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The Del Pezzo surface S 6 obtained by blowing up the projective plane along three points (non aligned) has the following nice property : its osculating hyperplanes have a common point. For that reason S 6 is also called Togliatti surface. In this paper we give two explanations of this fact. After what we obtain two different families of varieties with an analogous property.

Résumé : La surface de Del Pezzo S 6 ⊂ P 6 de degré 6 obtenue par l'éclatement de trois points non alignés du plan projectif complexe P 2 (par le système linéaire des cubiques) possède une propriété spectaculaire : ses hyperplans osculateurs ont un point commun dans l'espace ambiant. Pour cette raison la surface est appelée surface de Togliatti. Nous donnons deux explications de ce phénomène. Nous en déduisons alors deux familles différentes de variétés possèdant une propriété analogue.

Introduction

La surface de Del Pezzo S 6 ⊂ P 6 de degré 6 obtenue par l'éclatement de trois points non alignés du plan projectif complexe P 2 (par le système linéaire des cubiques) possède une propriété spectaculaire : ses hyperplans osculateurs ont un point commun dans l'espace ambiant. Autrement dit la surface "osculatrice" dans l'espace dual P ∨6 est dégénérée. On dit alors qu'elle vérifie une équation de Laplace. Comme cette propriété a été démontrée par Togliatti, la surface S 6 hérite du nom de surface de Togliatti (voir [START_REF] Franco | On a theorem of Togliatti preprint[END_REF], [START_REF] Lanteri | Osculatory behavior and second dual varities of Del Pezzo surfaces[END_REF], [START_REF] Ilardi | Rational varieties satisfying one or more Laplace equations[END_REF] et [START_REF] Togliatti | Alcuni esempi di superficie algebriche degli iperspazi che rappresentano un'equazione di Laplace[END_REF]).

La surface de Togliatti est une projection de la surface de Veronese v 3 (P 2 ) ⊂ P(H 0 (O P 2 (3))) mais elle peut aussi être définie comme section hyperplane générale de la variété de Segre Seg(1, 3) ⊂ P(H 0 (O P 1 ×P 1 ×P 1 (1, 1, 1))). Dans une première partie je reviens rapidement sur ces deux descriptions.

Dans les deuxième et troisième parties je montre que les espaces 2n-tangents (voir les notations cidessous) des projections bien choisies des Veronese v 2n+1 (P 2 ) ⊂ P(H 0 (O P 2 (2n + 1))) et des sections hyperplanes générales des Segre Seg(1, 2n+1) ⊂ P(H 0 (O

P 1 ו••×P 1 (1, • • • , 1)
)) ont un point commun (voir les théorèmes 3.1 et 4.3). Le point clé est la polarité par rapport aux courbes rationnelles normales et par rapport aux produits de P 1 .

Notations. On note T x X ⊂ P N l'espace tangent d'une variété projective intègre X ⊂ P N au point x et plus généralement, T k x X ⊂ P N son espace k-tangent au point x (étant donnée une représentation paramétrique locale au point x, c'est l'espace engendré par x et les dérivées partielles d'ordre inférieur ou égal à k); on dira plutôt tangent au lieu de 1-tangent et osculateur au lieu de 2-tangent. La variété duale X ∨ ⊂ P N ∨ est définie comme la clôture de Zariski de l'ensemble {H | T x X ⊂ H, X lisse en x}. On définit de la même manière les variétés duales supérieures

X k∨ = {H | T k x X ⊂ H, X lisse en x} 1
2 Surface de Togliatti Définition 2.1. La surface rationnelle, image du plan projectif par l'application décrite ci-dessous

P 2 -→ P 6 , (x 0 , x 1 , x 2 ) → (x 0 x 1 x 2 , x 2 0 x 1 , x 2 0 x 2 , x 2 1 x 2 , x 1 x 2 2 , x 0 x 2 1 , x 0 x 2 2 )
est appelée Surface de Togliatti.

Les sept formes cubiques du vecteur image s'annulant simultanément aux points e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1), cette surface est la surface de Del Pezzo, notée S 6 , obtenue en éclatant P 2 le long de ces trois points par le système linéaire des cubiques. L'hyperplan osculateur en un point P = (x 0 , x 1 , x 2 ) s'interprète alors comme une cubique passant par les points e 1 , e 2 , e 3 et triple au point P , plus précisément comme la réunion des trois droites joignant P aux trois points base; une équation étant

(x 2 X 1 -x 1 X 2 )(x 2 X 0 -x 0 X 2 )(x 1 X 0 -x 0 X 1 ) = 0.
Comme l'ont remarqué Lanteri et Mallavibarena (voir [START_REF] Lanteri | Osculatory behavior and second dual varities of Del Pezzo surfaces[END_REF], pages 357-359), cette équation développée ne s'exprime qu'avec les 6 formes cubiques suivantes

X 2 0 X 1 , X 2 0 X 2 , X 2 1 X 2 , X 1 X 2 2 , X 0 X 2 1 , X 0 X 2 2 .
Notons V l'espace vectoriel engendré par ces six formes cubiques. Alors, dans l'espace projectif

P 6 = P((X 0 X 1 X 2 ⊕ V ) ∨ )
des cubiques s'annulant aux points e 1 , e 2 , e 3 , les hyperplans osculateurs de S 6 passent par le point (1, 0, 0, 0, 0, 0).

Nous venons de rappeler comment est définie la surface de Togliatti ainsi que la propriété d'incidence de ses hyperplans osculateurs. Cette surface peut aussi être décrite comme une section hyperplane générale de Seg(1, 3) ⊂ P 7 qui est l'image par le morphisme de Segre de P 1 × P 1 × P 1 .

Proposition 2.2. Soit H un hyperplan général de P 7 . Alors H ∩ Seg(1, 3) S 6 .

Preuve. Sur P 1 × P 1 × P 1 l'équation de H est de la forme suivante

φ((X i Y j Z k ) 0≤i,j,k≤1 ) = ( a i,j Y i Z j )X 0 + ( b i,j Y i Z j )X 1
Comme les biformes a i,j Y i Z j et b i,j Y i Z j s'annulent simultanément en deux points, la surface H ∩ Seg(1, 3) est l'éclatement de P 1 × P 1 le long de deux points, i.e. l'éclatement de P 2 en trois points (non alignés).

Remarque : Le théorème de bidualité (voir par exemple [START_REF] Harris | Algebraic geometry : A First course[END_REF] thm 15.24) ne s'étend pas trivialement aux ordres supérieurs de tangence. La surface de Togliatti, par exemple, ne vérifie pas un résultat attendu de "biosculation" car la surface de ses hyperplans osculateurs est dégénérée. Cette dernière est, à ma connaissance le seul exemple un peu élaboré de surface de P 6 telle que (S 2∨ ) 2∨ = S.

3 Polarité par rapport à une courbe rationnelle normale Théorème 3.1. Soient 2n + 1 points de v 2n+1 (P 2 ) en position générale, P = P 2n l'espace projectif qu'ils engendrent et S 2n(2n+1) l'image de v 2n+1 (P 2 ) par la projection de centre P. Sous ces hypothèses, les hyperplans 2n-tangents de S 2n(2n+1) ont un point commun.

Preuve. Soient l 0 , • • • , l 2n+1 des formes linéaires en position générale. Afin de montrer que les hyperplans 2n-tangents de S 2n(2n+1) ont un point commun on montre que l'espace projectif

P = P(l 2n+1 0 , • • • , l 2n+1
2n+1 , i l i ) rencontre tous les espaces 2n-tangents de v 2n+1 (P 2 ). L'image de P est le point commun recherché. Soit l une forme linéaire sur P 2 et L la droite d'équation l = 0. En un point l 2n+1 de la Veronese l'espace 2n-tangent est donné par l'ensemble des formes de degré 2n + 1 qui sont divisibles par l i.e. par les formes de degré 2n. Notons U C 2 un espace vectoriel tel que L = PU et C 2n+1 ⊂ PS 2n+1 U l'image de L par le plongement de Veronese. On note l i la restriction des formes linéaires modulo l. D'après le résultat bien connu de polarité des courbes rationnelles normales (qui affirme que le point d'intersection des hyperplans 2n-tangents de C 2n+1 en (2n + 1) points généraux distincts appartient au P 2n engendré par ces (2n + 1) points) le sous espace projectif de dimension 2n de PS 2n+1 U engendré par les (2n + 1) points (l

2n+1 0 , • • • , l 2n+1 2n+1
) contient le point i l i d'intersection des (2n + 1) hyperplans 2n-tangents de C 2n+1 . Modulo l les 2n + 1 formes sont donc liées, ce qui prouve le théorème.

Polarité par rapport à un produit de droites projectives

Soit U un espace vectoriel complexe de dimension 2. Notons Seg(1, n) ⊂ PU ⊗n l'image de PU × • • • × PU par le plongement de Segre. Lemma 4.1. Seg(1, n) (n-1)∨ Seg(1, n).
Preuve. Pour s'en convaincre donnons-en une preuve détaillée pour Seg(1, 3). Notons

P 7 = P(C[X 0 Y 0 Z 0 , X 0 Y 0 Z 1 , X 0 Y 1 Z 0 , X 0 Y 1 Z 1 , X 1 Y 0 Z 0 , X 1 Y 1 Z 0 , X 1 Y 1 Z 1 ]) L'hyperplan d'équation φ(X i Y j Z k ) = α i,j,k X i Y j Z k = 0 est osculateur au point (x i y j z k ) si et seulement si ∂ 2 φ ∂X i ∂Y j (x i y j z k ) = 0, ∂ 2 φ ∂X i ∂Z k (x i y j z k ) = 0, ∂ 2 φ ∂Y j ∂Z k (x i y j z k ) = 0 On obtient immédiatement φ(X i Y j Z k ) = (x 1 X 0 -x 0 X 1 )(y 1 Y 0 -y 0 Y 1 )(z 1 Z 0 -z 0 Z 1 ).
Plus généralement, notons X i (resp. x i ) les coordonnées X i,0 , X i,1 (resp. les nombres x i,0 , x i,1

). L'espace n-tangent en un point de Seg(1, n) est donné par les dérivées (n -1) -ièmes d'un système de coordonnées locales qui est, essentiellement, le produit des variables. Ainsi la forme multilinéaire

φ(X 1 , X 2 , • • • , X n ) est la trace sur Seg(1, n) d'un hyperplan n-tangent H ⊂ P 2 n -1 au point (x 1 , x 2 , • • • , x n ) si et seulement si φ(x 1 , X 2 , • • • , X n ) = φ(X 1 , x 2 , • • • , X n ) = • • • = φ(X 1 , X 2 , • • • , X n-1 , x n ) = 0
Après un calcul élémentaire on en déduit

φ(X 1 , X 2 , • • • , X n ) = i=1,••• ,n (x i,1 X i,0 -x i,0 X i,1 )
Ce qui prouve le lemme.

La polarité point-hyperplan par rapport à C n permet d'étendre l'isomorphisme C n∨ n C n au P n ambiant. D'une façon similaire (une sorte de 'polarité' par rapport au Segre) l'isomorphisme Seg(1, n) (n-1)∨ Seg(1, n) s'étend aux espaces projectifs ambiants. Ici aussi il faudra distinguer le cas pair du cas impair. Proposition 4.2. L'isomorphisme Seg (1, n) Seg(1, n) (n-1)∨ qui à un point du Segre associe l'hyperplan n-tangent au Segre en ce point sétend aux espace projectifs P(U ⊗n ) et P(U * ⊗n ) de la manière suivante : Au point x ∈ P(U ⊗n ) on associe le point d'intersection des hyperplans ntangents aux points de x ∨ ∩ Seg(1, n) (n-1)∨ . Lorsque n est impair, ce point image appartient à x ∨ . Lorsque n est pair, les points x ∈ P(U ⊗n ) pour lesquels le point image appartient à x ∨ forment une hyperquadrique.

Preuve. L'isomorphisme m ⊗n : U ⊗n → U * ⊗n donné par la matrice m ⊗n = 0 -1 1 0 ⊗n est symétrique pour n pair et antisymétrique pour n impair. Pour x ∈ P(U ⊗n ) on note x ∨ l'équation de l'hyperplan correpondant dans P(U * ⊗n ). Notons ξ ∈ x ∨ ∩ Seg(1, n) (n-1)∨ le point générique de l'intersection. On a par définition < x, ξ >= 0, où < ., . > est le crochet de dualité. Comme m ⊗n est inversible il existe un unique x ξ ∈ Seg(1, n) tel que ξ = m ⊗n (x ξ ). On en déduit, en utilisant les propriétés de symétrie de la matrice m ⊗n , que < x, m ⊗n (x ξ ) >=< x ξ , m ⊗n (x) >= 0, c'est à dire que le point m ⊗n (x) appartient à l'hyperplan n-tangent générique de la variété x ∨ ∩Seg(1, n) (n-1)∨ .

Enfin lorsque n est impair, la matrice m ⊗n étant antisymétrique, on a < x, m ⊗n (x) >= 0 pour tout x ∈ P(U ⊗n ). Lorsque n est pair la matrice est symétrique et les point x ∈ P(U ⊗n ) tels que < x, m ⊗n (x) >= 0 forment une quadrique de P(U ⊗n ).

Théorème 4.3. Soit X 2n une section hyperplane générale de Seg(1, 2n + 1). Les hyperplans 2n-tangents de X 2n ont un point commun.

Preuve. Les hyperplans 2n-tangents de X 2n sont les hyperplans tangents de Seg(1, 2n + 1) coupés par l'hyperplan considéré. Le théorème est alors une conséquence immédiate de la proposition 4.2.