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Abstract
The high inertial sensitivity of atom interferometers has been used to build accelerometers and

gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic

noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility

in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder

atom interferometers and we apply this model to our thermal lithium interferometer. We are thus

able to explain the observed dependence of the fringe visibility with the diffraction order. The

dynamical model developed in the present paper should be very useful to further reduce this phase

noise in atom interferometers and this reduction should open the way to improved interferometers.
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I. INTRODUCTION

Atom interferometers have a large inertial sensitivity [1, 2], which has been used to
develop sensitive accelerometers [3, 4, 5, 6, 7, 8, 9, 10] and gyrometers [11, 12, 13, 14, 15, 16].
However, because of this large sensitivity, a high mechanical stability of the experiment is
required. This problem was recognized in 1991 by D. Pritchard and coworkers [17] who
were obliged to actively control the vibrations of the diffraction gratings of their Mach-
Zehnder thermal atom interferometer. Since this work, various types of vibration control
were developed: as an example, a very efficient control was developed by Chu and co-workers
[6, 7] for the measurement of the local acceleration of gravity g. The problem obviously
depends on the interferometer design and the present paper is devoted to an analysis of the
vibration problem in three-grating Mach-Zehnder interferometers operated with thermal
atoms.

In the present paper, we are going to evaluate the phase noise induced by mechanical
vibrations in a Mach-Zehnder thermal atom interferometer. In our instrument, a very stiff
rail holds the three diffraction gratings and this arrangement has strongly the effect of
vibrations with respect to previous interferometers. We first analyze how the vibrations
displace and distort the rail holding the gratings, by developing a simple model of the
dynamics of this rail, using elasticity theory. This model will enable us to understand the
contributions of various frequencies and to prove the importance of the vibration induced
rotations of the rail. The predictions of this model will be tested in the case of our setup
and the phase noise thus evaluated is in good agreement with the value deduced from fringe
visibility measurements.

The paper is organized in the following way : part 2 recalls classic results concerning the
inertial sensitivity of 3-grating Mach-Zehnder interferometers. Part 3 describes theoretically
the motion and deformation of the rail holding the gratings and the resulting phase effect.
Part 4 describes the rail of our interferometer and applies the present theory to this case.
Part 5 discusses how to further reduce the vibration induced phase noise in this type of atom
interferometers.

II. SENSITIVITY OF MACH-ZEHNDER ATOM INTERFEROMETERS TO AC-

CELERATIONS AND ROTATIONS

Atom interferometers are very sensitive to inertial effects [1, 2]. We consider a three-
grating Mach-Zehnder atom interferometer represented schematically in figure 1 and we
follow a tutorial argument presented by Schmiedmayer et al. in reference [18]. Each atomic
beam is represented by a plane wave. When a plane wave Ψ = exp [ikr] is diffracted by a
grating Gj, diffraction of order p produces a plane wave:

Ψd(r) = αj(pj) exp [ik · r + ipjkGj · (r − rj)] (1)

αj(pj) is the diffraction amplitude; kGj is the grating wavevector, in the grating plane and
perpendicular to its lines, with a modulus kGj = 2π/a. The grating period a is equal to
a = λL/2 in the case of diffraction by a laser standing wave with a laser wavelength λL. This
equation is exact for Bragg diffraction and a good approximation if k and kGj are almost
perpendicular and |kGj| ≪ |k|. Finally, rj is a coordinate which measures the position of
a reference point in grating Gj. Because of the presence of rj in equation (1), the phase of
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FIG. 1: Schematic drawing of a three grating Mach-Zehnder atom interferometer, in the Bragg

diffraction geometry. A collimated atomic beam is successively diffracted by three gratings G1, G2

and G3. The diffraction orders are indicated on the various paths. Two exit beams, labelled 1 and

2, carry complementary signals. The x, y, z axis are defined.

the diffracted wave depends on the position of the grating in its plane and this dependence
explains the inertial sensitivity of atom interferometers.

It is easy to calculate the waves exiting from the interferometer by the exit 1 in figure
1, one wave Ψu following the upper path with diffraction orders p, −p and 0 and the other
wave Ψl following the lower path with the diffraction orders 0, p and −p. These two waves
produce an intensity proportional to |Ψu + Ψl|2, which must be integrated over the detector
surface. The condition kG1 + kG3 = 2kG2 must be fulfilled to maximize the fringe visibility.
We will assume that this condition is realized and that the grating wavevectors kGi are
parallel to the x-axis. Then, the interferometer output signal I measured at exit 1 is given
by:

I = Im [1 + V cos Φp] with Φp = pkG [2x2 − x1 − x3] (2)

where Im is the mean intensity, V is the fringe visibility defined by V =
(Imax − Imin) / (Imax + Imin). When the gratings are moving, we must correct the grating-
position dependent phase Φ in equation (2) by considering for each atomic wave packet the
position of the grating Gj at the time tj when the wavepacket goes through this grating:

Φp = pkG [2x2(t2) − x1(t1) − x3(t3)] (3)

If = L12/u is the atom time of flight T = L12/u from one grating to the next (with L12 = L23

and u being the atom velocity), tj are given by t1 = t−T and t3 = t +T , where t2 has been
noted t. We can expand Φ in powers of T by introducing the x-components of the velocity
vjx(t) and acceleration ajx(t) of grating Gj measured with reference to a Galilean frame.
The phase Φp becomes:

Φp = Φbending + ΦSagnac + Φacc. (4)

with Φbending = pkGδ(t) where the bending δ(t) = 2x2(t) − x1(t) − x3(t) is so called be-
cause it vanishes when the three gratings are aligned. The second term represents Sagnac
effect because the velocity difference can be written (v3x − v1x) = 2ΩyL12, where Ωy is
the y-component of the angular velocity of the interferometer rail. Finally, the third term
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FIG. 2: Drawings of our interferometer rail showing its shape and dimensions. Upper drawing:

cross-section of the rail showing the two blocks and their dimensions (200 × 50 mm2 for the lower

block; 70 × 70 mm2 for the upper block). The planes of the two interferometers are indicated (A

for the atom interferometer, B for the optical interferometer). Lower drawing: top view of the rail,

with some details: positions of the mirrors Mi for the three laser standing waves, position of the

atomic beam and of the laser beams of the Mach-Zehnder optical interferometer.

Φacc. = pkG (a1x + a3x) T 2/2 describes the sensitivity to linear acceleration [1], slightly mod-
ified because the accelerations of the gratings G1 and G3 are different.

III. THEORETICAL ANALYSIS OF THE RAIL DYNAMICS

To calculate the phase Φ, we are going to relate the positions xj(tj) of the three gratings
to the mechanical properties of the rail holding the three gratings and to its coupling to the
environment. A 1D theory of the rail is sufficient to describe the grating motions in the x
direction but we want to know the xj(tj) functions typically up to 103 Hertz and the rail
must be treated as an elastic object well before reaching 103 Hz.

A. Equations of motion of the rail deduced from elasticity theory

The rail will be described as an elastic object of length 2L, along the z direction, which
can bend only in the x direction. The rail is made of a material of density ρ and Young’s
modulus E. The cross-section, with a shape independent of the z-coordinate, is characterized
by its area A =

∫

dxdy and by the moment Iy =
∫

x2dxdy, the x-origin being taken on the
neutral line. The neutral line is described by a function X(z, t) which measures the position
of this line with respect to a Galilean frame linked to the laboratory (in this paper, we forget
that, because of Earth rotation, the laboratory is not a Galilean frame). Elasticity theory
[21] gives the equation relating the t- and z-derivatives of X:
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ρA
∂2X

∂t2
= −EIy

∂4X

∂z4
(5)

The rail is submitted to forces and torques exerted by its supports, which are related re-
spectively to the third and second derivatives of X with respect to z:

Fxǫ = −ǫEIy

∂3X

∂z3
(z = ǫL) (6)

Myǫ = ǫEIy

∂2X

∂z2
(z = ǫL) (7)

ǫ = ± labels the rail ends at z = ǫL. These torques and forces depend on the suspension
of the rail. We assume that the torques vanish, which would be exact if the suspension was
made in one point at each end and we consider that the forces are the sum of an elastic term
proportional to the relative displacement and a damping term proportional to the relative
velocity:

Fxǫ = −Kǫ [X(ǫL, t) − xǫ(t)] − µǫ

∂ [X(ǫL, t) − xǫ(t)]

∂t
(8)

xǫ(t) is the coordinate of the support at z = ǫL. The spring constants Kǫ and the damping
coefficients µǫ may not be the same at the two ends of the rail. The damping terms have an
effective character, because they represent all the damping effects.

B. Solutions of these equations

We introduce the Fourier transforms X(z, ω) and xǫ(ω) of the functions X(z, t) and xǫ(t).
The general solution of equation (5) is:

X(z, ω) = a sin(κz) + b cos(κz) + c sinh(κz) + d cosh(κz) (9)

where a, b, c and d are the four ω-dependent amplitudes of the spatial components of the
function X(z, ω). ω and κ are related by:

ρAω2 = EIyκ
4 (10)

Equations (6-8) relate a, b, c, d to the source terms xǫ(ω). Thanks to the assumption Myǫ = 0,
c and d are related to a and b:

c = a sin(κL)/ sinh(κL)

d = b cos(κL)/ cosh(κL) (11)

and we get two equations relating a and b to xǫ(ω):

αǫa + ǫβǫb = ǫγǫxǫ(ω) (12)

where αǫ, βǫ and γǫ are given in the appendix.
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C. Analysis of the various regimes

To simplify, we assume that K− = K+ = K and µ− = µ+ = 0. a(ω) and b(ω) describe
the transition from a low-frequency dynamics in which the rail moves almost like a solid
to a high-frequency dynamics with a series of bending resonances. When the frequency is
low enough, κL ≪ 1 because κ ∝ √

ω is also small and we expand the functions of (κL)
up to third order (cubic terms in κL are needed to transmit a transverse force through the
rail) and two resonances appear corresponding to pendular oscillations of the rail. The first
resonance appears on the b amplitude, when R given by equation (24) verifies R ≈ 1. This
resonance corresponds to an in-phase oscillation of the two ends of the rail, with a frequency

ωosc =
√

K/(ρAL). The second resonance, which appears on the a amplitude when R ≈ 3,

describes a rotational oscillation of the rail around its center with a frequency ωrot = ωosc

√
3.

If the two spring constants Kǫ are different, these two resonances are mixed (each resonance
appears on the a and b amplitudes) and their frequency difference increases.

For larger frequencies, (κL) is also larger and we cannot use power expansions of the
functions of (κL). We then enter the range of bending resonances of the rail. If the forces
Fxǫ are weak enough, these resonances are almost those of the isolated rail which are obtained
by writing that the equation system (12) has a nonvanishing solution when the applied forces
vanish and the resonance condition is:

cos(2κL) cosh(2κL) = 1 (13)

which defines a series of κn values given approximately by:

κnL ≈ (2n + 3)
π

4
+

(−1)n

cosh [(2n + 3)π/2]
(14)

n starts from 0 (a more accurate value of κ0L is κ0L = 2.365) and a = c = 0 when n is
even while b = d = 0 when n is odd. ωn is deduced from κn, using equation (10). For
a given length L, the wavevectors κn are fixed, but the resonance frequencies ωn increase
with the stiffness of the rail measured by the quantity EIy/(ρA). Finally, all the resonance
frequencies ωn are related to ω0, by ωn = ω0(κn/κ0)

2 with:

ω0 = 5.593
√

EIy/(ρAL4) (15)

Introducing the period T0 of the first bending resonance, T0 = 2π/ω0, we may rewrite
equation (10) in the form (κL)2 = 0.890× ωT0. Finally, we have calculated the Q factors of
the various resonances (see appendix).

D. Effect of vibrations on the interferometer signal

The Fourier component Φp(ω) of the phase Φp given by equation (3) can be expressed as
a function of the amplitudes a(ω) and b(ω) given by solving the system (12). We assume
that the gratings are on the neutral line, which means that xi(ti) = X(zi, ti) with z1 = −L12

and t1 = t−T for grating G1, z2 = 0 and t2 = t for grating G2 and z3 = +L12 and t3 = t+T
for grating G3. We get:
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Φp(ω)

2pkG

=

[

b(ω)

(

1 − cos(κL12) + (1 − cosh(κL12))
cos(κL)

cosh(κL)

)

+ ia(ω)

(

sin(κL12) + sinh(κL12)
sin(κL)

sinh(κL)

)

sin (ωT )

+ b(ω)

(

cos(κL12) + cosh(κL12)
cos(κL)

cosh(κL)

)

(1 − cos(ωT ))

]

(16)

where the different lines correspond to the bending, the Sagnac and the acceleration terms
in this order. We can simplify this equation by making an expansion in powers of (ωT ) up
to power 2 and in powers of κL or κL12, up to fourth order:

Φp(ω)

pkG

≈ b

(

6(κL)2(κL12)
2 − (κL12)

4

6

)

+4ia(κL12)

(

1 − (κL)2

6

)

(ωT )

2b(ωT )2 (17)

As in equation (4), we recognize the instantaneous bending of the rail (first line, independent
of the time of flight T ), the Sagnac term (second line, linear in T ) and the acceleration term
(third line, proportional to T 2). With the same approximations, a and b are given by
equations (26,27). To further simplify the algebra, we replace the distance L12 by L (L12

will usually be close to L) and we get:

Φp(ω)

pkG

≈ [x+(ω) − x−(ω)]
3i(ωT )

(3 − R)

+ [x+(ω) + x−(ω)]
0.330(ωT0)

2 + (ωT )2

2(1 − R)
(18)

where R is given by equation (24).
These three equations (16, 17, 18) are the main theoretical results of the present paper.

Equation (18), which has a limited validity, because of numerous approximations, gives a
very clear view of the various contributions. The first term, proportional to [x+(ω) − x−(ω)]
and to the time of flight T , describes the effect of the rotation of the rail excited by the out
of phase motion of its two ends. This term, which is independent of the stiffness of the rail,
is sensitive to the rail suspension through the (3−R) denominator. The second term is the
sum of the bending term, in (ωT0)

2, and the acceleration term, in (ωT )2. Both terms are in
ω2 and they also have the same sensitivity to the suspension of the rail, being sensitive to
the first pendular resonance, when R ≈ 1. The bending term is small if the rail is very stiff
i.e. if the T0 value is very small.

For larger frequencies (ωT >∼ 1 or κL >∼ 1), we must use numerical calculations of
equation (16). We may note that, because ω ≫ ωosc, ωrot, the a and b amplitudes will be
small excepted near the bending resonances which appear either on the b or a amplitudes
and do not contribute to the same terms of Φp(ω).
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IV. APPLICATION OF THE PRESENT ANALYSIS TO OUR INTERFEROME-

TER

In this part, we are going to describe the rail of our interferometer and to characterize
its vibrations.

A. Information coming from previous experiments

When we built our interferometer in 1998, we knew that the vibration amplitudes en-
countered by D. Pritchard [17, 18] and Siu Au Lee [25, 26] in their interferometers were

large: for instance
√

〈δ(t)2〉 ≈ 500 nm after passive isolation by rubber pads in reference

[17]. In this experiment, each grating was supported on a flange of the vacuum pipe, which
played the role of the rail. In the interferometer of Siu Au Lee and co-workers, a rail inspired
by the three-rod design used for laser cavities was built [26], but with a rod diameter close
to 15 mm, the rail was not very stiff. In both experiments, servo-loops were used to reduce
δ(t) to observe interference signals.

B. The rail of our interferometer

Rather than using servo-loops, we decided to achieve a very good grating stability by
building a very stiff rail. We had to choose the material of the rail, its shape and its
suspension, the main constraint being that the rail had to fit inside the DN250 vacuum pipe
of our atom interferometer. The material must have a large value of E/ρ ratio (Young’s
modulus divided by density): we have chosen aluminium alloy rather than steel, both metals
having almost the same E/ρ ratio, because aluminium alloy is lighter and easier to machine.
The shape of the rail must give the largest ratio Iy/A with an open structure for vacuum
requirements: we choose to make the rail as large as possible in the x direction and rather
thick to insure a good stiffness in the y direction, because the x and y vibrations are not
fully uncoupled. The rail, which is made of two blocks bolted together, is represented in
figure 2. The lower block (200 mm wide and 50 mm thick) provides the rigidity. Its length,
2L = 1.4 m, is slightly larger than twice the inter-grating distance L12 = 0.605 m. The
gratings, i.e. the mirrors of the laser standing waves, are fixed to the upper block, which has
been almost completely cut in its middle to support the central grating. As a consequence,
its contribution to the rigidity of the rail is probably very small and it will be neglected in
the following calculation of the first bending resonance frequency ω0/(2π): we use equation
(15), with the full area A ≈ 1.49 × 10−2 m2 but, for the moment Iy, we consider only the
lower block contribution (Iy ≈ 3.3×10−5 m4). With E = 72.4×109 N/m2 and ρ = 2.79×103

kg/m3, we calculate ω0/2π ≈ 437 Hz.
When we built the suspension of the rail, the present analysis was not available and we

made a very simple suspension: the rail is supported by three screws, two at one end and
one at the other end, so that it can be finely aligned. Each screw is supported on a rubber
block, model SC01 from Paulstra [22]. These rubber blocks, made to support machine tools,
are ring shaped with a vertical axis. The technical data sheet gives only a rough estimate
of the force constant K in the transverse direction, K ≈ 106 N/m. As the total mass of
our rail ρAL ≈ 58 kg, the pendular oscillations are expected to be at ωosc/(2π) ≈ 20 Hz
and ωrot/2π ≈ 35 Hz. We have not taken into account the mixing of these resonances due
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FIG. 3: Response of the optical interferometer to an excitation of the rail oscillation: the modula-

tion of the signal of the optical interferometer is plotted as a function of the frequency of the sine

wave sent to the loudspeaker. We assign the main peak at 460.4 Hz as due to the first bending

resonance but the weaker peak near 440 Hz is not assigned.

to K− 6= K+, considering that the dominant uncertainty comes from the spring constant
values.

C. Test of the vibrations by optical interferometry

Following the works of the research groups of A. Zeilinger [23, 24], D. Pritchard [17,
18] and Siu Au Lee [25, 26], the grating positions xi are conveniently measured by a 3-
grating Mach-Zehnder optical interferometer. The phase Φopt of the signal of such an optical
interferometer is also given by equation (4), with a negligible time delay T :

Φopt = pkg,optδ(t) (19)

We have built such an optical interferometer [27]. The gratings from Paton Hawksley [28],
with 200 lines/mm (kg,opt = 3.14 × 105 m−1), are used in the first diffraction order with an
helium-neon laser at a 633 nm wavelength. The excitation of the rail by the environment

gives very small signals, from which we deduce an upper limit of
√

〈δ(t)2〉 < 3 nm. This

result is close to the noise (laser power noise and electronic noise) of the signal and the noise
spectrum has not revealed any interesting feature.

Hence, we have made a spectroscopy of the rail vibrations in the frequency domain by
exciting its vibrations by a small loudspeaker fixed on the rail, close to its center, with the
coil moving in the x-direction, so as to excite the x-bending of the rail. The loudspeaker
was excited by a sine wave of constant amplitude and we have recorded with a phase-
sensitive detection the modulation of the optical interferometer signal. Figure 3 presents
the detected signal in the region of the first intense resonance centered at ω0/(2π) = 460.4
Hz, with a rather large Q-factor, Q ≈ 60. We have also observed a second resonance at
ω1/(2π) = 1375 Hz, with Q ≈ 65, with a 30 times weaker signal for the same voltage applied
on the loudspeaker (the n = 1 resonance appears on the a amplitude and its detection by
an optical interferometer, sensitive only to the b amplitude, is due to small asymmetries)
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FIG. 4: Logarithmic plot of the ratios |a(ω)/xǫ(ω)|2 and |b(ω)/xǫ(ω)|2 as a function of the fre-

quency ν = ω/(2π). Three resonances appear, which are the pendular oscillations, near 40 and 69

Hz, and the first bending resonance near 460 Hz.

The first resonance frequency 460.4 Hz is close to our estimate 437 Hz and the observed
frequency ratio ω1/ω0 ≈ 2.99 is also rather close to its theoretical value 2.76, so that we
can assign these two resonances as the n = 0 and n = 1 bending resonances of the rail, the
discrepancies being due to oversimplifications of our model.

We have not observed any clear signature of the pendular oscillations on the optical
interferometer signal, probably because the excitation and detection efficiencies are very
low. The detection of these pendular oscillations will be done in a future experiment, using
seismometers.

D. Seismic noise spectrum: measurement and consequences for the atom inter-

ferometer phase noise

In the following calculation, we have not used our estimate of the first pendular resonance

ωosc/(2π) ≈ 20 Hz, because the predicted rms value of the bending
√

〈δ(t)2〉 was considerably

larger than measured. We have used a larger value ωosc/(2π) = 40 Hz, with Qosc = 16 and
the measured ω0 value, ω0/(2π) = 460.4 Hz. In our model with the simplifying assumptions
K− = K+ = K and µ− = µ+ = µ, these three parameters suffice to describe our rail and its
suspension.

In a first step, we calculate the a and b amplitudes as a function of one noise amplitude
x±(ω), the other one being taken equal to 0. Figure 4 plots the ratios |a(ω)/xǫ(ω)|2 and
|b(ω)/xǫ(ω)|2 as a function of the frequency ν = ω/(2π): three resonances appear in the
1-103 Hz range and, as expected, a and b decrease rapidly when ω > ωosc, ωrot, a decrease
interrupted for b by the first bending resonance.

The seismic noise spectrum was recorded on our setup well before the operation of our
interferometer. This spectrum presents several peaks appearing in the 8 − 60 Hz range and
most of these peaks do not appear on a spectrum taken on the floor, because they are due
to resonances of the structure supporting the vacuum pipes. As the peak frequencies have
probably changed because of modifications of the experiment since the recording, we have
replaced the recorded curve by a smooth curve just larger than the measured spectrum. This

10
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FIG. 5: Calculated phase noise spectra |Φ(ν)/p|2 (full curve) and |ΦSagnac(ν)/p|2 (dotted curve),

both in rad2/Hz as a function of the frequency ν in Hz. The smoothed seismic noise spectrum

|xǫ(ν)|2 in m2/Hz used in the calculation is plotted (dashed curve) after multiplication by 1010.

noise spectrum |xǫ(ν)|2 is plotted in figure 5. We have also extended the ν = 0.5 − 100 Hz
frequency range to ν = 0.5− 103 Hz, assuming the noise to be constant when 102 < ν < 103

Hz.
Figure 5 also plots the calculated phase noise spectrum |Φ(ν)/p|2, using equation (16)

and the Sagnac phase noise spectrum |ΦSagnac(ν)/p|2 deduced from equation (16) by keeping
only the term proportional to the a amplitude: clearly, the Sagnac phase noise is dominant
except near the in-phase pendular oscillation and the first bending resonance. The bend-
ing resonance is in a region where the excitation amplitude is very low, and, even after
amplification by the resonance Q-factor, the contribution of the bending resonance to the
total phase noise is fully negligible. In this calculation, we have assumed that the two ex-
citation terms xǫ(ν) have the same spectrum but no phase relation, so that the cross-term
|x+1(ν)x−1(ν)| can be neglected. This last assumption is bad for very low frequencies, for
which we expect x+1(ν) ≈ x−1(ν) (as the associated correction cancells the Sagnac term, we
have not extended the |Φ(ν)/p|2 curves below 2 Hz) but this assumption is good as soon as
the frequency is larger than the lowest frequency of a resonance of the structure supporting
the vacuum chambers (near 8Hz).

By integrating the phase noise over the frequency from 2 up to 103 Hz, we get an estimate
of the quadratic mean of the phase noise:

〈

Φ2
〉

= 0.16p2 rad2 (20)

This result is largely due to the Sagnac phase noise: the same integration on the Sagnac

phase noise gives
〈

Φ2
Sagnac

〉

= 0.13p2 rad2. We are going to test this calculation, using the

measurements of fringe visibility as a function of the diffraction order p.

E. Fringe visibility as a test of phase noise in atom interferometers

A phase noise Φ induces a strong reduction the fringe visibility V:
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FIG. 6: Fringe visibility as a function of the diffraction order p. Our measurements (round dots)

are fitted by equation (22) with Vmax = 98 ± 1 % and
〈

Φ2
1

〉

= 0.286 ± 0.008. The data points

of Giltner and Siu Au Lee (squares) are also fitted by equation (22) with Vmax = 85 ± 2 % and
〈

Φ2
1

〉

= 0.650 ± 0.074.

V = Vmax exp
[

−
〈

Φ2
〉

/2
]

(21)

assuming a Gaussian distribution of Φ. When the phase noise is due to inertial effects (see
equation (3)), Φ is proportional to the diffraction order p, Φp = pΦ1. The fringe visibility V
is a Gaussian function of the diffraction order p [30]:

V = Vmax exp
[

−
〈

Φ2

1

〉

p2/2
]

(22)

The atom interferometer of Siu Au Lee et al. [25, 26] and our interferometer [31] have been
operated with the first three diffraction orders. The measured fringe visibility is plotted
as a function of the diffraction order in figure 6 and Gaussian fits, following equation (22),
represent very well the data. The quality of these fits suggests that phase noise of inertial
origin is dominant and moreover that excellent visibility would be achieved in the absence of

phase noise. With our data points, we deduce
〈

Φ2
p

〉

= (0.286±0.008)p2. Our estimate given

by equation (20) is 56% of this value and, considering the large uncertainty on several pa-
rameters (seismic noise, frequency and Q factors of the pendular resonances), the agreement
can be considered as good.

V. HOW TO FURTHER REDUCE THE VIBRATION PHASE NOISE IN 3-

GRATING MACH-ZEHNDER ATOM INTERFEROMETERS.

The phase noise induced by vibrations is very important and its reduction will consider-
ably improve the operation of atom interferometers.

12



A. Servoloops on the grating positions

Pritchard and co-workers [17, 18] as well as Giltner and Siu Au Lee [25] have used
servo-loops to reduce the vibrational motion of the grating. The error signal was given
by the optical Mach-Zehnder interferometer, which measures the instantaneous bending
δ(t) = (2x2(t) − x1(t) − x3(t)) and, as recalled above, in both experiments, the error signal
before correction was large. In the experiment of Pritchard and co-workers, the correction
was applied to the second grating. In the limit of a perfect correction, the bending term in
equation (4) is cancelled and this correction does not modify the Sagnac and the accelera-
tion terms. The fact that acting on the second grating has no inertial effects is a somewhat
surprizing result, which can be explained by the symmetry of the Mach-Zehnder interfer-
ometer. In the experiment of Giltner and Siu Au Lee, the correction, which was applied
to the third grating, cancels δ(t) but the Sagnac and acceleration terms are enhanced. In
any case, the servo-loop can reduce the instantaneous bending δ(t) but it cannot reduce
the Sagnac and acceleration terms. We think that a very stiff rail is a better solution for
earth-based interferometers. For space based experiments, the phase noise spectra due to
inertial vibration is different and the above solution may not be optimum, because of the
large weight of the rail.

B. Possible improvements of the rail

The stiffness of our rail has reduced to a low level the bending and acceleration terms in
the phase-noise of our interferometer. In our model, the rail stiffness is measured by only
one parameter, the period T0 of the lowest bending resonance, which scales with the rail
length L like L2. Our T0 value, T0 = 2.2×10−3 s, is still 3.8 times larger than the time flight
T ≈ 5.7×10−4 s in our experiment (lithium beam mean velocity u = 1065 m/s; inter-grating
distance L12 = 0.605 m) and the bending term in equation (17) is 3 times larger than the
acceleration term. We can further reduce the bending term by reducing T0, either by using
an I-shaped rail to increase the Iy/A ratio or by using a material with a larger E/ρ ratio
than aluminium alloy (for example, silicon carbide).

A defect of our rail is that it has no symmetry axis and the x and y bending modes are
partly mixed. As the moment Ix is considerably smaller than Iy, the bending resonances in
the y-direction are at lower frequencies than in the x-direction. A better rail design should
decouple almost completely the x and y vibrations.

C. Possible improvements of the suspension

The suspension of our rail is very primitive, with rather large spring constants and pen-
dular resonances probably in the ν = 20 − 100 Hz range. A very different choice was made
by J. P. Toennies and co-workers [29]: the rail was suspended by wires, the restoring forces

being due to gravity. The pendular oscillation frequency is ωosc =
√

g/l, where l is the wire

length. For a typical l value, l = 10 cm, ωosc/(2π) ≈ 1.5 Hz. In this experiment, a servo-loop
was necessary to reduce the amplitudes of the pendular motions.

From the seismic noise spectrum of figure 5, it seems clear that the resonances of the
suspension should not be in the 5 to 30 Hz range, where there is an excess noise. Our
choice is not ideal and the choice of J. P. Toennies and co-workers [29] seems better, as
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FIG. 7: Fringe visibility V in three-grating atom interferometers as a function of the date of

submission. These data points are taken from the following publications: Pritchard’s group [12,

17, 18, 32, 33, 34, 35]; Chu’s group [3, 4, 6]; Siu Au Lee’s group [25, 26]; Zeilinger’s group [24];
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the seismic noise in the 8 − 30 Hz range can be largely reduced. Lower pendular resonance
frequencies can be achieved by clever design (crossed wire pendulum, Roberts linkage) and
a large know-how has been developed for the construction of gravitational wave detectors
LIGO, VIRGO, GEO, TAMA, etc. Without aiming at a comparable level of performance,
it should be possible to build a very efficient suspension.

D. Fringe visibility in atom interferometers

Since the first atom interferometry experiments in 1991, many different interferometers
have been operated and numerous efforts have been done to improve these experiments. We
are going to review the achieved fringe visibility, as this quantity is very sensitive to phase
noise and other phase averaging effects (wavefront distorsions, M-dependent phase due to
magnetic field gradient, etc). We have considered only Mach-Zehnder atom interferometers
in which the atom paths are substantially different, excluding for instance atomic clocks.
Our review is not complete, in particular because some publications do not give the fringe
visibility. The measured values of the visibility are plotted in figure 7. Some low values
are not only due to phase noise but also to other reasons: maximum visibility less than 100
% in the case of Moir detection [17], parameters chosen to optimize the phase sensitivity
[12]. Over a 15-year period, impressive progress have been achieved and, hopefully, the same
trend will continue in the future. The comparison with optical interferometry is encouraging
as very high fringe visibility is routinely achieved in this domain.

VI. CONCLUSION

The present paper has analyzed the phase noise induced in a Mach-Zehnder atom inter-
ferometer by mechanical vibrations. We have first recalled the inertial sensitivity of atom
interferometers, following the presentation of Schmiedmayer et al. [18]. We have developed
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a simple 1D model of the rail supporting the diffraction gratings. This model gives an unified
description of the low-frequency dynamics, in which the rail behaves as a solid object, and
the high frequency domain, in which rail bending cannot be neglected.

We have then described the rail of our interferometer. Our design has produced a very
stiff rail and the bending of the rail due to vibrations appears to be almost negligible, while
it was important in several previous experiments. In the low-frequency range, up to the
frequency of the rotational resonance of the rail suspension, the out-of-phase vibrations of
the two ends of the rail induce rotations of the rail, which are converted in phase noise by
Sagnac effect: this is the dominant cause of inertial phase noise in our interferometer. A
rapid decrease of the fringe visibility with the diffraction order has been observed by Siu Au
Lee and co-workers [25, 26] and by our group [31]: the observed behavior is well explained
as due to an inertial phase-noise and the deduced phase noise value is in good agreement
with a value deduced from our model of the rail dynamics, using as an input the seismic
noise measured on our setup.

In the last part, we have presented a general discussion of the vibration induced phase
noise in 3-grating Mach-Zehnder interferometers. A reduction of this noise is absolutely
necessary in order to operate atom interferometers either with higher diffraction orders or
with slower atoms. In our experiment, a large reduction of this noise can be obtained by
improving the suspension of the interferometer rail. Finally, we have reviewed the published
values of the fringe visibility obtained with atom interferometers, thus illustrating the rapid
progress since 1991.
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VIII. APPENDIX: AMPLITUDES OF VIBRATION OF THE RAIL AND Q FAC-

TORS OF ITS RESONANCES

Equations (6) and (8) relate the values of the a, b, c, d amplitudes to xǫ(ω). Using
equation (11), we eliminate c and d to get the system of equations (12) with:

αǫ = [cosh(κL) sin(κL) − sinh(κL) cos(κL)] cosh(κL)

− 2(κL) cosh(κL) sinh(κL) sin(κL)R−1

ǫ

βǫ = [cosh(κL) sin(κL) + sinh(κL) cos(κL)] sinh(κL)

− 2(κL) cosh(κL) sinh(κL) cos(κL)R−1

ǫ

γǫ = −(κL) cosh(κL) sinh(κL)R−1

ǫ (23)

with Rǫ = ρALω2/ (Kǫ − iµǫω). From now on, K−1 = K+1 = K and µ−1 = µ+1 = µ. Then

α, β and γ are independent of ǫ. R can be expressed as a function of ωosc =
√

K/(ρAL) and

Qosc = (ρALωosc)/µ:
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R = ω2/

[

ω2

osc − i
ωoscω

Qosc

]

(24)

We get a and b:

a = γ(x+ − x−)/(2α)

b = γ(x+ + x−)/(2β) (25)

When κL ≪ 1, by expanding α, β and γ in power of κL (up to the third order for α), we
get:

a =
x+ − x−

4κL
× 3

3 − R
(26)

b =
x+ + x−

4(1 − R)
(27)

b exhibits a resonance when R = 1 (ω = ωosc) and a when R = 3 (ω = ωosc

√
3). We have

calculated the resonance Q factors, in the weak damping limit. For an isolated resonance,
the Q factor is related by Q = 2πEtot/∆E to the total energy Etot and the energy ∆E
dissipated during one vibration period. We get:

Qosc = ρALωosc/µ (28)

Qrot = ρALωrot/(3µ) (29)

Qn = ρALωng(κnL)/(8µ) (30)

where the function g(κnL) depends on the parity of n:

g(κnL) =

[

1 +
sin(2κnL)

2κnL

] [

1

cos2(κnL)
+

1

cosh2(κnL)

]

for even n

=

[

1 − sin(2κnL)

2κnL

] [

1

sin2(κnL)
+

1

sinh2(κnL)

]

for odd n (31)

From the measured Q-factor of the first bending resonance (n = 0), we get µ ≈ 560 kg.s−1.
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