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ABSTRACT

Aims. We present the time-resolved optical emission of GRB060111B during its prompt phase,

measured with the TAROT robotic observatory. This is the first time that the optical emission

from a gamma-ray burst has been continuously monitored with a temporal resolution of a few

seconds during the prompt gamma-ray phase.

Methods. The temporal evolution of the prompt optical emission at the level of several seconds

is used to provide a clue to the origin of this emission.

Results. The optical emission was found to decay steadily from our first measure, 28s after

the trigger, in contrast to the gamma-ray emission, which exhibits strong variability at the

same time. This behaviour strongly suggests that the optical emission is due to the reverse shock.
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1. Introduction

GRB060111B was a bright, double–peak, gamma-ray burst (GRB) detected on January

11th, 2006, at 20:15:43.24 UT (hereafter ttrig) by the BAT instrument on the Swift

spacecraft (trigger=176918, Perri et al. 2006, Tueller et al. 2006). The first peak started
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at t-ttrig=-4 sec, peaked at t-ttrig=+1, and extended out to t-ttrig=+28 sec. The second,

smaller peak started at t-ttrig=+53, peaked at t-ttrig=+55, and was over by t-ttrig=62

sec. The duration T90 was 59 ±1 sec in the range 15-350 keV. The power–law index

of the time-averaged spectrum (ttrig-2 to ttrig+63 sec) was 1.04±0.17. The fluence in

the 15-150 keV band was (1.6±0.1)×10−6 erg/cm2. The 1s peak photon flux measured

from ttrig+0.36 sec in the 15-150 keV band was 1.4±0.3 ph/cm2/sec. No optical redshift

was available when this paper was written. Perri et al. (2006) mentions that UVOT

detected the afterglow in a filtered B image taken about five minutes after the trigger.

If we conservatively place the Lyman alpha limit at the end of the B bandpass (480 nm,

Bessel 1990), GRB060111B is at z<3.0.

In this letter we report early optical observations of GRB060111B, performed with the

TAROT robotic observatory. The gamma-ray burst coordinates network (GCN) notice,

providing celestial coordinates to ground stations, was sent at 20:16:03 (Perri et al. 2006).

The first image of TAROT started at 20:16:11.22 UT, 27.98s after the GRB (9s after the

notice) and 34s before the end of the high–energy emission. From our images, we derived

its position: R.A. = 19h 05m 42.46s and Dec.= +70◦22′32.3′′ (J2000.0) with an accuracy

of 1 arcsec. The observations presented here provide the first opportunity to check the

rapid variability of the optical emission during the prompt phase of a gamma-ray burst.

2. TAROT observations

TAROT is a fully autonomous 25 cm aperture telescope installed at the Calern obser-

vatory (Observatoire de la Cote d’Azur - France) devoted to very early observations of

GRB optical counterparts. A technical description can be read in Klotz et al. (2005).

The first image of GRB060111B is a 60s exposure taken in drift mode. The tracking of

the hour–angle motor was adapted to a drift of 0.30 pixels/s. As a consequence, stars

are trailed with a length of about 18 pixels on the image (see Fig. 1) and the flux was

recorded continuously with no dead time. Subsequent images were recorded as a series of

30 s exposures tracked on the diurnal motion. All images were taken with no filter. The

on–line pre–processing software provided calibrated images (dark–corrected, flat–fielded

and astrometrically calibrated from the USNO-A2.0 catalog). The optical transient is

detected in the first 4 images. Subsequent images were co-added to increase the signal-

to-noise ratio but the afterglow was not detected.

From the trailed image, the optical light–curve is directly obtained by a binning

in the declination direction. We chose USNO-B1 1604-0125526 (R=13.90) as the refer-

ence star for flux calibration. Stars USNO-B1 1603-0125834 (R=15.79) and 1603-0125830

(R=16.40) were close to the optical transient, and were removed by an appropriate scal-

ing of the reference star. From ttrig+28s to ttrig+61s, we used a time sampling of one

pixel (3.33s). After 61s we used a four–pixel time sampling (13.3s) until the end of the
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Fig. 1. This image was taken between 28s and 88s after the GRB trigger. The hour

angle speed was adapted to obtain stars as trails of ∼18 pixel length during the 60s

exposure. The light–curve was then time–resolved with no dead time. In this image, the

nearby star USNO-B1 1603-0125834, close to the GRB, was removed using the trail of

USNO-B1 1604-0125526.

trail to increase the signal–to–noise ratio. For the non–trailed images, we fit the optical

transient by the PSF of the reference star to deduce magnitudes. We designated as CR

the magnitudes computed from our unfiltered images calibrated with the reference star.

Differences between CR and R magnitudes come from uncertainties in the calibration of

the R magnitude of the reference star and from colour differences with the optical tran-

sient. Table 1 gives the results. Due to the unknown accuracy of the USNO-B1 catalog,

a global shift of ±0.2 magnitude cannot be excluded.

3. The prompt emission and early afterglow

The optical light–curve of GRB060111B is presented in Fig. 2. The optical emission

exhibits two phases. A fast decaying phase with a slope α1 = 2.38±0.11 dominates from

28s to 80s after the trigger, roughly corresponding to the first TAROT exposure with high

temporal resolution. This fast decay was also observed by ROTSE-IIId (Yost et al. 2006).

This phase is followed by a period of shallower decay with a slope α2 = 1.08±0.09, typical

of the late afterglow phase. The observation of Yanagisawa et al. (2006) in the R band

at ttrig+800s is compatible with the extrapolation of the TAROT points with this slope.
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Table 1. Log of the optical measurements from TAROT. T are seconds since ttrig.

Uncertainties on CR magnitudes are 2σ errors.

Tstart Tend CR Tstart Tend CR

28.0 31.3 13.75 ± 0.12 54.6 58.0 15.58 ± 0.35

31.3 34.6 13.90 ± 0.19 58.0 61.3 15.40 ± 0.45

34.6 38.0 14.05 ± 0.18 61.3 74.6 15.79 ± 0.19

38.0 41.3 14.43 ± 0.27 74.6 87.9 16.31 ± 0.27

41.3 44.6 14.63 ± 0.26 94.6 124.6 16.46 ± 0.30

44.6 48.0 14.94 ± 0.24 131.5 161.5 16.89 ± 0.38

48.0 51.3 15.11 ± 0.40 168.3 198.3 17.53 ± 0.59

51.3 54.6 15.30 ± 0.28

The transition between the two phases occurred at ttrig+80s, about 20s after the end

of the gamma-ray emission. These slopes and transition time were derived under the

assumption that there is a single emission component evolving from a steep to a shallow

decay. If we assume instead that the optical emission is due to the superposition of two

components that are simultaneously present (e.g. the forward and the reverse shocks),

the slopes of the fast and shallow decays become α1=3.0 and α2=0.89, respectively, and

the transition occurs at ttrig+65s, right at the end of the gamma-ray emission.

A remarkable feature of the prompt optical light–curve is its smoothness. As can be

seen in Fig. 2, the broken power–law fit adequately reproduces the evolution of the optical

emission from ttrig+28s to ttrig+200s. All individual measurements are consistent with a

smooth decay of the optical emission. This is the first time that the optical variability of

a gamma-ray burst could be measured during the prompt phase,1 down to timescales of

∼5s. Figure 2 also displays the high–energy light–curve in the 2-10 keV energy range (the

broad grey line). Before 75s, the 2-10 keV flux was extrapolated from the flux measured

with the BAT in the 15-150 keV energy range, assuming a spectrum with a photon index

Γ=-1.57, in agreement with the prescription of O’Brien et al. (2006) recommending use

of a photon index that is the average of the values measured in the BAT and in the XRT.

After 90s, the 2-10 keV light–curve was measured by the XRT. The high–energy (2-10

keV) fluxes in time intervals that are simultaneous with the optical intervals are given

in Table 2. The high–energy emission is highly variable, with two well–defined peaks.

The variability of the high–energy emission contrasts with the smoothness of the optical

emission observed at the same time. In particular, we note that there is no significant

variation in the optical flux at the time of the second gamma-ray peak at ttrig+55s.

After ttrig+90s, the XRT light–curve can be described by a simple power–law with slope

1.1±0.1, which is fully compatible with the slope of the optical emission.

1 We call ’prompt phase’ the period during which SWIFT/BAT detected the high–energy

emission. This period extended from 2s before the trigger to 62s after the trigger.
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Fig. 2. light–curves of GRB060111B. Black squares and diamonds with vertical error

bars are CR magnitudes measured by TAROT (see Table 1). The black circle indicates

the R magnitude measured by MITSuME (Yanagisawa et al. 2006). The solid straight

lines are fits by a f(t) ∝ t−α law. The broad grey line shows the high–energy light–curve

(−2.5 log(X-ray flux)) vertically offset to be compared to the optical light–curve. Before

75s we extrapolated Swift-BAT flux to the 2-10 keV energy range. After 90s, we used the

XRT data in the 2-10 keV energy range (see Table 2).

Figure 3 shows the broad-band spectrum of the emission during the early afterglow

from ttrig+95s to ttrig+200s. The energy index of the 0.5-10 keV spectrum is 1.05 ± 0.3, a

typical value for an afterglow. The X-ray spectrum requires an absorption corresponding

to NH= 2.8±0.8 1021 cm−2, significantly exceeding the galactic value, NH= 0.7 1021 cm−2.

The extrapolation of the unabsorbed X-ray spectrum to the optical range overpredicts

the optical emission, indicating the necessity of a break between the optical and X-ray

domains. This break could reflect the spectral distribution of the emission or a strong

optical extinction. With the data at hand, it is difficult to choose between these two

possibilities. Nevertheless if we consider the consistency of the decay rate at optical and

X-ray wavelengths as an indication of a common origin, we may attribute the observed

spectral break to optical extinction. An extinction of AR=4 magnitudes is required to

reconcile the measured optical flux with the extrapolation of the XRT spectrum. We note

that a dense environment could explain many features of GRB060111B: a reverse shock

peaking early (see next section), a large column density of hydrogen, and a possible large

optical extinction.

Assuming a standard galactic extinction law, the optical extinction is compatible with

the hydrogen column density measured in X-rays (NH), if the source is situated at z ∼ 0.8
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Fig. 3. The optical-to-X-ray afterglow spectrum from 95s to 198s after the burst. The

X-ray data have been corrected for both the Galactic and the extra-galactic absorption.

The optical data have been corrected only from the Galactic extinction. The solid line

is the best–fit absorbed power–law model. We assumed a local extinction curve similar

to the one observed in our Galaxy. The spectral index was fixed within the errors to the

value derived only from the X-ray analysis.

(and Av=3.6 at the source). This is the situation illustrated in Fig. 3. Given the errors on

the measurement of NH, the consistency between the expected and the measured NH/Av

ratio is maintained up to zmax=1.2. Larger redshifts (up to z=2.5) are also possible if

we assume a non-standard extinction law with a weaker wavelength dependence than for

the Galactic case (Stratta et al. 2004).

4. Interpretation of the observations

The nature of the optical light contemporaneous with the prompt gamma-ray emission

remains an important, yet open, issue. In the internal/external shock model, the prompt

optical emission could be due to internal shocks within the relativistic ejecta and/or to

the reverse shock crossing the ejecta. In both cases the optical radiation carries crucial

information on the composition of the ejecta. This information is lost at later times,

when the optical emission is dominated by the afterglow from the external shock. The



Klotz et al.: Continuous optical monitoring 7

Table 2. 2-10 keV light–curve of GRB 060111B. Columns 1,2,4, and 5 give the start and

end times of the intervals in seconds after the trigger. Columns 3 and 6 give the high–

energy fluxes and their errors in units of 10−10 erg cm−2 s−1. Fluxes before ttrig+75 sec

are based on an extrapolation of the BAT counts to the 2-10 keV range (see text). Fluxes

after 90 sec are measured by the XRT. All fluxes have been corrected for absorption

considering a column density of hydrogen of NH= 2.8 1021 cm−2

Tstart Tend flux Tstart Tend flux

0.1 0.50 190 ± 37 25.3 27.6 45 ± 10

0.50 1.13 260 ± 40 27.6 33.0 22 ± 11

1.13 2.0 210 ± 27 33.0 41.3 4.3 ± 5.3

2.0 3.0 180 ± 27 41.3 49.6 0 ± 4.1

3.0 4.0 120 ± 25 49.6 54.6 43 ± 6.8

4.0 5.25 88 ± 25 54.6 58.0 92 ± 7.0

5.25 7 88 ± 18 58.0 63.8 35 ± 6.5

7 9 80 ± 18 63.8 74.6 4.6 ± 3.2

9 11.5 47 ± 18 94.6 124.6 2.2 ± 0.3

11.5 15 84 ± 12 131.5 161.5 1.0 ± 0.3

15 19 66 ± 12 168.3 198.3 0.7 ± 0.2

19 23.3 47 ± 12 762.0 822.0 0.29 ± 0.09

first step on the (long) way to the comprehension of GRB ejecta is thus to clarify whether

the optical emission originates in internal shocks or in the reverse shock. This issue has

been discussed for a few GRBs in which the prompt optical emission could be detected,

but with diverse conclusions.

The bright optical flare of GRB990123 (Akerlof et al. 1999) has been attributed to

reverse–shock emission (Sari & Piran 1999a, Mészáros & Rees 1999, Wang et al. 2000 and

ref. therein). This interpretation had important implications for the physical properties

and composition of the ejecta and of the surrounding medium (e.g. Sari & Piran 1999b,

Fan et al. 2002, Zhang et al. 2003). On the other hand, Vestrand et al. (2005) find

that the optical emission of GRB041219A is proportional to the high–energy emission

of this burst, which is the behaviour expected if the optical emission is due to internal

shocks, although this conclusion is based on three points with a positive detection, which

might also be explained by a bright optical flare followed by a steep decay. The case of

GRB050904 is less clear because the optical flare is almost simultaneous with a strong

X-ray flare attributed to the prompt emission (Boër et al. 2006, Wei et al. 2006).

The TAROT observations presented here allow a first investigation of the details of

the temporal structure of the prompt optical emission, thereby providing crucial data

to resolve the question of the origin of this emission. Such a study has not been possi-

ble till now, due to the shortness of the bursts (GRB021211, GRB050319, GRB050401,

GRB050801), to a low temporal resolution (GRB990123), or to the faintness of the op-

tical emission (GRB041219A & GRB050904). Our observations reveal the lack of fine
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time structure during the decay of the bright optical flare of GRB060111B. This result is

particularly significant since, during the same time interval, the gamma-ray light–curve

shows a peak not seen in optical observations. The lack of correlation between the optical

emission and the high–energy radiation eliminates internal shocks as the main origin of

the optical light seen by TAROT. In consequence, the single flash detected by TAROT

and ROTSE-IIId must be attributed to the reverse shock or to a forward shock peaking

early. The fast decay of the optical emission with α1 = 2.4, strongly suggests that it

comes from the reverse shock.

The peak of the forward shock is not detected and must be below the level of the

reverse shock emission; this is the Type II light–curve studied by Zhang et al. (2003).

It is generally assumed that the physical parameters of the reverse shock and of the

forward shock are similar (e.g., Sari & Piran 1999a, b; Mészáros & Rees 1999; Wang et

al. 2000; Wei 2003). In that case, however, as shown in Zhang et al. (2003) and Fan et

al. (2005), the reverse shock optical emission can not dominate over the forward shock

optical emission when the latter peaks. It therefore looks surprising that no forward

shock peak is evident in the optical lightcurve. Notwithstanding, such a situation has

been observed in GRB 990123, GRB 021211, and the current burst GRB 060111B and

may be common among GRBs. Such light–curves suggest that the physical parameters

in the reverse shock are much larger than in the forward shock, in particular, the fraction

of shock energy given to the magnetic field. The thermal energy density contained in

both shocks being comparable, the magnetic field in the reverse shock is thus much

stronger than the one in the forward shock. Type II light–curves have been used as

an indication that the GRB outflow is magnetized (e.g., Fan et al. 2002; Zhang et al.

2003). Detailed simulations of the pan-chromatic emission of GRB060111B, including

the prompt emission, the unambiguously identified reverse shock, and the early forward

shock are beyond the scope of this paper; yet it can be expected that such simulations

will bring new insight into the nature of GRB ejecta.
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