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Abstract. We are interested in the multifractal analysis of a class of self-similar
measures with overlaps. This class, for which we obtain explicit formulae for the L?-
spectrum 7(q) as well as the singularity spectrum f(«), is sufficiently large to point out
new phenomena in the multifractal structure of self-similar measures. We show that,
unlike the classical quasi-Bernoulli case, the L9-spectrum 7(q) of the measures studied
can have an arbitrarily large number of non-differentiability points (phase transitions).
These singularities occur only for the negative values of ¢ and yield to measures that
do not satisfy the usual multifractal formalism. The weak quasi-Bernoulli property is
the key point of most of the arguments.

Submitted to: Nonlinearity

AMS classification scheme numbers: 28A80, 28A78

1. Introduction

Let us begin with some notation. For an integer ¢ > 2, we denote by F = U, F,, where
F is the set of the (-adic intervals of the nth generation included in the interval [0, 1).
In other terms, F,, = {I = [k/¢(", (k+1)/¢"),0 <k < ("} . For every x € [0,1), I,(x)
stands for the unique interval among F,, containing x.

Let m be a probability measure on the interval [0,1). For z € [0, 1), we define the
local dimension (also called Holder exponent) of m at x by

a(r) = lim _—1ogm(ln(x))7
n—+-00 n log l

provided this limit exists. The aim of multifractal analysis is to find the Hausdorff
dimension, dim(E,), of the level set E, = {z:a(x) =a} for « > 0. The function
f(a) = dim(E,) is called the singularity spectrum (or multifractal spectrum) of m and
we say that m is a multifractal measure when f(a) > 0 for several o/s.

The concepts underlying the multifractal decomposition of a measure go back to an
early paper of Mandelbrot [24]. In the 80’s multifractal measures were used by physicists
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to study various models arising from natural phenomena. In fully developped turbulence
they were used by Frisch and Parisi [[4] to investigate the intermittent behaviour in the
regions of high vorticity. In dynamical system theory they were used by Benzi et al. [[]
to measure how often a given region of the attractor is visited. In diffusion-limited
aggregation (DLA) they were used by Meakin et al. 7] to describe the probability of
a random walk landing to the neighborhood of a given site on the aggregate.

In order to determine the function f(«), Hentschel and Procaccia [[g] used ideas
based on Renyi entropies [B4] to introduce the generalized dimensions D, defined by

1 1 1)t
D, = lim 0g (Zfefn m(I) )
n—+oo g — 1 nlog ¢

)

(see also [IJ, [{]). From a physical and heuristical point of view, Halsey et al. [[[7]
showed that the singularity spectrum f(«) and the generalized dimensions D, can be
derived from each other. The Legendre transform turned out to be a useful tool linking
f(a) and D,. More precisely, it was suggested that

f(a) =dim(E,) = 7*(a) = inf(aq + 7(q), q € R), (1.1)

where

. . 1
7(q) = lzniiliop T.(q)  with 7,(q) = nTogl log (IEZH m([)q> :
(The sum runs over the f-adic intervals I such that m(I) # 0.) The function 7(q) is
called the Li-spectrum of m and if the limit exists 7(¢) = (¢—1)D,. Note that there may
be problems of stability or invariance in the definition of 7(¢) for negative ¢ and Riedi
B3] propose an improvement of this definition. In what follows, these difficulties will be
avoided by restricting the sums over convenient ¢-adic intervals defining the measure.
Of course, this way is not an option in many applications where the structure of the
measure is not known in advance. For more information on the Li-spectrum and the
singularity spectrum we refer the reader to [Il, B, B, [0, LI, [9, S, B, B2, B7. BY, BY, E1)]-

Relation ([[L1)) is called the multifractal formalism and in many aspects it is
analogous to the well-known thermodynamic formalism developed by Bowen [] and
Ruelle [Bg).

For number of measures, relation (I.]]) can be verified rigorously. In particular,
under some separation conditions, self-similar measures satisfy the multifractal
formalism (e.g. [@, [, B, B3, BU]). Despite all the investigations mentioned, the exact
range of the validity of the multifractal formalism is still not known. Furthermore, it is
easy to construct measures that do not satisfy ([.T) (e.g [BH]). It is thus interesting to
find conditions ensuring the validity of ([L.I). The main difficulty is often to get a lower
bound of dim(E,). Usually, such a minoration relies on the existence of an auxiliary
measure mg, the so-called Gibbs measure, supported on the level set E,. Recall that
mg is a Gibbs measure at state g for the measure m if

Vn, VI € F,, ém(f)qz—m@ < my(I) < Cm(1)4 ™),
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where the constant C' > 0 is independent of n and I. If 7 is differentiable at ¢, the
measure m, —if it exists— will be supported by E_. (4. In this case, Brown, Michon and
Peyriere established [f, BZ that

dim(E_+() = 7°(=7'(q)) = —¢7'(q) + 7(q).
In general, to prove the existence of Gibbs measures we need some homogeneity
hypotheses on the measure. This is, for instance, the case of quasi-Bernoulli measures :

a probability measure m is said to be quasi-Bernoulli if there exists a constant C' > 0
such that

V(n,p) € N2, VI € Fo, VI € Fy, ~m(D)m(J) < m(LT) < Cm(D)m(J), (1.2)

C

where IJ = I No~"(J) and o(z) = fx (mod 1) is the shift map on the interval [0, 1).
In this situation, Brown, Michon and Peyriere [, B7, B3] proved the existence of a
Gibbs measure at every state gq. A few years later, Heurteaux [[J] showed that 7 is
differentiable on IR. Therefore, for quasi-Bernoulli measures, we have

Va € (—7'(+00), —7'(—x)), dim(E,) = 7"(a).

Recently, in [B7, we introduced a more general condition that we call the
weak quasi-Bernoulli property. More precisely, we say that a measure m satisfies
the weak quasi-Bernoulli property if there exists a constant C' > 0 and some integers
r1, T2, P1, P2, S1, So such that

3C > 0, Vn,Vp, VI € F,,VJ € F,,

()Y me ) < S mI o) < Om(DS me ). P

At first sight, this new condition may seem artificial but is in fact natural. Indeed, in
[B7, B9] we showed that many self-similar measures with overlaps are not quasi-Bernoulli
but are weak quasi-Bernoulli and may be used to estimate the dimension of self-affine
graphs.

Furthermore, under this condition, we proved in [B9] the existence of Gibbs measures
at every positive state ¢ and the differentiability of 7 on IR". For weak quasi-Bernoulli
measures, we deduced that

Va € (=7 (4+00), —=7'(0)), dim(E,) = 7*(a).

Now, it is natural to ask whether or not these results still hold for negative ¢
when the measure only satisfies the weak quasi-Bernoulli property. In particular, in this
setting, we would like to know if

(i) the Li-spectrum 7(q) is differentiable on (—o0,0),
(ii) there exists Gibbs measures for negative g,
(iii) we have dim(FE,) = 7*(«) for a > —7/(0).

Note that the tools used in this context for ¢ > 0 cannot be applied for ¢ < 0. In

particular, to prove the existence of Gibbs measures for ¢ > 0 we use some multiplicative
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properties of the sequence ¢"™(9) which are no longer verified for ¢ < 0. In what follows,
we show that the multifractal formalism may break down for weak quasi-Bernoulli
measures. Therefore, for these measures, the answer to the above questions could be
no.
Let us precise these examples. For an integer ¢ > 2, we consider the 2¢ similitudes
S; :[0,1] + [0, 1] defined by
VOo<i<[(l—1, Si(x)= %x+% and  S;y(z) = —%erZ—Zl

For a given probability weight {p;}2%,", it is well known (e.g [B, ET]) that there exists a

unique probability measure p on [0, 1] verifying
201

M:Zpl-,uoSi_l. (1.4)
=0

This measure is often called the self-similar measure generated by {S;}?;'. In this
paper we establish that p satisfies the weak quasi-Bernoulli property. Moreover, we
show that there exists a Frostman measure 1, at every negative state ¢, i.e. a measure
ftq such that

Vi, VI € Fn,  pg(I) < Cpu(1)U—"@, (1.5)
where the constant C' > 0 is independent of n and I. Thus, for « = —7'(¢q), we have
Vo € Ba,  pig(Ia(2)) < (€77)7,

if n is large enough. The mass distribution principle or Frostman Lemma (e.g. [§])
implies that dim(FE,) > 7*(«). Thus, the values of a for which the multifractal formalism
may fail lie in intervals (—7/ (¢), =7’ (q)) where ¢ is a point of non-differentiability of 7
(7".(¢) and 7/ (q) stand for the left and the right derivative respectively). Such a point
q will be called a phase transition.

We assume that the weights p; associated to the measure p verifying ([.4) are
positive for every 0 < i < £ —1. Weset B = {0<i</{—1, pye =0} and
7(q) = log, (3 ,cppi?). In this case, the Li%-spectrum 7,(¢) of p is given by 7,(q) =
max (7,(q), 7(q)) where v = (u+ poT)/2 and T(z) = 1 — z. In order to get phase
transitions for the function 7, it is thus enough to find conditions on the p;’s ensuring
that the equation 7,(q) = 7(q) has isolated solutions.

Let K be the compact set defined by K = U;epS;(K). The attractor K plays an
important role to determine the local dimensions of ;. Indeed, we can link the level sets
of p and v in the following way : E,(1) = (E.(v) N ([0,1]\ K)) U (E,(u) N K). If v
satisfies the quasi-Bernoulli property, we get dim (E,(u)) = max (7,*(a), 7*(«)) . Using
the expression of 7, we deduce that each phase transition corresponds to an interval in
which the multifractal formalism does not hold. More precisely, we have the following.

(i) If 7,/(q) exists and if @ = —7,/(q), then dim(E,(¢)) = 7, ().
(i) If 7,/(¢) does not exist and if —(7,)(¢) < a < —(7,)"_(q), then dim(E, (1)) <

7. ().
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The class of measures studied may appear rather restrictive but is in fact sufficiently
large to point out new and interesting phenomena. In particular, we can observe the
following facts.

e The existence of an isolated point in the set of the local dimensions D, defined
by D, = {a, E,(u) # 0}. This situation has already been obtained for the Erdos
measure and for the 3-time convolution of the Cantor measure (e.g [L3, B0]).

e The existence of non-concave multifractal spectra eventually supported by a union
of mutually disjoint intervals. To the best of our knowledge, it is the first time that
such multifractal structures are obtained for self-similar measures.

e The existence of an arbitrarily large number of phase transitions for the L?-spectrum

7(q).

The paper is organized as follows. In section 2 we prove that the measure pu,
given by ([[.4), satisfies the weak quasi-Bernoulli property. In section 3 we establish the
existence of Gibbs measures at every negative state ¢ for the measure u. In section 4
we determine the L%-spectrum 7,(g). In section 5 we are interested in the singularity
spectrum of pu. The paper ends with a range of examples.

2. The weak quasi-Bernoulli property

Let us introduce some notation. In what follows, except contrary mention, ¢ > 2 is
an integer, I a (-adic interval of nth generation and J a f-adic interval. For every
(€1, €n) € {0,..., 0 — 1} I, ..., stands for the element of F,, defined by

u €; = €; 1
[e e, — YR - - .
Ifr=1,.. and € € {0,---,¢ — 1}, we shall write e/ instead of I,...,. If f and g are
positive functions of the same parameter, f ~ g means there exists a constant C' > 0
such that C~1g < f < Cg. Moreover, for any matrices M and N, we shall write M > 0
(and we shall say that M is positive) if all the digits of M are positive and M > N if

M — N > 0. The matrice relations <, > and < are similarly defined. Finally, for a 2 x 2
nonnegative matrix M, we define ||M||; and ||M|| by

g = ( 1 o)zw(i) and ||M||:%(1 1)M(1>

Let u be the measure verifying ([L.4). For convenience, we suppose that p is
supported on the interval [0,1]. That is equivalent to the condition : p; + pie > 0,
for every i € {0,---,¢ — 1}. The relation ([[.4) implies that

Ve {0, 0 =1}, plel) = pe 1) + pere (1),
where [* =T(I) and T'(z) = 1 — x. Since (I[*)* = I, we have

,u<€[> _ M(I) where _ De DPete
(uoT(d) ) _ME<MOT(I)> e e <p p> 2y
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By iterating this relation, we get

B plh) N o 1
VI=1,.., € Fn, (uOT(1)>_M€1 Men<1 ;

and we deduce that
w(l)=||M;|y and v(I)=|M;|, where M;= M, ---M,,. (2.2)

These relations will be used to prove that p satisfies the weak quasi-Bernoulli
property ([[.3). More precisely, we have the following.

Proposition 2.1. Let pu be the measure verifying ([[.4). Then,

iC > 0, Vn,Vp, VI € F,,VJ € F,
{ Ot u([)u(J) < p(I N o™ D) < Cu(I)u(o™*(J)),
where o : [0,1] — [0, 1] is the shift map on the (-adic basis given by o(x) = Lz(modl).
Remarks. 1. In general, the measure p does not satisfy the quasi-Bernoulli

property ([.J). To see that, take for example ¢/ = 2 and suppose that py > py,
pop1p2 > 0 and ps = 0. Using ([4), we get for J = I1..1 € F,,

1(0J) = pllor-1) = pop(J) + pap(J”) = pop(lr.1) + p2pi(fo...0)-
From (R.1) and (R.2), u(J) = || M1"||s = p1™ and p(J*) = || My"||; = po". Therefore,
if I = Iy, we have u(lJ) ~ po" and p(I)u(J) =~ pi™, which proves that p is not
quasi-Bernoulli.

2. Iffor every € € {0, -, 0—1}, pcpese = 0, the Open Set Condition of Hutchinson [21]
is verified. In this case, u is quasi-Bernoulli and proposition P.1] easily follows.

Proof of proposition R.1. According to the above remark, we can suppose that there
exists € € {0,---,¢— 1} such that pzpey, > 0. By (B.1]), Mz + M;_1_¢ > 0. Thus, we can
find a constant C' > 0 such that

1 -1 -1

B < > M. and L <CE)Y M,

e=0 e=0

E:10 andlgzlo.
10 01

It follows from (2.9) that

M, (ZZI ME> M,

e=0

where

1

1
p(Ino= () = 2 FIMIEM; |y = Zu(DulJ).

1
On the other hand, we obtain in a similar way that
-1
W(I 00~ (J)) = M|y < C|| M, E (Z Me> My|| = Cu(Du(o ().
e=0

1
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A monotone class argument implies that this relation still holds if we replace J by any
Borel set B. Thus, by taking B = o~!(J), we have

p(I No= V() < Cu(Dp(o~>(7)),

which completes the proof of proposition B.1.00

3. Frostman measures

In this section we establish the existence of Frostman measures ([[.J) at every negative
state ¢ for the measure p defined by ([[.4). We begin with a preliminary result that gives
conditions ensuring the existence of Frostman measures.

For a probability measure m on the interval [0, 1], let us define the series Z(s) by

n>1
If m(I) > 0, Z;(s) denotes the series associated to the measure m; verifying m;(J) =
m(LJ)/m(1).

Proposition 3.1. Let m be a probability measure on the interval [0,1] and g € R. With
the above notation, suppose that there exists a constant C' > 0 such that

(1) Yn, Vp, Upyp < Cuyuy,
(i) Y1 € F, Vs e R, Z(s) <CZ(s)

Then, there exists a Frostman measure at state q for the measure m.

Proof. We adapt to our situation the arguments used by Michon and Peyriere [27, BZ] in
another context. The submultiplicativity property of the sequence v, = C¢"™( implies
that the sequence Url/ " tends to its lower bound. As a consequence, 7,,(¢) converges and
if we call 7(q) its limit, we have

VnelN, Cgm@ > ),

Therefore, the series Z(s) converges for s > 7(q) and diverges for s = 7(q). Let us
consider, for s > 7(¢q), the function ¢, defined by

Gu(x) =D m(I, () (7).
n>1
Since fol ¢s(x)dx = Z(s), we can define a probability measure v, on the interval [0, 1] by

VieF, vI) 70)

For every I € F,,, we find that

Z(s)vs(I) = /Igbs(:p) de =07" Z m(Ix)? (f_k)_HS +m(D)U " Z(s),

1<k<n

where [, denotes the element of Fj containing /.
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Let m, be a weak*-limit of v as s goes to 7(¢). The divergence of the series Z(s) for
s = 7(q) and the inequality Z;(s) < CZ(s) imply that m,(I) < Cm(I)%~"79 which
completes the proof of proposition B.1.00

We easily deduce the following result.

Corollary 3.2. Let m be a probability measure on the interval [0, 1] and g € R. Suppose
that there exists a constant C' > 0 such that
VI, VJ, m(IJ)? < Cm(I)"m(J)%. (3.1)
Then, there exists a Frostman measure at state q for the measure m.
In particular, the condition (3.1) is satisfied if m(IJ) < Cm(I)m(J) and q > 0 or
if m(IJ) > Cm(I)m(J) and q < 0.
We will use the following lemma to prove that the measure p satisfies the hypotheses
of proposition B.1].
Lemma 3.3. Let p be the measure defined by ([[4). For every I € F, one of the
following s satisfied.
(i) VI e F, puDult) < 2u(lJ),
(i) VJ e F, wl)poT(J)<2u(lJ), where T(x) =1— x.
Proof. For I € F and ¢ € {0,---,¢ — 1}, we have S; *(el) = I or S;*(eI) = T(I) or
S;(el) = (. Thus, by iterating ([-4), we can find two non-negative real numbers A([)

(2

and B(I) (depending only on ) such that
VJeF, wullJ)=AD)u(J)+ BI)poT(J). (3.2)
We then obtain that either
vJeF, uplJ)=C)ul]),

or
Ve F, ()= CuoT().
where C(I) = max(A(I), B(I)) > 0.
By taking J = [0, 1] in (B.3), we get u(I) < 2C(I). Hence, either
VIEF, (L) > p(Iul),

or

VIeF, 2u(lJ) = p(l)poT(J),
which completes the proof of lemma [3.3.0J

Theorem 3.4. There exists a Frostman measure at every state ¢ < 0 for the measure
p verifying ([T4).

Proof. Let I € F. If for every J € F, u(1)p(J) < 2u(1J) (respectively, u(I)poT(J) <
2u(1J)), we set jiy = pu (respectively, fif = poT'). By lemma B3, we have

vIeF, pD)i(J) < 2u(l)).
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Since ¢ is negative, we obtain that
1\ . 1\

Uiy = ), >, plI))" < <§) D> D) () = (5) Un Up

IE€Fn JEF, IEF, JEF,
and

w [J ! —ns 1 ! ~ —ns 1 !

Zi(s)=>_ ). (%) < (5) SO ) = 5 ) Z(s).

n>1 JEFy, H n>1 JEFy,

Thus, u satisfies the hypotheses of proposition B.I] and theorem B.4 follows.[

4. The function 7,

In this section we determine the Li-spectrum 7,(q) of the measure p verifying ([.4). Let
us start with the following easy lemma.

Lemma 4.1. Let (up)nen and (v,)nen be two sequences of real positive numbers such
that

lim u)/" =wu et lim v}/™ =

n—oo n—oo

V.

Let
n
Wy, = E UpVp—e -
k=0

Then, the sequence (w}/")neN converges to w = max{u,v}.
The proof is elementary and therefore omitted.
Theorem 4.2. Let u be the probability measure verifying (L.4). Suppose that for every
0<i</l—1,p; >0, and set B = {0<i</{¢—1,ps¢=0}. Then, by denoting
7(q) = log, (EieBpiq), we have
Vge R, 7.(q) =max(r,(q),7(q)), (4.1)
where v = (u+poT)/2 and T(x) =1 — x. By convention, 7(q) = —oc if B =10.
Remarks. 1. We obtain a similar result replacing the hypothesis “p; > 0, for every
0<i</l—1" by “p; + pie >0, for every 0 <i < /¢ —1".
2. For positive g, the two Li-spectra 7,(¢) and 7,(q) are obviously the same. If ¢ < 0,
the situation is inverted : “small become big”. In fact, sets with negligeable mass

determine the function 7, ; therefore it suffices to consider the sum over indices
1 € B in the expression of 7.

3. If B=1{0,---,¢— 1}, p is a multinomial measure (also called Bernoulli product).
The calculation of 7, is then straightforward and we have 7, = 7 (e.g []).

4. To obtain phase transitions for the function 7, it is thus enough to find conditions
on the p;'s ensuring that the equation 7,(q) = 7(¢) has many isolated solutions.
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Proof of theorem {.2. We fix ¢ € R, n € IN* and we write C' for each constant which
depends on ¢ but not on n. Using ([.4), we get

/—1
wo= Y un =3 uiny
IeF, =0 I€Fn—1
= Z Z bip +pl+2/~L 7+ Z Z pz
i€B I€F,_1 i€B IeF,_1
S C Z V(I)q + Zpiqwn—l = Cvn—l + Zpiqwn—l-
IeFn1 1€B 1€EB

By induction, we obtain

<oy (zpz ) oy czuwn o

i€EB

We can find a minoration of the same type in a smnlar way.

Furthermore, the definition of ||.|| in (2.9) implies that v(I1J) < 2v(I)v(J). Thus,

the sequence vy'" converges and theorem [[J easily follows from lemma [].00

5. The level sets FE,

In this section we link the level sets F,(u) and E,(v) associated to the measures p
and v.

Proposition 5.1. The hypotheses are the same as in theorem [[.3. Let K be the compact
set defined by K = J,cp Si(K) with the convention that K =0 if B = 0. Then,
Eo(p) = (Ea(v) N ([0, 1]\ K)) U (Ea(p) N K.
Remarks. (i) If B={0,---,/—1}, K = [0, 1] and proposition p.1 is immediate.
(ii) If B =0, K = () and by proposition p.1, F(1t) = E,(v). In fact, in this case, it is
easy to prove that the measures p and v are strongly equivalent.
(iii) If B is reduced to a single element, K is a singleton.
(iv) In all other cases, K is a Cantor set.
Proof of proposition p.1. According to the above remark, we can suppose that
B#{0,---,/—1}and B # (. Fix 2 ¢ K and « > 0. To prove our claim, it is sufficient

to show that x € E,(p) if and only if x € E,(v). Since x ¢ K, there exists n(z) € IN

and € € B such that
Vn > n(z), I,(x)=1

€1 €p(z)€ En

where (€1, €u2)) € B™®) With obvious notation, it results from (E1]) and (2-3) that

(a(az) 0 ) ( Detr ) ( )

(L (z)) ||an(x)MeMJ:,n||1 B b(z) c(x) D2t—1-e Pr—1-e

ALu@) ~ T MMl ~ ([ a(z) 0 e 5
‘(b(z) C(x)><p2416pz15>< J )

Q.z G“I




Phase transitions for self-similar measures 11

Pe De+e &m,n Z;N:v,n
De + DP2e—1—¢ Petr + Pr—1—¢ 696,71 z,n
> C(x)

a Pe Pete dw,n Z’ix,n
De + DP20—1—¢ DPets + Pr—1—e 5:1:,11 dm,n

T pe<&m,n + Em,n) + peJré(ém,n + Jx,n)
(2pe + p%—l—s)(dm,n + bx,n) + (2p5+£ + pé—l—e)(ém,n + dx,n)
if n is large enough. Using p.p.i¢ > 0, we can find another constant C’(z) > 0 which

does not depend on n such that p(7,(z)) > C'(z)v(I,(z)). Since p < 2v, we then deduce
that

—

(Ea(p) N ([0, 1]\ K)) = (Ea(v) N (0, 1]\ K))
and proposition p.1] follows easily.[]
Theorem 5.2. The notation are the same as in theorem [{.3. Suppose that BN B* = ()
where B* = {{ —1—¢€,e € B}. Then,

(i) D, =D, U {— log, (r%aBXpi) , —log, (mmpl)} where D, = {a, E,(u) # 0}.
(By convention, [—log, (maxiep pi) , —log, (miniep pi)] = 0 if B=10.)
(it) Voo € D, dim(E,(p)) = max (dim(E,(v)), 7" ()) .

Proof. If B = (), the measures ;1 and v are strongly equivalent and theorem is easy.
Now assume that B 7& (). Let 7 be the self-similar measure supported on K verifying

D pimo St (5.1)

ZEB P 1€EB

The family (S;);cp satisfying the Open Set Condition [RI], the calculation of the L?-
spectrum 7, (q) is then straightforward :

VgeR, 7.(q) = log, (; (ZZB pi)q> : (5.2)

(e.g. [B, BO]). Moreover, we have

dim(E, (7)) = 7" (a) if a € [— log, <7m;(i63(’7)) , — log, <7m§”63(p?))] ,

icBDi ieBPi
E,(m)=10 otherwise.

(5.3)

Furthermore, for every (e;---¢,) € B" and I = [,....,, we find that

log,(|1])
= (Z Pz‘) p(I).

i€EB
We thus deduce that

Va, Eu(m)= Ea*Ing(ZieBPi)Qu) NK,
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or equivalently

\V/Oz, Ea+10g€(2i63pi)(ﬂ-)

It follows from (p.3) that
Ea(W)NK #0 & ae {— log, (IgleaBXpi) , — log, (Igélélpi>:| ,

and, if —log, (max;ep p;) < a < —log, (minep p;), then

dim(E, () N K) = 7,* (a + log, <Z pl-)) = 7 (a). (5.4)

1€B

= FE,(n) N K.

Proposition b.1 also leads to estimate dim(F,(v) N ([0,1] \ K)). The hypothesis
BN B* = {) implies that T(K) C [0,1] \ K. Therefore,
dim(E,(v) N K) = dim(T(E.(v) N K))
= dim(E,(v) NT(K)) < dim(E,(v) N ([0,1] \ K)),
and we conclude that
dim(E, (v)) = dim(E,(v) N ([0,1] \ K)).
Theorem p.9 then follows from proposition p.1] and (5.4).00
Remarks. 1. Using the same ideas, we can also obtain that
Va, dim(V,(p)) = max (dim(V,(v)), 7*(«)),
where V,, is defined as E, replacing lim by liminf. In other terms,
Va(m) = {:c € [0, 1], lirgig—% = a} .
2. Similar results can also be established replacing the Hausdorff dimension dim(F,,)
by the Packing dimension Dim (E,,).
We deduce the following.

Corollary 5.3. Suppose that B N B* = () and that v satisfies the quasi-Bernoulli
property. Then,
Ve, dim(E,(p)) = Dim (E, (1)) = dim(V, (1)) = Dim (V4 (1)) = max (7,*(a), 7*(a)) .

According to theorem (.3, the function 7,* is the Legendre transform of the
maximum of 7, and 7. On the other hand, by corollary (.3, the dimension of the
level sets E,(u) is given by the maximum of the Legendre transform of 7, and the
Legendre transform of 7,. Since we cannot invert Legendre transform and maximum,

we have the following.

Theorem 5.4. Suppose that BNB* = () and that v satisfies the quasi-Bernoulli property.
Then, we have the following.

(1) If 7,/ (q) exists and if o« = —7,/(q), then
dim(Fa (1)) = Ditn (Ea(p)) = dim(Va (1)) = Dim (Va(s)) = 7" ().
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(ii) If 7, (q) does not exist and if —(7,)",(q) < o < —(71,)"(q), then
dim(Ey (p)) = Dim (Eq(p)) = dim(Va () = Dim (Va () < 7.7 ().

Hence, each phase transition q gives rise to an interval (—(7,), (q), —(7.)"(q)) in
which the multifractal formalism breaks down.
Remark. It is possible to prove that v satisfies the quasi-Bernoulli property if and
only if

either Vi€ B, p; <pr_1_s, or Vi€ B, p; > pi_1_. (5.5)

The multifractal formalism fails for the measure p only in the first case. Indeed, if for

every © € B, p; > py_1_4, it is easy to check that the measures p and v are strongly
equivalent.

6. Examples

In this section we construct measures with non-differentiable Li-spectra 7(q) for which
previous results apply. Furthermore, based on these examples, we point out new
phenomena in the multifractal structure of self-similar measures.

6.1. An isolated point in the set of local dimensions

Let us take ¢ = 2 and consider the probability measure p verifying

p=popo Sy +pipo St +papo Sy (6.1)
where So(z) = /2, Si(x) = x/2 +1/2 and Sy(x) = —x/2 + 1/2. We assume that
pop1p2 > 0 and p; < pg. With the notation previously introduced, we have B = {1}
and K = {1}. Moreover, by theorem [L.7,

Vge R, 7u(q) = max(7,(q), ¢logs(p1))-
Thus, in order to get a phase transition for the function 7,, we have to compare
7,/ (—00) and log,(p1). For every I € F,, by iterating (p.1), we get v(I) > (p—)" where
p— = min(pg,p1 + p2). We easily deduce that —7,/(—00) < —logy(p-) < —logy(p1).
Since 7,(q) > qlog,(p1) for ¢ = 0, we conclude that there exists gy < 0 such that

(q) = {qlogz(pl) if ¢ < qo, (6.2)
g 7.(q) it q>q, '

and the Li-spectrum 7,(¢) is not differentiable at ¢ = gy (see figure [[(a)). Furthermore,

by (b3), v satisfies the quasi-Bernoulli property. Using theorem p.g and corollary

we deduce the following .

Theorem 6.1. Let pu be the measure satisfying (0.4). Then,

D, = D, U{~logy(p1)} = (=7, (+00), =7,/(=00)) U {—logy(p1)},
and
7 (@) if a€ (-7/(+00), —7,/(-0)),

dim(E,(p)) = {0 if o= —log,(p1).
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Remarks. 1. Since —7,/(—00) < —logy(p1), D, contains an isolated point. In this
sense, the situation is close to the ones obtained for the Erdés measure and for the
3-time convolution of the Cantor measure (e.g [[3, BQ]). Note that in our situation,
the value of [pg, p1, p2] is not a matter.

2. It is easy to show that
7" () if  —7/(+00) <a<—-7/(q),
7 (a) = 7" (q0)

logy(p1) — 7/ (qo

) (o 4 logy(p1)) if  —7/(q) <a< —logy(pr)

Thus,
Vo€ (=7 (+00), =7/ (qo)],  dim(Eq(p)) = dim(Va(p)) = 7" () = 7" (),
Vo€ (=7, (q), =7/ (—00)],  dim(Ey(p)) = dim(Vy(u)) = 7. (a) < 7,5 ().
Contrary to the usual situation, the singularity spectrum of p is not given by the

Legendre transform of 7, but instead by the Legendre transform of an auxiliary
function. Figure [[|(b) illustrates this phenomenon.

3. The measure p may be used to estimate the Hausdorff dimension of self-affine
graphs studied by McMullen [Bg], Prsytycki and Urbanski [B3, 0]. More details

can be found in [B7, BY].

0.6

0.3
2
\ 0.2]

(a) (b)

Figure 1. (a) 7, is not differentiable. (b) The singularity spectrum of p, given by
7%, differs from 7,*.

6.2. Non-concave spectra

Subsection 3.1 and several papers deal with measures for which the Li-spectrum 7(q) is
not differentiable at a single point ¢ = ¢y and is linear for ¢ < ¢o (e.g. [[Z, [3, BT, B2, B9)).
In this part we construct measures with non-differentiable and strictly concave L9-
spectra. That leads to new situations for the multifractal analysis of self-similar

measures.
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Let us take ¢ = 4 and consider the probability measure p satisfying

5
M:Zpi,uoSi_l, (6.3)
where o
@)= S@ =217 S@=T+,
S3(z) = §+ %, Sy(x) = —% + i and Ss(z) = —% + %

In this case, B = {2,3} and K is the Cantor set whose points only contains digits 2 and
3 in their 4-adic expression, i.e. K = {x = ¢;/4", ¢, =2 or 3, Vi € IN*}.

By theorem {3, 7,(¢) = max(7,(q),log(p2? + ps?)). In order to compute 7,, we
assume that the p;’s verify py = p3 + ps and p; = ps + ps. In this situation, it is
easy to show that v is a multinomial measure (see [B7]). The calculation of 7, is then
straightforward : 7,(¢) = 1/2 + log,(po? + p1?). Therefore, there exists gy < 0 such that

logy(pa? + p3?) if ¢ <qo,
(@) =19 1 , (6.4)
5 Tlogs(po” +p1%) if  ¢2qo,
and 7,(¢) is not differentiable at ¢ = g (see figure fi(a)).
Moreover, if we denote poVp; (po/Apr) the maximum (minimum) of py and p;, we get
D, = [—log,(po V p1), —log,(po A p1)] and dim(E,(v)) = 7,*(a) > 1/2, for all « € D,,.
It follows from theorem [.7 that

D, = [—log,(po V p1), —logy(po A p1)] U [—logy(p2 V p3), —log,(p2 A ps)],

and

dim(E, (1)) = {?*(a) ff —logy(po) < v < —logy(py),

7 (a) if —logy(p2Vps) < a < —log,(p2 A ps).
Thus, if p3 < p1 < po, the singularity spectrum of p is supported by a union of
mutually disjoint intervals and differs from 7 («) for —(7,) (q0) < o < —(7,,)"(qo) (see
figure B(b)). To the best of our knowledge, self-similar measures with such multifractal

structures have not previously appeared in the litterature.

6.3. Two phase transitions

Until now we have studied measures for which the L?-spectrum 7(q) is not differentiable
at one single point ¢y < 0. In this part we propose examples with two phase transitions.
Let us take ¢ = 5 and consider the probability measure p satisfying

7
p=> pipoS; (6.5)
1=0

where

&uyzg Si(x) =

w8
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3] osq /
/ \\
/ \
2 / \
\
\

0.6/
N /
|

~__ 0.4

0.2

Figure 2. (a) 7, is not differentiable. (b) The singularity spectrum of x is supported
by a union of two disjoint intervals.

r 4 zr 3

z 1 x 2
Sy(z) 5 + 3 5(x) 5 + 2 Se(x) z + ; an S7(x) 5 + 5
In this case, B = {3,4} and K = {x = Y ¢;/5", ¢ = 3 or 4, Vi € IN*}. We suppose that
the coeflicients p;’s verify pg = ps + ps, p1 = p3 + ps and ps = p7. As in section 6.2, we

get 7,(q) = max(logs(2po? + 2p1? + (2p2)?), logs (p3? + ps?)), and
Va € D, = [—logs(po V p1 V 2p2), — logy(po A p1 A 2po)], dim(Ea(v)) = 7" (a).

In order to have 7,(¢) = 7,(¢) for large negative ¢, we choose p, sufficiently small.
For example, if we take pg = 0.35, p; = 0.14, p, = 0.01, p3 = 0.03 and py = 0.025,
the equation 7,(¢) = 7(¢) has two solutions ¢y and ¢; corresponding to the points of
non-differentiability of 7,(¢). By theorem p.3, D, = [—logs(po), — logs(2p2)] and

7, () if  —logs(po) < a < ay,
dim(F,(pn)) =< 7(a) if oy <a<ay,
7, (o) if o <a< —logs(pa),

where oy and oy denote the solutions of the equation 7,"(o) = 7*(«). From the
expression of the Legendre transform of 7, = max(7,, 7), it follows that

Vo € (—(7)(a0), = (1) (00)) U (= (1) (00), =(7)_ (@), dim(Ba(p)) < 7" (ev).

6.4. More phase transitions

In this part we describe a way to construct measures with an arbitrarily large number
N of phase transitions. Theorem f.J leads us to find conditions on the p;'s such that
the equation 7,(¢) = 7(¢) has N solutions. Since 7,(0) > 7(0), we have to distinguish
the case where N is odd from the case where NNV is even.

First, assume that N is odd. Let us take { = 2N, B = {¢/2,--- ¢ —1} and suppose
that p; = piye+ pe_1-4, for all 0 <i < £/2 —1. In this case, the arguments developed in
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0.8
0.6
0.4

0.2 \

Figure 3. 7, = max(r,, 7) is not differentiable at two points. The singularity spectrum
of u is not concave and differs from 7,*.

section 6.2 imply that

7u(q) = max(7,(q), 7(q)) = max (logm (Z_: 2pz~q> ,logyy (2 pﬂ)) :

i=0 i=N
Moreover, since £ = 2N, we can choose the p;'s such that the equation
2N-1

N-1
> o= p
i=0 i=N

has N solutions. These solutions correspond to the phase transitions for the L?-spectrum

7u(q)-
Assume now that N is even. To ensure that 7,(¢) = 7,(¢) for large negative ¢, tools

used in section 6.3 suggest to take £ odd. Let / =2N +1and B={N +1,---,2N}.
Under the conditions, for all 0 <¢ < N — 1, p; = pise + pr—1_; and py = py.e, We get

N-1 2N
TM(Q) = max <10g2N+1 (Z 2p;7 + (QPN)q> ,1ogon g ( Z pﬂ)) .

i=0 i=N+1
Thus, in order to have 7,(¢) = 7,(q) for large negative ¢, we also suppose that
2py < min(p;, N +1 < i < 2N). Once again, we can choose the p;’s such that the
equation

N-1 2N
Z 2p + (2pn)* = Z pi’
i=0

i=N+1
has N solutions. They correspond to the phase transitions for the function 7,,.
More details about these examples can be found in [B7].
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