The minimality of the map $\frac{x}{\|x\|}$ for weighted energy.

Jean-Christophe Bourgoin

Laboratoire de Mathematiques et Physiques Théorique, Université de Tours, Parc Grandmont 37200 TOURS

MSC(2000) : 58E20; 53C43.

abstract

In this paper, we investigate the minimality of the map $\frac{x}{\|x\|}$ from the euclidean unit ball \mathbf{B}^{n} to its boundary \mathbb{S}^{n-1} for weighted energy functionals of the type $E_{p, f}=\int_{\mathbf{B}^{n}} f(r)\|\nabla u\|^{p} d x$, where f is a non-negative function. We prove that in each of the two following cases :
i) $p=1$ and f is non-decreasing,
i)) p is an integer, $p \leq n-1$ and $f=r^{\alpha}$ with $\alpha \geq 0$, the map $\frac{x}{\|x\|}$ minimizes $E_{p, f}$ among the maps in $W^{1, p}\left(\mathbf{B}^{n}, \mathbb{S}^{n-1}\right)$ which coincide with $\frac{x}{\|x\|}$ on $\partial \mathbf{B}^{n}$. We also study the case where $f(r)=r^{\alpha}$ with $-n+2<\alpha<0$ and prove that $\frac{x}{\|x\|}$ does not minimize $E_{p, f}$ for α close to $-n+2$ and when $n \geq 6$, for α close to $4-n$.

Keys Words : minimizing map, p-harmonic map, p-energy, weighted energy.

0.1 Introduction and statement of results

For $n \geq 3$, the map $u_{0}(x)=\frac{x}{\|x\|}: \mathbf{B}^{n} \longrightarrow \mathbb{S}^{n-1}$ from the unit ball \mathbf{B}^{n} of \mathbb{R}^{n} to its boundary \mathbb{S}^{n-1} plays a crucial role in the study of certain natural energy functionals. In particular, since the works of Hildebrandt, Kaul and Widman ([13]), this map is considered as a natural candidate to realize, for each real number $p \in[1, n)$ the minimum of the p-energy functional,

$$
E_{p}(u)=\int_{\mathbf{B}^{n}}\|\nabla u\|^{p} d x
$$

among the maps $u \in W^{1, p}\left(\mathbf{B}^{n}, \mathbb{S}^{n-1}\right)=\left\{u \in W^{1, p}\left(\mathbf{B}^{n}, \mathbb{R}^{n} ;\|u\|=1\right.\right.$ a.e. $\}$ satisfying $u(x)=x$ on \mathbb{S}^{n-1}.

This question was first treated in the case $p=2$. Indeed, the minimality of u_{0} for E_{2} was etablished by Jäger and $\operatorname{Kaul}([16])$ in dimension $n \geq 7$ and by Brezis, Coron and Lieb in dimension 3 ([2]). In [5], Coron and Gulliver proved the minimality of u_{0} for E_{p} for any integer $p \in\{1, \cdots, n-1\}$ and any dimension $n \geq 3$.

Lin ([17]) has introduced the use of the elegant null Lagrangian method (or calibration method) in this topic. Avellaneda and Lin showed the efficiency of this method in [1] where they give a simpler alternative proof to the Coron-Gulliver result. Note that several results concerning the minimizing properties of p-harmonic diffeomorphisms were also obtained in this way in particular by Coron, Helein and El Soufi, Sandier ([4], [12], [7] and [6]).

The case of non-integer p seemed to be rather difficult. It is only ten years after the Coron-Gulliver article [5], that Hardt, Lin and Wang ([10]) succeeded to prove that, for all $n \geq 3$, the map u_{0} minimizes E_{p} for $p \in$ $[n-1, n)$. Their proof is based on a deep studies of singularities of harmonic and minimizing maps made in the last two decades. In dimension $n \geq 7$, Wang ([20]) and Hong ([14]) have independently proved the minimality of u_{0} for any $p \geq 2$ satisfying $p+2 \sqrt{p} \leq n-2$.

In [15], Hong remarked that the minimality of the p-energy $E_{p}, p \in$ (2, $n-1]$, is related to the minimization of the following weighted 2-energy :

$$
\tilde{E}_{p}(u)=\int_{\mathbf{B}^{n}} r^{2-p}\|\nabla u\|^{2} d x
$$

where $r=\|x\|$. Indeed, using Hölder inequality, it is easy to see that if the map u_{0} minimizes \tilde{E}_{p}, then it also minimizes E_{p} (see [15], p.465). Unfortunately, as we will see in Corollary 1.1 below, for many values of $p \in(2, n)$, the map u_{0} is not a minimizer of \tilde{E}_{p}. Therefore, Theorem 6 of ([15]), asserting that u_{0} minimizes \tilde{E}_{p} seems to be not correct and the question of whether u_{0} is a minimizing map of the p-energy E_{p} for non-integer $p \in(2, n-1)$ is still open ${ }^{1}$

The aim of this paper is to study the minimizing properties of the map u_{0} in regard to some weighted energy functionals of the form :

$$
E_{p, f}(u)=\int_{\mathbf{B}^{n}} f(r)\|\nabla u\|^{p} d x
$$

[^0]where $p \in\{1, \cdots, n-1\}$ and $f:[0,1] \rightarrow \mathbb{R}$ is a non-negative non-decreasing continuous function. For $p=1$, the map u_{0} minimizes $E_{1, f}$ for a large class of weights. Indeed, we have the following

Theorem 0.1 Suppose that f is a non-negative differentiable non-decreasing function. Then the map $u_{0}=\frac{x}{\|x\|}$ is a minimizer of the energy $E_{1, f}$, that is, for any u in $W^{1,1}\left(\mathbf{B}^{\mathbf{n}}, \mathbb{S}^{n-1}\right)$ with $u(x)=x$ on \mathbb{S}^{n-1}, we have

$$
\int_{\mathbf{B}^{n}} f(r)\left\|\nabla u_{0}\right\| d x \leq \int_{\mathbf{B}^{n}} f(r)\|\nabla u\| d x,
$$

Moreover, if f has no critical points in $(0,1)$, then the map $u_{0}=\frac{x}{\|x\|}$ is the unique minimizer of the energy $E_{1, f}$, that is, the equality in the last inequality holds if and only if $u=u_{0}$.

For $p \geq 2$, we restrict ourselves to power functions $f(r)=r^{\alpha}$,
Theorem 0.2 For any $\alpha \geq 0$ and any integer $p \in\{1, \cdots, n-1\}$, the map $u_{0}=\frac{x}{\|x\|}$ is a minimizer of the energy $E_{p, r^{\alpha}}$ that is, for any u in $W^{1, p}\left(\mathbf{B}^{\mathbf{n}}, \mathbb{S}^{n-1}\right)$ with $u(x)=x$ on \mathbb{S}^{n-1}, we have,

$$
\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{0}\right\|^{p} d x \leq \int_{\mathbf{B}^{n}} r^{\alpha}\|\nabla u\|^{p} d x .
$$

Moreover, if $\alpha>0$, then the map $u_{0}=\frac{x}{\|x\|}$ is the unique minimizer of the energy $E_{p, r^{\alpha}}$, that is the equality in the last inequality holds if and only if $u=u_{0}$.

The proof of these two theorems is given in section 2. It is based on a construction of an adapted null-Lagrangian. The case of $p=1$ can be obtained passing through more direct ways and will be treated independently.

The case of weights of the form $f(r)=r^{\alpha}$, with $\alpha<0$, is treated in section 3. The weighted energy $\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x$ of $u_{0}=\frac{x}{\|x\|}$ is finite for $\alpha>-n+2$. Hence we consider the family of maps,

$$
u_{a}(x)=a+\lambda_{a}(x)(x-a), \quad a \in \mathbf{B}^{n},
$$

where $\lambda_{a}(x) \in \mathbb{R}$ is chosen such that $u_{a}(x) \in \mathbb{S}^{n-1}$ (that is $u_{a}(x)$ is the intersection point of \mathbb{S}^{n-1} with the half-line of origin a passing by x).

We study the energy $E_{2, r^{\alpha}}\left(u_{a}\right)$ of these maps and deduce the following theorem.

Theorem 0.3 Suppose that $n \geq 3$.
(i) For any $a \in \mathbf{B}^{n}, a \neq 0$, there exists a negative real number $\alpha_{0} \in(-n+2,0)$, such that, for any $\alpha \in\left(-n+2, \alpha_{0}\right]$ we have

$$
\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x>\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x
$$

(ii) For any integer $n \geq 6$, there exists $\alpha_{0} \in(4-n, 5-n)$ such that, for any $\alpha \in\left(4-n, \alpha_{0}\right)$, there exists $a \in \mathbf{B}^{n}$ such that,

$$
\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x>\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x
$$

Replacing in Theorem 0.3α by $2-p, p \in(2, n)$, we obtain the following corollary :

Corollary 0.1 For any $n \geq 6$, there exists $p_{0} \in(n-3, n-2)$ such that, for any $p \in\left(p_{0}, n-2\right)$ the map $u_{0}=\frac{x}{\|x\|}$ does not minimize the functional $\int_{\mathbf{B}^{n}} r^{2-p}\|\nabla u\|^{2} d x$ among the maps $u \in W^{1,2}\left(\mathbf{B}^{n}, \mathbb{S}^{n-1}\right)$ satisfying $u(x)=x$ on \mathbb{S}^{n-1}.
acknowledgements. The author would express his grateful to Professor Ahmad El Soufi and Professor Etienne Sandier for their helpful advice.

0.2 Proof of theorems 0.1 and 0.2

Consider an integer $p \in\{1, \cdots, n-1\}$ and f a differentiable, non-negative, increasing, and non-identically zero map. We can suppose without loss of generality, that $f(1)=1$.
For any subset $I=\left\{i_{1}, \cdots, i_{p}\right\} \subset\{1, \cdots, n-1\}$ with $i_{1}<i_{2} \ldots<i_{p}$ and for any map,

$$
u=\left(u_{1}, \cdots, u_{n}\right): \mathbf{B}^{n} \longrightarrow \mathbb{S}^{n-1} \quad \text { in } \mathcal{C}^{\infty}\left(\mathbf{B}^{n}, \mathbb{S}^{n-1}\right) \quad \text { with } u(x)=x \text { on } \mathbb{S}^{n-1}
$$

we consider the n -form :

$$
\omega_{I}(u)=d x_{1} \wedge \cdots \wedge d\left(f(r) u_{i_{1}}\right) \wedge \cdots \wedge d\left(f(r) u_{i_{k}}\right) \wedge \cdots \wedge d x_{n}
$$

Lemma 0.1 We have the identity:

$$
\int_{\mathbf{B}^{n}} \omega_{I}(u)=\int_{\mathbf{B}^{n}} \omega_{I}(I d) \quad \forall x \in \mathbf{B}^{n} \quad \text { where } \quad I d(x)=x .
$$

Proof By Stokes theorem, we have :

$$
\begin{aligned}
& \int_{\mathbf{B}^{n}} \omega_{I}(u)= \int_{\mathbf{B}^{n}} d x_{1} \wedge \cdots \wedge d\left(f(r) u_{i_{1}}\right) \wedge \cdots \wedge d\left(f(r) u_{i_{p}}\right) \wedge \cdots \wedge d x_{n} \\
&= \int_{\mathbf{B}^{n}}(-1)^{i_{1}-1} d\left(f(r) u_{i_{1}} d x_{1} \wedge \cdots \wedge d\left(\widehat{f(r) u_{i_{1}}}\right) \wedge\right. \\
&\left.\cdots \wedge d\left(f(r) u_{i_{p}}\right) \wedge \cdots \wedge d x_{n}\right) \\
&=\int_{\mathbb{S}^{n-1}}(-1)^{i_{1}-1} x_{i_{1}} d x_{1} \wedge \cdots \wedge d\left(\widehat{f(r) u_{i_{1}}}\right) \wedge \\
& \cdots \wedge d\left(f(r) u_{i_{p}}\right) \wedge \cdots \wedge d x_{n} .
\end{aligned}
$$

Indeed, on \mathbb{S}^{n-1}, we have $f(r) u_{i_{1}}=x_{i_{1}}(r=1, f(1)=1$ and $u(x)=x)$. Iterating, we get the designed identities. Consider the n-form :

$$
S(u)=\sum_{|I|=p} w_{I}(u)
$$

By Lemma 0.1, we have :

$$
\int_{\mathbf{B}^{n}} S(u)=\sum_{|I|=p} \int_{\mathbf{B}^{n}} w_{I}(u)=\sum_{|I|=p} \int_{\mathbf{B}^{n}} d x=C_{n}^{p} \frac{\left|\mathbb{S}^{n-1}\right|}{n},
$$

where $\left|\mathbb{S}^{n-1}\right|$ is the Lebesgue measure of the sphere.
Lemma 0.2 The n-form $S(u)$ is $O(n)$-equivariant, that is, for any rotation R in $O(n)$, we have :

$$
S\left({ }^{t} R u R\right)\left({ }^{t} R x\right)=S(u)(x) \quad \forall x \in \mathbf{B}^{n} .
$$

Proof Consider $S(u)(x)\left(e_{1}, \ldots, e_{n}\right)$ where $\left(e_{1}, \ldots, e_{n}\right)$ is the stantard basis of \mathbb{R}^{n} and notice that it is equal to $(-1)^{n}$ times the $(p+1)^{t h}$ coefficient of the polynomial $P(\lambda)=\operatorname{det}(\operatorname{Jac}(f u)(x)-\lambda I d)$ which does not change when we replace $f u$ by ${ }^{t} R f u R$.

For any $x \in \mathbf{B}^{n}$, let $R \in O(n)$ be such that ${ }^{t} R u(x)=e_{n}=(0, \ldots, 0,1)$. Consider $y={ }^{t} R x, v={ }^{t} R u R$, so that :
$v(y)=e_{n}, \quad d\left({ }^{t} R u R\right)(y)\left(\mathbb{R}^{n}\right) \subset e_{n}^{\perp} \quad$ that is $\quad \frac{\partial v_{n}}{\partial x_{j}}(y)=0 \quad \forall j \in\{1, \cdots, n\}$.

Lemma 0.3 Let a_{1}, \ldots, a_{n} be n non-negative numbers, and $p \in\{1, \ldots, n-1\}$. Then :

$$
\sum_{i 1<\ldots<i_{p}} a_{i_{1}} \cdots a_{i_{p}} \leq \frac{1}{(n-1)^{p}} C_{n-1}^{p}\left(\sum_{j=1}^{n-1} a_{j}\right)^{p} .
$$

Proof See for instance Hardy coll.[4], theorem 52.
Let $I=\left\{i_{1}, \cdots, i_{p}\right\} \subset\{1, \cdots, n\}$. We have :
if $i_{p} \neq n$,

$$
\begin{aligned}
\omega_{I}(v)(y) & =\left(d x_{1} \wedge \cdots \wedge d\left(f(r) v_{i_{1}}\right) \wedge \cdots \wedge d\left(f(r) v_{i_{k}}\right) \wedge \cdots \wedge d x_{n}\right)(y) \\
& =|f(r)|^{p}\left(d x_{1} \wedge \cdots \wedge d v_{i_{1}} \wedge \cdots \wedge d v_{i_{k}} \wedge \cdots \wedge d x_{n}\right)(y) .
\end{aligned}
$$

Indeed, $\forall j \leq n-1, d\left(f(r) v_{j}(y)\right)=d(f(r)) v_{j}(y)+f(r) d v_{j}(y)=f(r) d v_{j}(y)$ since $v(y)=e_{n}$. If $i_{p}=n$,

$$
\omega_{I}(v)(y)=|f(r)|^{p-1}\left(d x_{1} \wedge \cdots \wedge d v_{i_{1}} \wedge \cdots \wedge d f\right)(y) .
$$

Indeed, $d\left(f(r) v_{n}\right)(y)=d f(y) v_{n}(y)+f(r) d v_{n}(y)=d f(y)\left(\right.$ as $\left.d v(y) \subset e_{n}^{\perp}\right)$. The Hadamard inequality gives :

$$
\begin{aligned}
&|S(v)(y)|=\left|\sum_{|I|=p} \omega_{I}(v)(y)\right| \leq|f(r)|^{p} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq n-1}\left\|d x_{1}\right\| \cdots\left\|d v_{i_{1}}\right\| \\
& \cdots\left\|d v_{i_{p}}\right\| \cdots\left\|d x_{n}\right\|(y) \\
&+|f(r)|^{p-1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{p-1} \leq n-1}\left\|d x_{1}\right\| \cdots\left\|d v_{i_{1}}\right\| \\
& \cdots\left\|d v_{i_{p}}\right\| \cdots\|d f\|(y) \\
& \leq|f(r)|^{p}\left(\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq n-1}\left\|d x_{1}\right\|^{2} \cdots\left\|d v_{i_{1}}\right\|^{2} \cdots\right. \\
&\left.\cdots\left\|d v_{i_{p}}\right\|^{2} \cdots\left\|d x_{n}\right\|^{2}(y)\right)^{\frac{1}{2}}\left(C_{n}^{p}\right)^{\frac{1}{2}} \\
&+f^{\prime}(r) f(r)^{p-1} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{p-1} \leq n-1}\left\|d x_{1}\right\| \cdots\left\|d v_{i_{1}}\right\| \\
& \cdots\left\|d v_{i_{p}}\right\|(y) .
\end{aligned}
$$

The Hardy inequality gives, after integration and using the fact that $\|\nabla u\|=$ $\|\nabla v\|$,

$$
\begin{align*}
\frac{C_{n}^{p}}{n}\left|\mathbb{S}^{n-1}\right| \leq & \frac{C_{n-1}^{p}}{(n-1)^{p / 2}} \int_{\mathbf{B}^{n}} f^{p}(r)\|\nabla u\|^{p} d x \\
& +\frac{C_{n-1}^{p-1}}{(n-1)^{\frac{p-1}{2}}} \int_{\mathbf{B}^{n}} f^{\prime}(r) f^{p-1}(r)\|\nabla u\|^{p-1} d x . \tag{1}
\end{align*}
$$

Remark : : If f^{\prime} is positive and if equality holds in (1), then, $\forall i \leq n-1$, $y_{i}=0$ and $y_{n}= \pm \frac{x}{\|x\|}$, which implies that $u(x)= \pm \frac{x}{\|x\|}$.

Proof of the Theorem 1.1 Inequality (1) give

$$
\left|\mathbb{S}^{n-1}\right| \leq \sqrt{n-1} \int_{\mathbf{B}^{n}} f(r)\|\nabla u\| d x+\int_{\mathbf{B}^{n}} f^{\prime}(r) d x
$$

Hence :

$$
\begin{gathered}
\int_{\mathbf{B}^{n}} f\|\nabla u\| d x \geq \frac{\left|\mathbb{S}^{n-1}\right|}{\sqrt{n-1}}\left(1-\int_{0}^{1} f^{\prime}(r) r^{n-1} d r\right) \\
\int_{\mathbf{B}^{n}} f\|\nabla u\| d x \geq \sqrt{n-1}\left|\mathbb{S}^{n-1}\right| \int_{0}^{1} f(r) r^{n-2} d r=\int_{\mathbf{B}^{n}} f(r)\left\|\nabla u_{0}\right\| d x .
\end{gathered}
$$

To see the uniqueness il suffices to refer to the remark above. It gives that for any $x \in \mathbf{B}^{n}, u(x)=\frac{x}{\|x\|}$ or $u(x)=-\frac{x}{\|x\|}$. As $u(x)=x$ on the unit sphere, we have, for any $x \in \mathbf{B}^{n} \backslash\{0\}, u(x)=\frac{x}{\|x\|}$.

Proof of the Theorem 1.2. Let α be a positive real number. From inequality (1) we have :

$$
\frac{C_{n}^{p}}{n}\left|\mathbb{S}^{n-1}\right| \leq \frac{C_{n-1}^{p}}{(n-1)^{p / 2}} \int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p} d x+\alpha \frac{C_{n-1}^{p-1}}{(n-1)^{\frac{p-1}{2}}} \int_{\mathbf{B}^{n}} r^{\alpha p-1}\|\nabla u\|^{p-1} d x .
$$

By Hölder inequality, we have, setting $q=\frac{p}{p-1}$:

$$
\begin{aligned}
\frac{C_{n}^{p}}{n}\left|\mathbb{S}^{n-1}\right| \leq & \frac{C_{n-1}^{p}}{(n-1)^{p / 2}} \int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p} d x \\
& +\alpha \frac{C_{n-1}^{p-1}}{(n-1)^{\frac{p-1}{2}}}\left(\int_{\mathbf{B}^{n}} r^{p(\alpha-1)} d x\right)^{1 / p}\left(\int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p} d x\right)^{1 / q} \\
\leq & \frac{C_{n-1}^{p}}{(n-1)^{p / 2}} \int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p} d x \\
& +\alpha \frac{C_{n-1}^{p-1}}{(n-1)^{\frac{p-1}{2}}} \frac{\left|\mathbb{S}^{n-1}\right|^{1 / p}}{(n+p(\alpha-1))^{1 / p}}\left(\int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p} d x\right)^{1 / q}
\end{aligned}
$$

Consider the polynomial function :

$$
P(t)=\frac{C_{n-1}^{p}}{(n-1)^{p / 2}} t^{q}+\alpha \frac{C_{n-1}^{p-1}}{(n-1)^{\frac{p-1}{2}}} \frac{\left|\mathbb{S}^{n-1}\right|^{1 / p}}{(n+p(\alpha-1))^{1 / p}} t-\frac{C_{n}^{p}}{n}\left|\mathbb{S}^{n-1}\right| .
$$

Setting $A=\left(\int_{\mathbf{B}^{n}} r^{\alpha p}\|\nabla u\|^{p}\right)^{1 / q}$ and $B=\left(\int_{\mathbf{B}^{n}} r^{\alpha p}\left\|\nabla u_{0}\right\|^{p}\right)^{1 / q}$, we get $P(A) \geq$ 0 while

$$
\begin{aligned}
P(B) & =\frac{C_{n-1}^{p-1}}{n+p(\alpha-1)}\left|\mathbb{S}^{n-1}\right|+\alpha \frac{C_{n-1}^{p-1}}{n+p(\alpha-1)}\left|\mathbb{S}^{n-1}\right|-\frac{C_{n}^{p}}{n}\left|\mathbb{S}^{n-1}\right| \\
& =\frac{C_{n-1}^{p-1}}{n+p(\alpha-1)}\left|\mathbb{S}^{n-1}\right|\left(\frac{n-p}{n}+\alpha-\frac{C_{n}^{p}}{n C_{n-1}^{p-1}}(n+p(\alpha-1))\right) \\
& =0
\end{aligned}
$$

On the other hand, $\forall t \geq 0, P^{\prime}(t)>0$. Hence, P is increasing in $[0,+\infty)$ and is equal to zero only for B. Necessarily, we have $A \geq B$.
Moreover, if $\alpha>0, A=B$ implies that equality in the inequality (1) holds. Referring to the remark above, and as $u_{0}(x)=x$ on the sphere, we have $u=u_{0}=\frac{x}{\|x\|}$. Replacing α by α / p we finish the prove of the theorem.

0.3 The energy of a natural family of maps.

Let $a=(\theta, \cdots, 0)$ be a point of \mathbf{B}^{n} with $0<\theta<1$ and consider the map,

$$
u_{a}(x)=a+\lambda_{a}(x)(x-a),
$$

where $\lambda_{a}(x)>0$ is chosen so that $u_{a}(x) \in \mathbb{S}^{n-1}$ for any $x \in \mathbf{B}^{n} \backslash\{0\}$,

$$
\lambda_{a}(x)=\frac{\sqrt{\Delta_{a}(x)}-(a \mid x-a)}{\|x-a\|^{2}}
$$

and

$$
\Delta_{a}(x)=\left(1-\|a\|^{2}\right)\|x-a\|^{2}+(a \mid x-a)^{2} .
$$

Notice that $u_{a}(x)=x$ as soon as x is on the sphere. If we denote by $\left\{e_{i}\right\}_{i \in\{1, \cdots, n\}}$ the standard basis of \mathbb{R}^{n}, then, $\forall i \leq n$, we have,

$$
\begin{aligned}
\left\|d u_{a}(x) \cdot e_{i}\right\|^{2}= & \left(\frac{\sqrt{\Delta_{a}}-(a \mid x-a)}{\|x-a\|^{2}}\right)^{2} \\
+ & {\left[-2 \frac{\left(x-a \mid e_{i}\right)}{\|x-a\|^{4}}\left(\sqrt{\Delta_{a}}-(a \mid x-a)\right)\right.} \\
& +\frac{\left(1-\|a\|^{2}\right)\left(x-a \mid e_{i}\right)+(x-a \mid a)\left(a \mid e_{i}\right)}{\sqrt{\Delta_{a}}\|x-a\|^{2}} \\
& \left.-\frac{\left(a \mid e_{i}\right)}{\|x-a\|^{2}}\right]^{2}\|x-a\|^{2} \\
+ & 2\left(\frac{\sqrt{\Delta_{a}}-(a \mid x-a)}{\|x-a\|^{2}}\right)\left(-2 \frac{\left(x-a \mid e_{i}\right)}{\|x-a\|^{4}}\left(\sqrt{\Delta_{a}}-(a \mid x-a)\right)\right. \\
& +\frac{\left(1-\|a\|^{2}\right)\left(x-a \mid e_{i}\right)+(x-a \mid a)\left(a \mid e_{i}\right)}{\sqrt{\Delta_{a}}\|x-a\|^{2}} \\
& \left.-\frac{\left(a \mid e_{i}\right)}{\|x-a\|^{2}}\right)\left(x-a \mid e_{i}\right) .
\end{aligned}
$$

Let us prove that, for each $\alpha \in(-n, 0), \int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{a}\right\| d x$ is finite. Consider the map :

$$
\begin{aligned}
F: \mathbb{R}^{+} \times \mathbb{S}^{n-1} & \longrightarrow \mathbb{R}^{n} \\
(r, s) & \longmapsto a+r s=x
\end{aligned}
$$

Then, we have,

$$
F^{*}\left(\left\|\nabla u_{a}\right\|^{2} d x\right)=\frac{1}{r^{2}} \sum_{i=1}^{n} H_{i, a}(s) r^{n-1} d r \wedge d s
$$

where $H_{i, a}(s)$ is given on the sphere by,

$$
\begin{aligned}
H_{i, a}(s)= & \left(\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}-(a \mid s)\right)^{2} \\
+ & {\left[-2\left(s \mid e_{i}\right)\left(\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}-(s \mid a)\right)\right.} \\
& \left.+\frac{\left(1-\|a\|^{2}\right)\left(s \mid e_{i}\right)+\left(a \mid e_{i}\right)(s \mid a)}{\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}}-\left(a \mid e_{i}\right)\right]^{2} \\
+ & 2\left(\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}-(a \mid s)\right) \\
& \left(-2\left(s \mid e_{i}\right)\left(\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}-(s \mid a)\right)\right. \\
& \left.+\frac{\left(1-\|a\|^{2}\right)\left(s \mid e_{i}\right)+\left(a \mid e_{i}\right)(s \mid a)}{\left(1-\|a\|^{2}+(a \mid s)^{2}\right)^{1 / 2}}-\left(a \mid e_{i}\right)\right)\left(s \mid e_{i}\right) .
\end{aligned}
$$

It is clear that $H_{i, a}(s)$ is continuous on \mathbb{S}^{n-1}. Therefore, near the point a, as $n \geq 3$, the map $\|x\|^{\alpha}\left\|\nabla u_{a}\right\|$ is integrable. Furthermore, near the point 0 , as $\alpha>-n$, this map is also integrable. In conclusion, for any $\alpha \in(-n, 0)$, the energy $E_{r^{\alpha}, 2}\left(u_{a}\right)$ is finite.

Proof of Theorem 1.3(i). Since we have

$$
E_{2, r^{\alpha}}\left(u_{0}\right)=\int_{\mathbf{B}^{n}}\|x\|^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x=\frac{\left|\mathbb{S}^{n-1}\right|(n-1)}{n+\alpha-2},
$$

the energy $E_{2, r^{\alpha}}\left(u_{0}\right)$ goes to infinity as $\alpha \rightarrow-n+2$. On the other hand, as the energy $E_{2, r^{\alpha}}\left(u_{a}\right)$ is continuous in α, there exists a real number $\alpha_{0} \in(-n+2,0)$ such that, $\forall \alpha, 2-n<\alpha \leq \alpha_{0}$,

$$
\int_{\mathbf{B}^{n}}\|x\|^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x>\int_{\mathbf{B}^{n}}\|x\|^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x .
$$

Proof of Theorem 1.3(ii). Since $a=(\theta, 0, \cdots, 0)$, we will study the function,

$$
G(\theta)=E_{2, r^{\alpha}}\left(u_{a}\right)=\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x .
$$

Precisely, we will show that for any $\alpha \in(5-n, 4-n), G$ is two times differentiable at $\theta=0$ with $\frac{d G}{d \theta}(0)=0$ and, when α is sufficiently close to $4-n, \frac{d^{2} G}{d \theta^{2}}(0)<0$. Assertion (ii) of Theorem 1.3 then follows immediately.

We have,

$$
\begin{aligned}
H_{i, a}(s)=H_{i, \theta}(s)= & \left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{2} \\
+ & \left(-2 s_{i}\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)+\frac{\left(1-\theta^{2}\right) s_{i}+\delta_{i 1} \theta^{2} s_{1}}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}-\delta_{i 1} \theta\right)^{2} \\
+ & 2\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)\left(-2 s_{i}\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)\right. \\
& \left.+\frac{\left(1-\theta^{2}\right) s_{i}+\delta_{i 1} \theta^{2} s_{1}}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}-\delta_{i 1} \theta\right) s_{i}
\end{aligned}
$$

where $\delta_{i j}=0$ if $i \neq j$ and 0 else.
We notice that $H_{i, \theta}(s)$ is bounded on $[0,1] \times \mathbb{S}^{n-1}$. Indeed, for all $x, y, z \in$ $[0,1]$, excepting $(x, y)=(0,1)$, we have,

$$
\left|\frac{x}{\sqrt{\left.1-y^{2}+y^{2} x^{2}\right)}}\right| \leq 1 \quad \text { and } \quad\left|\frac{\left(1-y^{2}\right) z}{\sqrt{\left.1-y^{2}+y^{2} x^{2}\right)}}\right| \leq 1 .
$$

Then, for almost all $(s, \theta) \in \mathbb{S}^{n-1} \times[0,1]$, we have,

$$
\left|\frac{\left(1-\theta^{2}\right) s_{i}+\delta_{i 1} \theta^{2} s_{1}}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}\right| \leq 1,
$$

and the others terms are continuous in $[0,1] \times \mathbb{S}^{n-1}$.
We have,

$$
\begin{aligned}
E_{2, r^{\alpha}}\left(u_{a}\right) & =\int_{\mathbf{B}^{n}}\|x\|^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x=\int_{\mathbf{B}^{n}}\|a+r s\|^{\alpha} r^{n-3} H(\theta, s) d r d s \\
& =\int_{\mathbf{S}^{n-1}} H(\theta, s)\left(\int_{0}^{\gamma_{\theta}(s)}\left(\left(r+\theta s_{1}\right)^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\alpha / 2} r^{n-3} d r\right) d s
\end{aligned}
$$

where $\gamma_{\theta}(s)=\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}$ and $H(\theta, s)=\sum_{i=1}^{n} H_{i, \theta}(s)$. We notice that $H(\theta, s)$ is indefinitely differentiable in $(-1 / 2,1 / 2) \times \mathbb{S}^{n-1}$. Let C_{n} be a positive real number so that, $\forall(\theta, s) \in(-1 / 2,1 / 2) \times \mathbb{S}^{n-1}$

$$
|H(\theta, s)| \leq C_{n},\left|\frac{\partial H(\theta, s)}{\partial \theta}\right| \leq C_{n},\left|\frac{\partial^{2} H(\theta, s)}{\partial \theta^{2}}\right| \leq C_{n}
$$

Furthermore, we have,

$$
\begin{equation*}
H(\theta, s)=(n-1)-2(n-1) s_{1} \theta+\left((2 n-3) s_{1}^{2}-n+2\right) \theta^{2}+o\left(\theta^{2}\right) . \tag{A}
\end{equation*}
$$

Let us set $\rho=r+\theta s_{1}, \beta(\theta, s)=\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}$ and

$$
F(\theta, s)=\int_{\theta s_{1}}^{\beta(\theta, s)}\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\alpha / 2} d \rho
$$

Notice that $\rho \in[-1,3]$. Then, $G(\theta)=\int_{\mathbb{S}^{n-1}} H(\theta, s) F(\theta, s) d s$. Let us set $g(\rho, \theta, s)=\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\alpha / 2}$.

Lemma 0.4 The map $\theta \mapsto G(\theta)$ is continuous on $(-1 / 2,1 / 2)$ and continuously differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$ for any $\alpha>3-n$.

Proof We have, $\forall s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{equation*}
\frac{\left(\rho-\theta s_{1}\right)^{2}}{\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)} \leq \frac{2}{1-s_{1}^{2}} \tag{1.1}
\end{equation*}
$$

Indeed, $\left(1-s_{1}^{2}\right)\left(\rho-\theta s_{1}\right)^{2} \leq 2\left(1-s_{1}^{2}\right)\left(\rho^{2}+\theta^{2}\right) \leq 2\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)$. And then,

$$
\begin{equation*}
g(\rho, \theta, s) \leq \frac{2^{\frac{n-3}{2}}}{\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}}}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha+n-3}{2}} \tag{1.2}
\end{equation*}
$$

Since $\alpha>3-n$ we deduce that the map $(\rho, \theta) \rightarrow g(\rho, \theta, s)$ is continuous on $(-1 / 2,1 / 2) \times[-1,3]$. Hence, the map $z \mapsto \int_{0}^{z} g(\rho, \theta, s) d \rho$ is differentiable on $[-1,3]$ and,

$$
\frac{\partial}{\partial z} \int_{0}^{z} g(\rho, \theta, s) d \rho=g(z, \theta, s)
$$

Furthermore, for any $\rho \in[-1,3]$, the map $\theta \mapsto g(\rho, \theta, s)$ is differentiable and

$$
\begin{aligned}
\frac{\partial g}{\partial \theta}(\rho, \theta, s) & =-(n-3) s_{1}\left(\rho-\theta s_{1}\right)^{n-4}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}} \\
& +\frac{\alpha}{2}\left(\rho-\theta s_{1}\right)^{n-3} 2 \theta\left(1-s_{1}^{2}\right)\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1}
\end{aligned}
$$

Let a, b be two real in $(0,1 / 2)$ with $a<b$. We have for any $|\theta| \in(a, b)$, for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{align*}
\left|\frac{\partial g}{\partial \theta}(\rho, \theta, s)\right| & \leq(n-3) 4^{n-4}\left(a^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}} \\
& +|\alpha| 4^{n-3}\left(1-s_{1}^{2}\right)\left(a^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} \tag{1.3}
\end{align*}
$$

This shows that $\theta \mapsto \int_{0}^{z} g(\rho, \theta, s) d \rho$ is differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$ and

$$
\frac{\partial}{\partial \theta} \int_{0}^{z} g(\rho, \theta, s) d \rho=\int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho
$$

Moreover the map $(z, \theta) \mapsto \int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho$ is continuous in $[-1,3] \times(-1 / 2,1 / 2) \backslash$ $\{0\}$. Indeed, $\theta \mapsto \frac{\partial g}{\partial \theta}(\rho, \theta, s)$ is clearly continuous on $(-1 / 2,1 / 2) \backslash\{0\}$ and from (1.3) and by Lebesgue Theorem, $\theta \mapsto \int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho$ is continuous on $(-1 / 2,1 / 2) \backslash\{0\}$. Then, for any $\epsilon>0$, we will have for any sufficiently small h, k,

$$
\begin{aligned}
\left|\int_{0}^{z+h} \frac{\partial g}{\partial \theta}(\rho, \theta+k, s) d \rho-\int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho\right| \leq & \left\lvert\, \int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta+k, s) d \rho\right. \\
& \left.-\int_{0}^{z} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho \right\rvert\, \\
& +\left|\int_{z}^{z+h} \frac{\partial g}{\partial \theta}(\rho, \theta+k, s) d \rho\right| \\
\leq & \epsilon
\end{aligned}
$$

The map $(z, \theta) \mapsto \int_{0}^{z} g(\rho, \theta, s) d \rho$ is differentiable on $[-1,3] \times(-1 / 2,1 / 2) \backslash\{0\}$ and the map $\theta \mapsto F(\theta, s)$ is differentiable in $(-1 / 2,1 / 2) \backslash\{0\}$ and for any $\theta \in(-1 / 2,1 / 2) \backslash\{0\}$,

$$
\begin{aligned}
\frac{\partial F}{\partial \theta}(\theta, s) & =\frac{\partial \beta}{\partial \theta}(\theta, s) g(\beta(\theta, s), \theta, s)-s_{1} g\left(\theta s_{1}, \theta, s\right)+\int_{\theta s_{1}}^{\beta(\theta, s)} \frac{\partial g}{\partial \theta}(\rho, \theta, s) d \rho \\
& =\frac{\theta\left(s_{1}^{2}-1\right)}{\left(1-\theta^{2}+\theta^{2} s_{1}^{2}\right)^{1 / 2}}\left(\left(1-\theta^{2}+\theta^{2} s_{1}^{2}\right)^{1 / 2}-\theta s_{1}\right)^{n-3} \\
& +\int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho+\int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho
\end{aligned}
$$

where,

$$
g_{1}(\rho, \theta, s)=-(n-3) s_{1}\left(\rho-\theta s_{1}\right)^{n-4}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}}
$$

and

$$
g_{2}(\rho, \theta, s)=\frac{\alpha}{2}\left(\rho-\theta s_{1}\right)^{n-3} 2 \theta\left(1-s_{1}^{2}\right)\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} .
$$

Now, the map $\theta \mapsto F(\theta, s)$ is continuous on $(-1 / 2,1 / 2)$. Indeed, since the map $\theta \mapsto g(\rho, \theta, s) d \rho$ is continuous on $(-1 / 2,1 / 2)$ and from (1.2) $\theta \mapsto$ $\int_{0}^{z} g(\rho, \theta, s) d \rho$ is continuous on $(-1 / 2,1 / 2)$. Then, for any $\epsilon>0$, we have $\forall h, k$ sufficiently small,

$$
\begin{aligned}
\left|\int_{0}^{z+h} g(\rho, \theta+k, s) d \rho-\int_{0}^{z} g(\rho, \theta, s) d \rho\right| \leq & \mid \int_{0}^{z} g(\rho, \theta+k, s) d \rho \\
& -\int_{0}^{z} g(\rho, \theta, s) d \rho \mid \\
& +\left|\int_{z}^{z+h} g(\rho, \theta+k, s) d \rho\right| \\
\leq & \epsilon .
\end{aligned}
$$

Then, the map $(z, \theta) \mapsto \int_{0}^{z} g(\rho, \theta, s) d \rho$ is continuous on $[-1,3] \times(-1 / 2,1 / 2)$ and consequently $\theta \mapsto F(\theta, s)$ is continuous on ($-1 / 2,1 / 2$).

Now, we know that $\theta \mapsto H(\theta, s) F(\theta, s)$ is continuous on $(-1 / 2,1 / 2)$ and differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$. Furthermore from (1.2), we have, for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{gather*}
|H(\theta, s) F(\theta, s)| \leq 3.2^{\frac{n-3}{2}} 10^{\frac{\alpha+n-3}{2}} C_{n} \cdot \frac{1}{\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}}} \tag{1.4}\\
\left|\frac{\partial H}{\partial \theta}(\theta, s) F(\theta, s)\right| \leq 3 \cdot 2^{\frac{n-3}{2}} 10^{\frac{\alpha+n-3}{2}} C_{n} \cdot \frac{1}{\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}}} . \tag{1.5}
\end{gather*}
$$

Consider the map $\eta:(\theta, s) \mapsto \eta(\theta, s)=\frac{\theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}\left(\left(1-\theta^{2}+\theta^{2} s_{1}^{2}\right)^{1 / 2}-\theta s_{1}\right)^{n-3}$. This map is indefinitely differentiable on $(-1 / 2,1 / 2) \times \mathbb{S}^{n-1}$. Let B_{n} be a positive real number so that, $\forall(\theta, s) \in(-1 / 2,1 / 2) \times \mathbb{S}^{n-1}$,

$$
|\eta(\theta, s)| \leq B_{n} \quad\left|\frac{\partial \eta}{\partial \theta}(\theta, s)\right| \leq B_{n}
$$

Considering $a, b \in(0,1 / 2)$ with $a<b$ we have, for any $\theta \in(a, b)$, for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{align*}
\left|H(\theta, s) \frac{\partial F}{\partial \theta}(\theta, s)\right| & \leq\left(B_{n}+3(n-3) \cdot 4^{n-4} \cdot a^{\alpha}\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}}\right. \\
& \left.+|3 \alpha| \cdot 4^{n-3} a^{\alpha-1}\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}}\right) C_{n} . \tag{1.6}
\end{align*}
$$

Since the maps $s \mapsto \frac{1}{\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}}}$ and $s \mapsto\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}}$ are integrable on \mathbb{S}^{n-1}, we deduce that $\theta \mapsto G(\theta)$ is continuous on ($-1 / 2,1 / 2$) and continuously differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$.

Lemma 0.5 The map $\theta \mapsto G(\theta)$ is differentiable at 0 and $\frac{d G}{d \theta}(0)=0$.
Proof Since for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}, \theta \mapsto F(\theta, s)$ is continuous on $(-1 / 2,1 / 2)$ from (A) we have,

$$
\frac{\partial H}{\partial \theta}(\theta, s) F(\theta, s) \underset{\theta \rightarrow 0}{\longrightarrow} \frac{\partial H}{\partial \theta}(0, s) F(0, s)=-2(n-1) s_{1} \int_{0}^{1} \rho^{n-3+\alpha} d \rho=\frac{-2(n-1) s_{1}}{n-2+\alpha} .
$$

From (1.5) and Lebesgue Theorem we have,

$$
\int_{\mathbb{S}^{n-1}} \frac{\partial H}{\partial \theta}(\theta, s) F(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} \int_{\mathbb{S}^{n-1}} \frac{-2(n-1) s_{1}}{n-2+\alpha} d s=0 .
$$

Moreover, it is clear that,

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \eta(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} 0
$$

Let $J(m, n)$ be the integral,

$$
\left.J(m, n)=\int_{\frac{s_{1}}{\sqrt{1-s_{1}^{2}}}}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}}} \frac{-1}{1-s_{1}^{2}} t-s_{1}\right)^{m}\left(t^{2}+1\right)^{n} d t
$$

Notice that $J(m, n)$ converges as θ goes to 0 if and only if $m+2 n<-1$. Consider the change of variables $\rho=t \theta \sqrt{1-s_{1}^{2}}$ if $\theta>0$. If $\theta<0$, then we set $\rho=-t \theta \sqrt{1-s_{1}^{2}}$ and conclusion will be the same. Hence, we assume that $\theta>0$. Then,

$$
\begin{gathered}
\int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho=-(n-3) s_{1}\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} \theta^{n-3+\alpha} J\left(n-4, \frac{\alpha}{2}\right) . \\
\int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho=\alpha \theta^{n-3+\alpha}\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} J\left(n-3, \frac{\alpha}{2}-1\right) .
\end{gathered}
$$

First case : $\alpha \geq 4-n$.
$J\left(n-4, \frac{\alpha}{2}\right)$ and $J\left(n-3, \frac{\alpha}{2}-1\right)$ go to $+\infty$ as $\theta \rightarrow 0$. Furthermore, we have,

$$
\begin{aligned}
& J\left(n-4, \frac{\alpha}{2}\right) \underset{0}{\sim}\left(1-s_{1}^{2}\right)^{\frac{n-4}{2}} \int \frac{\sqrt{\frac{1}{\theta_{1}\left(1-s_{1}^{2}\right)}-1}}{\frac{s_{1}}{\sqrt{1-s_{1}^{2}}}} t^{n-4+\alpha} d t \\
& J\left(n-4, \frac{\alpha}{2}\right) \underset{0}{\sim} \frac{1}{n-3+\alpha} \frac{1}{\theta^{n-3+\alpha}}\left(1-s_{1}^{2}\right)^{\frac{-1-\alpha}{2}} .
\end{aligned}
$$

Since $t^{n+\alpha-5}$ may be equal to zero at zero, we write,

$$
\begin{aligned}
J\left(n-3, \frac{\alpha}{2}-1\right)= & \int_{\frac{s_{1}}{\sqrt{1-s_{1}^{2}}}}^{1}\left(\sqrt{1-s_{1}^{2}} t-s_{1}\right)^{n-3}\left(t^{2}+1\right)^{\frac{\alpha}{2}-1} d t \\
& +\int_{1}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}}\left(\sqrt{1-s_{1}^{2}} t-s_{1}\right)^{n-3}\left(t^{2}+1\right)^{\frac{\alpha}{2}-1} d t
\end{aligned}
$$

We have,

$$
J\left(n-3, \frac{\alpha}{2}-1\right) \underset{0}{\sim}\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}} \int_{1}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}} t^{n-5+\alpha} d t
$$

Then, if $\alpha \neq 4-n$,

$$
J\left(n-3, \frac{\alpha}{2}-1\right) \underset{0}{\sim} \frac{1}{n-4+\alpha} \frac{1}{\theta^{n-4+\alpha}}\left(1-s_{1}^{2}\right)^{\frac{1-\alpha}{2}}
$$

and note that if $\alpha=4-n, J\left(n-3, \frac{\alpha}{2}-1\right) \sim_{0}-\left(1-s_{1}^{2}\right)^{\frac{n-3}{2}} \ln \left(\theta^{2}\left(1-s_{1}^{2}\right)\right)$. Hence, by (A) we have,

$$
\begin{aligned}
H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho= & -H(\theta, s)(n-3) s_{1}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} I_{1} \\
& \underset{\theta \rightarrow 0}{\longrightarrow}-\frac{(n-3)(n-1)}{n-3+\alpha} s_{1},
\end{aligned}
$$

and

$$
H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho=H(\theta, s) \alpha\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} I_{2} \underset{\theta \rightarrow 0}{\longrightarrow} 0
$$

Observe that $\frac{\left|s_{1}\right|}{\sqrt{1-s_{1}^{2}}} \leq \sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}$. Indeed, $s_{1}^{2} \theta^{2} \leq 1-\theta^{2}+\theta^{2} s_{1}^{2}$. It follows from (1.1) that

$$
\left(\rho-\theta s_{1}\right)^{n-4} \leq \frac{2^{\frac{n-4}{2}}}{\left(1-s_{1}^{2}\right)^{\frac{n-4}{2}}}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{n-4}{2}} .
$$

Recall that $\rho=t \theta \sqrt{1-s_{1}^{2}}$. Since $\alpha \geq 4-n$, we have, for any $s \in \mathbb{S}^{n-1} \backslash$ $\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{aligned}
\left|H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho\right| \leq & 2 C_{n}(n-3) 2^{\frac{n-4}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\theta^{2}\left(1-s_{1}^{2}\right)}-1}\left(t^{2}+1\right)^{\frac{n-4+\alpha}{2}} d t \\
\leq & C_{n}(n-3) 2^{\frac{n-2}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}\left(\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}\right)^{\frac{n-4+\alpha}{2}} \\
\leq & C_{n}(n-3) 2^{\frac{n-2}{2}}\left(1-s_{1}^{2}\right)^{\frac{-n+4}{2}} \sqrt{1-\theta^{2}\left(1-s_{1}^{2}\right)} \\
\leq & C_{n}(n-3) 2^{\frac{n-1}{2}}\left(1-s_{1}^{2}\right)^{\frac{-n+4}{2}} .
\end{aligned}
$$

Since $s \mapsto\left(1-s_{1}^{2}\right)^{\frac{-n+4}{2}}$ is integrable on \mathbb{S}^{n-1}, by Lebesgue Theorem we have,

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho d s \underset{\theta \rightarrow 0}{\longrightarrow}-\int_{\mathbb{S}^{n}-1} \frac{(n-3)(n-1)}{n-3+\alpha} s_{1} d s=0 .
$$

Moreover, we have, for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$, since $\alpha+n-5 \geq 0$,

$$
\begin{aligned}
&\left|H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho\right| \leq 2 C_{n}|\alpha| 2^{\frac{n-3}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0} \sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1} \\
&\left(t^{2}+1\right)^{\frac{n-5+\alpha}{2}} d t \\
& \leq C_{n}|\alpha| 2^{\frac{n-2}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}} \frac{1}{\left(t^{2}+1\right)} d t\left(\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}\right)^{\frac{n-3+\alpha}{2}} \\
& \leq C_{n}|\alpha| 2^{\frac{n-2}{2}} \frac{\pi}{2}\left(1-s_{1}^{2}\right)^{\frac{-n+4}{2}}
\end{aligned}
$$

Then, by Lebesgue Theorem,

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho d s \underset{\theta \rightarrow 0}{\longrightarrow} 0
$$

Second case : $3-n<\alpha<4-n$.
For the same reasons that when $\alpha \geq 4-n$, we have,

$$
H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho \underset{\theta \rightarrow 0}{\longrightarrow}-\frac{(n-3)(n-1)}{n-3+\alpha} s_{1} .
$$

Furthermore, as $4-n>\alpha>3-n, \forall s \in \mathbb{S}^{n-1} \backslash\{(-1,0, \cdots, 0),(1,0, \cdots, 0)\}$,

$$
\begin{aligned}
\left|H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho\right| \leq & 2 C_{n}(n-3) 2^{\frac{n-4}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}}\left(t^{2}+1\right)^{\frac{n-4+\alpha}{2}} d t \\
\leq & C_{n}(n-3) 2^{\frac{n-2}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}}\left(t^{2}\right)^{\frac{n-4+\alpha}{2}} d t \\
\leq & \frac{C_{n}(n-3) 2^{\frac{n-2}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha}}{n-3+\alpha}\left(\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1\right)^{\frac{n-3+\alpha}{2}} \\
\leq & \frac{C_{n}(n-3) 2^{\frac{2 n-7+\alpha}{2}}\left(1-s_{1}^{2}\right)^{\frac{4-n}{2}}}{n-3+\alpha}
\end{aligned}
$$

Then, by Lebesgue Theorem,

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho d s \underset{\theta \rightarrow 0}{\longrightarrow}-\int_{\mathbb{S}^{n}-1} \frac{(n-3)(n-1)}{n-3+\alpha} s_{1} d s=0 .
$$

Moreover, $J\left(n-3, \frac{\alpha}{2}-1\right)$ is finite when $\theta \rightarrow 0$ then, as $\alpha>3-n$, Furthermore,

$$
\begin{aligned}
H(\theta, s) & \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho d s \underset{\theta \rightarrow 0}{\longrightarrow} 0 . \\
\left|H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho\right| \leq & 2 C_{n}|\alpha| 2^{\frac{n-3}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}-1}}\left(t^{2}+1\right)^{\frac{n+\alpha-5}{2}} d t \\
\leq & C_{n}|\alpha| 2^{\frac{n-1}{2}}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}} \theta^{n-3+\alpha} \\
& \times \int_{0}^{\sqrt{\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}}} \frac{1}{\left(t^{2}+1\right)} d t\left(\frac{1}{\theta^{2}\left(1-s_{1}^{2}\right)}\right)^{\frac{n-3+\alpha}{2}} \\
\leq & C_{n}|\alpha| 2^{\frac{n-1}{2}}\left(1-s_{1}^{2}\right)^{\frac{-n+4}{2}} \int_{0}^{+\infty} \frac{1}{\left(t^{2}+1\right)} d t
\end{aligned}
$$

Then, by Lebesgue Theorem,

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho d s \underset{\theta \rightarrow 0}{\longrightarrow} 0 .
$$

Finally, we have

$$
\frac{d G}{d \theta}(\theta) \underset{\theta \rightarrow 0}{\longrightarrow} 0
$$

By Lemma 1.4 we deduce that G is differentiable at 0 and $\frac{d G}{d \theta}(0)=0$.
Lemma 0.6 The map $\theta \rightarrow G(\theta)$ is two times differentiable on $(-1 / 2,1 / 2) \backslash$ \{0\}.
Proof We know that the map $\theta \rightarrow \frac{\partial H}{\partial \theta}(\theta, s) F(\theta, s)$ is differentiable on $(-1 / 2,1 / 2) \backslash$ $\{0\}$. The maps $\theta \rightarrow \eta(\theta, s), \theta \rightarrow g_{1}(\rho, \theta, s), \theta \rightarrow g_{2}(\rho, \theta, s)$ are differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$. We have,

$$
\begin{array}{r}
\frac{\partial \eta}{\partial \theta}(\theta, s)=\frac{\left(s_{1}^{2}-1\right) \sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta\left(s_{1}^{2}-1\right) \frac{\theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}}{1-\theta^{2}+\theta^{2} s_{1}^{2}} \\
\times\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-3} \\
+\frac{(n-3) \theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}\left(\frac{\theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}}-s_{1}\right) \\
\times\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-4} .
\end{array}
$$

$$
\begin{aligned}
\frac{\partial g_{1}}{\partial \theta}(\rho, \theta, s)= & (n-3)(n-4) s_{1}^{2}\left(\rho-\theta s_{1}\right)^{n-5}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}} \\
& -\alpha(n-3) s_{1}\left(1-s_{1}^{2}\right) \theta\left(\rho-\theta s_{1}\right)^{n-4}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} \\
\frac{\partial g_{2}}{\partial \theta}(\rho, \theta, s)=- & \alpha(n-3) s_{1}\left(1-s_{1}^{2}\right) \theta\left(\rho-\theta s_{1}\right)^{n-4}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} \\
& +\alpha(\alpha-2)\left(1-s_{1}^{2}\right)^{2} \theta^{2}\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-2} \\
& +\alpha\left(1-s_{1}^{2}\right)\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} .
\end{aligned}
$$

We set,

$$
\begin{gathered}
g_{11}(\rho, \theta, s)=(n-3)(n-4) s_{1}^{2}\left(\rho-\theta s_{1}\right)^{n-5}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}} \\
g_{12}(\rho, \theta, s)=-2 \alpha(n-3) s_{1}\left(1-s_{1}^{2}\right) \theta\left(\rho-\theta s_{1}\right)^{n-4}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1} \\
g_{21}(\rho, \theta, s)=\alpha(\alpha-2)\left(1-s_{1}^{2}\right)^{2} \theta^{2}\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-2} \\
g_{22}(\rho, \theta, s)=\alpha\left(1-s_{1}^{2}\right)\left(\rho-\theta s_{1}\right)^{n-3}\left(\rho^{2}+\theta^{2}\left(1-s_{1}^{2}\right)\right)^{\frac{\alpha}{2}-1}
\end{gathered}
$$

Let $a, b \in(0,1 / 2)$ with $a<b$. We have, $\forall s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\begin{align*}
& \left|\frac{\partial g_{1}}{\partial \theta}(\rho, \theta, s)\right| \leq(n-3)(n-4) 4^{n-5} a^{\alpha}\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}}+|\alpha|(n-3) 4^{n-4} a^{\alpha-1}\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}} \tag{1.7}\\
& \left|\frac{\partial g_{2}}{\partial \theta}(\rho, \theta, s)\right| \leq \mid
\end{align*}
$$

Then, for any $i \in\{1,2\}$, the maps $\theta \mapsto \int_{0}^{z} g_{i}(\rho, \theta, s) d \rho$ is differentiable on ($0,1 / 2$) , and

$$
\frac{\partial}{\partial \theta} \int_{0}^{z} g_{i}(\rho, \theta, s) d \rho=\int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s) d \rho
$$

Furthermore, for any $i \in\{1,2\}, \theta \mapsto \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s)$ is continuous on $(-1 / 2,1 / 2) \backslash$ $\{0\}$, then, $\theta \mapsto \int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s) d \rho$, is continuous on $(-1 / 2,1 / 2) \backslash\{0\}$. Hence, for any $i \in\{1,2\}$ and for any $\epsilon>0$, we have $\forall h, k$ two sufficiently small,

$$
\begin{aligned}
\left|\int_{0}^{z+h} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta+k, s) d \rho-\int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s) d \rho\right| \leq & \left\lvert\, \int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta+k, s) d \rho\right. \\
& \left.-\int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s) d \rho \right\rvert\, \\
& +\left|\int_{z}^{z+h} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta+k, s) d \rho\right| \\
\leq & \epsilon .
\end{aligned}
$$

This proves that for any $i \in\{1,2\},(z, \theta) \mapsto \int_{0}^{z} \frac{\partial g_{i}}{\partial \theta}(\rho, \theta, s) d \rho$ is continuous on $[-1,3] \times(-1 / 2,1 / 2) \backslash\{0\}$. Moreover, for any $i \in\{1,2\}$ the map $\rho \mapsto$ $g_{i}(\rho, \theta, s)$ is continuous on $[-1,3]$ for any $\theta \in(-1 / 2,1 / 2) \backslash\{0\}$. Then, $z \mapsto$ $\int_{0}^{z} g_{i}(\rho, \theta, s) d \rho$ is differentiable on $[-1,3]$ for any $\theta \in(-1 / 2,1 / 2) \backslash\{0\}$ and $\frac{\partial}{\partial z} \int_{0}^{z} g_{i}(\rho, \theta, s) d \rho=g_{i}(z, \theta, s)$.
Since $(z, \theta) \mapsto g_{i}(z, \theta)$ is continuous on $[-1,3] \times(-1 / 2,1 / 2) \backslash\{0\}$ we finally deduce that for any $i \in\{1,2\}, \theta \mapsto \int_{\theta s_{1}}^{\beta(\theta, s)} g_{i}(\rho, \theta, s) d \rho$ is differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$ and,

$$
\begin{aligned}
\sum_{i=1}^{2} \frac{\partial}{\partial \theta} \int_{\theta s_{1}}^{\beta(\theta, s)} g_{i}(\rho, \theta, s) d \rho= & \frac{\theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}} \\
& \times\left(-(n-3) s_{1}\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-4}\right. \\
& \left.+\alpha \theta\left(1-s_{1}^{2}\right)\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-3}\right) \\
+ & \sum_{i=1}^{2} \int_{\theta s_{1}}^{\beta(\theta, s)} \frac{\partial^{2} g_{i}}{\partial^{2} \theta}(\rho, \theta, s) d \rho
\end{aligned}
$$

We deduce that $\theta \mapsto \frac{\partial F}{\partial \theta}$ is differentiable in $(-1 / 2,1 / 2) \backslash\{0\}$. Moreover, we see that the map,

$$
\begin{aligned}
\theta \mapsto \lambda(\theta, s)=\frac{\theta\left(s_{1}^{2}-1\right)}{\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}} & \left(-(n-3) s_{1}\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-4}\right. \\
& \left.+\alpha \theta\left(1-s_{1}^{2}\right)\left(\sqrt{1-\theta^{2}+\theta^{2} s_{1}^{2}}-\theta s_{1}\right)^{n-3}\right)
\end{aligned}
$$

is indefinitely differentiable on $(-1 / 2,1 / 2) \times \mathbb{S}^{n-1}$. Then, by (1.1), (1.2), (1.8), (1.7), (1.3) and (A), for any $a, b \in(0,1 / 2), a<b$ there exists constants $K_{1, n, a b, \alpha}, K_{2, n, a b, \alpha}, K_{3, n, a b, \alpha}$ so that, for any $|\theta| \in(a, b)$, for any $s \in \mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
\left|\frac{\partial^{2} H F}{\partial \theta^{2}}(\theta, s)\right| \leq K_{1, n, a b, \alpha}\left(1-s_{1}^{2}\right)^{\frac{\alpha}{2}}+K_{2, n, a b, \alpha}\left(1-s_{1}^{2}\right)^{\frac{3-n}{2}}+K_{3, n, a b, \alpha} .
$$

We deduce by Lebesgue Theorem that the map $\theta \mapsto E(\theta)$ is two times differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$ and,

$$
\left.\frac{d^{2} G}{d \theta^{2}}(\theta)=\int_{\mathbb{S}^{n-1}} \frac{\partial^{2} H F}{\partial \theta^{2}}(\theta, s)\right) d s
$$

Lemma 0.7 If $5-n>\alpha>4-n$, the $\operatorname{map} \theta \mapsto G(\theta)$ is two times differentiable at 0.

Proof Suppose that $\alpha \in(4-n, 5-n)$. As in Lemma 1.5, we can see that,

$$
\begin{gathered}
\int_{\mathbb{S}^{n-1}} \frac{\partial^{2} H}{\partial \theta^{2}}(\theta, s) F(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} \int_{\mathbb{S}^{n-1}} \frac{1}{2} \frac{(2 n-3) s_{1}^{2}-(n-2)}{n-2+\alpha} d s=\frac{-n^{2}+4 n-3}{2 n(n-2+\alpha)}\left|\mathbb{S}^{n-1}\right|, \\
\int_{\mathbb{S}^{n-1}} \frac{\partial H}{\partial \theta}(\theta, s) \eta(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} 0, \\
\int_{\mathbb{S}^{n}-1} \frac{\partial H}{\partial \theta}(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{1}(\rho, \theta, s) d \rho \underset{\theta \rightarrow 0}{\longrightarrow} \int_{\mathbb{S}^{n-1}} \frac{2(n-3)(n-1)}{n-3+\alpha} s_{1}^{2}=\frac{2(n-3)(n-1)}{n(n-3+\alpha)}\left|\mathbb{S}^{n-1}\right|, \\
\int_{\mathbb{S}^{n-1}} \frac{\partial H}{\partial \theta}(\theta, s) \int_{\theta s_{1}}^{\beta(\theta, s)} g_{2}(\rho, \theta, s) d \rho \underset{\theta \rightarrow 0}{\longrightarrow} 0, \\
\int_{\mathbb{S}^{n-1}} H(\theta, s) \frac{\partial \eta}{\partial \theta}(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} \int_{\mathbb{S}^{n-1}}(n-1)\left(s_{1}^{2}-1\right) d s=\frac{-(n-1)^{2}}{n}\left|\mathbb{S}^{n-1}\right|,
\end{gathered}
$$

and

$$
\int_{\mathbb{S}^{n-1}} H(\theta, s) \lambda(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} 0
$$

As in Lemma 1.5, we set $\rho=\sqrt{1-s_{1}^{2}} \theta t$ if $\theta>0$. Hence,

$$
\begin{gathered}
\int_{\theta s_{1}}^{\beta(\theta, s)} g_{11}(\rho, \theta, s) d \rho=(n-3)(n-4) s_{1}^{2}\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} \theta^{n-4+\alpha} J\left(n-5, \frac{\alpha}{2}\right) \\
\int_{\theta s_{1}}^{\beta(\theta s)} g_{12}(\rho, \theta, s) d \rho=-2 \alpha(n-3) s_{1}\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} \theta^{n-4+\alpha} J\left(n-4, \frac{\alpha}{2}-1\right) \\
\int_{\theta s_{1}}^{\beta(\theta s)} g_{21}(\rho, \theta, s) d \rho=\alpha(\alpha-2)\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} \theta^{n-4+\alpha} J\left(n-3, \frac{\alpha}{2}-2\right) \\
\int_{\theta s_{1}}^{\beta(\theta s)} g_{22}(\rho, \theta, s) d \rho=\alpha\left(1-s_{1}^{2}\right)^{\frac{1+\alpha}{2}} \theta^{n-4+\alpha} J\left(n-3, \frac{\alpha}{2}-1\right)
\end{gathered}
$$

Since $\alpha \in(4-n, 5-n)$, the integrals $J\left(n-5, \frac{\alpha}{2}\right)$ and $J\left(n-3, \frac{\alpha}{2}-1\right)$ are infinite and we have,

$$
J\left(n-5, \frac{\alpha}{2}\right) \underset{0}{\underset{0}{ } \frac{\left(1-s_{1}^{2}\right)^{\frac{-1-\alpha}{2}} \theta^{-n-\alpha+4}}{n-4+\alpha}, J\left(n-3, \frac{\alpha}{2}-1\right) \underset{0}{\sim} \frac{\left(1-s_{1}^{2}\right)^{\frac{1-\alpha}{2}} \theta^{-n-\alpha+4}}{n-4+\alpha}}
$$

And the integrals
$J\left(n-4, \frac{\alpha}{2}-1\right)$ and $J\left(n-3, \frac{\alpha}{2}-2\right)$ are finite. Then,

$$
\begin{gathered}
\int_{\theta s_{1}}^{\beta(\theta, s)} g_{11}(\rho, \theta, s) d \rho \underset{\theta \mapsto 0}{\longrightarrow} \frac{(n-3)(n-4) s_{1}^{2}}{n-4+\alpha}, \int_{\theta s_{1}}^{\beta(\theta, s)} g_{22}(\rho, \theta, s) d \rho \underset{\theta \mapsto 0}{\longrightarrow} \frac{\alpha\left(1-s_{1}^{2}\right)}{n-4+\alpha} . \\
\int_{\theta s_{1}}^{\beta(\theta, s)} g_{12}(\rho, \theta, s) d \rho \underset{\theta \mapsto 0}{\longrightarrow} 0, \int_{\theta s_{1}}^{\beta(\theta, s)} g_{21}(\rho, \theta, s) d \rho \underset{\theta \mapsto 0}{\longrightarrow} 0
\end{gathered}
$$

Moreover, we can see that, for any $i, j \in\{1,2\}$, for any $(\theta, s) \in(-1 / 2,1 / 2) \times$ $\mathbb{S}^{n-1} \backslash\{(\pm 1,0, \cdots, 0)\}$,

$$
H(\theta, s) \int_{\theta s_{1}}^{\beta(\theta s)} g_{i j}(\rho, \theta, s) d \rho \leq C_{n, \alpha}\left(1-s_{1}^{2}\right)^{\frac{5-n}{2}}+D_{n, \alpha}\left(1-s_{1}^{2}\right)^{\frac{\alpha+1}{2}}
$$

where $C_{n, \alpha}$ and $D_{n, \alpha}$ are two constants independent of θ. By Lebesgue Theorem we deduce that,

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} H(\theta, s) \frac{\partial^{2} F}{\partial \theta^{2}}(\theta, s) d s \underset{\theta \rightarrow 0}{\longrightarrow} & \frac{-(n-1)^{2}}{n}\left|\mathbb{S}^{n-1}\right| \\
& +(n-1) \frac{(n-3)(n-4)+\alpha(n-1)}{n(n-4+\alpha)}\left|\mathbb{S}^{n-1}\right| .
\end{aligned}
$$

By Lemmas 1.1, 1.2, 1.3, $\theta \mapsto G(\theta) \in \mathcal{C}^{1}((-1 / 2,1 / 2), \mathbb{R})$ and is two times differentiable on $(-1 / 2,1 / 2) \backslash\{0\}$. Furthermore, when $\alpha \in(4-n, 5-n)$, as the limit of $\frac{d^{2} G}{d \theta^{2}}(\theta)$ exists as $\theta \rightarrow 0$, we have $\theta \mapsto G(\theta)$ is two times differentiable on ($-1 / 2,1 / 2$).
Proof of ii). Assume that $\alpha \in(4-n, 5-n)$, by Lemma 1.1, 1.2, 1.3, 1.4, we have,

$$
G(\theta)=G(0)+\frac{1}{2} \frac{d^{2} G}{d \theta^{2}}(0)+o\left(\theta^{2}\right)
$$

Furthermore we have,

$$
\begin{aligned}
\frac{d^{2} G}{d \theta^{2}}(0) & =\frac{-n^{2}+4 n-3}{2 n(n-2+\alpha)}\left|\mathbb{S}^{n-1}\right|+\frac{2(n-3)(n-1)}{n(n-3+\alpha)}\left|\mathbb{S}^{n-1}\right| \\
& +\frac{-(n-1)^{2}}{n}\left|\mathbb{S}^{n-1}\right|+(n-1) \frac{(n-3)(n-4)+\alpha(n-1)}{n(n-4+\alpha)}\left|\mathbb{S}^{n-1}\right|
\end{aligned}
$$

We have, for any $n \geq 6$.

$$
(n-3)(n-4)+\alpha(n-1) \underset{\alpha \mapsto 4-n}{\longrightarrow}-2(n-4)<0 .
$$

Then,

$$
\frac{(n-3)(n-4)+\alpha(n-1)}{n(n-4+\alpha)} \underset{\alpha \mapsto>^{4}-n}{\longrightarrow}-\infty, \text { and } \frac{d^{2} G}{d^{2} \theta}(0) \underset{\alpha \mapsto>^{4}-n}{\longrightarrow}-\infty .
$$

Hence, there is α_{0} such that, for any $\alpha \in\left(4-n, \alpha_{0}\right), G(\theta)<G(0)$ for θ sufficiently small, that is,

$$
G(\theta)=E_{2, r^{\alpha}}\left(u_{a}\right)=\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{a}\right\|^{2} d x<G(0)=\int_{\mathbf{B}^{n}} r^{\alpha}\left\|\nabla u_{0}\right\|^{2} d x .
$$

Références

[1] M. Avellaneda, F.-H. Lin, Null-Lagrangians and minimizing $\int|\nabla u|^{p}$, C. R. Acad. Sci. Paris, 306(1988), 355-358.
[2] H. Brezis, J.-M. Coron, E.-H. Lieb, Harmonic Maps with Defects, Commun. Math. Phys., 107 (1986), 649-705.
[3] B. Chen, Singularities of p-harmonic mappings, Thesis, University of Minnesota, (1989).
[4] J.-M. Coron, F. Helein, Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry, Compositio Math., 69 (1989), 175-228.
[5] J.-M. Coron, R. Gulliver, Minimizing p-harmonic maps into spheres, J. reine angew. Math., 401 (1989), 82-100.
[6] A. El Soufi, A. Jeune, Indice de Morse des applications p-harmoniques, Ann. Inst. Henri Poincaré, 13(1996), 229-250.
[7] A. El Soufi, E. Sandier, p-harmonic diffeomorphisms, Calc. of Var., 6(1998), 161-169.
[8] B. Chen, R. Hardt, Prescribing singularities for p-harmonic mappings, Indiana University Math. J., 44(1995), 575-601. bibitemHL1R. Hardt, F.-H. Lin, Mapping minimizing the L^{p} norm of the gradient, Comm. P.A.M., 15(1987), 555-588.
[9] R. Hardt, F.-H. Lin, Singularities for p-energy minimizing unit vectorfields on planar domains , Calculus of Variations and Partial Differential Equations, 3(1995), 311-341.
[10] R. Hardt, F.-H. Lin, C.-Y. Wang, The p-energy minimality of $\frac{x}{\|x\|}$, Communications in analysis and geometry, 6(1998), 141-152.
[11] R. Hardt, F.-H. Lin, C.-Y. Wang, Singularities of p-Energy Minimizing Maps, , Comm. P.A.M., 50(1997), 399-447.
[12] F. Helein, Harmonic diffeomorphisms between an open subset of \mathbb{R}^{3} and a Riemannian manifold, C. R. Acad. Sci. Paris, 308(1989), 237-240.
[13] S. Hildebrandt, H. Kaul, K.-O. Wildman, An existence theorem for harmonic mappings of Riemannian manifold, Acta Math., 138(1977), 1-16.
[14] M.-C. Hong,, On the Jäger-Kaul theorem concerning harmonic maps, Ann. Inst. Poincaré, Analyse non-linéaire, 17 (2000), 35-46.
[15] M.-C. Hong, On the minimality of the p-harmonic map $\frac{x}{\|x\|}: \mathbf{B}^{n} \rightarrow \mathbf{S}^{n-1}$, Calc. Var., 13 (2001), 459-468.
[16] W. Jager, H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J.Reine Angew. Math., 343(1983), 146-161.
[17] F.-H. Lin, Une remarque sur l'application $x /\|x\|$, C.R. Acad. Sci. Paris 305(1987), 529-531.
[18] R. Shoen, K. Uhlenbeck, A regularity theory for harmonic maps J. Differential Geom.. 12(1982), 307-335.
[19] R. Shoen, K. Uhlenbeck, Boundary theory and the Dirichlet problem for harmonic maps, J. Differential Geom., 18(1983), 253-268.
[20] C.Wang, Minimality and perturbation of singularities for certain pharmonic maps., Indania Univ. Math.J., 47(1998), 725-740.

[^0]: ${ }^{1}$ We suspect a problem in Theorem 6 p .464 of [15]. Indeed the author claims that the quantity $G_{\varphi_{1}^{0}, \cdots, \varphi_{n-1}^{0}}(v, p)$, which represents a weighted energy of the map v on the 3 -dimensional cone \mathcal{C}_{0} in \mathbf{B}^{n}, is uniformly proportional to the weighted energy on the euclidian ball \mathbf{B}^{3}. There is no reason for this fact to be true, the orthogonal projection of \mathcal{C}_{0} on to \mathbf{B}^{n} being not homothetic.

