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Abstract. We are interested in the multifractal analysis of a class of self-similar

measures with overlaps. This class, for which we obtain explicit formulae for the Lq-

spectrum τ(q) as well as the singularity spectrum f(α), is sufficiently large to point out

new phenomena in the multifractal structure of self-similar measures. We show that,

unlike the classical quasi-Bernoulli case, the Lq-spectrum τ(q) of the measures studied

can have an arbitrarily large number of non-differentiability points (phase transitions).

These singularities occur only for the negative values of q and yield to measures that

do not satisfy the usual multifractal formalism. The weak quasi-Bernoulli property is

the key point of most of the arguments.
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1. Introduction

Let us begin with some notation. For an integer ℓ ≥ 2, we denote by F = ∪nFn where

Fn is the set of the ℓ-adic intervals of the nth generation included in the interval [0, 1).

In other terms, Fn = {I = [k/ℓn, (k + 1)/ℓn) , 0 ≤ k < ℓn} . For every x ∈ [0, 1), In(x)

stands for the unique interval among Fn containing x.

Let m be a probability measure on the interval [0, 1). For x ∈ [0, 1), we define the

local dimension (also called Hölder exponent) of m at x by

α(x) = lim
n→+∞

−
log m(In(x))

n log ℓ
,

provided this limit exists. The aim of multifractal analysis is to find the Hausdorff

dimension, dim(Eα), of the level set Eα = {x : α(x) = α} for α > 0. The function

f(α) = dim(Eα) is called the singularity spectrum (or multifractal spectrum) of m and

we say that m is a multifractal measure when f(α) > 0 for several α′s.

The concepts underlying the multifractal decomposition of a measure go back to an

early paper of Mandelbrot [24]. In the 80’s multifractal measures were used by physicists
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to study various models arising from natural phenomena. In fully developped turbulence

they were used by Frisch and Parisi [14] to investigate the intermittent behaviour in the

regions of high vorticity. In dynamical system theory they were used by Benzi et al. [3]

to measure how often a given region of the attractor is visited. In diffusion-limited

aggregation (DLA) they were used by Meakin et al. [25] to describe the probability of

a random walk landing to the neighborhood of a given site on the aggregate.

In order to determine the function f(α), Hentschel and Procaccia [18] used ideas

based on Renyi entropies [34] to introduce the generalized dimensions Dq defined by

Dq = lim
n→+∞

1

q − 1

log
(
∑

I∈Fn
m(I)q

)

n log ℓ
,

(see also [15, 16]). From a physical and heuristical point of view, Halsey et al. [17]

showed that the singularity spectrum f(α) and the generalized dimensions Dq can be

derived from each other. The Legendre transform turned out to be a useful tool linking

f(α) and Dq. More precisely, it was suggested that

f(α) = dim(Eα) = τ ∗(α) = inf(αq + τ(q), q ∈ IR), (1.1)

where

τ(q) = lim sup
n→+∞

τn(q) with τn(q) =
1

n log ℓ
log

(

∑

I∈Fn

m(I)q

)

.

(The sum runs over the ℓ-adic intervals I such that m(I) 6= 0.) The function τ(q) is

called the Lq-spectrum of m and if the limit exists τ(q) = (q−1)Dq. Note that there may

be problems of stability or invariance in the definition of τ(q) for negative q and Riedi

[35] propose an improvement of this definition. In what follows, these difficulties will be

avoided by restricting the sums over convenient ℓ-adic intervals defining the measure.

Of course, this way is not an option in many applications where the structure of the

measure is not known in advance. For more information on the Lq-spectrum and the

singularity spectrum we refer the reader to [1, 2, 5, 10, 11, 19, 28, 31, 32, 37, 38, 39, 41].

Relation (1.1) is called the multifractal formalism and in many aspects it is

analogous to the well-known thermodynamic formalism developed by Bowen [4] and

Ruelle [36].

For number of measures, relation (1.1) can be verified rigorously. In particular,

under some separation conditions, self-similar measures satisfy the multifractal

formalism (e.g. [6, 7, 9, 23, 30]). Despite all the investigations mentioned, the exact

range of the validity of the multifractal formalism is still not known. Furthermore, it is

easy to construct measures that do not satisfy (1.1) (e.g [35]). It is thus interesting to

find conditions ensuring the validity of (1.1). The main difficulty is often to get a lower

bound of dim(Eα). Usually, such a minoration relies on the existence of an auxiliary

measure mq, the so-called Gibbs measure, supported on the level set Eα. Recall that

mq is a Gibbs measure at state q for the measure m if

∀n, ∀I ∈ Fn,
1

C
m(I)qℓ−nτ(q) ≤ mq(I) ≤ Cm(I)qℓ−nτ(q),
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where the constant C > 0 is independent of n and I. If τ is differentiable at q, the

measure mq –if it exists– will be supported by E−τ ′(q). In this case, Brown, Michon and

Peyrière established [5, 32] that

dim(E−τ ′(q)) = τ ∗(−τ ′(q)) = −qτ ′(q) + τ(q).

In general, to prove the existence of Gibbs measures we need some homogeneity

hypotheses on the measure. This is, for instance, the case of quasi-Bernoulli measures :

a probability measure m is said to be quasi-Bernoulli if there exists a constant C > 0

such that

∀(n, p) ∈ IN2, ∀I ∈ Fn, ∀J ∈ Fp,
1

C
m(I)m(J) ≤ m(IJ) ≤ Cm(I)m(J), (1.2)

where IJ = I ∩ σ−n(J) and σ(x) = ℓx (mod 1) is the shift map on the interval [0, 1).

In this situation, Brown, Michon and Peyrière [5, 27, 32] proved the existence of a

Gibbs measure at every state q. A few years later, Heurteaux [19] showed that τ is

differentiable on IR. Therefore, for quasi-Bernoulli measures, we have

∀α ∈ (−τ ′(+∞),−τ ′(−∞)) , dim(Eα) = τ ∗(α).

Recently, in [37, 39] we introduced a more general condition that we call the

weak quasi-Bernoulli property. More precisely, we say that a measure m satisfies

the weak quasi-Bernoulli property if there exists a constant C > 0 and some integers

r1, r2, p1, p2, s1, s2 such that














∃C > 0, ∀n, ∀p, ∀I ∈ Fn, ∀J ∈ Fp,

C−1m(I)

r2
∑

k=r1

m(σ−k(J)) ≤

p2
∑

k=p1

m(I ∩ σ−(n+k)(J)) ≤ Cm(I)

s2
∑

k=s1

m(σ−k(J)).
(1.3)

At first sight, this new condition may seem artificial but is in fact natural. Indeed, in

[37, 39] we showed that many self-similar measures with overlaps are not quasi-Bernoulli

but are weak quasi-Bernoulli and may be used to estimate the dimension of self-affine

graphs.

Furthermore, under this condition, we proved in [39] the existence of Gibbs measures

at every positive state q and the differentiability of τ on IR+. For weak quasi-Bernoulli

measures, we deduced that

∀α ∈ (−τ ′(+∞),−τ ′(0)) , dim(Eα) = τ ∗(α).

Now, it is natural to ask whether or not these results still hold for negative q

when the measure only satisfies the weak quasi-Bernoulli property. In particular, in this

setting, we would like to know if

(i) the Lq-spectrum τ(q) is differentiable on (−∞, 0),

(ii) there exists Gibbs measures for negative q,

(iii) we have dim(Eα) = τ ∗(α) for α > −τ ′(0).

Note that the tools used in this context for q ≥ 0 cannot be applied for q < 0. In

particular, to prove the existence of Gibbs measures for q ≥ 0 we use some multiplicative
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properties of the sequence ℓnτn(q) which are no longer verified for q < 0. In what follows,

we show that the multifractal formalism may break down for weak quasi-Bernoulli

measures. Therefore, for these measures, the answer to the above questions could be

no.

Let us precise these examples. For an integer ℓ ≥ 2, we consider the 2ℓ similitudes

Si : [0, 1] 7→ [0, 1] defined by

∀ 0 ≤ i ≤ ℓ − 1, Si(x) =
1

ℓ
x +

i

ℓ
and Si+ℓ(x) = −

1

ℓ
x +

i + 1

ℓ
.

For a given probability weight {pi}
2ℓ−1
i=0 , it is well known (e.g [8, 21]) that there exists a

unique probability measure µ on [0, 1] verifying

µ =

2ℓ−1
∑

i=0

pi µ ◦ S−1
i . (1.4)

This measure is often called the self-similar measure generated by {Si}
2ℓ−1
i=0 . In this

paper we establish that µ satisfies the weak quasi-Bernoulli property. Moreover, we

show that there exists a Frostman measure µq at every negative state q, i.e. a measure

µq such that

∀n, ∀I ∈ Fn, µq(I) ≤ Cµ(I)qℓ−nτ(q), (1.5)

where the constant C > 0 is independent of n and I. Thus, for α = −τ ′(q), we have

∀x ∈ Eα, µq(In(x)) ≤ (ℓ−n)τ∗(α),

if n is large enough. The mass distribution principle or Frostman Lemma (e.g. [8])

implies that dim(Eα) ≥ τ ∗(α). Thus, the values of α for which the multifractal formalism

may fail lie in intervals (−τ ′
+(q),−τ ′

−(q)) where q is a point of non-differentiability of τ

(τ ′
−(q) and τ ′

+(q) stand for the left and the right derivative respectively). Such a point

q will be called a phase transition.

We assume that the weights pi associated to the measure µ verifying (1.4) are

positive for every 0 ≤ i ≤ ℓ − 1. We set B = {0 ≤ i ≤ ℓ − 1, pi+ℓ = 0} and

τ̃(q) = logℓ

(
∑

i∈B pi
q
)

. In this case, the Lq-spectrum τµ(q) of µ is given by τµ(q) =

max (τν(q), τ̃(q)) where ν = (µ + µ ◦ T )/2 and T (x) = 1 − x. In order to get phase

transitions for the function τµ, it is thus enough to find conditions on the pi
′s ensuring

that the equation τν(q) = τ̃ (q) has isolated solutions.

Let K be the compact set defined by K = ∪i∈BSi(K). The attractor K plays an

important role to determine the local dimensions of µ. Indeed, we can link the level sets

of µ and ν in the following way : Eα(µ) = (Eα(ν) ∩ ([0, 1] \ K)) ∪ (Eα(µ) ∩ K) . If ν

satisfies the quasi-Bernoulli property, we get dim (Eα(µ)) = max (τν
∗(α), τ̃ ∗(α)) . Using

the expression of τµ, we deduce that each phase transition corresponds to an interval in

which the multifractal formalism does not hold. More precisely, we have the following.

(i) If τµ
′(q) exists and if α = −τµ

′(q), then dim(Eα(µ)) = τµ
∗(α).

(ii) If τµ
′(q) does not exist and if −(τµ)′+(q) < α < −(τµ)′−(q), then dim(Eα(µ)) <

τµ
∗(α).
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The class of measures studied may appear rather restrictive but is in fact sufficiently

large to point out new and interesting phenomena. In particular, we can observe the

following facts.

• The existence of an isolated point in the set of the local dimensions Dµ defined

by Dµ = {α, Eα(µ) 6= ∅}. This situation has already been obtained for the Erdös

measure and for the 3-time convolution of the Cantor measure (e.g [13, 20]).

• The existence of non-concave multifractal spectra eventually supported by a union

of mutually disjoint intervals. To the best of our knowledge, it is the first time that

such multifractal structures are obtained for self-similar measures.

• The existence of an arbitrarily large number of phase transitions for the Lq-spectrum

τ(q).

The paper is organized as follows. In section 2 we prove that the measure µ,

given by (1.4), satisfies the weak quasi-Bernoulli property. In section 3 we establish the

existence of Gibbs measures at every negative state q for the measure µ. In section 4

we determine the Lq-spectrum τµ(q). In section 5 we are interested in the singularity

spectrum of µ. The paper ends with a range of examples.

2. The weak quasi-Bernoulli property

Let us introduce some notation. In what follows, except contrary mention, ℓ ≥ 2 is

an integer, I a ℓ-adic interval of nth generation and J a ℓ-adic interval. For every

(ǫ1, ..., ǫn) ∈ {0, ..., ℓ − 1}n, Iǫ1···ǫn
stands for the element of Fn defined by

Iǫ1···ǫn
=

[

n
∑

i=1

ǫi

ℓi
,

n
∑

i=1

ǫi

ℓi
+

1

ℓn

)

.

If I = Iǫ1···ǫn
and ǫ ∈ {0, · · · , ℓ − 1}, we shall write ǫI instead of Iǫǫ1···ǫn

. If f and g are

positive functions of the same parameter, f ≈ g means there exists a constant C > 0

such that C−1g ≤ f ≤ Cg. Moreover, for any matrices M and N , we shall write M > 0

(and we shall say that M is positive) if all the digits of M are positive and M > N if

M −N > 0. The matrice relations <, ≥ and ≤ are similarly defined. Finally, for a 2×2

nonnegative matrix M , we define ‖M‖1 and ‖M‖ by

‖M‖1 =
(

1 0
)

M

(

1

1

)

and ‖M‖ =
1

2

(

1 1
)

M

(

1

1

)

.

Let µ be the measure verifying (1.4). For convenience, we suppose that µ is

supported on the interval [0, 1]. That is equivalent to the condition : pi + pi+ℓ > 0,

for every i ∈ {0, · · · , ℓ − 1}. The relation (1.4) implies that

∀ǫ ∈ {0, · · · , ℓ − 1}, µ(ǫI) = pǫ µ(I) + pǫ+ℓ µ(I∗),

where I∗ = T (I) and T (x) = 1 − x. Since (I∗)∗ = I, we have
(

µ(ǫI)

µ ◦ T (ǫI)

)

= Mǫ

(

µ(I)

µ ◦ T (I)

)

where Mǫ =

(

pǫ pǫ+ℓ

p2ℓ−1−ǫ pℓ−1−ǫ

)

. (2.1)
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By iterating this relation, we get

∀I = Iǫ1···ǫn
∈ Fn,

(

µ(I)

µ ◦ T (I)

)

= Mǫ1 · · ·Mǫn

(

1

1

)

,

and we deduce that

µ(I) = ‖MI‖1 and ν(I) = ‖MI‖, where MI = Mǫ1 · · ·Mǫn
. (2.2)

These relations will be used to prove that µ satisfies the weak quasi-Bernoulli

property (1.3). More precisely, we have the following.

Proposition 2.1. Let µ be the measure verifying (1.4). Then,
{

∃C > 0, ∀n, ∀p, ∀I ∈ Fn, ∀J ∈ Fp,

C−1µ(I)µ(J) ≤ µ(I ∩ σ−(n+1)(J)) ≤ Cµ(I)µ(σ−2(J)),

where σ : [0, 1] 7→ [0, 1] is the shift map on the ℓ-adic basis given by σ(x) = ℓx(mod1).

Remarks. 1. In general, the measure µ does not satisfy the quasi-Bernoulli

property (1.2). To see that, take for example ℓ = 2 and suppose that p0 > p1,

p0p1p2 > 0 and p3 = 0. Using (1.4), we get for J = I1···1 ∈ Fn,

µ(0J) = µ(I01···1) = p0µ(J) + p2µ(J∗) = p0µ(I1···1) + p2µ(I0···0).

From (2.1) and (2.2), µ(J) = ‖M1
n‖1 = p1

n and µ(J∗) = ‖M0
n‖1 ≈ p0

n. Therefore,

if I = I0, we have µ(IJ) ≈ p0
n and µ(I)µ(J) ≈ p1

n, which proves that µ is not

quasi-Bernoulli.

2. If for every ǫ ∈ {0, · · · , ℓ−1}, pǫpǫ+ℓ = 0, the Open Set Condition of Hutchinson [21]

is verified. In this case, µ is quasi-Bernoulli and proposition 2.1 easily follows.

Proof of proposition 2.1. According to the above remark, we can suppose that there

exists ǫ̃ ∈ {0, · · · , ℓ− 1} such that pǫ̃pǫ̃+ℓ > 0. By (2.1), Mǫ̃ + Mℓ−1−ǫ̃ > 0. Thus, we can

find a constant C > 0 such that

1

C
E ≤

ℓ−1
∑

ǫ=0

Mǫ and I2 ≤ CE
ℓ−1
∑

ǫ=0

Mǫ,

where

E =

(

1 0

1 0

)

and I2 =

(

1 0

0 1

)

.

It follows from (2.2) that

µ(I ∩ σ−(n+1)(J)) =

∥

∥

∥

∥

∥

MI

(

ℓ−1
∑

ǫ=0

Mǫ

)

MJ

∥

∥

∥

∥

∥

1

≥
1

C
‖MIEMJ‖1 =

1

C
µ(I)µ(J).

On the other hand, we obtain in a similar way that

µ(I ∩ σ−n(J)) = ‖MIMJ‖1 ≤ C

∥

∥

∥

∥

∥

MIE

(

ℓ−1
∑

ǫ=0

Mǫ

)

MJ

∥

∥

∥

∥

∥

1

= Cµ(I)µ(σ−1(J)).
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A monotone class argument implies that this relation still holds if we replace J by any

Borel set B. Thus, by taking B = σ−1(J), we have

µ(I ∩ σ−(n+1)(J)) ≤ Cµ(I)µ(σ−2(J)),

which completes the proof of proposition 2.1.�

3. Frostman measures

In this section we establish the existence of Frostman measures (1.5) at every negative

state q for the measure µ defined by (1.4). We begin with a preliminary result that gives

conditions ensuring the existence of Frostman measures.

For a probability measure m on the interval [0, 1], let us define the series Z(s) by

∀s ∈ IR, Z(s) =
∑

n≥1

unℓ
−ns, where un = ℓnτn(q).

If m(I) > 0, ZI(s) denotes the series associated to the measure mI verifying mI(J) =

m(IJ)/m(I).

Proposition 3.1. Let m be a probability measure on the interval [0, 1] and q ∈ IR. With

the above notation, suppose that there exists a constant C > 0 such that

(i) ∀n, ∀p, un+p ≤ Cunup,

(ii) ∀I ∈ F , ∀s ∈ IR, ZI(s) ≤ CZ(s)

Then, there exists a Frostman measure at state q for the measure m.

Proof. We adapt to our situation the arguments used by Michon and Peyrière [27, 32] in

another context. The submultiplicativity property of the sequence vn = Cℓnτn(q) implies

that the sequence v
1/n
n tends to its lower bound. As a consequence, τn(q) converges and

if we call τ(q) its limit, we have

∀n ∈ IN, Cℓnτn(q) ≥ ℓnτ(q).

Therefore, the series Z(s) converges for s > τ(q) and diverges for s = τ(q). Let us

consider, for s > τ(q), the function φs defined by

φs(x) =
∑

n≥1

m(In(x))q
(

ℓ−n
)−1+s

.

Since
∫ 1

0
φs(x)dx = Z(s), we can define a probability measure νs on the interval [0, 1] by

∀I ∈ F , νs(I) =

∫

I
φs(x)dx

Z(s)
.

For every I ∈ Fn, we find that

Z(s)νs(I) =

∫

I

φs(x) dx = ℓ−n
∑

1≤k≤n

m(Ik)
q
(

ℓ−k
)−1+s

+ m(I)qℓ−nsZI(s),

where Ik denotes the element of Fk containing I.
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Let mq be a weak∗-limit of νs as s goes to τ(q). The divergence of the series Z(s) for

s = τ(q) and the inequality ZI(s) ≤ CZ(s) imply that mq(I) ≤ Cm(I)qℓ−nτ(q), which

completes the proof of proposition 3.1.�

We easily deduce the following result.

Corollary 3.2. Let m be a probability measure on the interval [0, 1] and q ∈ IR. Suppose

that there exists a constant C > 0 such that

∀I, ∀J, m(IJ)q ≤ Cm(I)qm(J)q. (3.1)

Then, there exists a Frostman measure at state q for the measure m.

In particular, the condition (3.1) is satisfied if m(IJ) ≤ Cm(I)m(J) and q > 0 or

if m(IJ) ≥ Cm(I)m(J) and q < 0.

We will use the following lemma to prove that the measure µ satisfies the hypotheses

of proposition 3.1.

Lemma 3.3. Let µ be the measure defined by (1.4). For every I ∈ F , one of the

following is satisfied.

(i) ∀J ∈ F , µ(I)µ(J) ≤ 2 µ(IJ),

(ii) ∀J ∈ F , µ(I)µ ◦ T (J) ≤ 2 µ(IJ), where T (x) = 1 − x.

Proof. For I ∈ F and ǫ ∈ {0, · · · , ℓ − 1}, we have S−1
i (ǫI) = I or S−1

i (ǫI) = T (I) or

S−1
i (ǫI) = ∅. Thus, by iterating (1.4), we can find two non-negative real numbers A(I)

and B(I) (depending only on I) such that

∀J ∈ F , µ(IJ) = A(I)µ(J) + B(I)µ ◦ T (J). (3.2)

We then obtain that either

∀J ∈ F , µ(IJ) ≥ C(I)µ(J),

or

∀J ∈ F , µ(IJ) ≥ C(I)µ ◦ T (J),

where C(I) = max(A(I), B(I)) > 0.

By taking J = [0, 1] in (3.2), we get µ(I) ≤ 2C(I). Hence, either

∀J ∈ F , 2µ(IJ) ≥ µ(I)µ(J),

or

∀J ∈ F , 2µ(IJ) ≥ µ(I)µ ◦ T (J),

which completes the proof of lemma 3.3.�

Theorem 3.4. There exists a Frostman measure at every state q < 0 for the measure

µ verifying (1.4).

Proof. Let I ∈ F . If for every J ∈ F , µ(I)µ(J) ≤ 2µ(IJ) (respectively, µ(I)µ◦T (J) ≤

2µ(IJ)), we set µ̃I = µ (respectively, µ̃I = µ ◦ T ). By lemma 3.3, we have

∀J ∈ F , µ(I)µ̃I(J) ≤ 2µ(IJ).
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Since q is negative, we obtain that

un+p =
∑

I∈Fn

∑

J∈Fp

µ(IJ)q ≤

(

1

2

)q
∑

I∈Fn

∑

J∈Fp

µ(I)qµ̃I(J)q =

(

1

2

)q

unup

and

ZI(s) =
∑

n≥1

∑

J∈Fn

(

µ(IJ)

µ(I)

)q

ℓ−ns ≤

(

1

2

)q
∑

n≥1

∑

J∈Fn

µ̃I(J)qℓ−ns =

(

1

2

)q

Z(s).

Thus, µ satisfies the hypotheses of proposition 3.1 and theorem 3.4 follows.�

4. The function τµ

In this section we determine the Lq-spectrum τµ(q) of the measure µ verifying (1.4). Let

us start with the following easy lemma.

Lemma 4.1. Let (un)n∈IN and (vn)n∈IN be two sequences of real positive numbers such

that

lim
n→∞

u1/n
n = u et lim

n→∞
v1/n

n = v.

Let

wn =
n
∑

k=0

ukvn−k.

Then, the sequence (w
1/n
n )n∈IN converges to w = max{u, v}.

The proof is elementary and therefore omitted.

Theorem 4.2. Let µ be the probability measure verifying (1.4). Suppose that for every

0 ≤ i ≤ ℓ − 1, pi > 0, and set B = {0 ≤ i ≤ ℓ − 1, pi+ℓ = 0}. Then, by denoting

τ̃(q) = logℓ

(
∑

i∈B pi
q
)

, we have

∀q ∈ IR, τµ(q) = max(τν(q), τ̃(q)), (4.1)

where ν = (µ + µ ◦ T )/2 and T (x) = 1 − x. By convention, τ̃ (q) = −∞ if B = ∅.

Remarks. 1. We obtain a similar result replacing the hypothesis “pi > 0, for every

0 ≤ i ≤ ℓ − 1” by “pi + pi+ℓ > 0, for every 0 ≤ i ≤ ℓ − 1”.

2. For positive q, the two Lq-spectra τµ(q) and τν(q) are obviously the same. If q < 0,

the situation is inverted : “small become big”. In fact, sets with negligeable mass

determine the function τµ ; therefore it suffices to consider the sum over indices

i ∈ B in the expression of τ̃ .

3. If B = {0, · · · , ℓ − 1}, µ is a multinomial measure (also called Bernoulli product).

The calculation of τµ is then straightforward and we have τµ = τ̃ (e.g [9]).

4. To obtain phase transitions for the function τµ, it is thus enough to find conditions

on the pi
′s ensuring that the equation τν(q) = τ̃ (q) has many isolated solutions.
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Proof of theorem 4.2. We fix q ∈ IR, n ∈ IN∗ and we write C for each constant which

depends on q but not on n. Using (1.4), we get

wn =
∑

I∈Fn

µ(I)q =
ℓ−1
∑

i=0

∑

I∈Fn−1

µ(iI)q

=
∑

i6∈B

∑

I∈Fn−1

(piµ(I) + pi+ℓµ(I∗))q +
∑

i∈B

∑

I∈Fn−1

pi
qµ(I)q

≤ C
∑

I∈Fn−1

ν(I)q +
∑

i∈B

pi
qwn−1 := Cvn−1 +

∑

i∈B

pi
qwn−1.

By induction, we obtain

wn ≤ C
n−1
∑

k=0

(

∑

i∈B

pi
q

)k

vn−(k+1) := C
n−1
∑

k=0

ukvn−(k+1).

We can find a minoration of the same type in a similar way.

Furthermore, the definition of ‖.‖ in (2.2) implies that ν(IJ) ≤ 2ν(I)ν(J). Thus,

the sequence v
1/n
n converges and theorem 4.2 easily follows from lemma 4.1.�

5. The level sets Eα

In this section we link the level sets Eα(µ) and Eα(ν) associated to the measures µ

and ν.

Proposition 5.1. The hypotheses are the same as in theorem 4.2. Let K be the compact

set defined by K =
⋃

i∈B Si(K) with the convention that K = ∅ if B = ∅. Then,

Eα(µ) = (Eα(ν) ∩ ([0, 1] \ K)) ∪ (Eα(µ) ∩ K) .

Remarks. (i) If B = {0, · · · , ℓ − 1}, K = [0, 1] and proposition 5.1 is immediate.

(ii) If B = ∅, K = ∅ and by proposition 5.1, Eα(µ) = Eα(ν). In fact, in this case, it is

easy to prove that the measures µ and ν are strongly equivalent.

(iii) If B is reduced to a single element, K is a singleton.

(iv) In all other cases, K is a Cantor set.

Proof of proposition 5.1. According to the above remark, we can suppose that

B 6= {0, · · · , ℓ−1} and B 6= ∅. Fix x 6∈ K and α > 0. To prove our claim, it is sufficient

to show that x ∈ Eα(µ) if and only if x ∈ Eα(ν). Since x 6∈ K, there exists n(x) ∈ IN

and ǫ 6∈ B such that

∀n ≥ n(x), In(x) = Iǫ1···ǫn(x)ǫ···ǫn

where (ǫ1, · · · , ǫn(x)) ∈ Bn(x). With obvious notation, it results from (2.1) and (2.2) that

µ(In(x))

ν(In(x))
=

‖MIn(x)
MǫMx,n‖1

‖MIn(x)
MǫMx,n‖

=

∥

∥

∥

∥

∥

(

a(x) 0

b(x) c(x)

)(

pǫ pǫ+ℓ

p2ℓ−1−ǫ pℓ−1−ǫ

)(

ãx,n b̃x,n

c̃x,n d̃x,n

)
∥

∥

∥

∥

∥

1
∥

∥

∥

∥

∥

(

a(x) 0

b(x) c(x)

)(

pǫ pǫ+ℓ

p2ℓ−1−ǫ pℓ−1−ǫ

)(

ãx,n b̃x,n

c̃x,n d̃x,n

)
∥

∥

∥

∥

∥
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≥ C(x)

∥

∥

∥

∥

∥

(

pǫ pǫ+ℓ

pǫ + p2ℓ−1−ǫ pǫ+ℓ + pℓ−1−ǫ

)(

ãx,n b̃x,n

c̃x,n d̃x,n

)
∥

∥

∥

∥

∥

1
∥

∥

∥

∥

∥

(

pǫ pǫ+ℓ

pǫ + p2ℓ−1−ǫ pǫ+ℓ + pℓ−1−ǫ

)(

ãx,n b̃x,n

c̃x,n d̃x,n

)
∥

∥

∥

∥

∥

= C(x)
pǫ(ãx,n + b̃x,n) + pǫ+ℓ(c̃x,n + d̃x,n)

(2pǫ + p2ℓ−1−ǫ)(ãx,n + b̃x,n) + (2pǫ+ℓ + pℓ−1−ǫ)(c̃x,n + d̃x,n)
.

if n is large enough. Using pǫpǫ+ℓ > 0, we can find another constant C ′(x) > 0 which

does not depend on n such that µ(In(x)) ≥ C ′(x)ν(In(x)). Since µ ≤ 2ν, we then deduce

that

(Eα(µ) ∩ ([0, 1] \ K)) = (Eα(ν) ∩ ([0, 1] \ K))

and proposition 5.1 follows easily.�

Theorem 5.2. The notation are the same as in theorem 4.2. Suppose that B ∩B∗ = ∅

where B∗ = {ℓ − 1 − ǫ, ǫ ∈ B}. Then,

(i) Dµ = Dν ∪

[

− logℓ

(

max
i∈B

pi

)

,− logℓ

(

min
i∈B

pi

)]

where Dµ = {α, Eα(µ) 6= ∅}.

(By convention, [− logℓ (maxi∈B pi) ,− logℓ (mini∈B pi)] = ∅ if B = ∅.)

(ii) ∀α ∈ Dµ, dim(Eα(µ)) = max (dim(Eα(ν)), τ̃ ∗(α)) .

Proof. If B = ∅, the measures µ and ν are strongly equivalent and theorem 5.2 is easy.

Now assume that B 6= ∅. Let π be the self-similar measure supported on K verifying

π =
1

∑

i∈B pi

∑

i∈B

pi π ◦ S−1
i . (5.1)

The family (Si)i∈B satisfying the Open Set Condition [21], the calculation of the Lq-

spectrum τπ(q) is then straightforward :

∀q ∈ IR, τπ(q) = logℓ

(

∑

i∈B

(

pi
∑

i∈B pi

)q
)

, (5.2)

(e.g. [6, 30]). Moreover, we have






dim(Eα(π)) = τπ
∗(α) if α ∈

[

− logℓ

(

maxi∈B(pi)
∑

i∈B pi

)

,− logℓ

(

mini∈B(pi)
∑

i∈B pi

)]

,

Eα(π) = ∅ otherwise.
(5.3)

Furthermore, for every (ǫ1 · · · ǫn) ∈ Bn and I = Iǫ1···ǫn
, we find that

π(I) =

(

∑

i∈B

pi

)logℓ(|I|)

µ(I).

We thus deduce that

∀α, Eα(π) = Eα−logℓ(
∑

i∈B pi)(µ) ∩ K,
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or equivalently

∀α, Eα+logℓ(
∑

i∈B pi)(π) = Eα(µ) ∩ K.

It follows from (5.3) that

Eα(µ) ∩ K 6= ∅ ⇔ α ∈

[

− logℓ

(

max
i∈B

pi

)

,− logℓ

(

min
i∈B

pi

)]

,

and, if − logℓ (maxi∈B pi) ≤ α ≤ − logℓ (mini∈B pi), then

dim(Eα(µ) ∩ K) = τπ
∗

(

α + logℓ

(

∑

i∈B

pi

))

= τ̃ ∗(α). (5.4)

Proposition 5.1 also leads to estimate dim(Eα(ν) ∩ ([0, 1] \ K)). The hypothesis

B ∩ B∗ = ∅ implies that T (K) ⊂ [0, 1] \ K. Therefore,

dim(Eα(ν) ∩ K) = dim(T (Eα(ν) ∩ K))

= dim(Eα(ν) ∩ T (K)) ≤ dim(Eα(ν) ∩ ([0, 1] \ K)),

and we conclude that

dim(Eα(ν)) = dim(Eα(ν) ∩ ([0, 1] \ K)).

Theorem 5.2 then follows from proposition 5.1 and (5.4).�

Remarks. 1. Using the same ideas, we can also obtain that

∀α, dim(Vα(µ)) = max (dim(Vα(ν)), τ̃ ∗(α)) ,

where Vα is defined as Eα replacing lim by lim inf. In other terms,

Vα(m) =

{

x ∈ [0, 1], lim inf
n→+∞

−
log m(In(x))

n log ℓ
= α

}

.

2. Similar results can also be established replacing the Hausdorff dimension dim(Eα)

by the Packing dimension Dim (Eα).

We deduce the following.

Corollary 5.3. Suppose that B ∩ B∗ = ∅ and that ν satisfies the quasi-Bernoulli

property. Then,

∀α, dim(Eα(µ)) = Dim (Eα(µ)) = dim(Vα(µ)) = Dim (Vα(µ)) = max (τν
∗(α), τ̃ ∗(α)) .

According to theorem 4.2, the function τµ
∗ is the Legendre transform of the

maximum of τν and τ̃ . On the other hand, by corollary 5.3, the dimension of the

level sets Eα(µ) is given by the maximum of the Legendre transform of τν and the

Legendre transform of τ̃ν . Since we cannot invert Legendre transform and maximum,

we have the following.

Theorem 5.4. Suppose that B∩B∗ = ∅ and that ν satisfies the quasi-Bernoulli property.

Then, we have the following.

(i) If τµ
′(q) exists and if α = −τµ

′(q), then

dim(Eα(µ)) = Dim (Eα(µ)) = dim(Vα(µ)) = Dim (Vα(µ)) = τµ
∗(α).
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(ii) If τµ
′(q) does not exist and if −(τµ)′+(q) < α < −(τµ)′−(q), then

dim(Eα(µ)) = Dim (Eα(µ)) = dim(Vα(µ)) = Dim (Vα(µ)) < τµ
∗(α).

Hence, each phase transition q gives rise to an interval
(

−(τµ)′+(q),−(τµ)′−(q)
)

in

which the multifractal formalism breaks down.

Remark. It is possible to prove that ν satisfies the quasi-Bernoulli property if and

only if

either ∀ i ∈ B, pi < pℓ−1−i, or ∀i ∈ B, pi > pℓ−1−i. (5.5)

The multifractal formalism fails for the measure µ only in the first case. Indeed, if for

every i ∈ B, pi > pℓ−1−i, it is easy to check that the measures µ and ν are strongly

equivalent.

6. Examples

In this section we construct measures with non-differentiable Lq-spectra τ(q) for which

previous results apply. Furthermore, based on these examples, we point out new

phenomena in the multifractal structure of self-similar measures.

6.1. An isolated point in the set of local dimensions

Let us take ℓ = 2 and consider the probability measure µ verifying

µ = p0µ ◦ S−1
0 + p1µ ◦ S−1

1 + p2µ ◦ S−1
2 , (6.1)

where S0(x) = x/2, S1(x) = x/2 + 1/2 and S2(x) = −x/2 + 1/2. We assume that

p0p1p2 > 0 and p1 < p0. With the notation previously introduced, we have B = {1}

and K = {1}. Moreover, by theorem 4.2,

∀q ∈ IR, τµ(q) = max(τν(q), q log2(p1)).

Thus, in order to get a phase transition for the function τµ, we have to compare

τν
′(−∞) and log2(p1). For every I ∈ Fn, by iterating (6.1), we get ν(I) ≥ (p−)n where

p− = min(p0, p1 + p2). We easily deduce that −τν
′(−∞) ≤ − log2(p−) < − log2(p1).

Since τν(q) ≥ q log2(p1) for q = 0, we conclude that there exists q0 < 0 such that

τµ(q) =

{

q log2(p1) if q ≤ q0,

τν(q) if q ≥ q0,
(6.2)

and the Lq-spectrum τµ(q) is not differentiable at q = q0 (see figure 1(a)). Furthermore,

by (5.5), ν satisfies the quasi-Bernoulli property. Using theorem 5.2 and corollary 5.3

we deduce the following .

Theorem 6.1. Let µ be the measure satisfying (6.1). Then,

Dµ = Dν ∪ {− log2(p1)} = (−τν
′(+∞),−τν

′(−∞)) ∪ {− log2(p1)},

and

dim(Eα(µ)) =

{

τν
∗(α) if α ∈ (−τν

′(+∞),−τν
′(−∞)) ,

0 if α = − log2(p1).
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Remarks. 1. Since −τν
′(−∞) < − log2(p1), Dµ contains an isolated point. In this

sense, the situation is close to the ones obtained for the Erdös measure and for the

3-time convolution of the Cantor measure (e.g [13, 20]). Note that in our situation,

the value of [p0, p1, p2] is not a matter.

2. It is easy to show that

τµ
∗(α) =











τν
∗(α) if − τν

′(+∞) ≤ α ≤ −τν
′(q0),

τν
∗(q0)

log2(p1) − τν
′(q0)

(α + log2(p1)) if − τν
′(q0) ≤ α ≤ − log2(p1).

Thus,
{

∀α ∈ (−τν
′(+∞),−τν

′(q0)], dim(Eα(µ)) = dim(Vα(µ)) = τν
∗(α) = τµ

∗(α),

∀α ∈ (−τν
′(q0),−τν

′(−∞)], dim(Eα(µ)) = dim(Vα(µ)) = τν
∗(α) < τµ

∗(α).

Contrary to the usual situation, the singularity spectrum of µ is not given by the

Legendre transform of τµ but instead by the Legendre transform of an auxiliary

function. Figure 1(b) illustrates this phenomenon.

3. The measure µ may be used to estimate the Hausdorff dimension of self-affine

graphs studied by McMullen [26], Prsytycki and Urbański [33, 40]. More details

can be found in [37, 39].
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Figure 1. (a) τµ is not differentiable. (b) The singularity spectrum of µ, given by

τν
∗, differs from τµ

∗.

6.2. Non-concave spectra

Subsection 3.1 and several papers deal with measures for which the Lq-spectrum τ(q) is

not differentiable at a single point q = q0 and is linear for q ≤ q0 (e.g. [12, 13, 20, 22, 29]).

In this part we construct measures with non-differentiable and strictly concave Lq-

spectra. That leads to new situations for the multifractal analysis of self-similar

measures.
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Let us take ℓ = 4 and consider the probability measure µ satisfying

µ =

5
∑

i=0

pi µ ◦ S−1
i , (6.3)

where

S0(x) =
x

4
, S1(x) =

x

4
+

1

4
, S2(x) =

x

4
+

1

2
,

S3(x) =
x

4
+

3

4
, S4(x) = −

x

4
+

1

4
and S5(x) = −

x

4
+

1

2
.

In this case, B = {2, 3} and K is the Cantor set whose points only contains digits 2 and

3 in their 4-adic expression, i.e. K = {x =
∑

ǫi/4i, ǫi = 2 or 3, ∀i ∈ IN∗}.

By theorem 4.2, τµ(q) = max(τν(q), log4(p2
q + p3

q)). In order to compute τν , we

assume that the pi
′s verify p0 = p3 + p4 and p1 = p2 + p5. In this situation, it is

easy to show that ν is a multinomial measure (see [37]). The calculation of τν is then

straightforward : τν(q) = 1/2 + log4(p0
q + p1

q). Therefore, there exists q0 < 0 such that

τµ(q) =







log4(p2
q + p3

q) if q ≤ q0,

1

2
+ log4(p0

q + p1
q) if q ≥ q0,

(6.4)

and τµ(q) is not differentiable at q = q0 (see figure 2(a)).

Moreover, if we denote p0∨p1 (p0∧p1) the maximum (minimum) of p0 and p1, we get

Dν = [− log4(p0 ∨ p1),− log4(p0 ∧ p1)] and dim(Eα(ν)) = τν
∗(α) ≥ 1/2, for all α ∈ Dν .

It follows from theorem 5.2 that

Dµ = [− log4(p0 ∨ p1),− log4(p0 ∧ p1)] ∪ [− log4(p2 ∨ p3),− log4(p2 ∧ p3)],

and

dim(Eα(µ)) =

{

τν
∗(α) if − log4(p0) ≤ α ≤ − log4(p1),

τ̃ ∗(α) if − log4(p2 ∨ p3) ≤ α ≤ − log4(p2 ∧ p3).

Thus, if p3 < p1 ≤ p0, the singularity spectrum of µ is supported by a union of

mutually disjoint intervals and differs from τ ∗
µ(α) for −(τµ)′+(q0) < α < −(τµ)′−(q0) (see

figure 2(b)). To the best of our knowledge, self-similar measures with such multifractal

structures have not previously appeared in the litterature.

6.3. Two phase transitions

Until now we have studied measures for which the Lq-spectrum τ(q) is not differentiable

at one single point q0 < 0. In this part we propose examples with two phase transitions.

Let us take ℓ = 5 and consider the probability measure µ satisfying

µ =
7
∑

i=0

pi µ ◦ S−1
i , (6.5)

where

S0(x) =
x

5
, S1(x) =

x

5
+

1

5
, S2(x) =

x

5
+

2

5
, S3(x) =

x

5
+

3

5
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Figure 2. (a) τµ is not differentiable. (b) The singularity spectrum of µ is supported

by a union of two disjoint intervals.

S4(x) =
x

5
+

4

5
, S5(x) = −

x

5
+

1

5
, S6(x) = −

x

5
+

2

5
and S7(x) = −

x

5
+

3

5
.

In this case, B = {3, 4} and K = {x =
∑

ǫi/5i, ǫi = 3 or 4, ∀i ∈ IN∗}. We suppose that

the coefficients pi
′s verify p0 = p4 + p5, p1 = p3 + p6 and p2 = p7. As in section 6.2, we

get τµ(q) = max(log5(2p0
q + 2p1

q + (2p2)
q), log5(p3

q + p4
q)), and

∀α ∈ Dν = [− log5(p0 ∨ p1 ∨ 2p2),− log4(p0 ∧ p1 ∧ 2p2)], dim(Eα(ν)) = τν
∗(α).

In order to have τµ(q) = τν(q) for large negative q, we choose p2 sufficiently small.

For example, if we take p0 = 0.35, p1 = 0.14, p2 = 0.01, p3 = 0.03 and p4 = 0.025,

the equation τν(q) = τ̃ (q) has two solutions q0 and q1 corresponding to the points of

non-differentiability of τµ(q). By theorem 5.2, Dµ = [− log5(p0),− log5(2p2)] and

dim(Eα(µ)) =











τν
∗(α) if − log5(p0) ≤ α ≤ α0,

τ̃ ∗(α) if α0 ≤ α ≤ α1,

τν
∗(α) if α1 ≤ α ≤ − log5(p2),

where α0 and α1 denote the solutions of the equation τν
∗(α) = τ̃ ∗(α). From the

expression of the Legendre transform of τµ = max(τν , τ̃), it follows that

∀α ∈
(

−(τµ)′+(q0),−(τµ)′−(q0)
)

∪
(

−(τµ)′+(q1),−(τµ)′−(q1)
)

, dim(Eα(µ)) < τµ
∗(α).

6.4. More phase transitions

In this part we describe a way to construct measures with an arbitrarily large number

N of phase transitions. Theorem 4.2 leads us to find conditions on the pi
′s such that

the equation τν(q) = τ̃(q) has N solutions. Since τν(0) ≥ τ̃(0), we have to distinguish

the case where N is odd from the case where N is even.

First, assume that N is odd. Let us take ℓ = 2N , B = {ℓ/2, · · · , ℓ−1} and suppose

that pi = pi+ℓ + pℓ−1−i, for all 0 ≤ i ≤ ℓ/2− 1. In this case, the arguments developed in
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Figure 3. τµ = max(τν , τ̃) is not differentiable at two points. The singularity spectrum

of µ is not concave and differs from τµ
∗.

section 6.2 imply that

τµ(q) = max(τν(q), τ̃(q)) = max

(

log2N

(

N−1
∑

i=0

2pi
q

)

, log2N

(

2N−1
∑

i=N

pi
q

))

.

Moreover, since ℓ = 2N , we can choose the pi
′s such that the equation

N−1
∑

i=0

2pi
q =

2N−1
∑

i=N

pi
q

has N solutions. These solutions correspond to the phase transitions for the Lq-spectrum

τµ(q).

Assume now that N is even. To ensure that τµ(q) = τν(q) for large negative q, tools

used in section 6.3 suggest to take ℓ odd. Let ℓ = 2N + 1 and B = {N + 1, · · · , 2N}.

Under the conditions, for all 0 ≤ i ≤ N − 1, pi = pi+ℓ + pℓ−1−i and pN = pN+ℓ, we get

τµ(q) = max

(

log2N+1

(

N−1
∑

i=0

2pi
q + (2pN)q

)

, log2N+1

(

2N
∑

i=N+1

pi
q

))

.

Thus, in order to have τµ(q) = τν(q) for large negative q, we also suppose that

2pN < min(pi, N + 1 ≤ i ≤ 2N). Once again, we can choose the pi
′s such that the

equation

N−1
∑

i=0

2pi
q + (2pN)q =

2N
∑

i=N+1

pi
q

has N solutions. They correspond to the phase transitions for the function τµ.

More details about these examples can be found in [37].
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