obtains the fol-
lowing results:

– for alumina (Fig. 12) the uncertainty on c∗ is 3 µm when the same
machine is used, and less than 4 µm when the two different machines
are utilized.

– for silicon nitride when one operator and one indentation machine is
used (Fig. 13), an uncertainty less than 3 µm on c∗ is found.

– for silicon carbide when one operator and one indentation machine
is used (Fig. 14-top), and two different machines with two operators
(Fig. 14-bottom). When the same parameter A is considered for the
three different experimental conditions, an uncertainty less than 3 µm
on c∗ is found when the same machine is used, and less than 5 µm
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when two different machines are utilized. The first load level is not well
described. Again this is explained by the fact that, the ratios c/a be-
ing in this case very close to 2, a competition is observed between the
Palmqvist and the radial/median crack systems. It is thus likely that
even if the dependence between c∗ and M is approached by an adapted
power law relationship, the data corresponding to the two crack systems
cannot be treated together.

– for glass when one operator and one indentation machine is used (Fig. 15-
top), and two operators and two different machines (Fig. 15-bottom).
When the same parameter A is considered for the two different experi-
mental conditions, an uncertainty less than 7 µm on c∗ is found.

5.4.3 Step 3 The self-consistency was checked for all the situations. Fig-
ure 16 shows the dependence of the characteristic radius c∗ with the applied
mass M . When a power law dependence is sought, all conditions apart from
silicon nitride have approximately the same exponent (i.e., 1/m′ ≈ 0.8
compared to the expected asymptotic value 0.67). When the fixed-point
algorithm is used, the difference between the first estimate of m′ and its
converged value is always less than 4% for all the analyzed cases. Further-
more, convergence is very fast since at most three iterations were used to
get the final results.

6 Discussion

The present analysis was obtained using two main hypotheses, namely, an
elastic-brittle behavior and strong pinning conditions. Moreover the crack
system was assumed to be radial/median. In the following, the results of the
statistical analysis are discussed in the light of these different hypotheses.

6.1 nature of the crack system

Table 1 summarizes the results obtained for the effective exponentm and the
ratio c/a for the various materials and experimental conditions. The same
results are presented in Fig. 17. Looking at the dependence of the measured
exponent 1/m′ on the average c/2a value, one clearly distinguishes two
groups of materials. The first one consists of silicon nitride and the other
one of glass and silicon carbide. As described above average crack length
values for silicon nitride are less than the other ones. Moreover exponent
values are also lower and close to 0.5-0.6. Conversely, SiC (1), SiC (3),
glass (1) and glass (3) exponents all concentrate close to 0.8, and seem to
approach closer to this value when the ratio 〈c/2a〉 increases (even if this
change is not monotonic). The case of alumina is more dubious, even the
results corresponding to large c/a values do not exhibit a clear belonging to
any of these two groups.
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These separate behaviors are attributed to the nature of the crack sys-
tem. As discussed above, the present study is developed in the framework
of a median/radial crack system. However, the Palmqvist crack system clas-
sically appears for high toughness materials. In the case of low toughness
materials, the crack system is predominantly median/radial for high loads
but may be of Palmqvist type if the applied load is low enough. Experimen-
tally, it is difficult to discriminate between these two crack systems without
direct observation. In particular, the value of the ratio c/2a is often not
sufficient to predict the generated indentation-crack [Glandus and Rouxel,
1991]. Beyond the influence on the ratio c/a, the nature of the crack system
also affects the scaling of the crack length with load, namely, a Palmqvist
crack system generates the scaling l ∝M (with l = c−a), while a radial one
induces c ∝ M2/3. For silicon nitride, c/2a values obtained during inden-
tation experiments, and the unusual values for 1/m′, allow us to conclude
that the generated crack system is of Palmqvist type, namely, for such a
material, Wang et al. [2002] have reported a change in the crack system for
c/a between 2.3 and 2.4.

The dependence of the scaling behavior on the nature of the crack sys-
tem is seen again when plotting the exponent m against the applied mass
(Fig. 18). One observes first that the two above identified groups still ex-
ist, namely, silicon nitride exponents exhibit a (decreasing) convergence to-
ward 0.4-0.45 when the applied mass increases, while both glass and silicon
carbide exponents converge toward 0.8. The previous conclusions on the
generated crack system for these materials are therefore confirmed.

Let us now discuss the behavior of alumina exponents. Namely, when the
applied mass increases, so does 1/m′ from silicon nitride exponent values
to glass and silicon carbide ones. One concludes that for high applied loads,
the indentation generated crack system is the same as for glass (or silicon
carbide). Yet, for low applied loads, this system is closer to a Palmqvist or
a mixed system. To conclude on the latter crack systems as a function of
the applied mass, one would have to perform additional experiments with
both lower and higher load levels, and direct observation of the developed
cracks should be carried out.

By considering the results obtained for silicon carbide, glass, and par-
tially for alumina, one concludes that the identified values for the exponent
between c∗ and the applied mass M are consistent with both theory and
observations, even if one has to account for an “asymptotic” 1/m′ value for
radial crack systems greater than the expected one (0.8 instead of 0.67).
The universal distribution proposed to describe the statistics of indenta-
tion crack lengths gives a satisfactory account of most of the experimental
data obtained on different materials. Moreover the few experimental data
not properly described by this approach developed in the framework of a
median/radial crack system may be attributed to Palmqvist indentation
cracks.
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6.2 Microscopic interpretation

As discussed above, the statistical analysis allows us to extract a mi-
croscopic parameter A that is re-expressed as a typical length, namely,

A1/ζ−2 = A
1/ζ−2
0 ξσ

1/1−ζ
0 . This expression includes the characteristic size

ξ of the heterogeneities as well as a factor dependent on the level of the
local disorder. Table 2 summarizes the results obtained for the different
materials studied herein. Let us compare them with estimated character-
istic scales of the structural disorder. Apart from the case of glass, these
results are consistent with relative toughness fluctuations of order 1. Note
however that these results have to be considered cautiously. Two hypothe-
ses of the analysis may affect the interpretation of the parameter A and
more specifically the length scale ξ. The assumption of an elastic-brittle
behavior imposes one to consider crack fronts of extension greater than the
size of the process zone. The latter is thus a lower bound for ξ even if a
structural disorder may exist at finer scales. A more questionable point is
the hypothesis of strong pinning. The latter corresponds to situations where
the structural disorder is strong enough to locally arrest the crack front. As
discussed above, this induces an intermittent dynamics of the crack propa-
gation. Conversely, in weak pinning conditions, the toughness disorder only
modulates the front conformation and crack fronts change smoothly. It is
shown that strong pinning conditions are always obtained in the limit of
large fracture fronts [Roux et al., 2003]. In the case of a rather weak struc-
tural disorder, one thus may expect that the characteristic length ξ no longer
be defined by the characteristic size of the heterogeneities but by a larger
scale corresponding to the transition between weak and strong pinning.

7 Summary

By using a model developed to characterize the statistical properties of a
crack front propagating through a heterogeneous material, an analytical ex-
pression is given for the distribution of crack arrest lengths. The latter was
shown to be material-independent. The distribution presents a universal
shape and is fully characterized by two parameters. The first one corre-
sponds to the macroscopic toughness value. The second one, which gives
the width of the distribution, depends on the relative size of the cracks
compared the size of the microstructure and on the width of the micro-
scopic toughness disorder (for very large sizes, the distribution tends to a
Dirac centered on the macroscopic toughness value).

Experimental tests have been performed on four different materials (alu-
mina, silicon nitride, silicon carbide and sodalime silicate glass) with four
different loads (0.2 kg, 0.3 kg, 0.5 kg and 1 kg). A particular attention was
given to potential sources of non-intrinsic fluctuations, namely the depen-
dence on the operator and on the testing machine. It appeared that the
analytical expression gives a very good account of the data. Coupled with
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experimental observations the statistical analysis allowed us to discriminate
between indentation cracks belonging to a median/radial and a Palmqvist
crack system, respectively. Restricting ourselves to the former case within
which the present analysis was developed, fitting parameters consistent with
the scaling laws expected in the geometry of indentation tests were obtained.

A very strong feature of the results obtained in the present work is that
the knowledge of the crack length (or effective toughness) distribution at
a given scale gives an immediate access to the distributions corresponding
to any other scale. In particular, this should help improving the quality
of crack length or toughness estimates for large systems when using data
obtained at microscopic or a much finer scale.
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Table 1 Identified exponent of the power law between c∗ and the applied mass
M and average normalized crack length for all studied materials and masses (ex-
pressed in kg), for (1) one operator and one indentation machine, and (3) two
operators and two indentation machines

Mass
Parameters

Al203
Si3N4

SiC Glass
(kg) (1) (3) (1) (3) (1) (3)

1.0
1/m′ 0.79 0.90 0.46 0.77 0.79 0.81 0.80

< c/2a > 1.41 1.24 0.76 1.51 1.37 1.72 1.66

0.5
1/m′ 0.84 0.70 0.50 0.86 0.80 0.80 0.77

< c/2a > 1.13 1.15 0.77 1.30 1.28 1.47 1.41

0.3
1/m′ 0.68 0.57 0.57 0.80 0.79 0.81 0.81

< c/2a > 1.27 1.13 0.77 1.24 1.24 1.28 1.28

0.2
1/m′ 0.58 0.58 0.59 0.69 0.77 0.82 0.86

< c/2a > 1.31 1.41 0.76 1.178 1.178 1.17 1.17
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Table 2 Identified parameters A and estimation of the characteristic scales of
the structural disorder for the four tested materials.

Mass Parameters Al203
Si3N4

SiC Glass
(kg) (1) (3) (1) (3) (1) (3)

- ξ (µm) 10 3 4 0.002

1.0

A
1

2−ζ

(µm−1)

0.08 0.12 0.34 0.17 0.14 0.32 0.18
0.5 0.12 0.15 0.39 0.29 0.25 0.65 0.42
0.3 0.19 0.19 0.50 0.29 0.29 0.75 0.75
0.2 0.22 0.22 0.80 0.88 0.88 0.62 0.62
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Fig. 1 Indentation principle. At the beginning of the indentation test, a plastic
zone is created below the Vickers pyramid (b), inducing residual stresses. When
the total stress (i.e., the applied one and the residual one) is large enough, two
perpendicular elementary cracks are created at the deepest location under the
plastic zone (c). For brittle media, it is admitted that cracks are initiated from
material defects. These two cracks propagate along the plastic zone (d) when the
load is about to reach its maximum value. Then, while unloading the sample,
cracks finish their propagation, and their final form is semi-circular (e).
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Fig. 2 Propagation probability Q versus crack radius c for four different applied
masses on sodalime silicate glass. The symbols are experimental data and the lines
are identifications when each load level is analyzed independently.
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Fig. 3 Parameters A and c∗ versus applied mass M when each load level is
analyzed independently for sodalime silicate glass.
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Fig. 4 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses. The symbols are experimental data of so-
dalime silicate glass and the line is the result of the identification. From the present
analysis, it is expected that all experimental points should fall on the same curve.
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Fig. 5 Propagation probability Q versus crack radius c for four different applied
masses on sodalime silicate glass. The symbols are experimental data and the lines
are identifications when the parameter A is assumed to be load-independent.
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Fig. 6 Parameter c∗ versus applied mass M . A power law with an exponent of
2/3 fits reasonably the experiments on sodalime silicate glass (solid line). The
dashed line corresponds to the best power law fit for an exponent equal to 0.81.
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Fig. 7 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses. The symbols are experimental data on
sodalime silicate glass and the line is the result of the identification with a constant
parameter A. From the present analysis, it is expected that all experimental points
should fall on the same curve.
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Fig. 8 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on alumina. The symbols are experimental
data and the line is the result of the identification. From the present analysis,
it is expected that all experimental points should fall on the same curve. Top: 1
machine and 1 operator. Bottom: 2 indentors and 2 operators.
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Fig. 9 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on silicon nitride. The symbols are exper-
imental data and the line is the result of the identification. From the present
analysis, it is expected that all experimental points should fall onto the same
curve.
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Fig. 10 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on silicon carbide. The symbols are exper-
imental data and the line is the result of the identification. From the present
analysis, it is expected that all experimental points should fall on the same curve.
Top: 1 machine and 1 operator. Bottom: 2 indentors and 2 operators.
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Fig. 11 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on sodalime silicate glass. The symbols are
experimental data and the line is the result of the identification. From the present
analysis, it is expected that all experimental points should fall on the same curve.
Top: 1 machine and 1 operator. Bottom: 2 indentors and 2 operators.
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Fig. 12 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on alumina. The symbols are experimental
data and the line is the result of the identification with a constant parameter A.
¿From the present analysis, it is expected that all experimental points should fall
on the same curve. Top: 1 machine and 1 operator. Bottom: 2 indentors and 2
operators.
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Fig. 13 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on silicon nitride. The symbols are exper-
imental data and the line is the result of the identification with a constant pa-
rameter A. From the present analysis, it is expected that all experimental points
should fall on the same curve.
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Fig. 14 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on silicon carbide. The symbols are exper-
imental data and the line is the result of the identification with a constant pa-
rameter A. From the present analysis, it is expected that all experimental points
should fall on the same curve. Top: 1 machine and 1 operator. Bottom: 2 indentors
and 2 operators.
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Fig. 15 Rescaled propagation probability Qq versus dimensionless crack radius
c/c∗ for four different applied masses on sodalime silicate glass. The symbols are
experimental data and the line is the result of the identification with a constant
parameter A. From the present analysis, it is expected that all experimental points
should fall on the same curve. Top: 1 machine and 1 operator. Bottom: 2 indentors
and 2 operators.
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Fig. 16 Parameter c∗ versus applied mass M for the six series of experiments.
A power law fits reasonably all the experiments (dashed lines). The number in
parentheses indicates the number of situations (machine and operator) used to
perform the identification
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Fig. 17 Change of 1/m′ versus < c/2a > for all the experiments.
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Fig. 18 Change of 1/m′ versus applied mass M for all the experiments.


