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1. Introduction 1.1. Presentation of the model. We consider a diffusion process in random environment, defined as follows. For κ ∈ R, we introduce the random potential

W κ (x) := W (x) - κ 2 x, x ∈ R, (1.1) 
where (W (x), x ∈ R) is a standard two-sided Brownian motion. Informally, a diffusion process (X(t), t ≥ 0) in the random potential W κ is defined by dX(t) = dβ(t) -1 2 W ′ κ (X(t))dt, X(0) = 0, where (β(t), t ≥ 0) is a Brownian motion independent of W . More rigorously, (X(t), t ≥ 0) is a diffusion process such that X(0) = 0, and whose conditional generator given W κ is 1 2

e Wκ(x) d dx e -Wκ(x) d dx .

Let P be the probability measure associated to W κ . We denote by P Wκ the law of X conditionally on the environment W κ , and call it the quenched law. We also define the annealed law P as follows:

P(•) := P Wκ (•)P (W κ ∈ dω).

Notice in particular that X is a Markov process under P Wκ , but not under P. Such a diffusion can also be constructed from a Brownian motion through (random) changes of time and scale (see (6.1) below). This diffusion X, introduced by Schumacher [START_REF] Schumacher | Diffusions with random coefficients[END_REF] and Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], is generally considered as the continuous time analogue of random walks in random environment (RWRE), which have many applications in physics and biology (see e.g. Le Doussal et al. [START_REF] Doussal | Random walkers in one-dimensional random environments: exact renormalization group analysis[END_REF]); for an account of general properties of RWRE, we refer to Révész [START_REF] Révész | Random Walk in Random and Non-Random Environments[END_REF] and Zeitouni [START_REF] Zeitouni | Lecture notes on random walks in random environment[END_REF]. This diffusion has been studied for example by Kawazu and Tanaka [START_REF] Kawazu | A diffusion process in a Brownian environment with drift[END_REF], see Theorem 1.1 below, later improved by Hu, Shi and Yor [START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF]. Large deviations results are proved in Taleb [START_REF] Taleb | Large deviations for a Brownian motion in a drifted Brownian potential[END_REF] and Talet [START_REF] Talet | Annealed tail estimates for a Brownian motion in a drifted Brownian potential[END_REF] (see also Devulder [20] for some properties of the rate function), and moderate deviations are given by Hu and Shi [START_REF] Hu | Moderate deviations for diffusions with Brownian potential[END_REF] in the recurrent case, and by Faraud [START_REF] Faraud | Estimates on the speedup and slowdown for a diffusion in a drifted brownian potential[END_REF] in the transient case. A localization result and an aging theorem are provided by Andreoletti and Devulder [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] in the case 0 < κ < 1.

For a relation between RWRE and the diffusion X, see e.g. Shi [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF]. See also Carmona [12], Cheliotis [START_REF] Cheliotis | One-dimensional diffusion in an asymmetric random environment[END_REF], Mathieu [START_REF] Mathieu | On random perturbations of dynamical systems and diffusions with a Brownian potential in dimension one[END_REF], Singh [START_REF] Singh | Limiting behavior of a diffusion in an asymptotically stable environment[END_REF], [START_REF] Singh | Rates of convergence of a transient diffusion in a spectrally negative lévy potential[END_REF] and Tanaka [START_REF] Tanaka | Limit distribution for 1-dimensional diffusion in a reflected Brownian medium[END_REF] for diffusions in other potentials.

In this paper, we are interested in the transient case, that is, we suppose κ = 0. If X is a diffusion in the random potential W κ , then -X is a diffusion in the random potential (W κ (-x), x ∈ R) which has the same law as (W -κ (x), x ∈ R). Hence we may assume without loss of generality that κ > 0. In this case, X(t) → t→+∞ +∞ P-almost surely.

Our goal is to study the asymptotics of the maximum of the local time of X. Corresponding problems for RWRE have attracted much attention, and have been studied, for example, in Révész ( [START_REF] Révész | Random Walk in Random and Non-Random Environments[END_REF], Chapter 29), Shi [START_REF] Shi | A local time curiosity in random environment[END_REF], Gantert et al. [START_REF] Gantert | The infinite valley for a recurrent random walk in random environment[END_REF], [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF], Hu et al. [START_REF] Hu | The local time of simple random walk in random environment[END_REF], Dembo et al. [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF] and Andreoletti ( [START_REF] Andreoletti | Almost sure estimates for the concentration neighborhood of Sinai's walk[END_REF], see also [START_REF] Andreoletti | On the concentration of Sinai's walk[END_REF]). Moreover the local time of such processes in random environment plays an important role in estimation problems (see e.g. Comets et al. [START_REF] Comets | Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment[END_REF]), in persistence (see Devulder [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF]) and in the study of processes in random scenery (see Zindy [START_REF] Zindy | Upper limits of Sinai's walk in random scenery[END_REF]).

1.2. Maximum local time. We denote by (L X (t, x), t ≥ 0, x ∈ R) the local time of X, which is the jointly continuous process satisfying, for any positive measurable function f ,

t 0 f (X(s))ds = +∞ -∞ f (x)L X (t, x)dx, t ≥ 0. (1.
2)

The existence of such a process was proved by Hu and Shi ([29], eq. (2.6)); see (6.2) below for an expression of L X . We are interested in the maximum local time of X at time t, defined as

L * X (t) := sup x∈R L X (t, x), t ≥ 0.
In the recurrent case κ = 0, Hu and Shi [START_REF] Hu | The local time of simple random walk in random environment[END_REF] first proved that for any x ∈ R,

log L X (t, x) log t L -→ U ∧ Û ,
where U and Û are two independent random variables uniformly distributed in [0, 1], and " L -→ " denotes convergence in law under the annealed law P. Moreover, thoughout the paper, log denotes the natural logarithm. The limit law of L * X (t), suitably renormalized, is determined by Andreoletti and Diel [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF] when κ = 0:

L * X (t) t L -→ ∞ -∞ e -W (x) dx -1 , (1.3) 
where W (x), x ∈ R is a two-sided Brownian motion conditioned to stay positive. Furthermore, Shi [START_REF] Shi | A local time curiosity in random environment[END_REF] proved the following surprising result: P-almost surely when κ = 0, lim sup t→+∞ L * X (t)/(t log log log t) ≥ 1/32.

(1.4)

The question whether this is the good renormalization remained open during 13 years, until Diel [START_REF] Diel | Almost sure asymptotics for the local time of a diffusion in Brownian environment[END_REF] gave a positive answer to this question. He proved indeed that in this recurrent case κ = 0, lim sup t→+∞ L * X (t)/(t log log log t) ≤ e 2 /2, j 2 0 /64 ≤ lim inf t→+∞ L * X (t)/[t/(log log log t)] ≤ e 2 π 2 /4 P-almost surely, where j 0 is the smallest strictly positive root of the Bessel function J 0 . Moreover, the convergence in law (1.3) is extended to the case of stable L évy environment by Diel and Voisin [START_REF] Diel | Local time of a diffusion in a stable Lévy environment[END_REF]. Finally, related questions about favorite sites, that is, locations in which the local time is maximum at time t, are considered by Hu and Shi [START_REF] Hu | The problem of the most visited site in random environment[END_REF], Cheliotis [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF], and Andreoletti et al. [START_REF] Andreoletti | Renewal structure and local time for diffusions in random environment[END_REF].

1.3. Results. We define the first hitting time of r by X as follows:

H(r) := inf{t ≥ 0, X(t) > r}, r ≥ 0.

(1.5)

We recall that there are three different regimes for H in the transient case κ > 0:

Theorem 1.1. (Kawazu and Tanaka, [START_REF] Kawazu | A diffusion process in a Brownian environment with drift[END_REF]) When r tends to infinity,

H(r) r 1/κ L -→ c 0 S ca κ , 0 < κ < 1, (1.6) 
H(r) r log r P.

-→ 4,

κ = 1, (1.7) 
H(r) r a.s.

-→

4 κ -1 , κ > 1, (1.8) 
where c 0 = c 0 (κ) > 0 is a finite constant, the symbols " L -→ ", "

P.

-→ " and " a.s.

-→ " denote respectively convergence in law, in probability and almost sure convergence, with respect to the annealed probability P. Moreover, for 0 < κ < 1, S ca κ is a completely asymmetric stable variable of index κ, and is a positive variable (see (2.1) for its characteristic function).

The asymptotics of the maximum local time L * X (t) heavily depend on the value of κ. We start with the upper asymptotics of L * X (t): Theorem 1.2. If 0 < κ < 1, then lim sup t→+∞ L * X (t) t = +∞ P-a.s.

Theorem 1.2 tells us that in the case 0 < κ < 1, the maximum local time of X has a completely different behaviour from the maximum local time of RWRE (the latter is trivially bounded by t/2 for any positive integer t, for example). Such a peculiar phenomenon has already been observed (see (1.4)) by Shi [START_REF] Shi | A local time curiosity in random environment[END_REF] in the recurrent case, and is even more surprising here since X is transient. This is in agreement with a result of Gantert and Shi [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF] for RWRE. We notice in particular that lim sup t→+∞ L * X (t)/t is almost surely +∞ when 0 < κ < 1 by Theorem 1.2, whereas it is 0 when κ > 1 by Theorem 1.3. We have not been able to prove whether lim sup t→+∞ L * X (t)/t is infinite in the very delicate case κ = 1, since a proof similar to that of Theorem 1.2 just shows that it is greater than a positive deterministic constant (see Remark page 25 for more details).

We now turn to the lower asymptotics of L * X (t). Theorem 1.4. We have

lim inf t→∞ L * X (t) t/ log log t ≤ κ 2 c 1 (κ) P-a.s. if 0 < κ < 1, lim inf t→∞ L * X (t) t/[(log t) log log t] ≤ 1 2 P-a.s. if κ = 1, lim inf t→∞ L * X (t) (t/ log log t) 1/κ = 4 (κ -1)κ 2 8 1/κ P-a.s. if κ > 1,
where c 1 (κ) is defined in (5.13).

Theorem 1.5. We have, for any ε > 0,

lim inf t→∞ L * X (t) t/[(log t) 1/κ (log log t) (2/κ)+ε ] = +∞ P-a.s. if 0 < κ ≤ 1.
In the case 0 < κ ≤ 1, Theorems 1.4 and 1.5 give different bounds, for technical reasons.

We also get the convergence in law under the annealed law P of L * X (t), suitably renormalized, when κ ≥ 1: Theorem 1.6. We have as t → +∞, under the annealed law P,

L * X (t) t/ log t L -→ 1 2E if κ = 1, L * X (t) t 1/κ L -→ 4 κ 2 (κ -1)/8 1/κ E -1/κ if κ > 1,
where E denotes an exponential variable with mean 1.

We notice that in the previous theorem, the case 0 < κ < 1 is lacking. Indeed, we did not succeed in obtaining it with the annealed technics of the present paper, because due to (1.6), H(r) suitably renormalized converges in law but does not converge in probability to a positive constant in this case. This is why we used quenched technics in Andreoletti et al. [START_REF] Andreoletti | Renewal structure and local time for diffusions in random environment[END_REF] to prove that L * X (t)/t converges in law under P as t → +∞ when 0 < κ < 1. To this aim, we used and extended to local time the quenched tools developed in Andreoletti et al. [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] to get the localization of X in this case 0 < κ < 1, combined with some additional tools such as two dimensional Lévy processes and convergence in Skorokhod topology. So, Theorem 1.6 completes the results of [START_REF] Andreoletti | Renewal structure and local time for diffusions in random environment[END_REF] and [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF] (see our (1.3)), that is, these 3 results give the convergence in law of L * X (t) suitably renormalized for any value of κ ∈ R. In the proof of Theorems 1.2, 1.4 and 1.5, we will frequently need to use the almost sure asymptotics of the first hitting times H(•). In view of the last part (1.8) of Theorem 1.1, we only need to study the case κ ∈ (0, 1].

Theorem 1.7. Let a(•) be a positive nondecreasing function. If 0 < κ < 1, then ∞ n=1 1 na(n) < +∞ = +∞ ⇐⇒ lim sup r→∞ H(r) [ra(r)] 1/κ = 0 +∞ P-a.s.
If κ = 1, the statement holds under the additional assumption that lim sup r→+∞ (log r)/a(r) < ∞.

Theorem 1.8. We have (Γ denotes the usual gamma function)

lim inf r→+∞ H(r) r 1/κ /(log log r) (1/κ)-1 = 8κ[πκ] 1/κ (1 -κ) 1-κ κ 2Γ 2 (κ) sin(πκ) 1/κ =: c 2 (κ) P-a.s. if 0 < κ < 1, (1.9) lim inf r→+∞ H(r) r log r = 4 P-a.s. if κ = 1.
(1.10)

The following corollary follows immediately from Theorem 1.7 and gives a negative answer to a question raised in Hu, Shi and Yor ([33], Remark 1.3 p. 3917):

Corollary 1.9. The convergence in probability H(r)/(r log r) → 4 in Theorem 1.1 in the case κ = 1 cannot be strengthened into an almost sure convergence.

We observe that in the case 0 < κ < 1, the process H(•) has the same almost sure asymptotics as κ-stable subordinators (see Bertoin [START_REF] Bertoin | Lévy Processes[END_REF] p. 92).

Finally, define log 1 := log and log k := log k-1 • log for k > 1. Theorems 1.7 and 1.8, and the fact that X(t) is not very far from sup 0≤s≤t X(s) (see Lemma 4.1 below) lead to Corollary 1.10. Recall that c 2 (κ) is defined in (1.9). We have for k

∈ N * , lim sup t→∞ X(t) t κ (log log t) 1-κ = 2Γ 2 (κ) sin(πκ) π8 κ κ κ+1 (1 -κ) 1-κ = 1 [c 2 (κ)] κ P-a.s. if 0 < κ < 1, (1.11) lim sup t→∞ X(t) t/ log t = 1 4 P-a.s. if κ = 1, (1.12) α ≤ 1 α > 1 ⇐⇒ lim inf t→+∞ X(t) t κ /[(log t) . . . (log k-1 t)(log k t) α ] = 0 = +∞ P-a.s. if 0 < κ ≤ 1,
(1.13) where for k = 1, (log t) . . . (log k-1 t) = 1 by convention. These results remain true if we replace X(t) by sup 0≤s≤t X(s).

Corresponding results in the recurrent case κ = 0 are proved by Hu et al. [START_REF] Hu | The limits of Sinai's simple random walk in random environment[END_REF], extended later by Singh [START_REF] Singh | Limiting behavior of a diffusion in an asymptotically stable environment[END_REF] to some asymptotically stable potentials and following results of Deheuvels et al. [START_REF] Deheuvels | Simple random walk on the line in random environment[END_REF] for Sinai's walk.

Our proof hinges upon stochastic calculus. In particular, one key ingredient of the proofs of Theorems 1.2-1.8 is an approximation of the joint law of the hitting time H[F (r)] of F (r) ≈ r by X and the maximum local time L * X [H(F (r))] of X at this time, stated in Lemma 2.7, and proved in Section 6. Another important tool is a modification of the Borel-Cantelli lemma, stated in Lemma 2.8, which, loosely speaking, says that one can chop the real half line [0, ∞) into regions in which the diffusion X behaves in an "independent" way.

The rest of the paper is organized as follows. In Section 2.1, we give some preliminaries on local time and Bessel processes. We present in Section 2.2 some estimates which will be needed later on; the proof of one key estimate (Lemma 2.7) is postponed until Section 6. Section 3 is devoted to the study of the almost sure asymptotics of L * X [H(r)], stated in Theorems 3.1 and 3.2. In Section 4, we study the Lévy classes for the hitting times H(r) and prove Theorems 1.7 and 1.8 and Corollary 1.10. In Section 5, we study L * X [H(r)]/H(r) and prove Theorems 1.2-1.6. Section 6 is devoted to the proof of Lemma 2.7. Finally, we prove in Section 7 some lemmas dealing with Bessel processes, Jacobi processes and Brownian motion.

Throughout the paper, the letter c with a subscript denotes constants that are finite and positive.

Some preliminaries

2.1. Preliminaries on local time and Bessel processes. We first define, for any Brownian motion (B(t), t ≥ 0) and r > 0, the hitting time

σ B (r) := inf{t > 0, B(t) = r}.
Moreover, we denote by (L B (t, x), t ≥ 0, x ∈ R) the local time of B, i.e., the jointly continuous process satisfying

t 0 f (B(s))ds = +∞ -∞ f (x)L B (t,
x)dx for any positive measurable function f . We define the inverse local time of B at 0 as τ B (a) := inf{t ≥ 0, L B (t, 0) > a}, a > 0.

Furthermore, for any δ ∈ [0, ∞) and x ∈ [0, ∞), the unique strong solution of the stochastic differential equation

Z(t) = x + 2 t 0 Z(s)dβ(s) + δt,
where (β(s), s ≥ 0) is a (one dimensional) Brownian motion, is called a δ-dimensional squared Bessel process starting from x. A Bessel process with dimension δ (or equivalently with order δ/2 -1) starting from x ≥ 0 is defined as the (nonnegative) square root of a δ-dimensional squared Bessel process starting from x 2 see e.g. See e.g. Revuz and Yor ([41], chap. XI) for more details about Ray-Knight theorems and Bessel processes. Following the method used by Hu et al. ( [START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF], see eq. (3.8)), we also need the following well known result: Fact 2.3. (Lamperti representation theorem, see Yor [START_REF] Yor | Sur certaines fonctionnelles exponentielles du mouvement brownien réel[END_REF] eq. (2.e)) Consider W κ (x) = W (x)κx/2 as in (1.1) with κ > 0, where (W (x), x ≥ 0) is a Brownian motion. There exists a (2-2κ)dimensional Bessel process (ρ(t), t ≥ 0), starting from ρ(0) = 2, such that exp[W κ (t)/2] = ρ(A(t))/2 for all t ≥ 0, where A(r) := r 0 e Wκ(s) ds, r ≥ 0.

We also recall the following extension to Bessel processes of Williams' time reversal theorem (see Yor [START_REF] Yor | Local Times and Excursions for Brownian Motion: A Concise Introduction[END_REF], p. 80; see also Göing-Jaeschke et al. [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF] eq. ( 34)).

Fact 2.4. One has, for δ < 2,

(R δ (T 0 -s), s ≤ T 0 ) L = (R 4-δ (s), s ≤ γ a ),
where L = denotes equality in law, (R δ (s), s ≥ 0) denotes a δ-dimensional Bessel process starting from a > 0, T 0 := inf{s ≥ 0, R δ (s) = 0}, (R 4-δ (s), s ≥ 0) is a (4 -δ)-dimensional Bessel process starting from 0, and γ a := sup{s ≥ 0, R 4-δ (s) = a}.

Let S ca κ be a (positive) completely asymmetric stable variable of index κ for 0 < κ < 1, and C ca 8 a (positive) completely asymmetric Cauchy variable of parameter 8. Their characteristic functions are given by:

Ee itS ca κ = exp -|t| κ 1 -i sgn(t) tan πκ 2 , Ee itC ca 8 = exp -8 |t| + it 2 π log |t| . (2.1)
Throughout the paper, we set λ := 4(1 + κ). If (B(t), t ≥ 0) denotes, as before, a Brownian motion, we introduce

K β (κ) := +∞ 0 x 1/κ-2 L β (τ β (λ), x)dx, 0 < κ < 1, (2.2) 
C β := 1 0 L β (τ β (8), x) -8 x dx + +∞ 1 L β (τ β (8), x) x dx. (2.3)
We have the following equalities in law:

Fact 2.5. (Biane and Yor [START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]) For 0 < κ < 1,

C β L = 8c 3 + (π/2)C ca 8 , K β (κ) L = κ 2-1/κ c 4 (κ)/4 S ca κ
, where c 3 > 0 denotes an unimportant constant, and

ψ(κ) := πκ 4Γ 2 (κ) sin(πκ/2) 1/κ , c 4 (κ) := 8ψ(κ)λ 1/κ κ -1/κ . (2.4)
This fact is proved in (Biane and Yor [START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]); the identity in law related to C β is given in its paragraph (4.3.2) pp 64-66 and the one related to K β (κ) follows from its (1.a) p. 24.

Finally, the first Ray-Knight theorem leads to the following formula. For v > 0 and y > 0,

P sup 0≤s≤τ β (v) β(s) < y = P L β (σ β (y), 0) > v = P R 2 2 (y) > v = exp - v 2y , (2.5) 
where (R 2 (s), s ≥ 0) is a 2-dimensional Bessel process starting from 0.

2.2. Some preliminaries on the diffusion. We assume in the rest of the paper that κ > 0, and so X is a.s. transient to the right. We start by introducing

A(x) := x 0 e Wκ(y) dy, x ∈ R, A ∞ := ∞ 0 e Wκ(y) dy < ∞ a.s.
We recall that A is a scale function of X under the quenched law P Wκ (see e.g. Shi [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF] eq. (2.2)). That is, if P y Wκ denotes the law of the diffusion X in the potential W κ , starting from y instead of 0, we have conditionally on the potential W κ ,

P y

Wκ H(z) < H(x) = A(y) -A(x) / A(z) -A(x) , x < y < z.

(2.6)

We observe that, since κ > 0, A(x) → A ∞ < ∞ a.s. when x → +∞.

For technical reasons, we have to introduce the random function F as follows. Fix r > 0. Since the function x → A ∞ -A(x) =: D(x) is almost surely continuous and (strictly) decreasing and has limits +∞ and 0 respectively on -∞ and +∞, there exists a unique F (r) ∈ R, depending only on the process W κ , such that A ∞ -A(F (r)) = exp(-κr/2) =: δ(r).

(2.7)

Our first estimate describes how close F (r) is to r, for large r.

Lemma 2.6. Let κ > 0 and 0 < δ 0 < 1/2. Define for r > 0,

E 1 (r) := 1 -5r -δ 0 /κ r ≤ F (r) ≤ 1 + 5r -δ 0 /κ r . (2.8)
Then for all large r,

P E 1 (r) c ≤ exp -r 1-2δ 0 . (2.9)
As a consequence, for any ε > 0, we have, almost surely, for all large r,

(1 -ε)r ≤ F (r) ≤ (1 + ε)r. (2.10)
Proof of Lemma 2.6. Let 0 < δ 0 < 1/2, and fix r > 0. We have

P E 1 (r) c ≤ P F (r) < (1 -5r -δ 0 /κ)r + P F (r) > (1 + 5r -δ 0 /κ)r . (2.11) 
Define s ± := (1 ± 5r -δ 0 /κ)r, and A (s)

∞ := ∞ s exp(W κ (u) -W κ (s))du for s ≥ 0. Observe that D is stricly decreasing, D(F (r)) = e -κr/2 and that D(s ± ) = A (s ± ) ∞ exp(W κ (s ± )). Consequently, P F (r) < (1 -5r -δ 0 /κ)r ≤ P D(F (r)) > D(s -) = P -κr/2 > log A (s -) ∞ + W κ (s -) . Moreover, A (s ± ) ∞ L = A ∞ L = 2/γ κ
, where γ κ is a gamma variable of parameter (κ, 1) (see Dufresne [START_REF] Dufresne | Laguerre series for Asian and other options[END_REF] or Borodin et al. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] IV.48 p. 78), i.e., γ κ has density 1 Γ(κ) e -x x κ-1 1 R + (x). Hence P F (r) < (1 -5r -δ 0 /κ)r ≤ P log(2/γ k ) < -r 1-δ 0 + P W (s -) < -3r 1-δ 0 /2 ≤ 2 exp -9r 1-2δ 0 /8 , for large r, since P[W (1) < -x] ≤ e -x 2 /2 for x ≥ 1. Similarly, we have for large r,

P F (r) > s + ≤ P log(2/γ k ) > r 1-δ 0 /2 + P W (s + ) > 2r 1-δ 0 ≤ exp -9r 1-2δ 0 /8 .
This yields (2.9) in view of (2.11).

Then n≥1 P E 1 (n) c < ∞,
so (2.10) follows from the Borel-Cantelli lemma and the monotonicity of F (•).

In the rest of the paper, we define, for δ 1 > 0 and any r > 0,

c 5 := 2(λ/κ) δ 1 , ψ ± (r) := 1 ± c 5 r δ 1 , t ± (r) := κψ ± (r)r λ .
(2.12)

Taking ψ ± (r) as defined above instead of simply 1 ± ε is necessary e.g. in Lemma 5.1 below. Moreover, if (β(s), s ≥ 0) is a Brownian motion and v > 0, we define the Brownian motion

(β v (s), s ≥ 0) by β v (s) := (1/v)β(v 2 s), s ≥ 0.
We prove in Section 6 the following approximation of the joint law of L * X [H(F (r))], H(F (r)) . Lemma 2.7. Let κ > 0 and ε ∈ (0, 1). For δ 1 > 0 small enough, there exists c 6 > 0 and α > 0 such that for r large enough, there exist a Brownian motion (β(t), t ≥ 0) such that the following holds:

(i) Whenever κ > 0, we have P[E 2 (r)] ≥ 1 -r -α
, where

E 2 (r) := (1 -ε) L -(r) ≤ L * X [H(F (r))] ≤ (1 + ε) L + (r) , (2.13) 
L ± (r) := 4[κt ± (r)] 1/κ sup 0≤u≤τ β t ± (r) (λ) β t ± (r) (u) 1/κ = 4 sup 0≤u≤τ β (λt ± (r)) κβ(u) 1/κ . (2.14) (ii) If 0 < κ ≤ 1, we have P[E 3 (r)] ≥ 1 -r -α
, where, using the notation introduced in (2.2) and (2.3),

E 3 (r) := (1 -ε) I -(r) ≤ H(F (r)) ≤ (1 + ε) I + (r) , (2.15) 
I ± (r) := 4κ 1/κ-2 t ± (r) 1/κ K β t ± (r) (κ) ± c 6 t ± (r) 1-1/κ , 0 < κ < 1, 4t ± (r) C β t ± (r) + 8 log t ± (r) , κ = 1. (2.16)
Notice in particular that the Brownian motion β is the same in (i) and (ii); this allows to approximate the law of quantities depending on both L * X [H(F (r))] and H(F (r)), such as L * X [H(F (r))]/H(F (r)), which is useful in Section 5. This is possible because we kept the random function F (r) in the expressions L * X [H(F (r))] and H(F (r)), in order to have the same Brownian motion β in the left hand side and the right hand side of the inequalities defining E 2 (r) and E 3 (r).

The proof of Lemma 2.7 is postponed to Section 6.

With an abuse of notation, for z ≥ 0, we denote by X • Θ H(z) the process (X(H(z) + t)z, t ≥ 0). Notice that due to the strong Markov property applied at stopping time H(z) under the quenched law

P Wκ , X • Θ H(z) is, conditionally on W κ , a diffusion in the (-κ/2)- drifted Brownian potential W κ • Θ z := (W κ (x + z) -W κ (z), x ∈ R), starting from 0. Define H X•Θ H(z) (s) = H(z + s) -H(z), s ≥ 0,
which is the hitting time of s by X • Θ H(z) . In view of (2.7), we also define

F Wκ•Θz by ∞ F Wκ•Θz (r) e Wκ•Θz(u) du = δ(r), r > 0. That is, F Wκ•Θz plays the same role for W κ • Θ z (resp. for X • Θ H(z) ) as F does for W κ (resp. for X). Similarly, L * X•Θ H(z) and (L * • H) X•Θ H(z) denote respectively the processes L * and L * • H for the diffusion X • Θ H(z) , with (L * ) X := L * X .
The following lemma is a modification of the Borel-Cantelli lemma.

Lemma 2.8. Let κ > 0, α > 0, r n := exp(n α ) and

Z n := n k=1 r k for n ≥ 1. Assume f is a continuous function (0, +∞) 2 → R and (∆ n ) n≥1 is a sequence of open sets in R such that n≥1 P f [(H • F )(r 2n ), (L * X • H • F )(r 2n )] ∈ ∆ n = +∞.
(2.17)

Then for any 0 < ε < 1/2, P almost surely, there exist infinitely many n such that for some

t n ∈ [(1 -ε)r 2n , (1 + ε)r 2n ], f H X•Θ H(Z 2n-1 ) (t n ), (L * • H) X•Θ H(Z 2n-1 ) (t n ) ∈ ∆ n .
The results remain true if r n = n n for every n ≥ 1.

Proof of Lemma 2.8. We divide R + into some regions in which the diffusion X will behave "independently", in order to apply the Borel-Cantelli lemma.

To this aim, let n ≥ 1 and

E 4 (n) := inf {t: H(Z 2n-1 )≤t≤H(Z 2n +r 2n+1 /2)} X(t) > Z 2n-2 + 1 2 r 2n-1 .
Define x n := r 2n-1 /2. For any environment, i.e., for any realization of W κ , X is a Markov process under P Wκ , and H(Z 2n-1 ) is a stopping time. Hence, P Wκ (E 4 (n) c ) is the probability that the diffusion in the potential W κ started at Z 2n-1 hits level Z 2n-2 + x n before Z 2n + x n+1 , that is

P Wκ E 4 (n) c = 1 + Z 2n-1 Z 2n-2 +xn e Wκ(u) du Z 2n +x n+1 Z 2n-1 e Wκ(u) du -1 ≤ Z 2n +x n+1 Z 2n-1 e Wκ(u) du Z 2n-1 Z 2n-2 +xn e Wκ(u) du , (2.18) 
where we used (2.6). Observe that r 2n-1 -x n = x n and define for some

0 < ε 0 < κ/4, E 5 (n) := sup 0≤u≤r 2n-1 -xn W κ (u + Z 2n-2 + x n ) -W κ (Z 2n-2 + x n ) + κ 2 u ≤ ε 0 (r 2n-1 -x n ) and E 6 (n) := sup u≥0 [W κ (u + Z 2n-1 ) -W κ (Z 2n-1 )] ≤ v n , where v n := 2(log n)/κ. Since sup 0≤u≤xn W (u) L = |W (x n )| and sup x≥0 W κ (x)
has an exponential law of parameter κ (see e.g. Borodin et al. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] 1.1.4 (1) p. 251), we have for large n,

P E 5 (n) c = P sup 0≤u≤xn |W (u)| > ε 0 x n ≤ 4 exp - ε 2 0 x n 2 and P E 6 (n) c = exp(-κv n ) = n -2 .
(2.19)

Moreover by (2.18), we have for n large enough, on E 5 (n) ∩ E 6 (n),

P Wκ E 4 (n) c ≤ κ (r 2n + x n+1 ) exp[v n + W κ (Z 2n-1 )] exp[W κ (Z 2n-2 + x n ) -ε 0 (r 2n-1 -x n )] ≤ κ(r 2n + x n+1 ) exp[v n + (2ε 0 -κ/2)(r 2n-1 -x n )].
(2.20)

Now, integrate (2.20) over E 5 (n) ∩ E 6 (n). Since P[E 5 (n) c ] and P[E 6 (n) c ] are summable, this yields since ε 0 < κ/4, +∞ n=1 P E 4 (n) c < ∞. (2.21)
To complete the proof of Lemma 2.8, let 0 < ε < 1/2, and define

D n := ∃t n ∈ [(1 -ε)r 2n , (1 + ε)r 2n ], f H X•Θ H(Z 2n-1 ) (t n ), (L * • H) X•Θ H(Z 2n-1 ) (t n ) ∈ ∆ n , E n := 1 -5r -δ 0 2n /κ r 2n ≤ F Wκ•Θ Z 2n-1 (r 2n ) ≤ 1 + 5r -δ 0 2n /κ r 2n . Let t n := F Wκ•Θ Z 2n-1 (r 2n ).
We have uniformly for large n,

D n ∩ E 4 (n) ⊃ f H X•Θ H(Z 2n-1 ) t n , (L * • H) X•Θ H(Z 2n-1 ) t n ∈ ∆ n ∩ E 4 (n) ∩ E n . (2.22)
Due to our assumption (2.17

), n≥1 P{f [H X•Θ H(Z 2n-1 ) ( t n ), (L * •H) X•Θ H(Z 2n-1 ) ( t n )] ∈ ∆ n } = ∞, since X • Θ H(Z 2n-1 ) is a diffusion process in the (-κ/2)-drifted Brownian potential W κ • Θ Z 2n-1 , which also gives P(E n ) = P(E 1 (r 2n )).
In view of (2.21), (2.22) and Lemma 2.6, this yields

n∈N P(D n ∩ E 4 (n)) = +∞. Define x ∧ y := inf{x, y}, (x, y) ∈ R 2 . Since εr 2n ≤ r 2n+1 /2 for large n, the event D n ∩ E 4 (n) is measurable with respect to the σ-field generated by (W κ (x + Z 2n-1 ) -W κ (Z 2n-1 ), -r 2n-1 /2 ≤ x ≤ Z 2n + r 2n+1 /2 -Z 2n-1 ) and X • Θ H(Z 2n-1 ) (t), 0 ≤ t ≤ H X•Θ H(Z 2n-1 ) (-r 2n-1 /2) ∧ H X•Θ H(Z 2n-1 ) (Z 2n + r 2n+1 /2 -Z 2n-1 . So, the events D n ∩ E 4 (n), n ≥ 1,
are independent by the strong Markov Property, because the intervals Z 2n-1 -r 2n-1 /2, Z 2n + r 2n+1 /2 , n ≥ 1 are disjoint. Hence, Lemma 2.8 follows by an application of the Borel-Cantelli lemma.

Almost sure asymptotics of L * X [H(r)]

As a warm up, we first prove the following results, which are useful in Section 5.

Theorem 3.1. Let κ > 0. For any positive nondecreasing function a(•), we have First, notice that for L ± which is defined in (2.14), and any positive y and r, we have

∞ n=1 1 na(n) < ∞ = +∞ ⇐⇒ lim sup r→∞ L * X [H(r)] [ra(r)] 1/κ = 0 +∞ P-a.s. Theorem 3.2. For κ > 0, lim inf r→+∞ L * X [H(r)] (r/ log log r) 1/κ = 4 κ 2 2 1/κ P-a.s.
P L ± (r) < (yr) 1/κ = P sup 0≤u≤τ β (λt ± (r)) β(u) < yr 4 κ κ = exp - κ 2 4 κ ψ ± (r) 2y , (3.1) 
by (2.5) and (2.12). This together with Lemma 2.7 gives, for some α > 0, ε > 0 and all large r,

P L * X [H(F (r))] > ra(e -2 r) 1/κ ≤ 1 -exp - (1 + ε) κ κ 2 4 κ ψ + (r) 2a(e -2 r) + r -α ≤ c 7 a(e -2 r) + r -α , (3.2) since 1-e -x ≤ x for all x ∈ R. Assume +∞ n=1 1 na(n) < ∞, which is equivalent to +∞ n=1 1 a(rn) < ∞. Then it follows from (3.2) that +∞ n=1 P{L * X [H(F (r n ))] > [r n a(r n-2 )] 1/κ } < ∞. So by the Borel-Cantelli lemma, almost surely for all large n, L * X [H(F (r n ))] ≤ [r n a(r n-2 )] 1/κ . On the other hand, r n-1 ≤ F (r n ) almost surely for all large n (see (2.10)). As a consequence, almost surely for all large n, L * X [H(r n-1 )] ≤ [r n a(r n-2 )] 1/κ . Let r ∈ [r n-2 , r n-1 ], for such large n. Then L * X [H(r)] ≤ L * X [H(r n-1 )] ≤ [r n a(r n-2 )] 1/κ ≤ e 2/κ [ra(r)] 1/κ . Consequently, lim sup r→+∞ L * X [H(r)] [ra(r)] 1/κ ≤ e 2/κ P-a.s. (3.3) Since +∞ n=1 1 nεa(n) is also finite, (3.
3) holds for a(•) replaced by εa(•), ε > 0. Letting ε → 0 yields the "zero" part of Theorem 3.1. Now we turn to the proof of the "infinity" part. Assume

+∞ n=1 1 na(n) = +∞, that is, +∞ n=1 1 
a(rn) = +∞. Observe that we may restrict ourselves to the case a(x) → +∞ when x → +∞, since the result in this case yields the result when a is bounded.

By an argument similar to that leading to (3.2), we have, for some α > 0 and all large r,

P L * X [H(F (r))] > ra(e 2 r) 1/κ ≥ c 8 a(e 2 r) -r -α , which implies +∞ n=1 P (L * X • H • F )(r 2n ) > [r 2n a(r 2n+2 )] 1/κ = +∞. Let 0 < ε < 1/2
and recall that Z n = n k=1 r k ; by Lemma 2.8, almost surely, there exist infinitely many n such that

sup s∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (s) > [r 2n a(r 2n+2 )] 1/κ .
For such n, we have

sup s∈[(1-ε)r 2n ,(1+ε)r 2n ] L * X [H(Z 2n-1 + s)] > [r 2n a(r 2n+2 )] 1/κ . Consequently, sup s∈[(1-ε)r 2n ,(1+ε)r 2n ] L * X (H(Z 2n-1 + s)) [(Z 2n-1 + s)a(Z 2n-1 + s)] 1/κ ≥ c 9 ,
almost surely for infinitely many n. This gives

lim sup r→+∞ L * X [H(r)] [ra(r)] 1/κ ≥ c 9 P-a.s.
Replace a(•) by a(•)/ε, and let ε → 0. This yields the "infinity" part of Theorem 3.1.

3.2.

Proof of Theorem 3.2. We fix ε ∈ (0, 1). By Lemma 2.7 and (3.1), we get for some α > 0, for every positive function g and all large r,

P L * X [H(F (r))] < [r/g(r)] 1/κ ≤ exp -κ 2 4 κ (1 -ε) κ ψ -(r)g(r)/2 + r -α . (3.4)
We choose g(r) := 2(1+ε)

κ 2 4 κ (1-ε) κ+1 ψ -(r) log log r. Let s n := exp(n 1-ε ). It follows from (3.4) that ∞ n=1 P L * X [H(F (s n ))] < [s n /g(s n )] 1/κ < ∞.
Hence by the Borel-Cantelli lemma, almost surely for all large n,

L * X [H(F (s n ))] ≥ [s n /g(s n )] 1/κ .
On the other hand, by (2.9) and the Borel-Cantelli lemma, s n ≥ F (s n-1 ) almost surely for all large n, which implies that, for r ∈ [s n , s n+1 ],

L * X [H(r)] ≥ L * X [H(F (s n-1 ))] ≥ [s n-1 /g(s n-1 )] 1/κ ≥ (1 -ε)[r/g(r)] 1/κ , since s n-1 /s n+1 → 1 as n → +∞. Consequently, lim inf r→∞ L * X [H(r)] (r/ log log r) 1/κ ≥ 4 κ 2 2 1/κ P-a.s. Now we prove the inequality "≤". Let ε ∈ (0, 1/2), r n := exp(n 1+ε ), Z n := n k=1 r k , n ≥ 1, and g(r) := 2(1-ε) κ 2 4 κ (1+ε) κ+1 ψ + (
r) log log r. By Lemma 2.7 and (3.1), for some α > 0 and all large r,

P L * X [H(F (r))] < [r/ g(r)] 1/κ ≥ exp -κ 2 4 κ (1 + ε) κ ψ + (r) g(r)/2 -r -α .
Therefore,

n≥1 P L * X [H(F (r 2n ))] < r 2n / g(r 2n ) 1/κ = +∞.
It follows from Lemma 2.8 that, almost surely, there are infinitely many n such that

inf s∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (s) < r 2n / g(r 2n ) 1/κ . (3.5)
On the other hand, an application of Theorem 3.1 with a(x) ∼ x→+∞ (log x) 2 gives that almost surely for large n, L *

X [H(Z 2n-1 )] ≤ [Z 2n-1 log 2 Z 2n-1 ] 1/κ ≤ ε r 2n / g(r 2n ) 1/κ , since Z p ≤ pr p ≤ p exp(-p ε )r p+1 for p large enough. Therefore, inf s∈[(1-ε)r 2n ,(1+ε)r 2n ] L * X [H(Z 2n-1 + s)] ≤ (1 + ε) r 2n / g(r 2n )
1/κ almost surely, for infinitely many n, where we used Recall I ± from (2.16) and c 4 (κ) from (2.4). By Fact 2.5,

L * X [H(r +s)] ≤ L * X [H(r)]+ (L * • H) X•θ H(r) (s), r ≥ 0, s ≥ 0. Hence, for such n, inf s∈[(1-ε)r 2n ,(1+ε)r 2n ] L * X [H(Z 2n-1 + s)] [(Z 2n-1 + s)/ log log(Z 2n-1 + s)] 1/κ ≤ (1 + c 10 ε) κ 2 4 κ ψ + (r 2n ) 2 1/κ . This yields lim inf r→+∞ L * X (H(r)) (r/ log log r) 1/κ ≤ 4 κ 2 2 1/κ P-a.s., proving Theorem 3.2.
I ± (r) L = t ± (r) 1/κ c 4 (κ) S ca κ ± c 11 t ± (r) 1-1/κ , 0 < κ < 1, (4.1) 
I ± (r) L = 4t ± (r)[8c 3 + (π/2)C ca 8 + 8 log t ± (r)] κ = 1, (4.2) 
where c 11 > 0 and c 3 > 0 are unimportant constants. We have now all the ingredients to prove Theorems 1.7 and 1.8.

4.1.

Proof of Theorem 1.7.

4.1.1. Case 0 < κ < 1. We assume 0 < κ < 1. Let a(•) be a positive nondecreasing function.

Without loss of generality, we suppose that a(r) → ∞ (as r → ∞).

It is known (see e.g. Samorodnitsky and Taqqu [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], (1.2.8) p. [START_REF] Deheuvels | Simple random walk on the line in random environment[END_REF]) that

P S ca κ > x ∼ x→+∞ c 12 x -κ , where f (x) ∼ x→+∞ g(x) means lim x→+∞ f (x)/g(x) = 1
, and c 12 > 0 is a constant depending on κ.

Recall t ± (•) from (2.12). By Lemma 2.7 and (4.1), for some α > 0, we have for large r,

P H(F (r)) > a(e -2 r)t + (r) 1/κ ≤ c 13 a(e -2 r) + r -α . (4.3) 
As in Section 3.1, we define r n := e n and Z n :

= n k=1 r k . Assume n≥1 1 a(rn) < ∞, which is equivalent to n≥1 1 na(n) < ∞.
By the Borel-Cantelli lemma, almost surely for n large enough,

H[F (r n )] ≤ [a(r n-2 )t + (r n )] 1/κ . (4.4)
On the other hand, by Lemma 2.6, almost surely for all large n, we have r n+1 ≤ F (r n+2 ), which together with (4.4) implies that for r ∈ [r n , r n+1 ],

H(r) ≤ H[F (r n+2 )] ≤ [ψ + (r n+2 )κr n+2 a(r n )/λ] 1/κ ≤ c 14 [ra(r)] 1/κ .
Therefore, lim sup r→+∞ H(r)

[ra(r)] 1/κ ≤ c 14 P-a.s., implying the "zero" part of Theorem 1.7, since we can replace a(•) by any constant multiple of a(•).

To prove the "infinity" part, we assume n≥1 1 na(n) = +∞, and observe that, by an argument similar to that leading to (4.3), we have, for some α > 0 and all r large enough,

P H(F (r)) > a(e 2 r)t -(r) 1/κ ≥ c 15 a(e 2 r) -r -α . (4.5) It follows from Lemma 2.8 that sup s∈[(1-ε)r 2n ,(1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (s) > [a(r 2n+2 )t -(r 2n )] 1/κ , almost surely for infinitely many n. Since H(Z 2n-1 + s) ≥ H X•Θ H(Z 2n-1 ) (s)
for all s > 0, this implies, for these n,

sup s∈[(1-ε)r 2n ,(1+ε)r 2n ] H(Z 2n-1 + s)/[a(Z 2n-1 + s)(Z 2n-1 + s)] 1/κ ≥ c 16 . (4.6)
This gives lim sup r→+∞ H(r)

[ra(r)] 1/κ ≥ c 16 P-a.s., proving the "infinity" part in Theorem 1.7, in the case 0 < κ < 1 by replacing a(.) by any constant multiple of a(.). 

P H(F (r)) > 4t + (r)(1 + ε) 8c 3 + a(e -2 r) + 8 log t + (r) ≤ c 18 /a(e -2 r) + r -α . (4.7) Assume n≥1 1 na(n) < ∞.
Then by the Borel-Cantelli lemma, almost surely, for all large n,

H[F (r n )] ≤ 4(1 + ε)t + (r n )[8c 3 + a(r n-2 ) + 8 log(ψ + (r n )κr n /8)].
Under the additional assumption lim sup r→+∞ (log r)/a(r) < ∞, we have, almost surely, for all large n and r ∈ [r n , r n+1 ] (thus r ≤ F (r n+2 ) by Lemma 2.6),

H(r) ≤ H[F (r n+2 )] ≤ c 19 r n+2 [a(r n ) + log r n+2 ] ≤ c 20 ra(r).
As in the case 0 < κ < 1, this yields the "zero" part of Theorem 1.7 in the case κ = 1.

For the "infinity" part, we assume n≥1

1 na(n) = +∞.
As in (4.7), we have, for some α > 0

P H(F (r)) > 4t -(r)(1 -ε)a(e 2 r) ≥ c 21 /a(e 2 r) -r -α ,
for large r. As in the displays between (4.5) and (4.6), this yields the "infinity part" of Theorem 1.7 in the case κ = 1.

4.2.

Proof of Theorem 1.8. 

4.2.1. Case 0 < κ < 1. We have E e -tS ca κ = exp[-t κ / cos(πκ/2)], t ≥ 0,
log P S ca κ < x ∼ x→0, x>0 -c 22 x -κ/(1-κ) , (4.8) 
where -κ) . By Lemma 2.7, (4.1) and (4.8), for any (strictly) positive function f such that lim x→+∞ f (x) = 0 and ε > 0 small enough, we have for large r,

c 22 := (1-κ)κ κ/(1-κ) [cos(πκ/2)] -1/(1
P H(F (r)) < t -(r) 1/κ f (r) ≤ exp -(c 22 -ε) (1 -ε)c 4 (κ) f (r) + (1 -ε)c 11 t -(r) 1-1/κ κ/(1-κ) + r -α . (4.9)
We define for ε > 0 and r > 1,

f ± ε (r) := (1 ± ε)c 4 (κ) (1 ± ε)(c 22 ± ε) (1 ∓ ε) log log r (1-κ)/κ ± c 11 (1 ± ε)t ± (r) 1-1/κ .
So, (4.9) gives

P H(F (r)) < t -(r) 1/κ f - ε (r) ≤ (log r) -(1+ε)/(1-ε) + r -α . With s n := exp(n 1-ε ), this gives +∞ n P H(F (s n )) < t -(s n ) 1/κ f - ε (s n ) < ∞, which, by the Borel-Cantelli lemma, implies that, almost surely, for all large n, H[F (s n )] ≥ t -(s n ) 1/κ f - ε (s n ).
Recall from Lemma 2.6 that, almost surely, for all large n, we have

F (s n ) ≤ (1 + ε)s n . Let r be large. There exists n (large) such that (1 + ε)s n ≤ r ≤ (1 + 2ε)s n . Then if r is large, H(r) ≥ H[F (s n )] ≥ t -(s n ) 1/κ f - ε (s n ) ≥ t 1/κ - r 1 + 2ε f - ε r 1 + ε .
Plugging the value of t -( r 1+2ε ) (defined in (2.12)), this yields inequality "≥" of (1.9) with

c 2 (κ) := 8ψ(κ)c (1-κ)/κ 22 = 8[πκ] 1/κ (1 -κ) 1-κ κ κ/ 2Γ 2 (κ) sin(πκ) 1/κ (4.10)
where c 22 = c 22 (κ) is defined after (4.8) and ψ and c 4 (κ) in (2.4).

To prove the upper bound, let r n := exp(n 1+ε ) and Z n := n k=1 r k . By means of an argument similar to that leading to (4.9), we have n≥1 P H(F (r 2n )) < t + (r 2n ) 1/κ f + ε (r 2n ) = +∞. So by Lemma 2.8, for 0 < ε < 1/2, there exist almost surely infinitely many n such that

inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (u) < [t + (r 2n )] 1/κ f + ε (r 2n ).
In addition, by Theorem 1.7,

H(Z 2n-1 ) < Z 2n-1 log 2 Z 2n-1 1/κ ≤ ε[t + (r 2n )] 1/κ f + ε (r 2n
) almost surely for all large n, since n≥1 1/(n log 2 n) < ∞ and Z p ≤ p exp(-p ε )r p+1 for all large p as before. This yields almost surely for large n,

inf v∈[Z 2n-1 +(1-ε)r 2n , Z 2n-1 +(1+ε)r 2n ] H(v) < (1 + ε)[t + (r 2n )] 1/κ f + ε (r 2n ).
Consequently,

lim inf r→+∞ H(r) r 1/κ (log log r) (κ-1)/κ ≤ 8ψ(κ)c (1-κ)/κ 22 = c 2 (κ) P-a.s.
This gives inequality "≤" of (1.9) and thus yields Theorem 1.8 in the case 0 < κ < 1. )] = 1 (in the notation of [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], C ca 8 is distributed as S 1 (8, 1, 0)). Hence,

Case

P[C ca 8 ≤ -ε log r] ≤ r -ε E[exp(-C ca 8 )] = r -ε , r > 0, (4.11) 
for ε > 0. By Lemma 2.7 and (4.2), we have if ε > 0 is small enough, for all large r,

P H[F (r)] ≤ 32t -(r)(1 -2ε)[c 3 + log t -(r)] ≤ P (C ca 8 ≤ -ε log r) + P[E 3 (r) c ] ≤ 2r -ε . Let s n := exp(n 1-ε ).
Thus, by the Borel-Cantelli lemma, almost surely, for all large n,

H[F (s n )] > 32t -(s n )(1 -2ε)[c 3 + log t -(s n )] ≥ 4(1 -3ε)s n log s n .
In view of the last part of Lemma 2.6, this yields inequality "≥" in (1.10) similarly as before (4.10). The inequality "≤", on the other hand, follows immediately from Theorem 1.1 (that H(r)/(r log r) → 4 in probability). Theorem 1.8 is proved. 4.3. Proof of Corollary 1.10. First, we need the following lemma, which says that X does not go back too far on the left, and so X(t) is very close from sup 0≤s≤t X(s): Lemma 4.1. For every κ > 0, there exists a constant c 23 (κ) such that P a.s. for large t,

0 ≤ sup 0≤s≤t X(s) -X(t) ≤ c 23 (κ) log t. (4.12)
Notice that this is not true in the recurrent case κ = 0. An heuristic explanation for 0 ≤ κ < 1 would be that the valleys of height approximatively log t have a length of order (log t) 2 in the case κ = 0, whereas they have a height of order at most log t in the case 0 < κ < 1, see e.g.

Andreoletti et al. ([3], Lem. 2.7).

Proof of Lemma 4.1: Let κ > 0. By Kawazu et al. ( [START_REF] Kawazu | On the maximum of a diffusion process in a drifted Brownian environment[END_REF], Theorem p. 79 applied with c = κ/2 to our -X), there exists a constant c 24 (κ) > 0 such that P inf u≥0 X(u) < -c 24 (κ) log n ≤ 1/n 2 for large n. Since inf u≥0 X(H(n) + u) -n has the same law under P as inf u≥0 X(u) due to the strong Markov property as explained before Lemma 2.8, this gives n P inf u≥0 X(H(n) + u)n < -c 24 (κ) log n < ∞. So by the Borel-Cantelli lemma, almost surely for large n,

inf u≥0 X(H(n) + u) -n ≥ -c 24 (κ) log n. (4.13)
For t > 0, there exists n ∈ N such that H(n) ≤ t < H(n + 1). We have by (4.13), almost surely if t is large,

sup 0≤s≤t X(s) -X(t) ≤ sup 0≤s≤H(n+1) X(s) -X(t) = n + 1 -X[H(n) + (t -H(n))] ≤ 1 + c 24 (κ) log n.
Moreover, we have log v ≤ 2 log H(v) P a.s. for large v, by Theorem 1.1 if κ > 1 and by Theorem 1.8 if 0 < κ ≤ 1. Hence almost surely for large t, with the same notation as before,

sup 0≤s≤t X(s) -X(t) ≤ 1 + c 24 (κ) log n ≤ 1 + 2c 24 (κ) log H(n) ≤ 1 + 2c 24 (κ) log t.
This proves the second inequality of (4.12). The first one is clear.

Proof So, (1.12) is equivalent to (1.12) with X(t) replaced by sup 0≤s≤t X(s). The same remark also applies to (1.11) and (1.13).

Now, we have sup 0≤s≤y X(s) ≥ r ⇐⇒ H(r) ≤ y, r > 0, y > 0. Consequently (1.11), (1.12) and (1.13) with X(t) replaced by sup 0≤s≤t X(s) follow respectively from (1.9), (1.10) and Theorem 1.7 applied to a(r) = (log r) . . . (log k-1 r)(log k r) α . Indeed for (1.13) when κ = 1, cases k = 1, α ≤ 1 and k = 2, α ≤ 0 follow from the case k = 3, α = 1. This proves Corollary 1.10. Proof of Theorem 1.6. We first notice that for every κ > 0, thanks to Lemma 2.7 (i),

L * X [H(F (r))]/r 1/κ L -→ 4 κ 2 /λ 1/κ sup 0≤u≤τ β (λ) β(u) 1/κ , (5.1) 
where L -→ denotes convergence in law under P as r → +∞.

We now assume κ > 1. In this case, H(F (r))/r → r→+∞ 4/(κ -1) P-a.s. by Lemma 2.6 eq. (2.10) and Theorem 1.1 eq. (1.8). This, combined with (5.1) leads to the convergence in law under

P of L * X (t)/t 1/κ to 4[κ 2 (κ -1)/(4λ)] 1/κ sup 0≤u≤τ β (λ) β(u) 1/κ . Since sup 0≤u≤τ β (λ) β(u)
has by (2.5) the same law as λ/(2E), where E is an exponential variable with mean 1, this proves Theorem 1.6 when κ > 1.

We finally assume κ = 1. In this case, H(F [t/(4 log t)])/t → t→+∞ 1 in probability under P by Lemma 2.6 and Theorem 1.1 eq. (1.7). This, combined with (5.1) leads to the convergence in law of L * X (t)/(t/ log t) to λ -1 sup 0≤u≤τ β (λ) β(u), which proves Theorem 1.6 when κ = 1.

We now assume 0 < κ ≤ 1, and need to prove Theorems 1.2, 1.4 and 1.5. Unfortunately, it follows immediately from Theorems 1.7 and 1.8 that there is no almost sure convergence result for H(r) in this case due to strong fluctuations; hence a joint study of L * X [H(r)] and H(r) is useful. In Section 5.1, we prove a lemma which will be needed later on. Section 5.2 is devoted to the proof of Theorems 1.2, 1.4 and 1.5 in the case 0 < κ < 1, whereas Section 5.3 to the proof of Theorems 1.4 and 1.5 in the case κ = 1.

A lemma.

In this section we assume 0 < κ ≤ 1. Let δ 1 > 0 and recall the definitions of t ± (r) from (2.12) and L ± (r) from (2.14).

Lemma 5.1. Define E 7 (r) := L -(r) = L + (r) . For all δ 2 ∈ (0, δ 1 ) and all large r, we have

P E 7 (r) c ≤ r -δ 2 .
Proof. Let δ 2 ∈ (0, δ 1 ). Observe that

1 ≤ L + (r) L -(r) κ ≤ max 1, sup 0≤u≤τ β {[ψ + (r)-ψ -(r)]κr} β(u) sup 0≤u≤τ β (ψ -(r)κr) β(u) , (5.2) 
where β(u)

:= β[u + τ β (ψ -(r)κr)],
u ≥ 0, is a Brownian motion independent of the random variable sup 0≤u≤τ β (ψ -(r)κr) β(u). By (2.5) and the usual inequality 1 -e -x ≤ x (for x ≥ 0),

P sup 0≤u≤τ β {[ψ + (r)-ψ -(r)]κr} β(u) > [ψ + (r) -ψ -(r)]κr 1+δ 2 ≤ 1 2r δ 2 , P sup 0≤u≤τ β (ψ -(r)κr) β(u) < ψ -(r)κr 4δ 2 log r = 1 r 2δ 2 ≤ 1 2r δ 2 ,
for large r. By definition, ψ ± (r) = 1 ± c 5 r -δ 1 (see (2.12)). Therefore, we have for large r, with probability greater than 1 -r -δ 2 ,

sup 0≤u≤τ β {[ψ + (r)-ψ -(r)]κr} β(u) sup 0≤u≤τ β (ψ -(r)κr) β(u) ≤ [ψ + (r) -ψ -(r)]κr 1+δ 2 ψ -(r)κr/(4δ 2 log r) = 8c 5 δ 2 r -(δ 1 -δ 2 ) log r 1 -c 5 r -δ 1 < 1.
This, combined with (5.2), yields the lemma.

5.2. Case 0 < κ < 1. This section is devoted to the proof of Theorems 1.2, 1.4 and 1.5 in the case 0 < κ < 1.

For any Brownian motion (β(u), u ≥ 0), let

N β := +∞ 0 x 1/κ-2 L β (τ β (λ), x)dx sup 0≤u≤τ β (λ) β(u) 1/κ .
So, in the notation of (2.2), (2.12) and (2.14),

N β t ± (r) = 4[κt ± (r)] 1/κ K β t ± (r) (κ)/ L ± (r), r > 0.
On E 2 (r) ∩ E 3 (r) ∩ E 7 (r) (the events E 2 (r) and E 3 (r) are defined in Lemma 2.7, whereas E 7 (r) in Lemma 5.1), we have, for some constant c 25 , ε > 0 small enough and all large r,

H(F (r)) L * X [H(F (r))] ≥ 4(1 -ε)κ 1/κ-2 t -(r) 1/κ {K β t -(r) (κ) -c 6 t -(r) 1-1/κ } (1 + ε) L -(r) ≥ (1 -3ε)κ -2 N β t -(r) -c 25 t -(r)/ L -(r). (5.3) 
Similarly, on E 2 (r) ∩ E 3 (r) ∩ E 7 (r), for some constant c 26 and all large r,

H(F (r)) L * X [H(F (r))] ≤ (1 + 3ε)κ -2 N β t + (r) + c 26 t + (r) L + (r) . (5.4) Define E 8 (r) := c 25 t -(r)/ L -(r) ≤ ε, c 26 t + (r)/ L + (r) ≤ ε . By (3.1), P[E 8 (r) c ] ≤ 1/r 2 for large r. Thus P[E 2 (r) ∩ E 3 (r) ∩ E 7 (r) ∩ E 8 (r)] ≥ 1 -r -α 1
for some α 1 > 0 and all large r by Lemmas 2.7 and 5.1. In view of (5.3) and (5.4), we have, for some α 1 > 0 and all large r,

P (1 -3ε)κ -2 N β t -(r) -ε ≤ H(F (r)) L * X [H(F (r))] ≤ (1 + 3ε)κ -2 N β t + (r) + ε ≥ 1 - 1 r α 1 .
(5.5)

We now proceed to the study of the law of N β . By the second Ray-Knight theorem (Fact 2.2), there exists a 0-dimensional Bessel process (U (x), x ≥ 0), starting from √ λ, such that

(L β (τ β (λ), x), x ≥ 0) = U 2 (x), x ≥ 0 , (5.6) sup 0≤u≤τ β (λ) β(u) = inf{x ≥ 0, U (x) = 0} =: ζ U , (5.7 
)

N β = ζ -1/κ U ζ U 0 x 1/κ-2 U 2 (x)dx. (5.8) 
By Williams' time reversal theorem (Fact 2.4), there exists a 4-dimensional Bessel process (R(s), s ≥ 0), starting from 0, such that

(U (ζ U -s), s ≤ ζ U ) L = (R(s), s ≤ γ a ), a := √ λ, γ a := sup{s ≥ 0, R(s) = √ λ}. (5.9)
Therefore,

N β L = γ -1/κ a γa 0 x 1/κ-2 R 2 (γ a -x)dx = 1 0 (1 -v) 1/κ-2 R(γ a v) √ γ a 2 dv.
Recall (Yor [55], p. 52) that for any bounded measurable functional G,

E G R(γ a u) √ γ a , u ≤ 1 = E 2 R 2 (1) G R(u), u ≤ 1 . (5.10) 
In particular, for x > 0,

P N β > x = E 2 R 2 (1) 1 { 1 0 (1-v) 1/κ-2 R 2 (v)dv>x} .
(5.11) 5.2.1. Proof of Theorem 1.5 (case 0 < κ < 1). Fix y > 0. By (5.11), for r > 1,

P(N β > y log log r) ≤ E 2 R 2 (1) 1 { 1 0 (1-v) 1/κ-2 R 2 (v)dv>y log log r, R 2 (1)≤1} +2P 1 0 (1 -v) 1/κ-2 R 2 (v)dv > y log log r := Π 1 (r) + Π 2 (r) (5.12) 
with obvious notation.

We first consider Π 2 (r).

Let H := t ∈ [0, 1] → t 0 f (s)ds , f ∈ L 2 [0, 1], R 4 .
As R is the Euclidean norm of a 4-dimensional Brownian motion (γ(t), t ≥ 0), we have by Schilder's theorem (see e.g. Dembo and Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], Thm. 5.2.3),

lim r→+∞ 1 y log log r log P 1 0 (1 -v) 1/κ-2 R 2 (v)dv > y log log r = -inf 1 2 1 0 φ ′ (v) 2 dv : φ ∈ H, 1 0 (1 -v) 1/κ-2 φ(v) 2 dv ≥ 1 =: -c 1 (κ), (5.13) 
where 2 du, where we applied Cauchy-Schwarz to each coordinate; thus

• denotes the Euclidean norm. For φ ∈ H, φ(v) 2 = v 0 φ ′ (u)du 2 ≤ v 1 0 φ ′ (u)
1 0 (1 -v) 1/κ-2 φ(v) 2 dv ≤ 1 0 (1 - v) 1/κ-2 vdv 1 0 φ ′ (v) 2 dv. So, c 1 (κ) ∈ (0, ∞).
By (5.13), for 0 < ε < 1 and large r,

Π 2 (r) ≤ (log r) -(1-ε)yc 1 (κ) .
(5.14)

Now, we consider Π 1 (r). As R is the Euclidean norm of a 4-dimensional Brownian motion (γ(t), t ≥ 0), we have 2 dv>y log log r} . By the triangular inequality, for any finite positive measure µ on [0, 1],

Π 1 (r) = E 2 γ(1) 2 1 { γ(1) ≤1} 1 { 1 0 (1-v) 1/κ-2 γ(v)
1 0 γ(v) 2 dµ(v) ≤ 1 0 γ(v) -vγ(1) 2 dµ(v) + 1 0 v 2 dµ(v) γ(1) .
Therefore, applying this to dµ(v) = (1 -v) 1/κ-2 dv, we have for large r,

Π 1 (r) ≤ E 2 γ(1) 2 1 { 1 0 (1-v) 1/κ-2 γ(v)-vγ(1) 2 dv>( √ y log log r-c 27 ) 2 } := E 2 γ(1) 2 1 E , where c 27 := 1 0 v 2 (1 -v) 1/κ-2 dv.
By the independence of γ( 1) and (γ(v) -vγ(1), v ∈ [0, 1]), the expectation on the right hand side is = E 2 γ(1) 2 P(E) = P(E) (the last identity being a consequence of (5.10) by taking G = 1 there). Therefore, Π 1 (r) ≤ P(E).

Again, by the independence of γ( 1) and (γ(v) -vγ(1), v ∈ [0, 1]), we see that, by writing c 28 := 1/P( γ(1) ≤ 1), Π 1 (r) ≤ c 28 P(E, γ(1) ≤ 1). By another application of the triangular inequality, this leads to, for large r:

Π 1 (r) ≤ c 28 P 1 0 (1 -v) 1/κ-2 γ(v) 2 dv > y log log r -2c 27 2 
.

In view of (5.13), we have, for all large r, Π 1 (r) ≤ (log r) -(1-ε)yc 1 (κ) . Plugging this into (5.12) and (5.14) yields that, for any y > 0, ε > 0 and all large r, P(N β > y log log r) ≤ 2(log r) -(1-ε)yc 1 (κ) .

(5.15)

Let 0 < ε < 1/2, and s n := exp(n 1-ε ). We get +∞ n=1 P H(F (sn))

L * X [H(F (sn))] > (1+4ε) log log sn (1-ε) 3 κ 2 c 1 (κ)
< ∞ due to (5.5) and (5.15). By the Borel-Cantelli lemma, almost surely, for all large n,

H(F (s n )) L * X [H(F (s n ))] ≤ 1 + 4ε (1 -ε) 3 κ 2 c 1 (κ) log log s n . (5.16) 
We now bound H(F (s n+1 )) H(F (sn)) . Observe that for large n, s n+1 -s n ≤ n -ε s n . By Lemma 2.6, almost surely for all large n,

H[F (s n+1 )] -H[F (s n )] ≤ H 1 + 5s -δ 0 n+1 /κ s n+1 -H 1 -5s -δ 0 n /κ s n ≤ H 1 -5s -δ 0 n /κ s n + (2 -ε)n -ε s n -H 1 -5s -δ 0 n /κ s n = inf u ≥ 0 : X n (u) > (2 -ε)n -ε s n , (5.17) 
where X n (u), u ≥ 0 is, conditionally on W κ , a diffusion process in the random potential

W κ (x) := W κ x + 1 -5 κ s -δ 0 n s n -W κ 1 -5 κ s -δ 0 n
s n , x ∈ R, starting from 0. We denote by H n (r) the hitting time of r ≥ 0 by X n , so that

inf u ≥ 0 : X n (u) > (2 -ε)n -ε s n = H n (2 -ε)n -ε s n .
(5.18)

Note that for any r > 0, under P, H n (r) is distributed as H(r). Therefore, applying (4.3) and Lemma 2.6 to r = 2n -ε s n yields that, for any 0 < δ 0 < 1 2 ,

n P H n 1 -5(2n -ε s n ) -δ 0 /κ 2n -ε s n > n(log n) 1+ε t + (2n -ε s n ) 1/κ < ∞. Since 1 -5 κ (2n -ε s n ) -δ 0 2n -ε s n ≥ (2 -ε)n -ε s n (for large n), it follows from the Borel-Cantelli lemma that, almost surely for all large n, H n [(2 -ε)n -ε s n ] ≤ n(log n) 1+ε t + (2n -ε s n ) 1/κ
. This, together with (5.17) and (5.18), yields that, almost surely for all large n,

H[F (s n+1 )] -H[F (s n )] ≤ n(log n) 1+ε t + (2n -ε s n ) 1/κ ≤ c 29 n 1-ε (log n) 1+ε s n 1/κ .
Recall from Lemma 2.6 and Theorem 1.8 that, almost surely, for all large n, H[F

(s n )] ≥ H[(1 - ε)s n ] ≥ c 30 s 1/κ n (log log sn) 1/κ-1 , which yields H[F (s n+1 )] H[F (s n )] ≤ 1 + c 29 [n 1-ε (log n) 1+ε s n ] 1/κ c 30 s 1/κ n /(log log s n ) 1/κ-1 ≤ c 31 (log s n ) 1/κ (log log s n ) (2+ε)/κ-1 .
In view of (5.16), this yields that, almost surely, for large n and t

∈ [H(F (s n )), H(F (s n+1 ))], t L * X (t) ≤ H[F (s n )] L * X [H(F (s n ))] H[F (s n+1 )] H[F (s n )] < c 32 (log s n ) 1/κ (log log s n ) (2+ε)/κ .
Since, almost surely for all large n, log

H[F (s n )] ≥ log H[(1 -ε)s n ] ≥ 1-ε κ log s n (
this is seen first by Lemma 2.6, and then by Theorem 1.8), we have proved that

lim inf t→+∞ L * X (t) t(log t) -1/κ (log log t) -(2+ε)/κ ≥ c 33 P-a.s. Since ε ∈ (0, 1 
2 ) is arbitrary, this proves Theorem 1.5 in the case 0 < κ < 1.

5.2.2.

Proof of Theorem 1.4 (case 0 < κ < 1). By (5.11), for any s > 0 and u > 0,

P(N β > s) ≥ 2 u P 1 0 (1 -v) 1/κ-2 R 2 (v)dv > s, R 2 (1) ≤ u ≥ 2 u P 1 0 (1 -v) 1/κ-2 R 2 (v)dv > s - 2 u P R 2 (1) > u .
The first probability term on the right hand side is taken care of by (5.13), whereas for the second, we have 1 u log P(R 2 (1) > u) → -1 2 , for u → ∞, since R 2 (1) has a chi-squared distribution with 4 degrees of freedom. Taking u := exp( √ log log r ) leads to: for any y > 0, lim inf r→∞ log P(N β > y log log r) log log r ≥ -yc 1 (κ).

Plugging this into (5.5) yields that, for r n := exp(n 1+ε ),

n≥1 P (H • F )(r 2n ) (L * X • H • F )(r 2n ) > (1 -3ε) log log r 2n κ 2 c 1 (κ)(1 + ε) 3 -ε = +∞.
Let Z n := n k=1 r k . By Lemma 2.8 (in its notation), almost surely, for infinitely many n,

sup u∈[(1-ε)r 2n ,(1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (u) (L * • H) X•Θ H(Z 2n-1 ) (u) > (1 -8ε) log log r 2n κ 2 c 1 (κ) , (5.19) 
if ε > 0 is small enough. Observe that

(L * • H) X•Θ H(Z 2n-1 ) (u) = sup x∈R L Xn H n (u), x =: L * Xn H n (u) , (5.20) 
where X n (v), v ≥ 0 is a diffusion process in the random potential W κ (x+Z 2n-1 )-W κ (Z 2n-1 ), x ∈ R, L Xn (t, x), t ≥ 0, x ∈ R is its local time and H n (r) := inf t > 0, X n (t) > r , r > 0.

Hence, for any u > 0, under P, the left hand side of (5.20) is distributed as L * X (H(u)). Applying (3.4) and Lemma 2.6 to r 2n := (1 -ε) 2 r 2n , there exists c 34 > 0 such that n P L * Xn H n 1 + 5( r 2n ) -δ 0 /κ r 2n < c 34 [r 2n / log log r 2n ] 1/κ < ∞.

Since 1 + 5 κ ( r 2n ) -δ 0 r 2n ≤ (1 -ε)r 2n for large n, the Borel-Cantelli lemma gives that, almost surely, for all large n,

c 34 r 2n / log log r 2n 1/κ ≤ L * Xn H n [(1 -ε)r 2n ] ≤ L * Xn H n (u) (5.21) for any u ∈ [(1 -ε)r 2n , (1 + ε)r 2n ]
. Applying Theorem 3.1, we have almost surely for large n,

L * X [H(Z 2n-1 )] ≤ [Z 2n-1 log 2 Z 2n-1 ] 1/κ ≤ ε[r 2n / log log r 2n ] 1/κ ≤ (ε/c 34 )L * Xn H n (u) for u ∈ [(1 -ε)r 2n , (1 + ε)r 2n ], since Z k ≤ k exp(-k ε )r k+1 for large k. Hence, L * X [H(Z 2n-1 + u)] ≤ (1 + ε/c 34 )L * Xn H n (u) . (5.22)
On the other hand, we have by Theorem 1.7, almost surely, for all large n,

log log r 2n ≥ (1 -ε) log log H(Z 2n-1 + u), u ∈ [(1 -ε)r 2n , (1 + ε)r 2n ].
Consequently, almost surely for infinitely many n, by (5.22) and (5.19),

inf v∈[Z 2n-1 +(1-ε)r 2n ,Z 2n-1 +(1+ε)r 2n ] L * X [H(v)] H(v)/ log log H(v) ≤ (1 + c 35 ε) inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (u) H X•Θ H(Z 2n-1 ) (u)/ log log r 2n ≤ (1 + c 36 ε)κ 2 c 1 (κ),
proving Theorem 1.4 in the case 0 < κ < 1.

5.2.3.

Proof of Theorem 1.2. Assume 0 < κ < 1. Fix x > 0, and let r n := exp(n 1+ε ). Since P(N β < x) > 0, (5.5) implies n∈N P

(H•F )(r 2n ) (L * X •H•F )(r 2n ) < (1+3ε)x κ 2
+ ε = +∞. By Lemma 2.8, for small ε > 0, almost surely for infinitely many n,

inf u∈[(1-ε)r 2n , (1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (u) (L * • H) X•Θ H(Z 2n-1 ) (u) < (1 + 3ε)x κ 2 + ε. (5.23)
With the same notation as in (5.20),

H X•Θ H(Z 2n-1 ) (u) = H(Z 2n-1 + u) -H(Z 2n-1
) is the hitting time H n (u) of u by the diffusion X n . For any u, under P, it has the same distribution as H(u). Hence, applying (4.9) and Lemma 2.6 to r 2n = (1 -ε) 2 r 2n leads to (for 0 < δ 0 < 1/2)

n P H n 1 + 5 κ ( r 2n ) -δ 0 r 2n < r 1/κ 2n / log r 2n < ∞.
Since 1 + 5 κ ( r 2n ) -δ 0 r 2n < (1 -ε)r 2n for large n, it follows from the Borel-Cantelli lemma that, almost surely, for all large n, r

1/κ 2n log r 2n ≤ H n [(1 -ε)r 2n ] ≤ inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (u). (5.24)
On the other hand, by Theorem 1.7,

H(Z 2n-1 ) ≤ [Z 2n-1 log 2 Z 2n-1 ] 1/κ ≤ ε r 1/κ 2n
log r 2n almost surely, for all large n. This and (5.24) give, for u ∈

[(1 -ε)r 2n , (1 + ε)r 2n ], H(Z 2n-1 + u) ≤ (1 + ε)H X•Θ H(Z 2n-1 ) (u)
. Plugging this into (5.23) yields that, almost surely, for infinitely many n,

inf u∈[(1-ε)r 2n , (1+ε)r 2n ] H(Z 2n-1 + u) L * X (H(Z 2n-1 + u)) < (1 + ε)(1 + 3ε)x κ 2 + ε(1 + ε). Hence lim sup t→+∞ L * X (t) t ≥ κ 2
x , a.s. Sending x → 0 completes the proof of Theorem 1.2.

5.3.

Case κ = 1. This section is devoted to the proofs of Theorems 1.4 and 1.5 in the case κ = 1

(thus λ = 8; since λ = 4(1 + κ)). Let N β (t) := 1 sup 0≤u≤τ β (8) β(u) 1 0 L β (τ β (8), x) -8 x dx + +∞ 1 L β (τ β (8), x) x dx + 8 log t .
Exactly as in (5.5), we have, for some α 1 > 0, any ε ∈ (0, 1/3), and all large r,

P (1 -3ε)N β t -(r) [t -(r)] ≤ H(F (r)) L * X [H(F (r))] ≤ (1 + 3ε)N β t + (r) [t + (r)] ≥ 1 - 1 r α 1 , (5.25) 
where t ± (•) are defined in (2.12), and C β in (2.3). (Compared to (5.5), we no longer have the extra "±ε" terms, since they are already taken care of by the presence of 8 log t in the definition of N β (t)).

With the same notation as in (5.6) and (5.7), the second Ray-Knight theorem (Fact 2.2) gives x < ∞, we have

N β (t) = 1 ζ U 1 0 U 2 (x) -8 x dx + +∞ 1 U 2 (x) x dx + 8 log t (5.26) = 1 ζ U ζ U 0 U 2 (x) -8 x dx + 8 log ζ U + 8 log t , ( 5 
N β (t) ≤ c 37 + 1 ζ U ζ U 0 |U 2 (x) -8| x dx + 8 log t ζ U .
(5.28)

We claim that for some constant c 38 > 0, lim sup

y→+∞ 1 y log P 1 ζ U ζ U 0 |U 2 (x) -8| x dx > y ≤ -c 38 .
(5.29) Indeed, ζ U = sup 0≤u≤τ β (8) β(u) by definition (see (5.7)), which, in view of (2.5), implies that

P(ζ U > z) = 1 -e -4/z ≤ 4/z for z > 0.
Therefore, if we write p(y) for the probability expression at (5.29), we have, for any z > 0,

p(y) ≤ 4 z + P 1 ζ U ζ U 0 |U 2 (x) -8| x dx > y, ζ U ≤ z .
In the notation of (5.9)-(5.10), this yields

p(y) ≤ 4 z + P 1 γ a 1 0 |R 2 (γ a v) -8| 1 -v dv > y, γ a ≤ z = 4 z + E 2 R 2 (1)
1

{ 1 0 |R 2 (v)-R 2 (1)| 1-v dv>y, R 2 (1)≥8/z} ≤ 4 z + z 4 P 1 0 |R 2 (v) -R 2 (1)| 1 -v dv > y .
(5.30)

In order to apply Schilder's theorem as in (5.13), let φ ∈ H. As before between (5.13) and (5.14), we have φ(t) ≤ √ t

1 0 φ ′ (s) 2 ds 1/2 . Similarly, φ(u) -φ(1) ≤ φ(u) -φ(1) ≤ √ 1 -u 1 0 φ ′ (s) 2 ds 1/2 . Hence, 1 0 φ(u) 2 -φ(1) 2 1 -u du = 1 0 φ(u) -φ(1) 1 -u φ(u) + φ(1) du ≤ 2 1 0 du √ 1 -u 1 0 φ ′ (s) 2 ds.
Consequently,

c 39 := inf 1 2 1 0 φ ′ (u) 2 du : φ ∈ H, 1 0 φ(u) 2 -φ(1) 2 1 -u du > 1 ∈ (0, ∞).
Applying Schilder's theorem gives that lim sup y→+∞

1 y log P 1 0 |R 2 (v)-R 2 (1)| 1-v
dv > y ≤ -c 39 . Plugging this into (5.30), and taking z = exp( c 39 2 y) there, we obtain the claimed inequality in (5.29), with c 38 := c 39 /2.

On the other hand, by (2.5) and (5.7),

P 8 log t ζ U > 2(1 + 2ε)(log t) log log t = 1 (log t) 1+2ε .
This, combined with (5.28) and (5.29) gives, for all large t,

P {N β (t) > 2(1 + 3ε)(log t) log log t} ≤ 2 (log t) 1+2ε .
Let s n := exp(n 1-ε ). By (5.25), +∞ n=1 P

H(F (sn)) L * X [H(F (sn))] > 2(1 + 3ε) 2 (log s n ) log log s n < ∞,
which, by means of the Borel-Cantelli lemma, implies that, almost surely, for all large n,

H(F (s n )) L * X [H(F (s n ))] ≤ 2(1 + 3ε) 2 (log s n ) log log s n . (5.31)
Now we give an upper bound for H(F (s n+1 )) H(F (sn)) . By Lemma 2.6, almost surely for n large enough, F (s n ) ≥ (1 -ε)s n . An application of Theorem 1.8 yields that, almost surely, for large n,

H[F (s n )] ≥ H[(1 -ε)s n ] ≥ 4(1 -2ε)s n log s n .
(5.32)

With the same notation and the same arguments as in (5.17) and (5.18), almost surely for all large n, H

[F (s n+1 )] -H[F (s n )] ≤ H n [(2 -ε)n -ε s n ].
Moreover, H n (r) is distributed as H(r) under P for any r > 0. Hence, applying Lemma 2.6 and (4.7) to r = s n := 2n -ε s n and a(e -2 s n ) = 8n(log n) 1+ε for 0 < δ 0 < 1 2 , we get

n P H n (1 -5( s n ) -δ 0 /κ) s n > 32(1 + ε)t + ( s n ) c 3 + n(log n) 1+ε + log t + ( s n ) < ∞. Since [1 -5 κ ( s n ) -δ 0 ] s n ≥ (2 -ε)n -ε s n (for large n), the Borel-Cantelli lemma yields that H n (2 -ε)n -ε s n ≤ 32(1 + ε)t + (2n -ε s n )[c 3 + n(log n) 1+ε + log t + (2n -ε s n )],
almost surely for large n. Hence,

H[F (s n+1 )] -H[F (s n )] ≤ c 39 s n (log s n )(log n) 1+ε
. Hence, by (5.32), we have, almost surely, for all large n,

H[F (s n+1 )]/H[F (s n )] ≤ c 40 (log log s n ) 1+ε . Let t ∈ [H(F (s n )), H(F (s n+1 ))]. By (5.31), if t is large enough, t L * X (t) ≤ H[F (s n )] L * X [H(F (s n ))] H[F (s n+1 )] H[F (s n )] < 3c 40 (log s n )(log log s n ) 2+ε .
Since almost surely for large n, log P-a.s.

H[F (s n )] ≥ log H[(1 -ε)s n ] ≥ log s n (
Theorem 1.5 is proved in the case κ = 1.

Proof of Theorem 1.4 (case

κ = 1). Again, λ = 8. Let 0 < ε < 1/2. Recall that ζ U = sup 0≤u≤τ β (8) β(u), and that N β (t) = 1 ζ U ζ U 0 U 2 (x)-8 x
dx + 8 log ζ U + 8 log t (see (5.7) and (5.27)). This time, we need to bound N β (t) from below. By (2.5) for large z,

P 8 log ζ U ζ U < -z ≤ P - 1 ζ 2 U < -z = P ζ U < 1 √ z = exp -4 √ z .
By (2.5) again,

P 8 log t ζ U > 2(1 -ε)(log t) log log t = 1 (log t) 1-ε .
On the other hand, for all large y, P 1

ζ U ζ U 0 |U 2 (x)-8| x
dx > y ≤ e -c 41 y (see (5.29)). Assembling these pieces yields that, for all large t,

P[N β (t) > 2(1 -2ε)(log t) log log t] ≥ 1 2(log t) 1-ε .
Let r n := exp(n 1+ε ). In view of (5.25) and Lemma 2.8, we get almost surely for infinitely many n,

sup u∈[(1-ε)r 2n , (1+ε)r 2n ] H X•Θ H(Z 2n-1 ) (u) (L * • H) X•Θ H(Z 2n-1 ) (u) > 2(1 -2ε)(1 -3ε)(log r 2n ) log log r 2n . (5.33) 
The expression on the left hand side of (5.33) is "close to" H(r 2n )/L * X [H(r 2n )], but we need to prove this rigorously. With the same argument as in the displays between (5.20) and (5.21), we get that there exists c 42 > 0 such that, almost surely for large n,

inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (u) ≥ c 42 r 2n / log log r 2n .
Observe that Z k ≤ k exp(-k ε )r k+1 for large k, as in the paragraph after (3.5). Exactly as in the case 0 < κ < 1, we apply Theorem 3.1, to see that almost surely for large n,

L * X [H(Z 2n-1 )] ≤ εr 2n / log log r 2n ≤ (ε/c 42 ) inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (u), which implies, for all u ∈ [(1 -ε)r 2n , (1 + ε)r 2n ], L * X [H(Z 2n-1 + u)] ≤ (1 + ε/c 42 )(L * • H) X•Θ H(Z 2n-1 ) (u). (5.34) 
By Theorem 1.7, almost surely for all large n, sup u∈[(1-ε)r 2n ,(1+ε)r 2n ] log H(Z 2n-1 + u) ≤ (1 + ε) log r 2n . In view of (5.34) and then (5.33), there are almost surely infinitely many n such that

inf v∈[Z 2n-1 +(1-ε)r 2n ,Z 2n-1 +(1+ε)r 2n ] L * X [H(v)] H(v)/[(log H(v)) log log H(v)] ≤ (1 + c 43 ε) inf u∈[(1-ε)r 2n ,(1+ε)r 2n ] (L * • H) X•Θ H(Z 2n-1 ) (u) H X•Θ H(Z 2n-1 ) (u)[(log r 2n ) log log r 2n ] -1 ≤ (1 + c 44 ε)/2.
This proves Theorem 1.4 in the case κ = 1.

Remark: Assume κ = 1. We also prove that in this case, P almost surely,

lim sup t→+∞ L * X (t)/t ≥ 8/[c 17 π] = 1/2. (5.35)
This is in agreement with Theorem 1.1 of Gantert and Shi [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF] for RWRE. However, we could not prove whether this lim sup is finite or not, contrarily to the cases κ ∈ (0, 1) and κ > 1, and to the case of RWRE, for which the maximum local time at time t is clearly less than t/2.

We now prove (5.35). With the same notation as in (5.6) and (5.7), let

C U := 1 0 U 2 (x)-8 x dx + +∞ 1 U 2 (x)
x dx, ε ∈ (0, 1/3) and

y := (1 + ε) 2 c 17 π/[8(1 -ε)].
We have for z > 0, by (5.26),

P[N β (t) < y] = P C U + 8 log t < yζ U ≥ P (z + 8) log t < yζ U , C U ≤ z log t . Notice that C U L = C β L = 8c 3 + (π/2)C ca 8 first by (5.6) and (2.3) 
, then by Fact 2.5. So, P C U > z log t = P C ca 8 > (2z/π) log t -16c 3 /π ∼ t→+∞ πc 17 /(2z log t) (see before (4.7)). Moreover, P[(z + 8) log t < yζ U ] ∼ t→+∞ 4y/[(z + 8) log t] by (5.7) and (2.5). Thus,

P[N β (t) < y] ≥ P (z + 8) log t < yζ U -P C U > z log t ≥ [4(1 -ε)y/(z + 8) -(1 + ε)πc 17 /(2z)]/ log t = (1 + ε)c 17 π[(1 + ε)/(z + 8) -1/z]/(2 log t)
So we can choose z so that P[N β (t) < y] ≥ c 45 / log t for some constant c 45 > 0. We now set r k := k k , k ∈ N * . This and (5.25) give for some α 1 > 0,

P L * X [H(F (r 2n ))] H(F (r 2n )) > [(1 + 3ε)y] -1 ≥ P N β [t + (r 2n )] < y - 1 r α 1 2n ≥ c 45 2 log r 2n ≥ c 45 5n log n
for large n. Hence by Lemma 2.8 in its notation, P almost surely, there exist infinitely many n such that for some

t n ∈ [(1 -ε)r 2n , (1 + ε)r 2n ], (L * • H) X•Θ H(Z 2n-1 ) (t n ) H X•Θ H(Z 2n-1 ) (t n ) > [(1 + 3ε)y] -1 . (5.36) Notice that Z 2n-1 = 2n-1 k=1 k k ≤ (2n -1) 2n-1 + 2n-2 k=1 (2n -2) 2n-2 ≤ 2(2n) 2n-1 = r 2n /n.
We have by Theorem 1.7, almost surely for all large n,

H(Z 2n-1 ) ≤ Z 2n-1 (log Z 2n-1 )(log log Z 2n-1 ) 2 ≤ εr 2n log r 2n (5.37) 
On the other hand, first by Lemma 2.6 and Lemma 2.7, then by (4.2) and since E[exp(-C ca 8 )] = 1 as before (4.11), for every ε > 0 small enough,

P H X•Θ H(Z 2n-1 ) ((1 -ε)r 2n ) < (1 -10ε)32t -(r 2n )[log t -(r 2n ) + c 3 ] ≤ P (1 -ε) I -((1 -2ε)r 2n ) < (1 -10ε)32t -(r 2n )[log t -(r 2n ) + c 3 ] + 2r -α 1 2n ≤ P C ca 8 < -ε(16/π) log r 2n + 2r -α 1 2n ≤ 2r -16ε/π 2n .
Hence, thanks to the Borel Cantelli lemma, almost surely for large n,

H X•Θ H(Z 2n-1 ) (t n ) ≥ H X•Θ H(Z 2n-1 ) ((1 -ε)r 2n ) ≥ (1 -10ε)32t -(r 2n )[log t -(r 2n ) + c 3 ] ≥ (1 -11ε)4r 2n log r 2n .
This together with (5.36) and (5.37) gives P almost surely for infinitely many n,

L * X [H(Z 2n-1 + t n )] H(Z 2n-1 + t n ) ≥ (L * • H) X•Θ H(Z 2n-1 ) (t n ) H X•Θ H(Z 2n-1 ) (t n ) H X•Θ H(Z 2n-1 ) (t n ) H(Z 2n-1 ) + H X•Θ H(Z 2n-1 ) (t n ) ≥ [(1 + 3ε)y] -1 (1 + ε) -1 ≥ (1 -10ε)8/[c 17 π],
for small ε. As before, let t → +∞, and then ε → 0. This proves (5.35) since c 17 = 16 π as before (4.7).

Proof of Lemma 2.7

This section is devoted to the proof of Lemma 2.7. The basic idea goes back to Hu et al. [START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF], but requires considerable refinements due to the complicated nature of the process x → L X (t, x) and to the fact that we are interested in the joint law of L * X [H(.)], H(.) . Throughout the proof we consider the annealed probability P.

Let κ > 0 and ε ∈ (0, 1). We fix r > 1. Recall that A(x) =

x 0 e Wκ(u) du, and A ∞ = lim x→+∞ A(x) < ∞, a.s. As in Brox ([11], eq. (1.1)), the general diffusion theory leads to

X(t) = A -1 [B(T -1 (t))], t ≥ 0, (6.1) 
where (B(s), s ≥ 0) is a Brownian motion independent of W , and for 0

≤ u < σ B (A ∞ ), T (u) : 
= u 0 exp{-2W κ [A -1 (B(s))]}ds (A -1
and T -1 denote respectively the inverses of A and T ). The local time of X can be written as (see Shi [START_REF] Shi | A local time curiosity in random environment[END_REF], eq. (2.5))

L X (t, x) = e -Wκ(x) L B T -1 (t), A(x) , t ≥ 0, x ∈ R. (6.2) 
As in (1.5), H(•) denotes the first hitting time of X. Then as in Shi ([45], eq. (4.3) to (4.6)),

H(u) = T [σ B (A(u))] = 0 -∞ + A(u) 0 e -2Wκ[A -1 (x)] L B (σ B [A(u)], x)dx =: H -(u) + H + (u) (6.3)
for u ≥ 0. Recall F from (2.7) and notice that F (r) > 0 on E 1 (r) if r is large enough. By scaling since W κ and then A(F (r)) are independent of B, and then by the first Ray-Knight theorem (Fact 2.1), there exists a squared Bessel process of dimension 2, starting from 0 and denoted by

R 2 2 (s), s ≥ 0 , independent of W κ , such that L B {σ B [A(F (r))], A(F (r)) -sA(F (r))} A(F (r)) , s ∈ [0, 1] = R 2 2 (s), s ∈ [0, 1] . Hence, it is more convenient to study L * X [H(.)] instead of L * X (t). We consider L + X [H(u)] := sup x≥0 L X (H(u), x) = sup 0≤x≤u e -Wκ(x) L B [σ B (A(u)), A(x)] , u ≥ 0.
In particular,

L + X [H(F (r))] = sup x∈[0,F (r)] e -Wκ(x) A(F (r))R 2 2 A(F (r)) -A(x) A(F (r)) .
Moreover, by Lamperti's representation theorem (Fact 2.3), there exists a Bessel process ρ = (ρ(t), t ≥ 0), of dimension (2 -2κ), starting from ρ(0) = 2, such that for all t ≥ 0, e Wκ(t)/2 =

1 2 ρ(A(t)). Now, let R 2+2κ (t) := ρ(A ∞ -t), 0 ≤ t ≤ A ∞ .
By Williams' time reversal theorem (Fact 2.4), R 2+2κ is a Bessel process of dimension (2 + 2κ), starting from 0. Since W κ and A(F (r)) are independent of R 2 , u → A(F (r))R 2 (u/A(F (r))) is a 2-dimensional Bessel process, starting from 0 and independent of R 2+2κ . We still denote by R 2 this new Bessel process. We obtain

L + X [H(F (r))] = 4 sup x∈[0,F (r)] R 2 2 [A(F (r)) -A(x)] R 2 2+2κ [A ∞ -A(x)] = 4 sup v∈[0,A(F (r))] R 2 2 (v) R 2 2+2κ [A ∞ -A(F (r)) + v]
.

Doing the same transformations on H + (F (r)) (see (6.3)) and recalling that A ∞ -A(F (r)) = δ(r) = exp(-κr/2) and so is deterministic thanks to the random function F , we obtain

L + X [H(F (r))], H + [F (r)] = 4 sup v∈[0,A(F (r))] R 2 2 (v) R 2 2+2κ [δ(r) + v] , 16 
A(F (r)) 0 R 2 2 (s) R 4 2+2κ [δ(r) + s] ds = 4 sup u∈[0,δ(r) -1 A(F (r))] R 2 2 [δ(r)u] R 2 2+2κ [δ(r)(1 + u)] , 16 
δ(r) -1 A(F (r)) 0 R 2 2 [δ(r)u]δ(r)du R 4 2+2κ [δ(r)(1 + u)]
.

We still denote by R 2 the 2-dimensional Bessel process u → 1 √ δ(r) R 2 (δ(r)u). We define

R 2+2κ (u) = 1 δ(r) R 2+2κ [δ(r)(1 + u)], u ≥ 0. (6.4) 
Notice that R 2+2κ (u) is a (2 + 2κ)-dimensional Bessel process, starting from R 2+2κ (δ(r))/ δ(r) and independent of R 2 .

Recall (see e.g. Karlin and Taylor [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF] p. 335) that a Jacobi process (Y (t), t ≥ 0) of dimensions (d 1 , d 2 ) is a solution of the stochastic differential equation

dY (t) = 2 Y (t)(1 -Y (t)) d β(t) + d 1 -(d 1 + d 2 )Y (t) dt, (6.5) 
where β(t), t ≥ 0 is a standard Brownian motion.

According to Warren and Yor ([53] p. 337), there exists a Jacobi process (Y (t), t ≥ 0) of dimensions (2, 2 + 2κ), starting from 0, independent of R 2 2 (t) + R 2 2+2κ (t), t ≥ 0 , such that

∀u ≥ 0, R 2 2 (u) R 2 2 (u) + R 2 2+2κ (u) = Y • Λ Y (u), Λ Y (u) := u 0 ds R 2 2 (s) + R 2 2+2κ (s) . (6.6) 
In particular, (Λ Y (t), t ≥ 0) is independent of Y . As a consequence, for all r ≥ 0, X [H(F (r))], H + (F (r)) = max{L(r), L 0 (r)}, H(r) + H 0 (r) , (6.9) 

(L + X [H(F (r))], H + [F (r)]) = 4 sup u∈[0,δ(r) -1 A(F (r))] Y • Λ Y (u) 1 -Y • Λ Y (u) , 16 
δ(r) -1 A(F (r)) 0 [Y • Λ Y (u)]Λ ′ Y (u)du [1 -Y • Λ Y (u)] 2 = 4 sup u∈[0,ϕ(r)] Y (u) 1 -Y (u) , 16 
ϕ(r) 0 Y (u) (1 -Y (u)) 2 du ,
L(r) ≤ 4α κ 1 -α κ and H(r) ≤ 16α κ (1 -α κ ) 2 T Y (α κ ) ≤ 2 10 α κ (1 -α κ ) 2 log r. ( 6 
Y [t + T Y (α κ )] = S -1 {β[U Y (t)]}, U Y (t) := 4 t 0 ds Y [s + T Y (α κ )]{1 -Y [s + T Y (α κ )]} 1+2κ . (6.11)
The rest of the proof of Lemma 2.7 requires some more estimates, stated as Lemmas 6.1-6.4 below. Lemmas 6.1-6.3 deal only with Bessel processes, Jacobi processes and Brownian motion, and may be of independent interest, whereas Lemma 6.4 gives an upper bound for the total time spent by X on (-∞, 0), and for the maximum local time of X in (-∞, 0). We defer the proofs of Lemmas 6.1-6.3 to Section 7, and we complete the proof of Lemma 2.7. Lemma 6.1. Let (R(t), t ≥ 0) be a Bessel process of dimension d > 4, starting from R 0 L = R d-2 [START_REF] Andreoletti | Almost sure estimates for the concentration neighborhood of Sinai's walk[END_REF], where R d-2 (t), t ∈ [0, 1] is (d -2)-dimensional Bessel process. For any δ ∈ (0, 1 2 ) and all large t,

P 1 log t t 0 ds R 2 (s) - 1 d -2 > 1 (log t) (1/2)-δ 3 ≤ exp -c 46 (log t) 2δ 3 .
Lemma 6.2. Let δ 1 > 0 and define

E 10 := τ β 1 -v -δ 1 λv ≤ U Y (v) ≤ τ β 1 + v -δ 1 λv . (6.12)
If δ 1 is small enough, then for all large v, P(E c 10 ) ≤

1 v 1/4-5δ 1 .
In the two previous lemmas, taking respectively 1 (log t) (1/2)-δ 3 and v -δ 1 instead of simply some fixed ε > 0 is necessary to obtain Lemma 2.7 with ψ ± (r) instead of simply 1 ± ε in the definition of L ± (r) and I ± (r), which itself is necessary for example to prove Lemma 5.1. Lemma 6.3. Let (β(s), s ≥ 0) be a Brownian motion, and λ = 4(1 + κ) as before. We define

J β (κ, t) := 1 0 y(1 -y) κ-2 L β τ β (λ), S(y)/t dy, 0 < κ ≤ 1, t ≥ 0. (6.13)
Let 0 < d < 1 and recall that 0 < ε < 1.

(i) Case 0 < κ < 1: recall K β (κ) from (2.2). There exist c 47 > 0 and c 48 > 0 such that for all large t, on an event E 11 of probability greater than 1 -c 47 /t d , we have Recall L 0 from (6.8). By (6.18), there exists a constant c 51 > 0 depending on ε such that

(1 -ε)K β (κ) -c 48 t 1-1/κ ≤ κ 2-1/κ t 1-1/κ J β (κ, t) ≤ (1 + ε)K β (κ) + c 48 t 1-
L 0 (r) > c 51 ⊂ (1 -ε) L 0 (r) ≤ L 0 (r) ≤ (1 + ε) L 0 (r) . (6.20) 
We look for an estimate of U Y [ϕ(r) -T Y (α κ )] appearing in the expression of L 0 (r) in the right hand side of (6.19). Recall (see Dufresne [START_REF] Dufresne | Laguerre series for Asian and other options[END_REF], or Borodin et al. [START_REF] Borodin | Handbook of Brownian Motion-Facts and Formulae[END_REF] IV.48 p. 78) that A ∞ L = 2/γ κ , where γ κ is a gamma variable of parameter (κ, 1), with density e -x x κ-1 1 (0,∞) (x)/Γ(κ). Since A(F (r)) ≤ A ∞ , we have

P A(F (r)) > r 2/κ ≤ P γ κ < 2r -2/κ ≤ 2 κ r -2 /[κΓ(κ)].
On the other hand, by definition, A(F (r)) = A ∞ -δ(r) = A ∞ -e -κr/2 (see 2.7), which implies

P A(F (r)) < 1 2 log r = P 2 γ κ < 1 2 log r + δ(r) ≤ 1 r 2
for large r. Consequently,

P κr/2 -2 log log r ≤ log δ(r) -1 A(F (r)) ≤ κr/2 + (2/κ) log r ≥ 1 -c 52 r -2 .
Recall that ϕ(r) = Λ Y [δ(r) -1 A(F (r))] by (6.7). Thus, for large r,

P Λ Y exp(κr/2 -2 log log r) ≤ ϕ(r) ≤ Λ Y exp(κr/2 + (2/κ) log r) ≥ 1 -c 52 r -2 . By definition, Λ Y (u) = u 0 ds R 2 2 (s)+ R 2 2+2κ (s)
. Notice that R 2 2 (t) + R 2 2+2κ (t), t ≥ 0 is a (4 + 2κ)dimensional squared Bessel process starting from R 2 2+2κ [δ(r)]/δ(r) by the additivity property of squared Bessel processes (see e.g. Revuz et al. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], XI th. 1.2). So, it follows from Lemma 6.1 applied with d = 4 + 2κ and δ 3 = 1/4, that there exist constants c 53 > 0 and c 54 > 0, such that

P κr/λ -c 53 r 1/2+δ 3 ≤ ϕ(r) ≤ κr/λ + c 53 r 1/2+δ 3 ≥ 1 -c 54 r -2 , (6.21) 
for large r, where λ = 4(1 + κ), as before.

In order to study T Y (α κ ), we go back to the stochastic differential equation in (6.5) satisfied by the Jacobi process Y (•), with d 1 = 2 and d 2 = 2 + 2κ. Note that Y (s) ∈ (0, 1) for any s > 0. By the Dubins-Schwarz theorem, there exists a Brownian motion B(s), s ≥ 0 such that

Y (t) = B 4 t 0 Y (s)(1 -Y (s))ds + t 0 [2 -(4 + 2κ)Y (s)]ds, t ≥ 0.
Recall that α κ = 1/(4 + 2κ), and let t ≥ 2α κ . We have, on the event {T Y (α κ ) ≥ t}, 

inf 0≤s≤4t B(s) ≤ B 4 t 0 Y (s)(1 -Y (s))ds ≤ α κ -t ≤ - t 2 , since Y (s) ≤ α κ ≤ 1 if 0 ≤ s ≤ t ≤ T Y (α κ ). As a consequence, for t ≥ 2α κ , P[T Y (α κ ) > t] ≤ P inf 0≤s≤4t B(s) ≤ - t 2 = P B(4t) ≥ t 2 ≤ 2 exp - t 32 . ( 6 
P U Y (ϕ) ≤ U Y [ϕ(r) -T Y (α κ )] ≤ U Y (ϕ) ≥ 1 -c 56 r -2
for large r. By Lemma 6.2, for small δ 1 > 0 and all large r,

P τ β 1 -(ϕ) -δ 1 λϕ ≤ U Y [ϕ(r) -T Y (α κ )] ≤ τ β 1 + (ϕ) -δ 1 λϕ ≥ 1 -r -c 57 .
We choose δ 1 such that δ 1 < 1/2 -δ 3 . Then for large r, we have 1 -(ϕ) -δ 1 λϕ ≥ 1 -2( λ κ ) δ 1 r -δ 1 κr = λt -(r), and 1 + (ϕ) -δ 1 λϕ ≤ 1 + 2( λ κ ) δ 1 r -δ 1 κr = λt + (r) (see (2.12)). Thus, 

P {τ β [λt -(r)] ≤ U Y [ϕ(r) -T Y (α κ )] ≤ τ β [λt + (r)]} ≥ 1 -r -c 57 . (6.23) With L ± (r) = 4 sup s∈[0,τ β (λt ± (r))] κβ(s)
P L -(r) ≤ L 0 (r) ≤ L + (r) ≥ 1 -r -c 57 . (6.24) 
By (3.1), P L -(r) > r (1-δ 1 )/κ ≥ 1 -r -1 for large r. Applying (6.20) and (6.24), this yields

P (1 -ε)r (1-δ 1 )/κ < (1 -ε) L -(r) ≤ L 0 (r) ≤ (1 + ε) L + (r) ≥ 1 -r -c 58 .
Recall that P[T Y (α κ ) > 64 log r] ≤ 2r -2 for large r, which together with (6.21) gives P(E c 9 ) ≤ (c 54 + 2)r -2 . In view of (6.9) and (6.10), for large r,

P (1 -ε)r (1-δ 1 )/κ < (1 -ε) L -(r) ≤ L + X [H(F (r))] ≤ (1 + ε) L + (r) ≥ 1 -r -c 59 . (6.25)
On the other hand, applying Lemma 6.4 to z = r (1-2δ 1 )/κ gives P

[sup x<0 L X [H(F (r)), x] > r (1-2δ 1 )/κ ] ≤ P[L * - X (+∞) > r (1-2δ 1 )
/κ ] ≤ c 49 /r (1-2δ 1 )/(κ+2) for large r. This implies

P (1 -ε) L -(r) ≤ L * X [H(F (r))] ≤ (1 + ε) L + (r) ≥ 1 - 1 r c 59 - c 49 r (1-2δ 1 )/(κ+2) ,
proving the first part of Lemma 2.7.

Proof of Lemma 2.7: part (ii). In this part, we assume 0 < κ ≤ 1.

Recall that H 0 (r) = 16 (6.11). As in Hu et al. ([33] p. 3923, calculation of Υ µ ), this and again (6.11) lead to:

ϕ(r)-T Y (ακ) 0 Y [u+T Y (ακ)] (1-Y [u+T Y (ακ)]) 2 du and Y [t + T Y (α κ )] = S -1 {β[U Y (t)]}, see (6.8) and
H 0 (r) = 4 ϕ(r)-T Y (ακ) 0 (Y [u + T Y (α κ )]) 2 (1 -Y [u + T Y (α κ )]) 2κ-1 dU Y (u) = 4 1 0 x(1 -x) κ-2 L β [U Y (ϕ(r) -T Y (α κ )), S(x)]dx. (6.26) Recall that t ± (r) = 1 ± 2( λ κ ) δ 1 r -δ 1 κ λ r, β v (s) = β(v 2 
s)/v and let J β be as in (6.13). We have,

1 0 x(1 -x) κ-2 L β {τ β [λt ± (r)], S(x)}dx = t ± (r) 1 0 x(1 -x) κ-2 L β t ± (r) {τ β t ± (r) (λ), S(x) t ± (r) }dx = t ± (r)J β t ± (r) [κ, t ± (r)].
By (6.23) and (6.26), we have for large r,

P 4t -(r)J β t -(r) [κ, t -(r)] ≤ H 0 (r) ≤ 4t + (r)J β t + (r) [κ, t + (r)] ≥ 1 -r -c 57 .
Now, apply Lemma 6.3 to d = 1/2. So there exist c 6 > 0 and c 60 > 0 such that for large r,

P (1 -ε) I -(r) ≤ H 0 (r) ≤ (1 + ε) I + (r) ≥ 1 -r -c 60 , (6.27) 
I ± (r) is defined in (2.16).

In the case 0 < κ < 1, we know that P(E c 9 ) ≤ (c 54 + 2)r -2 for large r as proved before (6.25), so by (6.10), P H(r) ≤ c 61 log r ≥ P(E 9 ) ≥ 1 -(c 54 + 2)r -2 for some c 61 and all large r. On the other hand, by Lemma 6.4, P[H -(F (r)) ≤ εr] ≥ P[H -(+∞) ≤ εr] ≥ 1 -c 62 r -(1-δ 1 )κ/(κ+2) , for all large r. Consequently, by (6.27) and (6.9), for large r,

P (1 -ε) I -(r) ≤ H(F (r)) ≤ (1 + ε) I + (r) + (4ελ/κ)t + (r) ≥ 1 -r -c 63 .
Changing the value of c 6 , this proves Lemma 2.7 (ii) in the case 0 < κ < 1. Now we consider the case κ = 1. As before, P[H -(F (r)) + H(r) ≤ 2εr] ≥ 1 -r -c 64 (for large r). Moreover, P C β t ± (r) > -π log r ≥ 1 -r -2 by Fact 2.5 and (4.11). Therefore, (2.16) gives

P I + (r) ≥ 16t + (r) log r ≥ 1 -r -2 . Consequently, for large r, P 0 ≤ H -(F (r)) + H(r) ≤ ε I + (r) ≥ 1 -r -c 65 ,
which, in view of (6.27), yields that, for large r,

P (1 -ε) I -(r) ≤ H(F (r)) ≤ (1 + 2ε) I + (r) ≥ 1 -r -c 66 .
This proves Lemma 2.7 (ii) in the case κ = 1.

7.

Proof of lemmas 6. 1-6.3 This section is devoted to the proof of Lemmas 6.1-6.3. For the sake of clarity, the proofs of these lemmas are presented in separated subsections. 7.1. Proof of Lemma 6.1. First, notice that we can not apply Talet ([51], Lem. 3.2 eq. (3.4)) since her constant c 3 depends on her (fixed) δ, whereas we would like to take her δ = (log t) δ 3 -1/2 → t→+∞ 0, which is necessary for example for our Lemma 5.1. A similar remark applies for Talet ([51], Prop. 5.1) and our Lemma 6.2. So we need different estimates than in her paper.

Let d > 4 and R 0 L = R d-2 (1), where R d-2 is a (d -2)-dimensional Bessel process. We consider a d-dimensional Bessel process R, starting from R 0 . We introduce θ(t) := 0 R -2 (s)ds. Itô's formula gives log R(t) = log R 0 + M (t) + d-2
2 θ(t), where M (t) := t 0 R(s) -1 d β(s) and β(t), t ≥ 0 is a Brownian motion. By the Dubins-Schwarz theorem, there exists a Brownian motion β(t), t ≥ 0 such that M (t) = β(θ(t)) for all t ≥ 0. Accordingly,

(d -2)θ(t)/2 = log R(t) -log R 0 -β(θ(t)), t ≥ 0. (7.1) Let δ 3 ∈ (0, 1 2 ), 0 < ε < 1, and x = x(t) := d-2 6 1 
(log t) (1/2)-δ 3 . We have (see e.g. Göing-Jaeschke et al. [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF], eq. ( 50)

), P R 2 0 ∈ du = u d/2-2 e -u/2 1 (0,∞) (u)/ Γ(d/2 -1)2 d/2-1 . So for large t, P log R 0 log t > x = P log R 0 log t > x + P log R 0 log t < -x ≤ exp -(1 -ε) t 2x 2 + c 67 t x(d/2-1) . (7.2)
Denote by n := ⌈d⌉ the smallest integer such that n ≥ d. Since an n-dimensional Bessel process can be realized as the Euclidean modulus of an R n -valued Brownian motion, it follows from the triangular inequality that R(t) 

≤ L R 0 + R n (t), where ( R n (t), t ≥ 0) is an n-dimensional Bessel process starting from 0. Consequently, for large t, P R(t) > t (1/2)+x ≤ P R n (t) > t (1/2)+x /2 + P R 0 > t x ≤ 2 exp(-(1 -ε)t 2x /8), and P R(t) < t (1/2)-x ≤ 2t -x ,
E 10 = τ βv 1 -v -δ 1 λ ≤ U Y (v)/v 2 ≤ τ βv 1 + v -δ 1 λ . ( 7 
ε 2 (v, s) ≥ 2/(κ √ v) 1/κ+1 √ v ≤ P sup u≥0 Q(u) ≥ √ v 2 = 4λ √ v . (7.7) 
Similarly (this time, using S(x) ∼ log x, x → 0), we have, for large v,

P sup 0≤s≤τ βv (2λ) ε 3 (v, s) ≥ exp(- √ v/2) √ v ≤ 4λ/ √ v. (7.8) 
To estimate ε 4 (v, s), we note that 

ε 4 (v, s) ≤ v -1 2 ( 1 2 -ε) v 1 2 ( 1 2 -2ε) = v -ε/2 . ( 7 
≤ 4λ v ε-1/4 1+2ε + c 69 v -1/4+ε ≤ v -1/4+2ε /2.
Combining this with (7.6), (7.7), (7.8) and (7.11), we obtain that, for ε > 0 small enough,

P sup 0≤s≤τ βv (2λ) |ε 1 (v, s)| ≥ 2v -ε/2 ≤ v -1/4+2ε .
This gives, with the choice of δ 1 := 2ε/5, P(E c 10 ) ≤ P(E c 15 ) ≤ v -1/4+5δ 1 (for large v). y(1 -y) κ-2 L β τ β (λ), S(y) t dy := J 1 + J 2 + J 3 + J 4 .

We begin by estimating J 1 . Since S(x) ∼ x→0 log x, we have J 1 ≤ exp(-t ε /2) sup s≥0 Q(s) for large t, where Q is a 0-dimensional squared Bessel process starting from λ (by the second Ray-Knight theorem stated in Fact 2.2, applied to -β). Hence, we get P J 1 ≥ exp(-t ε /2)t d ≤ λ/t d . Fix a large constant γ > 0 such that d(1/2 + ε + 1/γ) + (ε -1)(1/2 -ε) < 0, and define Recall that S(α κ ) = 0. To estimate J 2 , we note that, on E 17 ∩ E 18 , uniformly for all large t,

J 2 ≤ α k 0 ydy (1 -y) 2-κ sup -t ε-1 ≤b≤0 L β (τ β (λ), b) ≤ α κ λ + t d(1/2+ε+1/γ) (t ε-1 ) 1 2 -ε (1 -α k ) 2-κ ≤ 2α κ λ (1 -α k ) 2-κ .
Notice that P(E c 17 ) ≤ 2λt -d as proved after (7.11), and that P(E c 18 ) ≤ c 70 t -d (by (7.10) with t 2d instead of t v ). Therefore, there exists c 71 > 0 such that for large t, P (J 2 ≤ c 71 ) ≥ P(E 17 ∩ E 18 ) ≥ 1 -c 72 t -d .

(7.12)

We now turn to J 3 . As already noticed after (7.6), we have 1 -S -1 (u) ∼ u→+∞ (κu) -1/κ . Therefore, we can choose M ε > 0 such that ∀u ≥ M ε , [1 -S -1 (u)] 2κ-1 (κu) (κt) 1/κ-2 L β (τ β (λ), x)dx.

Therefore, (7.13) leads to

(1 -ε) 3 +∞ Mε/t x 1/κ-2 L β (τ β (λ), x)dx ≤ κ 2-1/κ t 1-1/κ J 4 ≤ (1 + ε) +∞ Mε/t
x 1/κ-2 L β (τ β (λ), x)dx.

(7.14)

Proof of Lemma 6.3: part (i). We first assume 0 < κ < 1.

On E 17 ∩ E 18 , for large t, we have Mε/t 0

x 1/κ-2 L β (τ β (λ), x)dx ≤ c 74 t 1-1/κ . Recall K β from (2.2). It follows from (7.14) and (7.12) that, for large t, P (1 -ε) 3 K β (κ) -(1 -ε) 3 c 74 t 1-1/κ ≤ κ 2-1/κ t 1-1/κ J 4 ≤ (1 + ε)K β (κ) ≥ 1 -c 72 t -d .

Since J β (κ, t) = J 1 + J 2 + J 3 + J 4 , we get for large t, P (1 -ε) 3 K β (κ) -c 48 t 1-1/κ ≤ κ 2-1/κ t 1-1/κ J β (κ, t) ≤ (1 + ε)K β (κ) + c 48 t 1-1/κ ≥ 1 -c 75 t -d , for some c 48 > 0, proving the lemma in the case 0 < κ < 1.

Proof of Lemma 6.3: part (ii). We assume κ = 1, thus λ = 8. This proves the lemma in the case κ = 1.

By

Theorem 1 .

 1 3 gives, in the case κ > 1, an integral test which completely characterizes the upper functions of L * X (t), in the sense of Paul Lévy. Theorem 1.3. Let a(•) be a positive nondecreasing function. If κ > 1, then

Fact 2 . 1 .

 21 (first Ray-Knight theorem) Consider r > 0 and a Brownian motion (B(t), t ≥ 0). The process (L B (σ B (r), r -x), x ≥ 0) is a continuous inhomogeneous Markov process, starting from 0. It is a 2-dimensional squared Bessel process for x ∈ [0, r] and a 0-dimensional squared Bessel process for x ≥ r.

Fact 2 . 2 .

 22 (second Ray-Knight theorem) Fix r > 0, and let (B(t), t ≥ 0) be a Brownian motion. The process (L B (τ B (r), x), x ≥ 0) is a 0-dimensional squared Bessel process starting from r.

3. 1 .

 1 Proof of Theorem 3.1. Let r n := e n and Z n := n k=1 r k . Denote by a(•) be a positive nondecreasing function. We begin with the upper bound in Theorem 3.1.

4 .

 4 Proof of Theorems 1.7 and 1.8 and Corollary 1.10

5 .

 5 Proof of Theorems 1.2 to 1.6 Proof of Theorem 1.4: case κ > 1. Follows from Theorems 3.2 and 1.1. Proof of Theorem 1.3. Follows from Theorems 3.1 and 1.1.

. 27 ) 5 . 3 . 1 .

 27531 since U (x) = 0 for every x ≥ ζ U . Proof of Theorem 1.5 (case κ = 1). We have λ = 8 in the case κ = 1. Since sup x>0 log x

1 - 8 )

 18 where ϕ(r) := Λ Y δ(r) -1 A(F (r)) . (6.7) Define α κ := 1/(4 + 2κ) and let T Y (α κ ) := inf{t > 0, Y (t) = α κ } be the hitting time of α κ by Y . We introduce L(r) := 4 sup u∈[0,T Y (ακ)] Y (u)) 2 du, L 0 (r) := 4 sup u∈[T Y (ακ),ϕ(r)]We have on E 9 := {T Y (α κ ) ≤ 64 log r ≤ κr/(2λ) ≤ ϕ(r)}, L +

  L 0 (r) := 4 sup u∈[T Y (ακ),ϕ(r)] κS(Y (u)) 1/κ . We have, L 0 (r) = 4 sup u∈[0,ϕ(r)-T Y (ακ)] κβ U Y (u) U Y (ϕ(r)-T Y (ακ))]

. 22 )

 22 In particular, P[T Y (α κ ) > 64 log r] ≤ 2r -2 for large r. Plug this into (6.21), let c 55 > c 53 and define ϕ = ϕ(r) := κr/λ -c 55 r 1/2+δ 3 and ϕ = ϕ(r) := κr/λ + c 53 r 1/2+δ 3 . This gives,

. 5 ) 1 0( 1 ( 1 -x) κ 4 L] 1 κ

 511141 For δ 1 > 0, define E 15 := sup 0≤s≤τ βv (2λ) |ε 1 (v, s)| < v -δ 1 , whereε 1 = ε 1 (v, s) := 1 4 -x) κ L βv s, S(x) v -L βv (s, 0) dx, s ≥ 0.By Hu et al.([33] eq. (2.34) p. 3924), E 15 ⊂ E 10 . Thus it remains to prove that for δ 1 small enough,P(E c 15 ) ≤ 1/v 1/4-5δ 1 for large v. Notice that for s ≥ 0, βv s, S(x) v -L βv (s, 0) dx =: ε 2 (v, s) + ε 3 (v, s) + ε 4 (v, s). x) 1+κ , we have 1 -S -1 (u) ∼ u→+∞ (κu) -1/κ . So, we have sup 0≤s≤τ βv (2λ) ε 2 (v, s) (1 -x) κ sup 0≤s≤τ βv (2λ) sup u≥0 [L βv (s, u) + L βv (s, 0)] dx ≤ [2/(κ √ v)+1 sup u≥0 [L βv (τ βv (2λ), u) + 2λ], for all large v. By the second Ray-Knight theorem (Fact 2.2), Q := (L βv (τ βv (2λ), u), u ≥ 0) is a 0-dimensional squared Bessel process starting from 2λ. Moreover, x → x is a scale function of Q (see e.g. Revuz et al.[START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p. 442). Hence, for large v, P sup 0≤s≤τ βv (2λ)

ε 4 ( 1 ]On E 16 : 1 2 ( 1 2 -

 411612 v, s) ≤ sup |u|≤1/ √ vL βv (s, u) -L βv (s, 0) . (7.9)Let ε ∈ (0, 1/2), t v > 0, γ ≥ 1 and define (M ) * t := sup 0≤s≤t |M (s)| for t > 0 and any Brownian motion (M (s), s ≥ 0). ApplyingBarlow and Yor ([6], (ii) p. 199) to the continuous martingaleβ v (. ∧ t v ) and its jointly continuous local time (L βv (u ∧ t v , a), u ≥ 0, a ∈ R), we see that for some constant C γ,ε > 0, sup 0≤s≤tv ,a =b L βv (s, b) -L βv (s, a) |b -a| 1/2-ε γ ≤ C γ,ε [(β v ) * tv ] 1/2+ε γ = C γ,ε [(β) * tv ] 1/2+ε γ ,where . γ = E(|.| γ ) 1/γ . Then, by Chebyshev's inequality and a change of scale, for α > 0,P sup 0≤s≤tv, a =b L βv (s, b) -L βv (s, a) |b -a| 1/2-ε ≥ α ≤ ( √ t v ) (1/2+ε)γ α γ C γ,ε [(β) * = sup 0≤s≤τ βv (2λ),a =b |Lβ v (s,b)-L βv (s,a)| |b-a| 1/2-ε ≤ v 2ε), we have by (7.9), sup 0≤s≤τ βv (2λ)

7. 3 . 1 S

 31 Proof of Lemma 6.3. Assume 0 < κ ≤ 1. Consider 0 < d < 1, ε ∈ (0, 1/2) such that d(1/2 + ε) + (ε -1)(1/2 -ε) < 0, M ε > 0,and a Brownian motion (β(t), t ≥ 0). We can write for t > 0,J β (κ, t) = S -1 (-t ε ) -1 (Mε)

E 17 :

 17 = τ β (λ) ≤ t 2d , E 18 := sup 0≤s≤t 2d , a =b |L β (s, b) -L β (s, a)| |b -a| 1/2-ε ≤ t d(1/2+ε+1/γ) .

  Jaeschke et al.[START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF] definition 3 p. 329 . We recall some important results.

	Borodin et al. [10], 39 p. 73 for a more
	general definition as a linear diffusion with generator 1 2 Göing-	d 2 dx 2 + δ-1 2x	d dx for every δ ∈ R; see also

  4.1.2. Case κ = 1. Let r n := e n and Z n := n k=1 r k . We recall that there exists a constant c 17 := 16 π such that P(C ca 8 > x) ∼ (see e.g. Samorodnitsky et al. [42], prop. 1.2.15 p. 16). Hence, by Lemma 2.7 and (4.2), for some α > 0 and all large r,

	c 17
	x→+∞

x

  e.g. bySamorodnitsky et al. ([42], Proposition 1.2.12, in the notation of[START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], S ca

κ is distributed as S κ (1, 1, 0)). So by Bingham et al. ([9] Example p. 349),

  of Corollary 1.10: By Lemma 4.1,

	lim sup	X(t)/(t/ log t) = lim sup	sup	X(s) /(t/ log t) .
	t→∞	t→∞	0≤s≤t	

  1+κ , y ∈ (0, 1) is a scale function of Y , as in Hu et al. ([START_REF] Hu | Rates of convergence of diffusions with drifted Brownian potentials[END_REF], eq. (2.27)). Hence t → S[Y (t + T Y (α κ ))] is a continuous local martingale, so by Dubins-Schwarz theorem, there exists a Brownian motion (β(t), t ≥ 0) such that for all t ≥ 0,

			.10)
	Observe that S(y) :=	y ακ	dx x(1-x)

  Case κ = 1: recall C β from (2.3). There exists c 47 > 0 such that for t large enough, on an event E 11 of probability greater than 1 -c 47 /t d , There exist c 49 > 0 and c 50 > 0 such that for all large z,

						1/κ .	(6.14)
	(ii) (1 -ε)[C β + 8 log t] ≤ J β (1, t) ≤ (1 + ε)[C β + 8 log t].	(6.15)
	Lemma 6.4. Let κ > 0 and define				
	L * -X (+∞) := sup r≥0	sup x<0	L X (H(r), x) = sup t≥0	sup x<0	L X (t, x),	H -(+∞) := lim r→+∞	H -(r).
		P L * -X (+∞) > z ≤ c 49 z -κ/(κ+2) , P H -(+∞) > z ≤ c 50 [(log z)/z] κ/(κ+2)	(6.17)
	Proof of Lemma 6.4: This lemma is proved in Andreoletti et al. ([3], Lemma 3.5, which is
	true for every κ > 0). More precisely, (6.17) is proved in ([3], eq. (3.29)), whereas (6.16) is
	proved in ([3], eq. (3.31)).					
	By admitting Lemmas 6.1-6.3, we can now complete the proof of Lemma 2.7.	
	Proof of Lemma 2.7: part (i). Notice that				
	S(y) ∼						

  This, for large t, contradicts d-2 2 θ(t) ≥ log t on E c 13 . Therefore, E 12 ∩ E c 13 ⊂ β(θ(t)) > d-2 6 θ(t) holds for all large t, from which it follows that P E 12 ∩ E c (d -2)(log t)/18 ≤ 4 exp -(d -2)(log t)/36 , because u → u β(1/u) is a Brownian motion and sup 0≤v≤1 β(v) . Since P E c 14 ≤ 4 exp -d-2 4 x 2 log t for large t, this and (7.4) give for large t, P E c 12 ∪ E c 13 ∪ E c 14 ≤ P E c 12 + P E 12 ∩ E c 13 + P E 12 ∩ E 13 ∩ E c 14 ≤ exp -c 68 x 2 log t . Since E 12 ∩ E 13 ∩ E 14 ⊂ θ(t) log t -1 d-2 ≤ 6x d-2 by (7.1), this completes the proof of Lemma 6.1. 7.2. Proof of Lemma 6.2. Let v > 0. Recall that for every x ≥ 0, β v (x) = (1/v)β(v 2 x), and notice that v 2 τ βv (x) = τ β (xv) almost surely. Then,

	which implies d-2 2 θ(t) ≤ ( 3 4 + 3x) log t. 13 ≤ P sup s≥2(log t)/(d-2)	β(s) s	>	d -2 6	= P sup u≥1	β(u) u	>	(d -2) log t 18
		= P sup	β(v) >		
			0≤v≤1					
		P	log R(t) log t	-	1 2	> x ≤ 2 exp -(1 -ε)	t 2x 8	+ 2t -x .	(7.3)
	Define E 12 := log R(t) log t -1 2 ≤ x ∩ log R 0 log t ≤ x and
	E 13 :=	d -2 2	θ(t) < log t ,		E 14 :=	sup 0≤s≤2(log t)/(d-2)
	By (7.2) and (7.3), we have for large t,		
			P(E c 12 ) ≤ 3 exp -(1 -ε)t 2x /8 + 3t -x .	(7.4)
	We now estimate P(E 12 ∩ E c 13 ). We first observe that on E 12 , we have, by (7.1),
			β(θ(t)) + (d -2)θ(t)/2 -(log t)/2 ≤ 2x log t.
	We claim that E 12 ∩ E c 13 ⊂ β(θ(t)) > d-2 6 θ(t) for large t. Indeed, on the event E 12 ∩ E c 13 ∩ β(θ(t)) ≤ d-2 6 θ(t) ,

e.g. since β(t) ≤ L R(t). Therefore, for large t,

β(s) ≤ x log t . (d -2)θ(t)/2 ≤ (2x + 1/2) log t -β(θ(t)) ≤ (2x + 1/2) log t + (d -2)θ(t)/6, L = β(1)

  .11) We now choose γ := 2 and tv := v 1/4-ε 1/2+ε . Since P[τ βv (2λ) > t v ] = P[L βv (t v , 0) < 2λ] = P sup 0≤s≤tv β(s) < 2λ = P[|β(t v )| < 2λ] ≤ 4λ/ √ t vby Lévy's theorem (see e.g. Revuz et al. [41] VI th. 2.3), we get for all large v (if ε is small enough). P E 16 (v) c ≤ P τ βv (2λ) > t v + P sup 0≤s≤tv,a =b |L βv (s, b) -L βv (s, a)| |b -a| 1/2-ε ≥ v

	1 2 ( 1 2 -2ε)

  1/κ-2 ∈ (1 -ε, 1 + ε) and S -1 (u) ≥ 1 -ε. (7.13)On the event E 17 ∩ E 18 , uniformly for all large t, -y) κ-2 dy≤ c 73 λ + t d(1/2+ε+1/γ) (M ε /t) 1 2 -ε ≤ 2λc 73 .Consequently, P[J 3 ≤ 2λc 73 ] ≥ P(E 17 ∩ E 18 ) ≥ 1 -c 72 t -d for large t.

		S -1 (Mε)
	J 3 ≤ y(1 Now we write sup 0≤x≤Mε/t L β (τ β (λ), x) ακ
	J 4 = κ 1/κ-2 t 1/κ-1	+∞
		Mε/t

S -1 (tx) 2 1 -S -1 (tx) 2κ-1

  the definition of C β (see(2.3)), we haveL β (τ β (8), x) -8 x dx + 8 log t -8 log M ε . On E 17 ∩ E 18 , for large t,As in (4.11), P(C β + 8 log t < log t) ≤ t -7 . Therefore, by (7.14) and (7.12), we have for large t,Since J β (1, t) = J 1 + J 2 + J 3 + J 4 , we get for large t,P (1 -ε) 4 [C β + 8 log t] ≤ J β (1, t) ≤ (1 + ε) 3 [C β + 8 log t] ≥ 1 -c 77 t -d .

	∞ Mε/t	L β (τ β (8), x) x	dx = C β -	0	Mε/t	
		0	Me/t	|L β (τ β (8), x) -8| x	dx ≤	0	Me/t	t d(1/2+ε+1/γ) x 1/2-ε x	dx ≤ ε.

P (1 -ε) 4 [C β + 8 log t] ≤ J 4 ≤ (1 + ε) 2 [C β + 8 log t] ≥ 1 -c 76 t -d .
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