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We propose a general mechanismrahdom-field-induced orde(RFIO) by studying a case of classical
ferromagneticX'Y” model in a random uniaxial field which breaks the continugusreetry of the model. We
prove rigorously that the system has spontaneous magtietizs temperaturd” = 0, and we present strong
evidence that this is also the case for snTall> 0. We discuss generalizations of this mechanism to various
classical and quantum systems. Our results shed light dnov@nsies in existing literature, and open the way
to realize RFIO with ultracold atoms in an optical lattice.

PACS numbers: 05.30.Jp, 64.60.Cn, 75.10.Nr, 75.10.Jm

One of the most appealing effects of disorder is that evemt low temperatures. This follows from the spin wave analysi
extremely small randomness can have dramatic consequenc@, and has been given a rigorous proof in Rﬂf. [8]. The im-
The paradigmatic example in classical physics is the Isingact of a random field term was first addressed in Fﬂaﬂ [1, 2],
model for which an arbitrarily small random magnetic field where it was argued that if the distribution of the randoni-var
destroys magnetization even at temperature T=0 inﬂZ[ﬂ [1, 24blesh; is symmetric with respect to rotations, there is no
but notinD > 2 [. The quantum physics paradigm is spontaneous: at any positivél’ in any dimensiorD < 4. A
Anderson localization which holds in 1D and 2D in arbi- rigorous proof of this statement was given[h [2]. Both works
trarily small random potentialsﬂ[4]. In this Letter, we pro- use crucially the rotational invariance of the distribataf the
pose an even more intriguing opposite effect where disorrandom field variables.
der counter-intuitively favors ordering: a general meésian Here we consider the case whhpis directed along the
of random-field-induced ordegiRFIO) by which certain spin  y-axis: h; = n;e,, wheree, is they axis unit vector. Such
models magnetize at a higher temperature in the presence afrandom field obviously breaks the continuous symmetry of
arbitrarily small disorder than in the absence of disorges;  the interaction and a question arises whether the model stil
vided that a continuous symmetry of the system is broken. Waas no spontaneous in 2D. This question has been given
prove rigorously that a classicalY” spin model in a uniaxial contradicting answers in Refsﬂ 10]: while Reﬂ. [9] predi
random field magnetizes spontaneously in the transverse dikat a small random field in thg-direction does not change
rection atZ’ = 0, and provide strong evidence that this is alsothe behavior of the model, Ref.]10] argues that it leads ¢o th
the case fofl’ > 0. We discuss generalizations of this mecha-presence of spontaneotisin the direction perpendicular to
nism to classical and quantum XY and Heisenberg models ithe random field axis in low (but not arbitrarily low) temper-
2D and 3D. Finally, we propose three possible realizatidns oatures. Both works use renormalization group analysid) wit
the phenomenon using ultracold atoms in optical lattices.  Ref. ] starting from a version of the Imry-Ma scaling argu

Consider a classical spin system on the 2D square latticenent to prove that the model magnetizes at zero temperature.

Z®. The spin variable;; = (cos0;,sin¢;) at a sitei € Z* is We first present a complete proof that the system indeed
a unit vector in th.ecy.plane. The Hamiltonian (in units of the  magnetizes af’ = 0, and argue that the magnetization is sta-
exchange terny) is given by ble under inclusion of small thermal fluctuations. For this w
use a version of the Peierls contour argum@t [11], elinmigat
H/J =~ Z Git 05— GZ h; - 0;. @ first the possibility that Bloch walls or vortex configurat®
ji—gl=1 i

destroy the transition.
Here the first term is the standard nearest-neighbor interac Let us start by a rigorous analysis of the ground state. Con-
tion of the XY-model, and the second term represents a smatlider the system in a squatewith the ‘right’ boundary con-
random field perturbations; are independent, identically dis- ditions, o; = (1,0) for the sitesi on the outer boundary of
tributed random two-dimensional vectors. A. The energy of any spin configuration decreases if we re-
Fore = 0, the model has no spontaneous magnetization place thez-components of the spins by their absolute values
at any positivel". This was first pointed out in Ref[|[5], and and leave theg-components unchanged. It follows that in the
later developed into a class of results known as the Merminground statey-components of all the spins are nonnegative.
Wagner-Hohenberg theorerﬂ [6] for various classical, a$ welpriori this ground state could coincide (in the infinite volume
as quantum two-dimensional spin systems with continuoufimit) with the ground state of the Random Field Ising Model,
symmetry. In higher dimensions the system does magnetize which all spins have zera-component. The following



argument shows that this is actuafipt the case. Suppose configurations can be described in terms of contou(do-
that the sping; in a given sitei is aligned along the y-axis, main walls), separating spins with positive and negaiive
i.e.cos#; = 0. Since the derivative of the energy function components. Ifn; is the value of thez-component of the

with respect t@; vanishes at the minimum, we obtain sping; in the right ground state, the energy of a domain wall
) is the sum ofim,;m; over the bondsij) crossing the bound-
Y sin(0;—0;)=0. () ary of the contour. The Peierls estimate shows that in our
gili—gl=t approximation probability of such contour is bounded above
Sincecosf; = 0, this impliesy, |, . _,cosf; = 0.Be-  byexp(=253 ) mim;), with § = J/kpT.

cause in the r|ght ground State a|| Spms lie in the (cI@sed We want to show that for a typlCB.' realization of the field
(right) z > 0 half-plane, all terms in the above expressionh (i.e. with probability one), the sum of these probabilities
are nonnegative and hence have to vanish. This means th@yer all contours containing the origin in their interiorear
at all the nearest neighboysof the sitei, the ground state summable. It then follows that in a still lowdr, this sum
spins are directed along theaxis as well. Repeating this is small, and the Peierls estimate proves that the system mag
argument, we conclude that the same holds for all spins, ex2etizes (alternatively, a simple argument shows that summa
cept possibly those at the inner boundary\of.e.the ground  bility of the contour probabilities already proves existeof
state is the (unique) Random Field Ising Model ground stateSpontaneous:). To show that a series of random variables is
This, however, leads to a contradiction, since assumirgy thi Summable with probability one, it suffices to prove summa-
one can construct a field configuration, occurring with a posbility of the series of the expected values. We present two
itive probability, which forces the ground state spins teeha arguments for the last statement to hold.
nonzeraz-components. To achieve this we put strong positive If the random variables:; are bounded away from zero,
(n; > 0) fields on the boundary of a square and strong nega-€. m; > +/c, for somec > 0, the moment generating func-
tive fields on the boundary of a concentric smaller square. Ifion of the random variabl®_ ;) mim; satisfies
the fields are very weak inside the box, the spins will form a
Bloch wall, rotating gradually frond = 7/2to § = —7/2. E[eXp(—ﬁZmimj)] < exp[—cBL(7)], 3)
Since such a local field configuration occurs with a positive (i)
probability, the ground stateannot havezeroz-components _ .
everywhere. Note, that this argument applies to weak, ds wel ith L(v) denoting the length of the contogr The sum
as to strong random field, so that the ground state is neve?f the probabilities of the contours enclosing the origin is
strictly speaking, field-dominated and always exhibitsn bounded thus bE exp|—- CﬁL.( 7). The S“?r.‘dard Peierls-
the z-direction. We argue below that this effect still holds at Griffiths bound proves the desired summablll’_[y. "
small positive temperatures, the critical temperatureeddp . The above argument does not_ apply if .th(? distribu-
ing on the strength of the random field (and presumably goin%On of the ground State'?”b _con_tams zero in its sup-
to zero as the strength of the field increases). Qrt. For unbounded distribution of the random field

To study the system at loW’, we need to ask what are this may very well be the case, and then anqther argu-
the typical low energy excitations from the ground stater. Fo ment is needed_. It we assume-that.the te.rms. in the sum
¢ — 0, continuous symmetry allows Bloch wallge. configu- Z(ij) m;m; are independent and identically distributed, then
rations in which the spins rotate gradually over a largemegi  Elexp(—28 3", mim;)] = Elexp(=28mm;)|H) =
for instance from left to right. The total excitation eneafya  exp{L(7) log E[exp(—2/m;m;)]} and we just need to ob-
Bloch wall in 2D is of order one, and it is the presence of suctserve thatE[exp(—28m;m;)] — 0 asf — oo (since
walls that underlies absence of continuous symmetry breakhe expression under the expectation sign goes pointwise
ing. However, fore > 0, a Bloch wall carries additional en- to zero and lies betwee® and 1) to conclude that
ergy, coming from changing the direction of the&omponent ~ Elexp(—-233",;) mim;)] behaves asxp[—g(3)L(v)] for a
of the spin, which is proportional to the volume of the wall positive functiong(3) with g(3) — oo asf — oco. While
(which is of the orderZ? for a wall of linear sizeL in two  m;m; are not, strictly speaking, independent, it is natural to
dimensions), since the ground state spins are adapted to thssume that their dependence is weak, their correlation
field configuration, and hence overturning them will inceeas decays fast with the distance of the corresponding béiyds
the energy per site. Similarly, vortex configurations, vbhic The behavior of the moment generating function of their sum
are important low-energy excitations in the nonrandom XYis then qualitatively the same, with a renormalized ratecfun
model, are no longer energetically favored in the presefce dion ¢(3), still diverging as3 — oo. As before, this is enough
a uniaxial random field. to carry out the Peierls-Griffiths estimate which impliessp

We are thus left, as possible excitations, with sharp dotaneousn in thez-direction ].
main walls, where the-component of the spin changes sign It is thus expected that the RFIO predicted here will lead
rapidly. To first approximation we consider excited configu-to m of order 1 at low temperatures in systems much larger
rations, in which spins take their ground state values, @rth than the correlation length of typical excitations. Howgve
reflections in they-axis. As in the standard Peierls argumentthe effect may be obscured by finite size effects, which, due
[@], in the presence of the right boundary conditions, suctto long-range power law decay of correlations, are particu-
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larly strong in theXY model in 2D. In particular, the 2D- peratures in 2D. FoDD > 2 spin wave analysis shows ex-
XY model shows finiten in small systems|ﬂ3] so that RFIO istence of spontaneous (though a rigorous mathematical
would result in an increase of the magnetization. Our Monteproof of this fact is still lacking). In general, one does not
Carlo simulations([14] in lattices up to 28@00 confirm that ~ expect major differences between the behaviors of the two
this is indeed the case. For exampleTat= 0.7J/kg, m models atl’ # 0. It thus seems plausible that presence of a
increases by 1.6% in presence of uniaxial disorder. random field in the quantum case is going to have effects sim-
The effect may be generalized to other spin models, in pariar to those in the classical Heisenberg model. Similarhg
ticular those that have finite correlation length. Here vge |li can consider the quantum Heisenberg antiferromagnet (HAF)
the most spectacular generalizations: and expect phenomena analogous to the classical casegdespi
i) 2D Heisenberg ferromagnet (HF) in random fields of vari- the fact that unlike their classical counterparts, the ¢umn
ous symmetrieddere the interaction has the same form as inHF and HAF systems are no longer equivalent. We expect
the XY case, but spins take values on a unit sphere. As for thto observe spontaneous staggered magnetization in a random
XY Hamiltonian, if the random field distribution has the sameuniaxial, or planar field HF. A possibility that a random field
symmetry as the interaction paig. if it is symmetric under in the z-direction can enhance the antiferromagnetic order in
rotations in three dimensions, the model has no spontaneotiezy plane has been pointed out [n][16].
m upto4D ﬂ[:]Z] If the random field is uniaxiad,g.oriented Further understanding of the phenomena described in this
along thez axis, the system still has a continuous symmetrylLetter may beneficiate from experimental investigations: B
(rotations in thery plane), and thus cannot have a sponta-ow, we discuss possibilities to design quantum simuldimrs
neousm in this plane. It cannot magnetize in thalirection  these quantum spin systems using ultracold atoms in optical
either, by the results of][2]. Curiously enough, a field dgistr lattices (OL). Consider a two-component Bose gas confined
bution with an intermediate symmetry may lead to symmetryin an OL with on-site inhomogeneities. The low-T physics is
breaking. Namely, arguments fully analogous to the previcaptured by the Bose-Bose Hubbard model (BHH) [17]:
ous ones imply that if the random field takes values inthe

plane with a distribution invariant under rotations, theteyn Hpgr = Y [%nj(nj -1+ %N;‘(N;‘ -1
will magnetize in ther direction. We are thus faced with the J
possibility that planar field distribution breaks the syntime _ } . N
which is broken neither by a field with a spherically symmet- Uben Ny | ; (vn; +ViN;) - (4)
ric distribution nor by a uniaxial one.
i) 3D XY and HF in a random field of various symmetries. - Z [(Jbb;‘bl + JBB;‘Bl) + h-C]
We have argued that the 2BY model with a small uniax- (.0
ial random field orders at lo@'. Since in the absence of the Q4
random field spontaneous occurs only atl’ = 0, this can N Z <?bij + h'C‘)
J

be equivalently stated by saying that a small uniaxial ramdo

field raises the critical temperatufe of the system. By anal- whereb; andB; are the annihilation operators for both types
ogy, one can expect that the (nonzefo)of the XY model  of Bosons in the lattice sitg, n; = b}bj andN; = B;,Bj

in 3D becomes higher and comparable to that of the 3D Isingire the number operators, afyd!/) denote a pair of adjacent
model, in the presence of a small uniaxial field. A simplesites. In Hamiltonian[{4), (i) the first term describes ote-si
mean field estimate suggests tdatmight increase by factor interactions between different types of Bosons; (i) theosel

2. The analogous estimates for the Heisenberg model in 3Rccounts for on-site energies; (iii) the third describeargu
suggest increase df, by factor 3/2 (3) in a small uniaxial tum tunneling between adjacent sites and (iv) the fourthstra
(planar rotationally symmetric) field. forms one Boson type into the other with a probability ampli-
iif) Antiferromagnetic system®y flipping every second spin, tude|Q|/h. The last term can be implemented with an optical
the classical ferromagnetic models are equivalent toemtif ~ two-photon Raman process if the two Bosonic ‘species’ cor-
magnetic ones (on bipartite lattices). This equivalencsigis  respond to two internal states of the same atom. Possilily, bo
in the presence of a random field with a distribution symmeton-site energies;, V; and the Raman complex amplitutle

ric with respect to the origin. Thus the above discussion otan be made site-dependent using speckle laser [ight [18].
the impact of random fields on continuous symmetry break- Consider the limit of strong repulsive interactiorts

ing translates case by case to the antiferromagnetic case. Jp, Jg, |2;| < U, Ug, Usb) and a total filling factor ofl

iv) Quantum systems.All of the above predicted effects (i.e. the total number of particles equals the number of lat-
should, in principle have quantum analogues. Quantum fluctice sites). Proceeding as in the case of Fermi-Bose mixture
tuations might, however, destroy the long-range orderasb e recently analyzed by two of the authors [19], we derive
of the discussed models should be carefully reconsidered ian effective Hamiltoniart ¢ for the Bose-Bose mixture. In
the quantum case. Some models, such as the quantum sgirief, we restrict the Hilbert space to a subsp&gegener-

S = 1/2 Heisenberg model, for instance, have been widelyated by{][, |n;, N;)} with n; + N; = 1 at each lattice site,
studied in Iiterature|E5]. The Mermin-Wagner theoreﬁh [6] and we incorporate the tunneling terms via perturbation the
implies that the model has no spontanepuat positive tem-  ory as in ]. HamiltonianHe; describes the dynamics of



composite particlesvhose annihilation operator at sijeis
B; = b}BjP, whereP the projector ontd).

Since the commutation relations dﬁj,Bj. are those of
Schwinger Bosonsm!O], we may directly turn to the spin
representation[[20] by defining? + iSY = B; and S?
1/2 — Nj, whereN; = B;Bj. It is important to note
that since Raman processes can conbeBosons into B
Bosons (and respectively}, ; (N;) is not fixedby the total
number of Bosons of each speciég, the z component of
m, »;(S;) is not constrainted. For small inhomogeneities
(650 = vj — v, Aj; = V; — Vi < Uy, Up, Upg), Hamiltonian
Heg is then equivalent to the anisotropic Heisenb&rg 7
model 2] in a random field:

Het = —J1 Yy (SIS7+8YS}) —J. > SiS;
(1) (Gi1)

— > (nyS7 +hYSY + 13S3) (5)
J

whereJ | = 4JyJg/Ups, J. = 2[2J|32/Ub + 2J§/UB — (Jb2 +
Jg)/Usgl, ¥ = QF, bY = —Ql, hz = V; — ¢J. /2, with ¢
the lattice coordination numbey; = V; — v; + ¢[4JZ /Uy +
4J2/Us — (JZ + J3)/Ups] and$2; = QR + Q). In atomic

systems, all these terms can be controlled almost at @ll [19

@]. In particular, by employing various possible contomls
one may reach the HE/( = J.) andXY (J, = 0) cases.
The quantum ferromagneti&Y model in random field

4

of atoms; and v) avoiding constraints on the magnetization
along thez axis.
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