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Abstract

Clustering in high-dimensional spaces is a difficult problem which is recurrent in many
domains, for example in image analysis. The difficulty is due to the fact that high-
dimensional data usually live in different low-dimensional subspaces hidden in the orig-
inal space. This paper presents a family of Gaussian mixture models designed for high-
dimensional data which combine the ideas of dimension reduction and parsimonious
modeling. These models give rise to a clustering method based on the Expectation-
Maximization algorithm which is called High-Dimensional Data Clustering (HDDC).
In order to correctly fit the data, HDDC estimates the specific subspace and the in-
trinsic dimension of each group. Our experiments on artificial and real datasets show
that HDDC outperforms existing methods for clustering high-dimensional data.

Key words: Model-based clustering, high-dimensional data, Gaussian mixture models,
subspace selection, dimension reduction, parsimonious models.

1 Introduction

Clustering in high-dimensional spaces is a recurrent problem in many fields of

science, for example in image analysis. Indeed, the data used in image analysis are

often high-dimensional and this penalizes clustering methods. Popular clustering

methods are based on the Gaussian Mixture Model (GMM) [24] and show a

disappointing behavior when the size of the dataset is too small compared to the

number of parameters to estimate. This well-known phenomenon is called curse

of dimensionality and was introduced by Bellman [3]. We refer to [26, 27] for a

theoretical study of the effect of dimensionality in the supervised framework.
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To avoid overfitting, it is necessary to find a balance between the number of pa-

rameters to estimate and the generality of the model. In this paper we propose a

Gaussian mixture model which takes into account the specific subspace in which

each cluster is located and therefore limits the number of parameters to estimate.

The Expectation-Maximization (EM) algorithm [10] is used for parameter esti-

mation and the intrinsic dimension of each group is determined automatically

with the scree-test of Cattell. This allows to derive a robust clustering method in

high-dimensional spaces, called High Dimensional Data Clustering (HDDC). In

order to further limit the number of parameters, it is possible to make additional

assumptions on the model. We can for example assume that classes are spherical

in their subspaces or fix some parameters to be common between classes. Finally,

HDDC is evaluated and compared to standard clustering methods on artificial

and real datasets. We show that our approach outperforms existing clustering

methods.

This paper is organized as follows. Section 2 presents the state of the art on

clustering of high-dimensional data. Section 3 introduces our parameterization

of the Gaussian mixture model. Section 4 presents the clustering method HDDC,

i.e. the estimation of the parameters of the models and of the hyper-parameters.

Experimental results for our clustering method on simulated and real datasets

are reported in Section 5.

2 Related work on high-dimensional clustering

Standard methods to overcome the curse of dimensionality consist in reducing

the dimension of the data and/or to use a parsimonious Gaussian mixture model.

More recently, methods which find clusters in different subspaces have been pro-

posed. In this section, we give a brief survey of these works in clustering of

high-dimensional data.

2.1 Dimension reduction

Many methods use global dimension reduction techniques to overcome problems

due to high dimensionality. A widely used solution is to reduce the dimension-
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ality of data before using a classical clustering method. Dimension reduction

techniques can be divided into techniques for feature extraction and feature selec-

tion. Feature extraction techniques build new variables carrying a large part of

the global information. Among these techniques, the most popular is Principal

Component Analysis (PCA) [19] which is often used in data mining and image

analysis. However, PCA is a linear technique, i.e. it only takes into account lin-

ear dependences between variables. Recently, many non-linear techniques have

been proposed such as Kernel PCA [30], non-linear PCA [15, 17] and neural net-

works based techniques [9, 20, 29, 34]. In [31], the dimension reduction problem

was considered in the Quadratic Discriminant Analysis framework. In contrast,

feature selection techniques find an appropriate subset of the original variables to

represent the data. A survey on feature selection can be found in [16]. A recent

approach [28] proposes to combine global feature selection and model-based clus-

tering. These global dimension reduction techniques are often advantageous in

terms of performance, but suffer from the drawback of losing information which

could be discriminant. Indeed, the clusters are usually hidden in different sub-

spaces of the original feature space and a global approach cannot capture this.

2.2 Parsimonious models

Another solution is to use models which require the estimation of fewer parame-

ters. For example, the eigenvalue decomposition of the covariance matrices [2, 8]

allows to re-parameterize the covariance matrix of the classes in their eigenspaces.

By fixing some parameters to be common between classes, this parameterization

yields parsimonious models which generate clustering methods based on the EM

algorithm. A review on parsimonious models can be found in [14]. These ap-

proaches are based on various Gaussian models from the most complex one (a

full covariance matrix for each group) to the simplest one (a spherical covariance

matrix for all groups which leads to the classical k-means method) and thus allow

to fit different types of data. However, these methods cannot efficiently solve the

problem of the high-dimensionality when clusters live in low-dimensional sub-

spaces and when many dimensions of the original space are irrelevant.
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2.3 Subspace clustering

A recent extension of traditional clustering is to find the subspace in which the

data of each cluster live. On the one hand, many subspace clustering methods

use heuristic search techniques to find the subspaces. They are usually based on

grid search methods and find dense clusterable subspaces. Clique [1] was one of

the first algorithms proposed to find clusters within subspaces of the dataset. A

review on this type of methods can be found in [25]. On the other hand, methods

based on mixtures of factor analyzers [24, 35] rely on a latent variables model and

on an EM based procedure to cluster high-dimensional data. More recently, Bocci

et al. [5] proposed a similar approach to cluster dissimilarity data. The model

of these methods can be viewed as a mixture of constrained Gaussian densities

in class-specific subspaces. The advantage of such a model is to capture correla-

tions without estimating full covariance matrices. In this paper, we propose an

unified approach for subspace clustering in the Gaussian mixture model frame-

work which includes these approaches and involves additional regularizations as

in parsimonious models.

3 Gaussian mixture models for high-dimensional

data

Clustering divides a given dataset {x1, ..., xn} of n data points in R
p into k homo-

geneous groups (see [18] for a review). A popular clustering technique uses Gaus-

sian mixture models, which assume that each class is represented by a Gaussian

probability density. Data {x1, ..., xn} ∈ R
p are therefore modeled by a density of

the form:

f(x, θ) =

k
∑

i=1

πiφ(x, θi), (1)

where φ is a p-variate normal density with parameter θi = {µi, Σi} and πi are the

mixing proportions. This model requires to estimate full covariance matrices and

therefore the number of parameters increases with the square of the dimension.

However, due to the empty space phenomenon [33] we can assume that high-

dimensional data live in subspaces with a dimensionality lower than the one of
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the original space. We therefore propose to work in low-dimensional class-specific

subspaces and to limit the number of parameters to estimate in order to adapt

model-based clustering to high-dimensional data.

3.1 The Gaussian mixture model [aijbiQidi]

As in the classical Gaussian mixture model framework, we assume that class con-

ditional densities are Gaussian N (µi, Σi) with means µi and covariance matrices

Σi, for i = 1, ..., k. Let Qi be the orthogonal matrix of eigenvectors of Σi. The

class conditional covariance matrix ∆i is therefore defined in the eigenspace of

Σi by:

∆i = Qt
i Σi Qi. (2)

The matrix ∆i is thus a diagonal matrix which contains the eigenvalues of Σi.

We further assume that ∆i is divided into two blocks:

∆i =





























ai1 0
. . .

0 aidi

0

0

bi 0
. . .

. . .

0 bi







































di























(p − di)

where aij > bi, ∀j = 1, ..., di. The class specific subspace Ei is spanned by the

di eigenvectors associated to the eigenvalues aij with µi ∈ Ei. We also define

the subspace E
⊥

i such that Ei ⊕ E
⊥

i = R
p. In this subspace E

⊥

i , the variance

is modeled by the single parameter bi. Let Pi(x) = Q̃iQ̃i

t
(x − µi) + µi and

P⊥

i (x) = (Qi − Q̃i)(Qi − Q̃i)
t(x − µi) + µi be the projection of x on Ei and

E
⊥

i respectively, where Q̃i is made of the di first columns of Qi supplemented by

zeros. Figure 1 summarizes these notations. Following the notation system of [8],

the mixture model presented above will be denoted by [aijbiQidi] in the sequel.
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Figure 1: The subspaces Ei and E
⊥

i of the ith mixture component.

3.2 The sub-models of [aijbiQidi]

By fixing some parameters to be common within or between classes, we obtain

particular models which correspond to different regularizations. For instance,

if we fix the dimensions di to be common between the classes, we obtain the

model [aijbiQid] which corresponds to the model of [35]. In the following, “free

Qi” means that Qi is specific for each class Ci and “common Qi” means that for

each i = 1, ..., k, Qi = Q and consequently the class orientations are the same.

We divide the family of the model [aijbiQidi] into three categories: models with

free orientations, models with common orientations and models with common

covariance matrices.

Models with free orientations This category of models assumes that the

groups live in subspaces with different orientations, i.e. the matrices Qi are

specific to each group. Clearly, the general model [aijbiQidi] belongs to this

category. Note that, if we assume that di = (p − 1) for all i = 1, ..., k, the model

[aijbiQidi] reduces to the classical GMM with full covariance matrices for each

mixture component which yields in the supervised framework the well known

Quadratic Discriminant Analysis (QDA). It is possible to add constraints on the

different parameters to obtain more regularized models. For example, if we fix the

first di eigenvalues to be common within each class, we obtain the more restricted
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model [aibiQidi]. The model [aibiQidi] often gives satisfying results, i.e. the

assumption that each matrix ∆i contains only two different eigenvalues, ai and

bi, seems to be an efficient way to regularize the estimation of ∆i. Another type

of regularization is to fix the parameters bi to be common between the classes.

We thus obtain the model [aibQidi] which assumes that the variance outside of

the class-specific subspaces is common. This can be viewed as modeling the

noise in E
⊥

i by a common parameter b and this seems natural since the data were

obtained in a common acquisition process. This category of models contains also

the models [abiQidi], [abQidi] and all models with free Qi and common di.

Models with common orientations It is also possible to assume that the

class orientations are common, i.e. Qi = Q for each i = 1, ..., k. However, this

assumption does not necessarily imply that the class-specific subspaces are the

same. Indeed, if the dimensions di are free, the intersection of the k class-specific

subspaces is the one of the class with the smallest intrinsic dimension. This as-

sumption can be interesting to model groups with some common properties and

with additional specific characteristics. However, several models of this category

require a complex iterative estimation based on the FG algorithm [12] and there-

fore they will be not considered here. Consequently, only the models [aibiQd],

[abiQd] and [aibQd] will be considered in this paper since their parameters can

be estimated using a simple iterative procedure. Note that a model similar to

[aijbQd] was considered by Flury et al. in [13] in the supervised framework with

an additional assumption on the means.

Models with common covariance matrices This branch of the family con-

tains only the two models [ajbQd] and [abQd]. Both models indeed assume that

the classes have the same covariance matrix Σ = Q∆Qt. Particularly, if we

assume that d = (p − 1), the model [ajbQd] reduces to a Gaussian mixture

model (denoted by “Com-GMM” in the following) which yields in the supervised

framework the well known Linear Discriminant Analysis (LDA). Remark that if

d < (p−1), the model [ajbQd] can be viewed as the a combination of a dimension

reduction technique with a GMM with common covariance matrices, but without

losing information since the information carried by the smallest eigenvalues is not

discarded.
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3.3 Characteristics of the models

The family of models presented above requires only the estimation of di-dimensional

subspaces and therefore the different models are significantly more parsimonious

than the general Gaussian model if di ≪ p. Table 1 summarizes some properties

of the models considered here. The second column of this table gives the number

of parameters to estimate. The third column provides the asymptotic order of the

number of parameters (i.e. with the assumption that k ≪ d ≪ p). The fourth

column gives the number of parameters for the particular case k = 4, p = 100 and

∀i, di = 10. The last column indicates whether the Maximum Likelihood (ML)

estimators are closed form or not. These characteristics are also given for five

Gaussian mixture models: GMM with full covariance matrices for each class

(Full-GMM), with common covariance matrices between classes (Com-GMM),

with diagonal covariance matrices (Diag-GMM), with spherical covariance ma-

trices (Sphe-GMM). Note that Celeux and Govaert recommend in [8] to make

use of the models Diag-GMM and Sphe-GMM in clustering problems. We can

observe that all models of our family require the estimation of fewer parameters

than both Full-GMM and Com-GMM. In the particular case of 100-dimensional

data, made of 4 classes and with common intrinsic dimensions di equal to 10, the

model [aijbiQidi] only requires the estimation of 4 231 parameters whereas Full-

GMM and Com-GMM requires respectively the estimation of 20 603 and 5 453

parameters. Remark that the model [aijbiQidi], which gives rise to quadratic

separation between the groups, requires the estimation of fewer parameters than

Com-GMM, which gives rise to linear separation between the groups.

4 High-dimensional data clustering

In this section we derive the EM-based clustering framework for the Gaussian

model [aijbiQidi] and its sub-models. The clustering approach presented here

will be in the following denoted by High-Dimensional Data Clustering (HDDC).

We remind that unsupervised classification organizes data in homogeneous groups

using only the observed values of the p explanatory variables. Usually, in model-

based clustering, the parameters θ = {π1, ..., πk, θ1, ..., θk} with θi = {µi, Σi}

are estimated by the EM algorithm which repeats iteratively E and M steps.
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Model
Number of
parameters

Asymptotic
order

Nb of prms k = 4,
d = 10, p = 100

ML
estimation

[aijbiQidi] ρ + τ̄ + 2k + D kpd 4231 CF
[aijbQidi] ρ + τ̄ + k + D + 1 kpd 4228 CF
[aibiQidi] ρ + τ̄ + 3k kpd 4195 CF
[abiQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF
[aibQidi] ρ + τ̄ + 2k + 1 kpd 4192 CF
[abQidi] ρ + τ̄ + k + 2 kpd 4189 CF
[aijbiQid] ρ + k(τ + d + 1) + 1 kpd 4228 CF
[ajbiQid] ρ + k(τ + 1) + d + 1 kpd 4198 CF
[aijbQid] ρ + k(τ + d) + 2 kpd 4225 CF
[ajbQid] ρ + kτ + d + 2 kpd 4195 CF
[aibiQid] ρ + k(τ + 2) + 1 kpd 4192 CF
[abiQid] ρ + k(τ + 1) + 2 kpd 4189 CF
[aibQid] ρ + k(τ + 1) + 2 kpd 4189 CF
[abQid] ρ + kτ + 3 kpd 4186 CF
[aijbiQdi] ρ + τ + D + 2k pd 1396 FG
[aijbQdi] ρ + τ + D + k + 1 pd 1393 FG
[aibiQdi] ρ + τ + 3k pd 1360 FG
[aibQdi] ρ + τ + 2k + 1 pd 1357 FG
[abiQdi] ρ + τ + 2k + 1 pd 1357 FG
[abQdi] ρ + τ + k + 2 pd 1354 FG
[aijbiQd] ρ + τ + kd + k + 1 pd 1393 FG
[ajbiQd] ρ + τ + k + d + 1 pd 1363 FG
[aijbQd] ρ + τ + kd + 2 pd 1390 FG
[aibiQd] ρ + τ + 2k + 1 pd 1357 IP
[abiQd] ρ + τ + k + 2 pd 1354 IP
[aibQd] ρ + τ + k + 2 pd 1354 IP
[ajbQd] ρ + τ + d + 2 pd 1360 CF
[abQd] ρ + τ + 3 pd 1351 CF
Full-GMM ρ + kp(p + 1)/2 kp2/2 20603 CF
Com-GMM ρ + p(p + 1)/2 p2/2 5453 CF
Diag-GMM ρ + kp 2kp 803 CF
Sphe-GMM ρ + k kp 407 CF

Table 1: Properties of the HDDC models: ρ = kp + k − 1 is the number of
parameters required for the estimation of means and proportions, τ̄ =

∑k

i=1 di[p−
(di + 1)/2] and τ = d[p − (d + 1)/2] are the number of parameters required for
the estimation of Q̃i and Q̃, and D =

∑k

i=1 di. For asymptotic orders, we assume
that k ≪ d ≪ p. CF means that the ML estimates are closed form. IP means
that the ML estimation needs an iterative procedure. FG means that the ML
estimation requires the iterative FG algorithm.
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The reader could refer to [23] for further informations on the EM algorithm

and its extensions. In particular, the models presented in this paper can be

also used in the Classification EM (CEM) and Stochastic EM (SEM) algorithms

presented in [7]. Using the parameterization presented in the previous section,

the EM algorithm for estimating the parameters θ = {πi, µi, Σi, aij , bi, Qi, di} can

be written as detailed in the following.

4.1 The E step

This step computes, at iteration q and for each i = 1, ..., k and j = 1, ..., n, the

conditional probability t
(q)
ij = P(xj ∈ C

(q−1)
i |xj) which can be written from (1)

and using the Bayes formula as follows:

t
(q)
ij = P(xj ∈ C

(q−1)
i |xj) =

π
(q−1)
i φ(xj, θ

(q−1)
i )

∑k

ℓ=1 π
(q−1)
ℓ φ(xj , θ

(q−1)
ℓ )

.

We can observe that the conditional probability t
(q)
ij that xj belongs to the class

Ci at iteration q is mainly based on the quantity π
(q−1)
i φ(xj , θ

(q−1)
i ). Here, we

will formulate the probability t
(q)
ij using the parameters of the model [aijbiQidi]

presented in the previous section. In order not to overload the equations, we

will omit the index of the current iteration q in the remainder of this paragraph.

Writing φ(x, θi) with the new class conditional covariance matrix ∆i, we obtain:

−2 log(φ(x, θi)) = (x − µi)
t(Qi∆iQ

t
i)

−1(x − µi) + log(det ∆i) + p log(2π).

Moreover, Qt
iQi = Id and consequently:

−2 log(φ(x, θi)) =
[

Qt
i(x − µi)

]t
∆−1

i

[

Qt
i(x − µi)

]

+ log(det ∆i) + p log(2π).

Given the structure of ∆i, we obtain:

−2 log(φ(x, θi)) = ‖Q̃i

t
(x−µi)‖

2
Λi

+
1

bi

‖(Qi − Q̃i)
t
(x−µi)‖

2+log(det ∆i)+p log(2π),

where ‖.‖2
Λi

is the Mahalanobis distance associated with the matrix Λi = Q̃i∆iQ̃i

t
.

Using the definitions of Pi and P⊥

i (cf. Paragraph 3.1) and in view of Figure 1,
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we obtain:

−2 log(φ(x, θi)) = ‖µi − Pi(x)‖2
Λi

+
1

bi

‖x − Pi(x)‖2 + log(det ∆i) + p log(2π).

The relation log(det ∆i) =
∑di

j=1 log(aij)+(p−di) log(bi) allows to conclude that:

tij = 1/

k
∑

ℓ=1

exp

(

1

2
(Ki(xj) − Kℓ(xj))

)

,

where Ki(x) = −2 log(πiφ(x, θi)) is called the cost function and is defined by:

Ki(x) = ‖µi−Pi(x)‖2
Λi

+
1

bi

‖x−Pi(x)‖2 +

di
∑

j=1

log(aij)+(p−di) log(bi)−2 log(πi).

(3)

We can observe that Ki(x) is mainly based on two distances: the distance between

the projection of x on Ei and the mean of the class and the distance between

the observation and the subspace Ei. This cost function favours the assignment

of a new observation to the class for which it is close to the subspace and for

which its projection on the class subspace is close to the mean of the class. The

variance terms aij and bi balance the importance of both distances. For example,

if the data are very noisy, i.e. bi is large, it is natural to balance the distance

‖x − Pi(x)‖2 by 1/bi in order to take into account the large variance in E
⊥

i .

4.2 The M step

This step maximizes at iteration q the conditional likelihood and uses the follow-

ing update formulas. The proportions and the means of the mixture are estimated

by:

π̂
(q)
i =

n
(q)
i

n
, µ̂

(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij xj ,

where n
(q)
i =

∑n

j=1 t
(q)
ij . Moreover, the update formula for the covariance matrix

of the fuzzy class Ci is:

Σ̂
(q)
i =

1

n
(q)
i

n
∑

j=1

t
(q)
ij (xj − µ̂

(q)
i )(xj − µ̂

(q)
i )t.

11



The estimation of the specific parameters of HDDC is detailed below. Proofs of

the following results are given in the appendix.

Models with free orientations The ML estimators of model parameters are

closed form for this category of models.

– Subspace Ei: the di first columns of Qi are estimated by the eigenvectors

associated with the di largest eigenvalues λij of Σ̂i.

– Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is the

mean of the (p − di) smallest eigenvalues of Σ̂i and can be written as follows:

b̂i =
1

(p − di)

(

Tr(Σ̂i) −
di
∑

j=1

λij

)

. (4)

– Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p − ξ)

(

Tr(Ŵ ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

. (5)

– Model [aibiQidi]: the estimator of bi is given by (4) and the estimator of ai is:

âi =
1

di

di
∑

j=1

λij. (6)

– Model [abiQidi]: the estimator of bi is given by (4) and the estimator of a is:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij . (7)

– Model [aibQidi]: the estimators of ai and b are respectively given by (6) and

(5).

– Model [abQidi]: the estimators of a and b are respectively given by (7) and (5).

– Models with common dimensions: the estimators of the models with common

dimensions di can be obtained from the previous ones by replacing the values di

12



by d for each i = 1, ..., k. In this case, equations (5) and (7) can be simplified as:

â =
1

d

d
∑

j=1

λj, (8)

b̂ =
1

(p − d)

(

Tr(Ŵ ) −
d
∑

j=1

λj

)

, (9)

where λj is the jth largest eigenvalue of the estimated within-covariance matrix

Ŵ =
∑k

i=1 π̂iΣ̂i.

– Model [ajbiQid]: the estimator of aj is âj = λj and the estimator of bi is given

by (4).

– Model [ajbQid]: the estimator of aj is âj = λj and the estimator of b is given

by (9).

Models with common orientations Here, we assume in addition that the

dimensions di are common between classes. The following ML estimators require

an iterative procedure.

– Subspace Ei: Given ai and bi, the d first columns of Q are estimated by the

eigenvectors associated to the d largest eigenvalues of the matrix M defined by:

M(a1, ..., ak, b1, ..., bk) =
k
∑

i=1

ni(
1

bi

−
1

ai

)Σ̂i.

– Model [aibiQd]: given Q, the estimator of ai and bi are:

âi(Q) =
1

d

d
∑

j=1

qt
jΣ̂iqj , (10)

b̂i(Q) =
1

(p − d)

(

Tr(Σ̂i) −
d
∑

j=1

qt
jΣ̂iqj

)

. (11)

– Model [aibQidi]: given Q, the estimator of ai is given by (10) and the estimator

of b is:

b̂(Q) =
1

(p − d)

(

Tr(Ŵ ) −
d
∑

j=1

qt
jŴ qj

)

. (12)
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– Model [abiQd]: given Q, the estimator of bi is defined by (11) and the estimator

of a is:

â(Q) =
1

d

d
∑

j=1

qt
jŴ qj . (13)

– Model [aibQd]: given Q, the estimators of ai and b are respectively given by

(10) and (12).

For example, it is possible to use the following iterative procedure to estimate

the parameters associated to the model [aibiQd]:

– Initialization: the d first columns of Q(0) are the eigenvectors associated with

the d largest eigenvalues of Ŵ .

– Until convergence: a
(ℓ)
i = âi(Q

(ℓ−1)), b
(ℓ)
i = b̂i(Q

(ℓ−1)) and the d first columns

of Q(ℓ) are the eigenvectors associated to the d largest eigenvalues of the matrix

M(a
(ℓ)
1 , ..., a

(ℓ)
k , b

(ℓ)
1 , ..., b

(ℓ)
k ).

Models with common covariance matrices In this category of models, the

parameters can be estimated in closed form.

– Subspace Ei: the d first columns of the matrix Q are the eigenvectors associated

to the d largest eigenvalues of Ŵ .

– Model [ajbQd]: the estimator of aj is âj = λj and the estimator of b is given

by (9).

– Model [abQd]: the estimator of a and b are respectively given by (8) and (9).

4.3 Hyper-parameters estimation

Within the M step, we also have to estimate the intrinsic dimensions of each

subclass. This is a difficult problem with no unique technique to use. Our

approach is based on the eigenvalues of the class conditional covariance matrix

Σi of the class Ci. The jth eigenvalue of Σi corresponds to the fraction of the

full variance carried by the jth eigenvector of Σi. We estimate the class specific

dimension di, i = 1, ..., k, with the empirical method scree-test of Cattell [6] which

analyzes the differences between eigenvalues in order to find a break in the scree.

The selected dimension is the one for which the subsequent differences are smaller
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Figure 2: Estimation of the intrinsic dimension di using the scree-test of Cat-
tell: plot of ordered eigenvalues of Σi (left) and differences between consecutive
eigenvalues (right).

than a threshold. Figure 2 illustrates this method: the graph on the right shows

that the differences between eigenvalues after the fourth one are smaller than the

threshold (dashed line). Thus, in this case, four dimensions will be chosen and

this corresponds indeed to a break in the scree (left graph). In our experiments,

the threshold is chosen using the probabilistic criterion BIC [32] which consist in

minimizing:

BIC(m) = −2 log(L) + ν(m) log(n),

where ν(m) is the number of parameters of the model m given in Table 1 for

HDDC, L is the likelihood and n is the number of observations. In the case

of common intrinsic dimensions between the groups, the dimension d is directly

determined using BIC. The second hyper-parameter to estimate in any clustering

method is the number of groups k. A classical approach is to use BIC to select

the number of groups and we follow this way in the experiments presented in

Section 5.

4.4 Numerical considerations

We can observe in (3) that the cost function Ki does not use the projection

on the subspace E
⊥

i and consequently does not require the estimation of the

(p− di) smallest eigenvalues of Σ̂i and their associated eigenvectors. In addition,

the computation of ML estimators of parameters bi takes benefit of the relation

15



∑p

j=di+1 λij = Tr(Σ̂i) −
∑di

j=1 λij, for each i = 1, ..., k. This avoid numerical

problems due to the singularity of the covariance matrix Σ̂i. Indeed, if the co-

variance matrix Σ̂i is not of full rank, the smallest eigenvalues are equal to zero

and the corresponding eigenvectors are ill-estimated. Furthermore, the models

Full-GMM and Com-GMM need to invert the covariance matrices Σ̂i which usu-

ally fails because of the singularity of the matrices. It exists nevertheless some

solutions, as the ones presented in [21], to overcome this problem for the models

Full-GMM and Com-GMM. In contrast, this problem does not arise with HDDC

since the M step, based on the cost function Ki, does not require the inversion

of the covariance matrices Σ̂i. Finally, for each class, the di first eigenvalues

and their associated eigenvectors are computed using the Arnoldi method [22]

which provides only the largest eigenvalues and the associated eigenvectors of a

ill-conditioned matrix.

5 Experimental results

In this section, we present results for artificial and real datasets illustrating the

main features of HDDC. In the following experiments, HDDC will be compared

to 3 classical Gaussian mixture models: GMM with full covariance matrices for

each class (Full-GMM), with diagonal covariance matrices (Diag-GMM), with

spherical covariance matrices (Sphe-GMM). A numerical regularization was nec-

essary to invert the covariance matrices in the clustering method associated to

the model Full-GMM, so that it is able to work with data of dimension larger

than 50.

5.1 Simulation study: model selection

Given that HDDC is a model-based clustering method, the well-known criterion

BIC can be used for selecting the best adapted model to the data. Here, we

used BIC and the cluster recognition rate to compare the different models of

HDDC. The cluster recognition rate can be computed since we know the true

partitions and is the maximum rate over the correct matchings between the true

groups and the found clusters. It is impossible to report in this section numerical

experiments for all the discussed models. Therefore, we limit ourselves to models
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Simulated HDDC model
data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 357 373 349 359 349 360
[aijbQidi] 403 404 397 396 397 397
[aibiQidi] 389 419 377 391 377 394
[aibQidi] 438 440 419 419 420 420
[abiQidi] 399 433 380 402 384 403
[abQidi] 456 451 428 427 434 433

Table 2: BIC value for the HDDC models on different simulated datasets (the
best ones are in bold).

Simulated HDDC model
data model [aijbiQidi] [aijbQidi] [aibiQidi] [aibQidi] [abiQidi] [abQidi]

[aijbiQidi] 0.967 0.828 0.973 0.919 0.975 0.903
[aijbQidi] 0.730 0.727 0.779 0.782 0.758 0.751
[aibiQidi] 0.979 0.871 0.983 0.929 0.986 0.917
[aibQidi] 0.826 0.800 0.882 0.863 0.875 0.865
[abiQidi] 0.965 0.825 0.980 0.844 0.952 0.822
[abQidi] 0.712 0.752 0.797 0.793 0.711 0.707

Table 3: Cluster recognition rate for the HDDC models on different simulated
datasets (the best ones are in bold).

with free orientations since we believe that these models are able to tackle different

situations. We performed extensive simulations (50 replications for each of the

6 data models) and then used the 6 different models with free orientations in

HDDC to cluster the simulated data. For each dataset, we simulated 3 Gaussian

densities in R
100 according to one of the 6 models with free orientations, i.e.

free matrices Qi, and with the following parameters: {d1, d2, d3} = {2, 5, 10},

{π1, π2, π3} = {0.4, 0.3, 0.3} and close means and random matrices Qi. Each one

of the 6 datasets was made of 1000 points. Tables 2 and 3 present respectively

the BIC value and the cluster recognition rate on average for the 6 considered

HDDC models on the different simulated datasets. First of all, it appears that

BIC and the cluster recognition rate select in general the same models and this

confirm that BIC is a useful tool in model-based clustering. Not surprisingly,

the models used to simulate the data obtain small BIC values and satisfying

cluster recognition rates. However, it appears that the model [aibiQidi] is usually

selected by BIC as the best model and its cluster recognition rates are very good

for each type of simulated data. Thus, the model [aibiQidi] seems to have the right
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Nb of groups k Dimensions di BIC value
2 2,16 414
3 2,5,10 407

4 2,2,5,10 414
5 2,5,5,10,12 416
6 2,5,6,10,10,12 424

Table 4: Selection of the number of groups using BIC with the model [aibiQidi]
of HDDC: data are made of 3 groups with intrinsic dimensions di = {2, 5, 10}.

number of degrees of freedom and the assumptions that ∆i has only 2 different

eigenvalues is an efficient way to regularize the estimation of ∆i. Note that the

models [aibQidi] and [abiQidi] are also often selected by BIC and provide good

cluster recognition rates.

5.2 Simulation study: hyper-parameters selection

Here, we are interested in the selection of the number of groups and of the

intrinsic dimension of the clusters. In this experiment, we simulated 3 Gaus-

sian densities in R
100 according to the model [aibiQidi] with the following pa-

rameters: {d1, d2, d3} = {2, 5, 10}, {π1, π2, π3} = {0.4, 0.3, 0.3}, {a1, a2, a3} =

{150, 100, 75}, {b1, b2, b3} = {15, 15, 15}, close means and random matrices Qi.

The dataset was made of 1000 points. Table 4 presents the choices of group in-

trinsic dimensions for the different values of k and the corresponding BIC values.

First of all, it appears that the criterion BIC can be successfully used for choos-

ing the number of clusters as in standard Gaussian mixture models. Indeed, we

computed the BIC value associated to the model [aibiQidi] for different values of

k, the number of groups, and BIC indicates that the most likely value is k = 3

which is correct. In addition, the intrinsic dimensions di, estimated by HDDC for

k = 3, are indeed the ones of the simulated data. It is also interesting to observe

the evolution of the estimation of dimensions di according to the number of clus-

ters. For instance, if we consider the case of a mixture of 2 Gaussian densities,

HDDC seems to correctly fit the first 2-dimensional cluster and create a second

cluster made of the two other real groups. In addition, the estimated dimension

of this second cluster is approximately the sum of the intrinsic dimensions of the
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two real groups. Similarly, for k = 4, HDDC divides the first real group into

two new clusters with intrinsic dimensions equal to 2. We can conclude that our

approach for dimension estimation works well and allows to correctly identify the

cluster subspaces.

5.3 Simulation study: influence of the dimensionality

In this paragraph, we highlight the dimensionality effect on the different cluster-

ing methods. For this last simulation study, we simulated 3 Gaussian densities in

R
p, p = 20, ..., 100, according to the model [aibiQidi] with the same parameters

as in the previous experiment. The performance of methods is measured by the

average cluster recognition rate computed on 50 replications. The studied clus-

tering methods were initialized using the same random partition. Figures 3 and 4

respectively show the influence of the dimensionality on the BIC value and the

cluster recognition rate for different Gaussian mixture models: model [aibiQidi]

of HDDC, Full-GMM, Diag-GMM and Sphe-GMM. It is not surprising to observe

on Figure 3 that BIC selects the model [aibiQidi] as the best model since the data

are simulated according to this model. However, it interesting to remark that, the

more the dimension increases, the larger the difference between the BIC values of

the different models is, and that in favour of the model [aibiQidi]. Figure 4 shows

that data dimensionality does not influence the performance of HDDC which is

very close to the performance of the Bayes decision rule (computed with the true

densities). In addition, HDDC provides a cluster recognition rate similar to Full-

GMM in low dimensions. Full-GMM is known to be very sensitive to the data

dimensionality and, indeed, gives bad results as soon as the dimension increases.

The models Diag-GMM and Sphe-GMM cannot correctly fit the data since they

are too parsimonious for this complex dataset. However, we can observe that

Sphe-GMM is not sensitive to the data dimensionality whereas Diag-GMM is.

To summarize, HDDC is not sensitive to the dimensionality and works very well

both in low and in high-dimensional spaces. In addition, the model [aibiQidi]

outperforms models requiring a higher number of parameters (Full-GMM) and

models requiring a smaller number of parameters (Diag-GMM and Sphe-GMM).
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Figure 3: Influence of the dimensionality on the BIC value for different Gaussian
mixture models.
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Figure 4: Influence of the dimensionality on cluster recognition rate for different
Gaussian mixture models.
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5.4 Real data study: comparison with variable selection

In this experiment, we compare HDDC with the method of variable selection

for model-based clustering presented by Raftery et al. in [28], denoted by VS-

GMM in the following. The authors considered the variable selection problem as

a model selection problem. Selection is made using approximate Bayes factors

and combined with a greedy search algorithm. In addition, it is possible to

perform this variable selection on the original variables, but also on the principal

components using PCA as a pre-processing step. In order to compare HDDC

to this variable selection technique, we used the same dataset as in [28]. The

Leptograpsus crabs dataset consists of 200 subjects equally distributed into 4

classes: Orange Male, Orange Female, Blue Male and Blue Female. There are

5 variables for each subject: width of frontal lip (FL), rear width (RW), length

along the mid-line of the carapace (CL), maximum of the width of the carapace

(CW) and body depth (BD) in mm. The left panel of Figure 5 shows the Crabs

data projected on the two first principal axes and the big circles represent the

cluster means.

Table 5 gives the classification error rate for the classical model Sphe-GMM,

the VS-GMM method and HDDC. The second column of this table indicates on

which variables is performed the clustering. HDDC obtains a cluster recognition

rate equal to 95% and the variable selection method of Raftery et al. obtains

93.5% whereas the classical model Sphe-GMM obtains a cluster recognition rate

equal to 60.5%. HDDC found that each cluster lives in a 1-dimensional subspace

embedded into the original 5-dimensional space. The right panel of Figure 5

shows the specific subspaces (blue lines) of the 4 mixture components obtained

with the model [aibiQidi] of HDDC. For this illustration, we chose to project the

data on the two first principal components since results obtained with VS-GMM

on these variables are better than on the original ones. We can observe that the

specific axes of the different clusters are very correlated and this explains that

HDDC provides a better clustering result than the variable selection method

VS-GMM. Figure 6 presents the 12 steps of the EM algorithm in order to show

the evolution of the group-specific subspaces into HDDC. We can conclude that

HDDC is able to fit the clusters in their specific subspaces whereas the other

methods select only the best dimensions for clustering.

21



Model Variables Cluster recognition rate
Sphe-GMM Original 0.605
VS-GMM Original 0.925

Sphe-GMM Princ. comp. 0.605
VS-GMM Princ. comp. 0.935

HDDC [aibiQidi] Original 0.950

Table 5: Classification results for the Crabs data: comparison of different model-
based clustering methods.
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Figure 5: Clustering results using HDDC: on the left panel, crabs data projected
on the two first principal axes and, on the right panel, clustering result obtained
with the model [aibiQidi] of HDDC and the estimated specific subspaces of the
mixture components (blue lines).
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Figure 6: The steps of the EM-based algorithm HDDC on the Crabs dataset and
the estimated specific subspaces of the mixture components (blue lines).
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5.5 Real data study: Martian surface characterization

Here, we propose to use HDDC to analyze and segment images of the Martian

surface. Visible and near infrared imaging spectroscopy is a key remote sensing

technique to study and monitor the system of the planets. Imaging spectrometers,

which are inboard of an increasing number of satellites, provide high-dimensional

hyper-spectral images. Constant technological improvements promote the acqui-

sition of dramatically expanding image collections. In March 2004, the OMEGA

instrument (Mars Express, ESA) [4] has collected 310 Gbytes of raw images. The

OMEGA imaging spectrometer has mapped the Martian surface with a spatial

resolution varying between 300 to 3000 meters depending on spacecraft altitude.

It acquires for each resolved pixel the spectrum from 0.36 to 5.2 µm in 256 con-

tiguous spectral channels. OMEGA is designed to characterize the composition

of surface materials, discriminating between various classes of silicates, hydrated

minerals, oxides and carbonates, organic frosts and ices. For this experiment,

we considered a 300 × 128 image of the Martian surface and a 256-dimensional

spectral observation is associated to each of the 38 400 pixels. The image of the

studied zone is presented on the left panel of Figure 7. According to the experts,

there are k = 5 mineralogical classes to identify.

The right image of Figure 7 shows the segmentation obtained with the model

[aibiQidi] of HDDC. First of all, we can observe that the segmentation of HDDC

is very precise on the major part of the image. The poor results of the top right

part of the image are due to the planet curvature and could be corrected. In

particular, the experts of the domain appreciated that our method is able to

detect that a melange of ice and carbonate is present around the ice zones (clear

zones of the image). Figure 8 shows the spectral means of the 5 classes and this

allows the experts to determine the mineralogical and molecular composition

of each class. We remind that this study is done without taking into account

the spatial relations between the pixels of a image. A natural extension of this

work is therefore to combine HDDC with the modeling of the spatial relations

using, for example, hidden Markov random fields. This experiment demonstrates

that HDDC can be efficiently used on real high-dimensional data and with large

datasets. In addition, a major interest of the use of HDDC for this application is

to be able to provide posterior probabilities that each pixel belongs to the classes.
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Figure 7: Characterization of the Martian surface composition using HDDC: on
the left, image of the studied zone and, on the right, segmentation using HDDC
on the 256-dimensional spectral data associated to the image.
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Figure 8: Spectral means of the 5 mineralogical classes found using HDDC.

25



6 Conclusion

We introduced in this paper a family of Gaussian mixture models designed for

high-dimensional data which assume that the intrinsic dimensionality of each

mixture component is much smaller than the dimensionality of the original space.

In addition, the proposed models assume that outside the specific subspace of

each group the variance is modeled by a single parameter and corresponds to

the noise. It is also possible to add constraints on the parameters within or

between the groups and this allows to obtain several regularized models. This

parameterization in the eigenspaces of the mixture components gives rise to an

EM-based clustering method, called High-Dimensional Data Clustering (HDDC).

Experiments on artificial and real datasets demonstrated the effectiveness of the

different model of HDDC compared to classical Gaussian mixture models. In

particular, the model [aibiQidi] provides very satisfying results for many types of

data.

A Appendix: parameters estimation

First of all, we introduce the following useful formulation of the log-likelihood:

− 2 log(L) =

k
∑

i=1

ni

p
∑

j=1

(

log(δij) +
1

δij

qt
ijΣ̂iqij

)

+ cst, (14)

where δij is the jth diagonal coefficient of ∆i and qij is the jth column of Qi. We

refer to [11] for a demonstration of this result.

A.1 Models with free orientations

Subspace Ei: The log-likelihood is to be maximized under the constraint qt
ijqij =

1, which is equivalent to finding a saddle point of the Lagrange function:

L = −2 log(L) −

p
∑

j=1

θij(q
t
ijqij − 1),
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where θij are the Lagrange multipliers. Using the expression (14) of the log-

likelihood, the gradient of L with respect to qij is:

∇qij
L = 2

ni

δij

Σ̂iqij − 2θijqij ,

and by multiplying this quantity on the left by qt
ij, we obtain:

qt
ij∇qij

L = 0 ⇔ θij =
ni

δij

qt
ijΣ̂iqij.

Consequently, Σ̂iqij =
θijδij

ni
qij and thus qij is the eigenvector of Σ̂i associated

with the eigenvalue λij =
θijδij

ni
= qt

ijΣ̂iqij . As the vectors qij are eigenvectors of

the symmetric matrix Σ̂i, this implies that qt
ijqiℓ = 0 if j 6= ℓ. The log-likelihood

can therefore be re-written as follows:

−2 log(L) =
k
∑

i=1

ni

(

di
∑

j=1

(

log(aij) +
λij

aij

)

+

p
∑

j=di+1

(

log(bi) +
λij

bi

)

)

+ cst,

and, using the relation
∑p

j=di+1 λij = Tr(Σ̂i) −
∑di

j=1 λij , we obtain:

−2 log(L) =

k
∑

i=1

ni

(

di
∑

j=1

log(aij) + (p − di) log(bi) +
Tr(Σ̂i)

bi

+

di
∑

j=1

(

1

aij

−
1

bi

)

λij

)

+cst.

(15)

Thus, minimizing −2 log(L) with respect to λij is equivalent to minimizing the

quantity
∑k

i=1 ni

∑di

j=1(
1

aij
− 1

bi
)λij . Since ( 1

aij
− 1

bi
) < 0, ∀j = 1, ..., di, λij must

therefore be as larger as possible. Thus, the column vector qij , ∀j = 1, ..., di, is

estimated by the eigenvector associated to the jth largest eigenvalue of Σ̂i.

Model [aijbiQidi]: starting from equation (15), the partial derivative of−2 log(L)

with respect to aij and bi are:

−2
∂ log(L)

∂aij

= ni

(

1

aij

−
λij

a2
ij

)

and −2
∂ log(L)

∂bi

=
ni(p − di)

bi

−
ni

b2
i

(

Tr(Σ̂i) −
di
∑

j=1

λij

)

.
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The condition ∂ log(L)
∂aij

= 0 implies that âij = λij and the condition ∂ log(L)
∂bi

= 0

implies that:

b̂i =
1

(p − di)

(

Tr(Σ̂i) −
di
∑

j=1

λij

)

.

Model [aijbQidi]: the partial derivative of −2 log(L) with respect to b is:

−2
∂ log(L)

∂b
=

n(p − ξ)

b
−

1

b2

k
∑

i=1

ni

(

Tr(Σ̂i) −
di
∑

j=1

λij

)

,

and the condition ∂ log(L)
∂b

= 0 proves that:

b̂ =
1

(p − ξ)

(

Tr(Ŵ ) −
k
∑

i=1

π̂i

di
∑

j=1

λij

)

.

Model [aibiQidi]: from (15), the partial derivative of −2 log(L) with respect to

ai is:

−2
∂ log(L)

∂ai

=
nidi

ai

−
ni

a2
i

di
∑

j=1

λij,

and the condition ∂ log(L)
∂ai

= 0 implies that:

âi =
1

di

di
∑

j=1

λij.

Model [abiQidi]: the partial derivative of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nξ

a
−

1

a2

k
∑

i=1

ni

di
∑

j=1

λij,

and the condition ∂ log(L)
∂a

= 0 gives:

â =
1

ξ

k
∑

i=1

π̂i

di
∑

j=1

λij .
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Model [ajbiQid]: the partial derivative of −2 log(L) with respect to aj is:

−2
∂ log(L)

∂aj

=
n

aj

−
1

a2
j

k
∑

i=1

niλij .

The condition ∂ log(L)
∂aj

= 0 and the relation
∑k

i=1 niλij = nλj imply that âj = λj.

A.2 Models with common orientations

Subspace Ei: Starting from the likelihood expression (14), we can write:

−2 log(L) =
k
∑

i=1

ni

d
∑

j=1

(

log(ai) +
1

ai

qt
jΣ̂iqj

)

+
k
∑

i=1

ni

p
∑

j=d+1

(

log(bi) +
1

bi

qt
jΣ̂iqj

)

+ cst,

=

k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) +

d
∑

j=1

qt
jAqj +

p
∑

j=d+1

qt
jBqj + cst,

where A =
∑k

i=1
ni

ai
Σ̂i and B =

∑k

i=1
ni

bi
Σ̂i. Note that

∑p

j=d+1 qt
jBqj can be

written using the trace of B:
∑p

j=d+1 qt
jBqj = Tr(B) −

∑d

j=1 qt
jBqj . This yields:

− 2 log(L) =
k
∑

i=1

ni (d log(ai) + (p − d) log(bi)) −
d
∑

j=1

qt
j(B − A)qj + Tr(B) + cst.(16)

Consequently, the gradient of L = −2 log(L) −
∑p

j=1 θj(q
t
jqj − 1) with respect to

qj is:

∇qj
L = −2(B − A)qj − 2θjqj ,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 is equivalent to

(B −A)qj = −θjqj which means that qj is eigenvector of the matrix (B −A). In

order to minimize the quantity −2 log(L), the d first columns of Q must be the

eigenvectors associated with the d largest eigenvalues of (B − A).
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Model [aibiQd]: Starting from equation (16), the partial derivatives of−2 log(L)

with respect to ai and bi are:

−2
∂ log(L)

∂ai

=
nid

ai

−
ni

a2
i

d
∑

j=1

qt
jΣ̂iqj and−2

∂ log(L)

∂bi

=
ni(p − d)

bi

−
ni

b2
i

(

Tr(Σ̂i) −
d
∑

j=1

qt
jΣ̂iqj

)

.

The condition ∂ log(L)
∂ai

= 0 and ∂ log(L)
∂bi

= 0 give respectively:

âi(Q) =
1

d

d
∑

j=1

qt
jΣ̂iqj and b̂i(Q) =

1

(p − d)

(

Tr(Σ̂i) −
d
∑

j=1

qt
jΣ̂iqj

)

.

Model [aibQd]: The partial derivative of −2 log(L) with respect to b is:

−2
∂ log(L)

∂b
=

n(p − d)

b
−

n

b2

(

Tr(Ŵ ) −
d
∑

j=1

qt
jŴ qj

)

,

and the condition ∂ log(L)
∂b

= 0 implies that:

b̂(Q) =
1

(p − d)

(

Tr(Ŵ ) −
d
∑

j=1

qt
jŴ qj

)

.

Model [abiQd]: The partial derivative of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nd

a
−

n

a2

d
∑

j=1

qt
jŴ qj ,

and the condition ∂ log(L)
∂a

= 0 proves that:

â(Q) =
1

d

d
∑

j=1

qt
jŴ qj .
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A.3 Models with common covariance matrices

Subspace Ei: The log-likelihood can be written as follows:

−2 log(L) = n

(

d
∑

j=1

log(aj) + (p − d) log(b) +
Tr(Ŵ )

b
+

d
∑

j=1

(

1

aj

−
1

b

)

qt
jŴ qj

)

+cst.

The gradient of L = −2 log(L) −
∑p

j=1 θj(q
t
jqj − 1) with respect to qj is:

∇qj
L = 2n(

1

aj

−
1

b
)Ŵqj − 2θjqj,

where θj is the jth Lagrange multiplier. The relation ∇qj
L = 0 implies that qjis

eigenvector of Ŵ . In order to minimize −2 log(L), the first columns of Q must

be the eigenvectors associated to the d largest eigenvalues of Ŵ .

Model [ajbQd]: The partial derivatives of −2 log(L) with respect to aj and b

are:

−2
∂ log(L)

∂aj

=
n

aj

−
n

a2
j

qt
jŴ qj and −2

∂ log(L)

∂b
=

n(p − d)

b
−

n

b2

p
∑

j=d+1

qt
jŴ qj .

The condition ∂ log(L)
∂ai

= 0 implies that âj = λj. The combination of the condition
∂ log(L)

∂b
= 0 with the relation

∑p

j=d+1 λj = Tr(Ŵ ) −
∑d

j=1 λj gives the estimator

of b:

b̂ =
1

(p − d)

(

Tr(Ŵ ) −
d
∑

j=1

λj

)

.

Model [abQd]: The partial derivatives of −2 log(L) with respect to a is:

−2
∂ log(L)

∂a
=

nd

a
−

n

a2

d
∑

j=1

qt
jŴ qj ,

and the condition ∂ log(L)
∂a

= 0 implies that:

â =
1

d

d
∑

j=1

λj.
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