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We propose a general mechanism ofrandom-field-induced order(RFIO) by studying a case of classical
ferromagneticXY model in a random uniaxial field which breaks the continuous symmetry of the model. We
prove rigorously that the system has spontaneous magnetization at temperatureT = 0, and we present strong
evidence that this is also the case for smallT > 0. We discuss generalizations of this mechanism to various
classical and quantum systems. Our results shed light on controversies in existing literature, and open the way
to realize RFIO with ultracold atoms in an optical lattice.

PACS numbers: 05.30.Jp, 64.60.Cn, 75.10.Nr, 75.10.Jm

One of the most appealing effects of disorder is that even
extremely small randomness can have dramatic consequences.
The paradigmatic example in classical physics is the Ising
model for which an arbitrarily small random magnetic field
destroys magnetization even at temperature T=0 in 2D [1, 2]
but not in D > 2 [3]. The quantum physics paradigm is
Anderson localization which holds in 1D and 2D in arbi-
trarily small random potentials [4]. In this Letter, we pro-
pose an even more intriguing opposite effect where disor-
der counter-intuitively favors ordering: a general mechanism
of random-field-induced order(RFIO) by which certain spin
models magnetize at a higher temperature in the presence of
arbitrarily small disorder than in the absence of disorder,pro-
vided that a continuous symmetry of the system is broken. We
prove rigorously that a classicalXY spin model in a uniaxial
random field magnetizes spontaneously in the transverse di-
rection atT = 0, and provide strong evidence that this is also
the case forT > 0. We discuss generalizations of this mecha-
nism to classical and quantum XY and Heisenberg models in
2D and 3D. Finally, we propose three possible realizations of
the phenomenon using ultracold atoms in optical lattices.

Consider a classical spin system on the 2D square lattice
Z

2. The spin variableσi = (cos θi, sin θi) at a sitei ∈ Z
2 is

a unit vector in thexy plane. The Hamiltonian (in units of the
exchange termJ) is given by

H/J = −
∑

|i−j|=1

σi · σj − ǫ
∑

i

hi · σi. (1)

Here the first term is the standard nearest-neighbor interac-
tion of the XY-model, and the second term represents a small
random field perturbation;hi are independent, identically dis-
tributed random two-dimensional vectors.

For ǫ = 0, the model has no spontaneous magnetizationm
at any positiveT . This was first pointed out in Ref. [5], and
later developed into a class of results known as the Mermin-
Wagner-Hohenberg theorem [6] for various classical, as well
as quantum two-dimensional spin systems with continuous
symmetry. In higher dimensions the system does magnetize

at low temperatures. This follows from the spin wave analysis
[7], and has been given a rigorous proof in Ref. [8]. The im-
pact of a random field term was first addressed in Ref. [1, 2],
where it was argued that if the distribution of the random vari-
ableshi is symmetric with respect to rotations, there is no
spontaneousm at any positiveT in any dimensionD ≤ 4. A
rigorous proof of this statement was given in [2]. Both works
use crucially the rotational invariance of the distribution of the
random field variables.

Here we consider the case whenhi is directed along the
y-axis: hi = ηiey, whereey is they axis unit vector. Such
a random field obviously breaks the continuous symmetry of
the interaction and a question arises whether the model still
has no spontaneousm in 2D. This question has been given
contradicting answers in Refs. [9, 10]: while Ref. [9] predicts
that a small random field in they-direction does not change
the behavior of the model, Ref. [10] argues that it leads to the
presence of spontaneousm in the direction perpendicular to
the random field axis in low (but not arbitrarily low) temper-
atures. Both works use renormalization group analysis, with
Ref. [10] starting from a version of the Imry-Ma scaling argu-
ment to prove that the model magnetizes at zero temperature.

We first present a complete proof that the system indeed
magnetizes atT = 0, and argue that the magnetization is sta-
ble under inclusion of small thermal fluctuations. For this we
use a version of the Peierls contour argument [11], eliminating
first the possibility that Bloch walls or vortex configurations
destroy the transition.

Let us start by a rigorous analysis of the ground state. Con-
sider the system in a squareΛ with the ‘right’ boundary con-
ditions, σi = (1, 0) for the sitesi on the outer boundary of
Λ. The energy of any spin configuration decreases if we re-
place thex-components of the spins by their absolute values
and leave they-components unchanged. It follows that in the
ground state,x-components of all the spins are nonnegative.A
priori this ground state could coincide (in the infinite volume
limit) with the ground state of the Random Field Ising Model,
in which all spins have zerox-component. The following
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argument shows that this is actuallynot the case. Suppose
that the spinσi in a given sitei is aligned along the y-axis,
i.e. cos θi = 0. Since the derivative of the energy function
with respect toθi vanishes at the minimum, we obtain

∑

j:|i−j|=1

sin(θi − θj) = 0. (2)

Sincecos θi = 0, this implies
∑

j:|i−j|=1 cos θj = 0. Be-
cause in the ‘right’ ground state all spins lie in the (closed)
(right) x ≥ 0 half-plane, all terms in the above expression
are nonnegative and hence have to vanish. This means that
at all the nearest neighborsj of the sitei, the ground state
spins are directed along they-axis as well. Repeating this
argument, we conclude that the same holds for all spins, ex-
cept possibly those at the inner boundary ofΛ, i.e. the ground
state is the (unique) Random Field Ising Model ground state.
This, however, leads to a contradiction, since assuming this,
one can construct a field configuration, occurring with a pos-
itive probability, which forces the ground state spins to have
nonzerox-components. To achieve this we put strong positive
(ηi > 0) fields on the boundary of a square and strong nega-
tive fields on the boundary of a concentric smaller square. If
the fields are very weak inside the box, the spins will form a
Bloch wall, rotating gradually fromθ = π/2 to θ = −π/2.
Since such a local field configuration occurs with a positive
probability, the ground statecannot havezerox-components
everywhere. Note, that this argument applies to weak, as well
as to strong random field, so that the ground state is never,
strictly speaking, field-dominated and always exhibitsm in
thex-direction. We argue below that this effect still holds at
small positive temperatures, the critical temperature depend-
ing on the strength of the random field (and presumably going
to zero as the strength of the field increases).

To study the system at lowT , we need to ask what are
the typical low energy excitations from the ground state. For
ǫ = 0, continuous symmetry allows Bloch walls,i.e. configu-
rations in which the spins rotate gradually over a large region,
for instance from left to right. The total excitation energyof a
Bloch wall in 2D is of order one, and it is the presence of such
walls that underlies absence of continuous symmetry break-
ing. However, forǫ > 0, a Bloch wall carries additional en-
ergy, coming from changing the direction of they-component
of the spin, which is proportional to the volume of the wall
(which is of the orderL2 for a wall of linear sizeL in two
dimensions), since the ground state spins are adapted to the
field configuration, and hence overturning them will increase
the energy per site. Similarly, vortex configurations, which
are important low-energy excitations in the nonrandom XY
model, are no longer energetically favored in the presence of
a uniaxial random field.

We are thus left, as possible excitations, with sharp do-
main walls, where thex-component of the spin changes sign
rapidly. To first approximation we consider excited configu-
rations, in which spins take their ground state values, or their
reflections in they-axis. As in the standard Peierls argument
[11], in the presence of the right boundary conditions, such

configurations can be described in terms of contoursγ (do-
main walls), separating spins with positive and negativex-
components. Ifmi is the value of thex-component of the
spinσi in the right ground state, the energy of a domain wall
is the sum ofmimj over the bonds(ij) crossing the bound-
ary of the contour. The Peierls estimate shows that in our
approximation probability of such contour is bounded above
by exp(−2β

∑

(ij) mimj), with β = J/kBT .
We want to show that for a typical realization of the field

h (i.e. with probability one), the sum of these probabilities
over all contours containing the origin in their interior are
summable. It then follows that in a still lowerT , this sum
is small, and the Peierls estimate proves that the system mag-
netizes (alternatively, a simple argument shows that summa-
bility of the contour probabilities already proves existence of
spontaneousm). To show that a series of random variables is
summable with probability one, it suffices to prove summa-
bility of the series of the expected values. We present two
arguments for the last statement to hold.

If the random variablesmi are bounded away from zero,
i.e. mi >

√
c, for somec > 0, the moment generating func-

tion of the random variable
∑

(ij) mimj satisfies

E[exp(−β
∑

(ij)

mimj)] ≤ exp[−cβL(γ)], (3)

with L(γ) denoting the length of the contourγ. The sum
of the probabilities of the contours enclosing the origin is
bounded thus by

∑

γ exp[−cβL(γ)]. The standard Peierls-
Griffiths bound proves the desired summability.

The above argument does not apply if the distribu-
tion of the ground statem contains zero in its sup-
port. For unbounded distribution of the random field
this may very well be the case, and then another argu-
ment is needed. If we assume that the terms in the sum
∑

(ij) mimj are independent and identically distributed, then

E[exp(−2β
∑

(ij) mimj)] = E[exp(−2βmimj)]
L(γ) =

exp{L(γ) logE[exp(−2βmimj)]} and we just need to ob-
serve thatE[exp(−2βmimj)] → 0 as β → ∞ (since
the expression under the expectation sign goes pointwise
to zero and lies between0 and 1) to conclude that
E[exp(−2β

∑

(ij) mimj)] behaves asexp[−g(β)L(γ)] for a
positive functiong(β) with g(β) → ∞ asβ → ∞. While
mimj are not, strictly speaking, independent, it is natural to
assume that their dependence is weak,i.e. their correlation
decays fast with the distance of the corresponding bonds(ij).
The behavior of the moment generating function of their sum
is then qualitatively the same, with a renormalized rate func-
tion g(β), still diverging asβ → ∞. As before, this is enough
to carry out the Peierls-Griffiths estimate which implies spon-
taneousm in thex-direction [12].

It is thus expected that the RFIO predicted here will lead
to m of order 1 at low temperatures in systems much larger
than the correlation length of typical excitations. However,
the effect may be obscured by finite size effects, which, due
to long-range power law decay of correlations, are particu-
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larly strong in theXY model in 2D. In particular, the 2D-
XY model shows finitem in small systems [13] so that RFIO
would result in an increase of the magnetization. Our Monte-
Carlo simulations [14] in lattices up to 200×200 confirm that
this is indeed the case. For example, atT = 0.7J/kB, m
increases by 1.6% in presence of uniaxial disorder.

The effect may be generalized to other spin models, in par-
ticular those that have finite correlation length. Here we list
the most spectacular generalizations:
i) 2D Heisenberg ferromagnet (HF) in random fields of vari-
ous symmetries.Here the interaction has the same form as in
theXY case, but spins take values on a unit sphere. As for the
XY Hamiltonian, if the random field distribution has the same
symmetry as the interaction part,i.e. if it is symmetric under
rotations in three dimensions, the model has no spontaneous
m up to 4D [1, 2]. If the random field is uniaxial,e.g.oriented
along thez axis, the system still has a continuous symmetry
(rotations in thexy plane), and thus cannot have a sponta-
neousm in this plane. It cannot magnetize in thez direction
either, by the results of [2]. Curiously enough, a field distri-
bution with an intermediate symmetry may lead to symmetry
breaking. Namely, arguments fully analogous to the previ-
ous ones imply that if the random field takes values in theyz
plane with a distribution invariant under rotations, the system
will magnetize in thex direction. We are thus faced with the
possibility that planar field distribution breaks the symmetry,
which is broken neither by a field with a spherically symmet-
ric distribution nor by a uniaxial one.
ii) 3D XY and HF in a random field of various symmetries.
We have argued that the 2DXY model with a small uniax-
ial random field orders at lowT . Since in the absence of the
random field spontaneousm occurs only atT = 0, this can
be equivalently stated by saying that a small uniaxial random
field raises the critical temperatureTc of the system. By anal-
ogy, one can expect that the (nonzero)Tc of the XY model
in 3D becomes higher and comparable to that of the 3D Ising
model, in the presence of a small uniaxial field. A simple
mean field estimate suggests thatTc might increase by factor
2. The analogous estimates for the Heisenberg model in 3D
suggest increase ofTc by factor 3/2 (3) in a small uniaxial
(planar rotationally symmetric) field.
iii) Antiferromagnetic systems.By flipping every second spin,
the classical ferromagnetic models are equivalent to antiferro-
magnetic ones (on bipartite lattices). This equivalence persists
in the presence of a random field with a distribution symmet-
ric with respect to the origin. Thus the above discussion of
the impact of random fields on continuous symmetry break-
ing translates case by case to the antiferromagnetic case.
iv) Quantum systems.All of the above predicted effects
should, in principle have quantum analogues. Quantum fluc-
tuations might, however, destroy the long-range order, so each
of the discussed models should be carefully reconsidered in
the quantum case. Some models, such as the quantum spin
S = 1/2 Heisenberg model, for instance, have been widely
studied in literature [15]. The Mermin-Wagner theorem [6]
implies that the model has no spontaneousm at positive tem-

peratures in 2D. ForD > 2 spin wave analysis shows ex-
istence of spontaneousm (though a rigorous mathematical
proof of this fact is still lacking). In general, one does not
expect major differences between the behaviors of the two
models atT 6= 0. It thus seems plausible that presence of a
random field in the quantum case is going to have effects sim-
ilar to those in the classical Heisenberg model. Similarly,one
can consider the quantum Heisenberg antiferromagnet (HAF)
and expect phenomena analogous to the classical case, despite
the fact that unlike their classical counterparts, the quantum
HF and HAF systems are no longer equivalent. We expect
to observe spontaneous staggered magnetization in a random
uniaxial, or planar field HF. A possibility that a random field
in thez-direction can enhance the antiferromagnetic order in
thexy plane has been pointed out in [16].

Further understanding of the phenomena described in this
Letter may beneficiate from experimental investigations. Be-
low, we discuss possibilities to design quantum simulatorsfor
these quantum spin systems using ultracold atoms in optical
lattices (OL). Consider a two-component Bose gas confined
in an OL with on-site inhomogeneities. The low-T physics is
captured by the Bose-Bose Hubbard model (BBH) [17]:

HBBH =
∑

j

[Ub

2
nj(nj − 1) +

UB

2
Nj(Nj − 1)

+UbBnjNj

]

+
∑

j

(vjnj + VjNj) (4)

−
∑

〈j,l〉

[(

Jbb
†
jbl + JBB

†
jBl

)

+ h.c.
]

−
∑

j

(

Ωj

2
b
†
jBj + h.c.

)

wherebj andBj are the annihilation operators for both types
of Bosons in the lattice sitej, nj = b

†
jbj andNj = B

†
jBj

are the number operators, and〈j, l〉 denote a pair of adjacent
sites. In Hamiltonian (4), (i) the first term describes on-site
interactions between different types of Bosons; (ii) the second
accounts for on-site energies; (iii) the third describes quan-
tum tunneling between adjacent sites and (iv) the fourth trans-
forms one Boson type into the other with a probability ampli-
tude|Ω|/~. The last term can be implemented with an optical
two-photon Raman process if the two Bosonic ‘species’ cor-
respond to two internal states of the same atom. Possibly, both
on-site energiesvj , Vj and the Raman complex amplitudeΩj

can be made site-dependent using speckle laser light [18].
Consider the limit of strong repulsive interactions (0 <

Jb, JB, |Ωj | ≪ Ub, UB, UBb) and a total filling factor of1
(i.e. the total number of particles equals the number of lat-
tice sites). Proceeding as in the case of Fermi-Bose mixtures,
recently analyzed by two of the authors in [19], we derive
an effective HamiltonianHeff for the Bose-Bose mixture. In
brief, we restrict the Hilbert space to a subspaceE0 gener-
ated by{∏j |nj , Nj〉} with nj + Nj = 1 at each lattice site,
and we incorporate the tunneling terms via perturbation the-
ory as in [19]. HamiltonianHeff describes the dynamics of
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composite particleswhose annihilation operator at sitej is
Bj = b

†
jBjP , whereP the projector ontoE0.

Since the commutation relations ofBj,B†
j are those of

Schwinger Bosons [20], we may directly turn to the spin
representation [20] by definingSx

j + iSy
j = Bj andS

z
j =

1/2 − Nj , whereNj = B†
jBj. It is important to note

that since Raman processes can convertb Bosons intoB
Bosons (and respectively),

∑

j〈Nj〉 is not fixedby the total
number of Bosons of each species,i.e. the z component of
m,

∑

j〈Sz
j 〉 is not constrainted. For small inhomogeneities

(δj,l = vj − vl, ∆j,l = Vj − Vl ≪ Ub, Ub, UbB), Hamiltonian
Heff is then equivalent to the anisotropic HeisenbergXXZ
model [20] in a random field:

Heff = −J⊥

∑

〈j,l〉

(

S
x
j S

x
l + S

y
jS

y
l

)

− Jz

∑

〈j,l〉

S
z
jS

z
l

−
∑

j

(

hx
j S

x
j + hy

jS
y
j + hz

jS
z
j

)

(5)

whereJ⊥ = 4JbJB/UbB, Jz = 2[2J2
b /Ub + 2J2

B/UB − (J2
b +

J2
B)/UbB], hx

j = ΩR
j , hy

j = −ΩI
j , hz

j = Vj − ζJz/2, with ζ

the lattice coordination number,Vj = Vj − vj + ζ[4J2
b /Ub +

4J2
B/UB − (J2

b + J2
B)/UbB] andΩj = ΩR

j + iΩI
j . In atomic

systems, all these terms can be controlled almost at will [19,
21]. In particular, by employing various possible control tools
one may reach the HF (J⊥ = Jz) andXY (Jz = 0) cases.

The quantum ferromagneticXY model in random field
may be alternatively obtained using the same BBH model, but
with strong state dependence of the optical dipole forces. One
can imagine a situation in which one component (sayb) is in
the strong interaction limit, so that only oneb atom at a site
is possible, whereas the other (B) component is Bose con-
densed and provides only a coherent ‘background’ for theb-
atoms. Mathematically, this situation is described by Eq. (4),
in whichni’s can be equal to 0 or 1 only, whereasBi’s can be
replaced by a classical complex field (condensate wave func-
tion). In this limit the spinS = 1/2 states can be associated
with the presence, or absence of ab-atom in a given site. In
this way, settingvj = 0 andΩI

j = 0, one obtains the quantum
version of theXY model (1) withJ = Jb and a uniaxial ran-
dom field in thex direction with the strength determined by
ΩR

j .
Finally, theS = 1/2 HAF model may be realized with a

Fermi-Fermi mixture at half filling for each component. This
implementation might be important for future experiments
with Lithium atoms. As recently calculated [22], the criti-
cal temperature for the Néel state in 3D is of order of 30nK.
Mean field estimates give≃ 45 (90)nK by placing the system
in a uniaxial (planar) random field, created using the same
methods as discussed above.

Similar proposals have been formulated before [23], but
none of them treat simultaneously essential aspects for the
present schemes: i) disordered fields, but not bonds; ii) arbi-
trary directions of the fields; iii) possibility of exploring Ising,
XY or Heisenberg symmetries; iv) realizing coherent source

of atoms; and v) avoiding constraints on the magnetization
along thez axis.

We acknowledge T. Roscilde for discussions and the
support of DFG (SFB 407, SPP 1116), ESF Programme
QUDEDIS, and Spanish MEC Grant FIS2005-04627. J.W.
thanks ICFO for hospitality and support.

* LCFIO is a member of the Institut Francilien de Recherche sur
les Atomes Froids (IFRAF).

[1] Y. Imry and S. Ma, Phys. Rev. Lett.35, 1399 (1975).
[2] M. Aizenman and J. Wehr, Phys. Rev. Lett.62, 2503 (1989);

Comm. Math. Phys.130, 489 (1990).
[3] J.Z. Imbrie, Phys. Rev. Lett.53, 1747 (1984); J. Bricmont and

A. Kupiainen,ibid. 59, 1829 (1987).
[4] E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V.Ra-

makrishnan, Phys. Rev. Lett.42, 673 (1979).
[5] C. Herring and C. Kittel, Phys. Rev.81, 869 (1951).
[6] D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133 (1966);

P.C. Hohenberg, Phys. Rev.158, 383 (1967).
[7] J. Zinn-Justin,Quantum Field Theory and Critical Phenomena,

(Oxford Science Publication, Oxford, 1989).
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