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DEGENERATE SITUATION
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Abstract. The aim of this paper is to study the behavior of the weighted empirical measures of the

decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures.

This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.

As a first step, we give a brief description of the Feller’s classification of the one-dimensional process.

We recall the concept of attractive and repulsive boundary point and introduce the concept of strongly

repulsive point. That allows us to establish a classification of the ergodic behavior of the diffusion. We

conclude this section by giving necessary and sufficient conditions on the nature of boundary points in

terms of Lyapunov functions.

In the second section we use this characterization to study the decreasing step Euler scheme. We

give also an numerical example in higher dimension.
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1. Introduction and framework

Let I =]l, r[ denote an open (non-trivial) interval of the real line R. We consider the following stochastic
differential equation

dXt = b(Xt)dt + σ(Xt)dBt, (1)

where X0 is a random variable taking values in I and
(

Bt

)

t>0
a standard Brownian motion on R. We assume

that b and σ are continuous functions on Ī taking values in R, and that σ is not degenerate on I i.e. ∀x ∈ I,
σ2(x) > 0. Then there exists a unique solution

(

Xt

)

t>0
adapted to the completed Brownian filtration, such that

t 7→ Xt is continuous on [0, ζ[, where ζ = inf {t > 0, Xt = l or Xt = r} is the explosion time of the diffusion.
In the first part, we establish a new “ergodic classification” for the process

(

Xt

)

t>0
in particular when

ζ = +∞. More precisely, we give the behavior of the sequence of empirical measures
(

νt

)

t>0
=
(

∫ t

0
δXs

ds
)

t>0

according to the nature of the boundary points l and r. We characterize then the nature of the boundary points
in terms of Lyapunov functions. The Lyapunov functions are usually used in high dimension, but there is a
close link between these functions and the Feller’s classification. This link makes it possible to more easily study
the Euler scheme.

Keywords and phrases: one-dimensional diffusion process; degenerate coefficient; invariant measure; scale function; speed mea-
sure; Lyapounov function
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In the second part, we study the Euler scheme with decreasing step of a diffusion
(

Xt

)

t>0
on the real line

having (at least) a point ∆ such that b(∆) = σ(∆) = 0. In this situation we have

∀x ∈] −∞, ∆[, Px [Xt ∈] −∞, ∆]] = 1, and ∀x ∈]∆, +∞[, Px [Xt ∈ [∆, +∞[] = 1.

In fact, the process
(

Xt

)

t>0
has an ergodic behavior in I1 =]−∞, ∆[ or in I2 =]∆, +∞[ according to the starting

point x. But the Euler scheme is not continuous and may jump above the boundary point ∆. A legitimate
question is then which are the weak limit of the empirical measures of the scheme ? We answer it in some cases.

2. Results for the time continuous process

We first introduce the scale function and the speed measure of the diffusion process
(

Xt

)

t>0
solution of (1).

The next two sections are adapted from classical work on the Feller classification (see for instance [6], [5], [1]
and [10]).

2.1. Scale function and speed measure

Definition 2.1 (Scale function). A scale function for the SDE (1) is defined for any c ∈ I by

∀x ∈ I, p(x) =

∫ x

c

exp

(

−
∫ y

c

2b(z)

σ2(z)
dz

)

dy.

A scale function p is a strictly increasing function defined up to an affine transformation. For the sake of
simplicity, we call p the scale function of the process

(

Xt

)

t>0
.

We notice that the continuity of b and σ, and the non-degeneracy of σ on I imply that p is in C2(I,R).
Moreover, p is a solution of the following ordinary differential equation

∀x ∈ I, b(x)p′(x) +
1

2
σ2(x)p′′(x) = 0 i.e. Ap(x) = 0,

and this property characterizes it. The probability that the process starting at x hits a point a ∈ I before a
point b ∈ I is then expressed by using the scale function p. For any a ∈ I we denote Ta the hitting time of
the one-point set {a} i.e. Ta = inf {t > 0, Xt = a}, and we consider a non-trivial interval ]a, b[⊂ I (strictly
included). The function u(x) defined on ]a, b[ by ∀x ∈]a, b[, u(x) = Px [xTa∧Tb

= b] is solution to the system

{

Au = 0 on ]a, b[

u(a) = 0 and u(b) = 1,

so that for all x ∈]a, b[,

u(x) = Px [Tb < Ta] =
p(x) − p(a)

p(b) − p(a)
. (2)

This characterization is often used to define the scale function in a more general framework i.e. for continuous
strongly Markovian processes which are regular in Dynkin’s sense (∀x ∈ I, ∀y ∈ I, Px [Ty < +∞] > 0) (cf. [11]
or [10]).

The following proposition gives another characterization of the scale function.

Proposition 2.2. The process
(

p(xζ
t )
)

t>0
is a local martingale if and only if p is the scale function.

Proof. For a proof in a more general framework, see proposition VII.3.5 in [10].
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If
(

p(xζ
t )
)

t>0
is a local martingale, then for all a < x < b the process

(

p(xTa∧Tb

t )
)

t>0
is a bounded martingale

and by the optional sampling theorem, we have

p(x) = p(a)Px [Ta < Tb] + p(b)Px [Tb < Ta] ,

which implies (2).

If p is the scale function, then Ap = 0, and by the Ito’s lemma applied to
(

xζ
t

)

t>0
with p we deduce that

(

p(xζ
t )
)

t>0
is a local martingale. �

The above proposition is very useful because it makes it possible to consider a one-dimensional diffusion as
a Brownian local martingale up to a simple transform.

Namely, the process
(

Yt

)

t>0
defined for every t > 0 by Yt = p(Xt) satisfies the following equation

Yt = Y0 +

∫ t

0

g(Ys)dBs, (3)

where Y0 = p(X0) ∈ p(I) a.s. and g is defined by

g(y) =

{

(

(σp′) ◦ p−1
)

(y) if y ∈ p(I),

0 otherwise.

The process
(

Yt

)

t>0
can be seen as time-changed Brownian motion. The speed measure of

(

Yt

)

t>0
evaluates

how the change time affects the average time of exit from a bounded open interval. Let Ã be the generator

of the process
(

Yt

)

t>0
and v the function defined on J =]ã, b̃[⊂ p(I) by v(y) = Ey

[

T̃ã ∧ T̃b̃

]

where T̃z =

inf {t > 0, Yt = z}. The function v is solution to the system

{

Ãv(y) = −1, ã < y < b̃,

v(ã) = v(b̃) = 0.
(4)

Moreover by (3) we have Ãv(y) = 1
2g2(y)v′′(y) for every y ∈]ã, b̃[ and then

∀y ∈]ã, b̃[, v(y) =

∫ b̃

ã

Gã,b̃(y, z)
2

g2(z)
dz, (5)

where Gã,b̃(y, z) is the Green function defined by Gã,b̃(y, z) =

(

y∧z−ã
)(

b̃−y∨z
)

b̃−ã
, for every (y, z) ∈]ã, b̃[2.

Definition 2.3 (Speed measure). The speed measure of the time-changed Brownian motion (p(Xt))t>0 defined

in (3) is the measure M̃ with density m̃ = 2g−2 with respect to the Lebesgue measure.

The speed measure of the process
(

Xt

)

t>0
is the image of M̃ by p−1 and is a measure with density m = 2

σ2p′

with respect to the Lebesgue measure.

As the speed measure of
(

Xt

)

t>0
is the image of the speed measure of

(

Yt

)

t>0
by p−1 it follows from (5) that

∀y ∈]ã, b̃[, v(y) = Ey

[

T̃ã ∧ T̃b̃

]

=

∫ p−1(b̃)

p−1(ã)

Gã,b̃(y, p(z))m(z)dz.



4 TITLE WILL BE SET BY THE PUBLISHER

Denoting a = p−1(ã) and b = p−1(b̃), we have for every x ∈]a, b[

v(p(x)) =

∫ b

a

Gp(a),p(b)(p(x), p(z))m(z)dz.

Moreover p is a one-to-one function, then it is straightforward that Ep(x)

[

T̃p(a) ∧ T̃p(b)

]

= Ex [Ta ∧ Tb]. Using

(2) we check that for all ]a, b[⊂ I and x ∈]a, b[

Ex [Ta ∧ Tb] =
(

1 − Px [Tb < Ta]
)

∫ x

a

(

p(y) − p(a)
)

m(y)dy + Px [Tb < Ta]

∫ b

x

(

p(b) − p(y)
)

m(y)dy. (6)

In addition the scale function and the speed measure provide a very useful expression for the infinitesimal
generator A associated the SDE (1). Indeed, we easily check that

∀f ∈ C2(I,R), Af(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x) =

1

m(x)

(

f ′(x)

p′(x)

)′

. (7)

2.2. Feller classification

The classification of one-dimensional diffusion process is due to Feller, in particular in [2] and [3]. In par-
allel, the Russian school established similar results, but the two terminologies do not always coincide. For a
comparison and a synthesis we refer to [6].

A first concept characterizing the behavior of the process
(

Xt

)

t>0
solution of (1) in a neighborhood of a

boundary point of I =]l, r[ is the attractivity.

Definition 2.4 (Attractivity). A boundary point ∆ (∆ = l or ∆ = r) is said to be attractive if lim
b→∆
b∈I

|p(b)| < +∞.

The function p is defined up to a strictly increasing affine transformation but the fact that the limit in ∆
of p is finite (or infinite) does not depend on it. Similarly, since |p(x) − p(y)| < +∞ for all x, y and that p is
strictly increasing we have

l is attractive ⇔ ∀x ∈ I, lim
b→l

(

p(x) − p(b)
)

< +∞,

r is attractive ⇔ ∀x ∈ I, lim
b→r

(

p(b) − p(x)
)

< +∞.

These equivalences are sometimes used to define the attractivity. We now show the following proposition which
justifies the name of “attractive point”.

Proposition 2.5. If ∆ is an attractive boundary point, then for all a ∈ I and all x in the open interval with
endpoints a and ∆ we have

Px [T∆ 6 Ta] > 0,

with T∆ defined by T∆ = lim
b→∆
b∈I

Tb.

Proof. We detail the proof for the case a < x < ∆. Firstly, since
(

Xt

)

t>0
is continuous we have by the mean-

value theorem that the function (b 7→ Tb) (for b > x) is strictly increasing. Thus T∆ is the strictly increasing
limit of Tb when b increases to ∆. Hence we have

⋂

b∈I∩Q
x<b<∆

↓ {Tb < Ta} = {T∆ 6 Ta} ,
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and Px [T∆ 6 Ta] = lim
b→∆

Px [Tb < Ta]. By (2) we deduce that

Px [T∆ 6 Ta] = lim
b→∆

p(x) − p(a)

p(b) − p(a)
.

However ∆ is attractive, therefore lim
b→∆

(

p(b) − p(a)
)

< +∞, and the proof is complete. �

Definition 2.6 (Repulsivity). A boundary point ∆ is said to be repulsive if it is not attractive, i.e. lim
b→∆
b∈I

|p(b)| =

+∞.

Since p is strictly increasing and finite for any point of I, it is clear that

l is repulsive ⇔ ∀x ∈ I, lim
b→l

(

p(x) − p(b)
)

= +∞,

r is repulsive ⇔ ∀x ∈ I, lim
b→r

(

p(b) − p(x)
)

= +∞.

We also check by proposition 2.5 that ∆ repulsive implies that for all a ∈ I and x in the open interval of
endpoints a and ∆, Px [T∆ > Ta] = 1.

2.2.1. Attainability

If ∆ is an attractive boundary point, then a trajectory starting at x ∈ I hits ∆ before another point a ∈ I
with strictly positive probability. But does this event occur in a finished time? Yes, if the point ∆ is attainable.

Definition 2.7 (Attainability). A boundary point ∆ is said to be attainable if for all a ∈ I and x in the open
interval of endpoints a and ∆ we have

lim
b→∆

Ex [Tb ∧ Ta] < +∞.

An attainable boundary point is attractive, and if ∆ is attractive, then ∆ is attainable if and only if
Px [T∆ < +∞] > 0 (cf. lemma 6.2 in [6]).

These two concepts “attractivity” and “attainability” make it possible to determine the behavior of the
diffusion in an neighborhood of a boundary point. Note that other concepts of the Feller’s classification are not
evoked here: regular point (reflective, absorbent, adhesive), exit point, natural point, entrance point.

2.3. Behavior of empirical measures: the ergodic point of view

Using Feller’s classification, we can know the asymptotic behavior of one trajectory of the diffusion. But to
establish the behavior of empirical measures and the recurrence of the process, the concept of attractivity is not
precise enough. Indeed, several situations can occur: the boundary points +∞ and −∞ are both repulsive for
the Brownian motion and for the Ornstein-Uhlenbeck process. But for the Brownian motion it is null recurrent
(in dimension one) and for the O.U. process it is positive recurrent. A new concept then is introduced: “strong
repulsivity”.

Definition 2.8. A repulsive boundary point ∆ is said to be strongly repulsive if for every c ∈ I we have
∣

∣

∫ c

∆
m(y)dy

∣

∣ < +∞.

A strongly repulsive point is a repulsive point such that the speed measure is finite in a neighborhood of ∆.
We emphasize that this concept is defined from the repulsivity. Indeed an attractive boundary point ∆ may
satisfy

∣

∣

∫ c

∆ m(y)dy
∣

∣ < +∞ for every c ∈ I (see the following example).

Example 2.9. (1) Let I =]0, +∞[ and b and σ continuous on Ī. Furthermore assume that for every

x ∈ [0, 1], b(x) = 1
2

√
x and σ(x) = cx3/4 with c ∈]1,

√
2[. We have

∀x ∈]0, 1[, p′(x) = exp

(

−
∫ x

1

√
y

c2y3/2
dy

)

= x− 1

c2 ,
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and since c > 1, for every x ∈]0, 1[, p(x) = 1
1−1/c2 x1− 1

c2 − 1
1−1/c2 therefore lim

x→0
p(x) = − 1

1 − 1/c2
. The

boundary point 0 is thus attractive.
Moreover, the speed measure is finite in a neighborhood of 0 since

∫ 1

0

m(y)dy =

∫ 1

0

2

c2y3/2y−1/c2 dy =
2

c2

1

1/c2 − 1/2
, (8)

and c ∈]1,
√

2[.
(2) In the case of the Ornstein-Uhlenbeck process defined on R by

dXt = −1

2
Xtdt + dBt, X0 = x ∈ R, (9)

the speed measure m(x)dx is the Gaussian probability, and the boundary points −∞ and +∞ are thus
strongly repulsive.

We recall now the main ergodic result for one dimensional diffusion process
(

Xt

)

t>0
. A process

(

Xt

)

t>0
is

said to be recurrent if for all a and b in I we have Pa [Tb < +∞] = 1. Moreover the process is called positive
recurrent if Ea [Tb] < +∞ and Eb [Ta] < +∞, and null recurrent otherwise.

Theorem 2.10. We suppose that
(

Xt

)

t>0
(solution of (1) and with speed measure m) is recurrent on I. If f

and g are two non negative measurable functions such that

∫

I

(f(x) + g(x)) m(dx) < +∞,

∫

I

g(x)m(dx) 6= 0.

Then
∫ t

0

f(Xs)ds

∫ t

0

g(Xs)ds

a.s−−→

∫

I

f(x)m(dx)
∫

I

g(x)m(dx)

.

Proof. For a detailed proof we refer the reader to [11] or [4]. �

In the sequel we will denote by
(

νt

)

t>0
the empirical measures of the diffusion, i.e.

∀t > 0, νt(dx) =
1

t

∫ t

0

δXs
(dx)ds.

By the above theorem and the concept of strongly attractive boundary point we establish the following
classification of the ergodic behavior of the diffusion.

Theorem 2.11. We recall that ζ = inf {t > 0, Xt = l or Xt = r}. Then

• if l is attractive and r is repulsive then xζ
t

a.s−−→ l,

• if l and r are attractive then

P

[

lim
t→+∞

xζ
t = l

]

= 1 − P

[

lim
t→+∞

xζ
t = r

]

=
p(r−) − p(X0)

p(r−) − p(l+)
.

• if l and r are repulsive then the diffusion is recurrent and does not explode (ζ = +∞ a.s.). More
precisely
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– if l and r are strongly repulsive (i.e. the speed measure is finite) then the diffusion is positive
recurrent and νt ⇒ ν a.s. where ν is the normalized speed measure. Moreover

∀f ∈ L1(ν),
1

t

∫ t

0

f(Xs)ds ⇒
∫

R

f(x)ν(dx) a.s.

– if l is strongly repulsive and r is (simply) repulsive then the diffusion is null recurrent and if the
empirical measures are tight we have

1

t

∫ t

0

δXs
ds ⇒ δr a.s.

– if l and r are not strongly repulsive then the diffusion is null recurrent, and if the empirical

measures are tight then any weak limit of
(

1
t

∫ t

0
δXs

ds
)

t>1
is a measure with support {l, r}.

We first prove the following lemma.

Lemma 2.12. If the two boundary points l and r are repulsive then the diffusion is positive recurrent if and
only if its speed measure is finite.

Proof. By definition, the diffusion is positive recurrent if and only if for all a and b in I, Ea [Tb] < +∞ and
Eb [Ta] < +∞. Let l < a < b < r. By symmetry it is sufficient to prove that

Ea [Tb] < +∞ ⇔
∫ a

l

m(y)dy < +∞. (10)

Firstly, l is repulsive and Tl = limx→l Tx therefore Ea [Tb] = Ea [Tb ∧ Tl] = limx→l Ea [Tb ∧ Tx]. Moreover by
(6) we have ∀x ∈]l, a[,

Ea [Tb ∧ Tx] = Pa [Tb < Tx]

∫ b

a

(p(b) − p(y))m(y)dy + Pa [Tx 6 Tb]

∫ a

x

(p(y) − p(x))m(y)dy,

and since
∫ b

a (p(b) − p(y))m(y)dy is finite and does not depend on x, the limit when x tends to l of Ea [Tb ∧ Tx]
is finite if and only if

lim
x→l

(

Pa [Tx 6 Tb]

∫ a

x

(p(y) − p(x))m(y)dy

)

< +∞.

As Pa [Tx 6 Tb] = p(b)−p(a)
p(b)−p(x) we have

Pa [Tx 6 Tb]

∫ a

x

(p(y) − p(x))m(y)dy = (p(b) − p(a))

∫ a

x

p(y) − p(x)

p(b) − p(x)
m(y)dy,

= (p(b) − p(a))

∫ a

x

Py [Tb < Tx] m(y)dy,

and it follows that Ea [Tb] < +∞ if and only if lim
x→l

∫ a

x

Py [Tb < Tx]m(y)dy < +∞. Since Tx strictly increases

to Tl, Py [Tb < Tx] increases to Py [Tb < Tl] = 1 because l is repulsive. The monotone convergence theorem
yields (10). �

Proof of Theorem 2.11. The first two items are proved in [5] (Proposition 5.22). We recall the proof of the first
item.
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• Suppose that l is attractive and r is repulsive. By definition of the scale function we have for all
l < a < x < b < r

Px

[

inf
06t<ζ

Xt 6 a

]

> Px [xTa∧Tb
= a] =

p(b) − p(x)

p(b) − p(a)
.

Increasing b to r we obtain Px [inf06t<ζ Xt 6 a] = 1 since r is repulsive. The limit when a decreases to
l also gives

Px

[

inf
06t<ζ

Xt = l

]

= 1. (11)

On the other hand

Px

[

sup
06t<ζ

Xt = b

]

6 Px [xTl∧Tb
= b] = lim

a→l

p(x) − p(a)

p(b) − p(a)
,

and taking the limit when b increases to r we obtain sup06t<ζ Xt < r a.s. It remains to prove that the

process
(

xζ
t

)

t>0
is almost surely convergent. Since

(

p(xζ
t )
)

t>0
is a local martingale and l is an attractive

boundary point, the process
(

p(xζ
t ) − lima→l p(a)

)

t>0
is a positive continuous local martingale. By

Fatou’s lemma it is a positive continuous super-martingale which is then almost surely convergent. We
conclude using the continuity of p−1.

• If l and r are repulsive then in the same way that we obtain (11) we have

inf
06t<ζ

Xt = l a.s. and sup
06t<ζ

Xt = r a.s.

The diffusion is thus recurrent on I and ζ = +∞ a.s. Moreover, by Lemma 2.12 we know that the
recurrence is positive if and only if the speed measure is finite.

– If the two boundary points are repulsive then the speed measure is finite and by Theorem 2.10
we have

∀f ∈ L1(ν),
1

t

∫ t

0

f(Xs)ds ⇒
∫

R

fdν a.s.

where ν is the normalized speed measure.
– If l is strongly repulsive and r is repulsive then the diffusion is null recurrent. Considering an

increasing sequence of continuous functions with compact support (gn(x))n>1 such that gn(x) → 1 and

∀n > 1,
∫

R
gn(x)m(dx) 6= 0, we obtain by Theorem 2.10

∀f ∈ L1(m),
1

t

∫ t

0

f(Xs)ds
a.s−−→ 0. (12)

On the other hand, we consider a sub-sequence
(

νa(t)

)

t>0
of
(

νt

)

t>0
converging to a measure ν (the

empirical measures are tight). Let f be a continuous function with compact support such that supp(f) ⊂
[l, r[. As νa(t) ⇒ ν we have

1

a(t)

∫ a(t)

0

f(Xs)ds
a.s−−→

∫

fdν.

The boundary point l is strongly repulsive and supp(f) ⊂ [l, r[, thus f is integrable with respect to m.
Hence (12) implies

∫

fdν = 0. The interval [l, r[ satisfies

∀f ∈ Cc(Ī), supp(f) ⊂ [lr[,⇒ ν(f) = 0,
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therefore supp(ν) = {r}. Since ν is normalized we have ν = δr.
– In the same way, if the two boundary points are strongly repulsive then any weak limit of

(

νt

)

t>0

is a measure with support {l, r}.
�

2.4. Attractivity and Lyapunov function

In order to study the behavior of the Euler scheme (with decreasing step) we establish a link between the
concepts of attractivity, repulsivity and strong repulsivity, and the Lyapunov functions. Let us notice that there
is few work which relates to this subject. Indeed, the Lyapunov functions are useful in high dimension and the
Feller’s classification is established for one-dimensional processes.

In the sequel, we will denote by J∆ ⊂ I an open (non-trivial) interval included in I with endpoint ∆.

Proposition 2.13. Let ∆ be a boundary point (finite or infinite, left endpoint or right endpoint) of I. The
following statements are equivalents

(1) ∆ is a repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly
monotone function V ∈ C2(J∆,R+) such that

lim
x→∆

V (x) = +∞ and ∀x ∈ J∆, AV (x) 6 0.

(2) ∆ is a strongly repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and
a strictly monotone function V ∈ C2(J∆,R+) such that

∃ε > 0, ∀x ∈ J∆, AV (x) 6 −ε.

(3) ∆ is a attractive point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly monotone
function V ∈ C2(J∆,R+) such that

sup
x∈J∆

V (x) = V (∆) < +∞ and ∀x ∈ J∆, AV (x) > 0.

Proof. We give the proof when ∆ is a right endpoint of I. Then J∆ is an interval ]c, ∆[ with c ∈ I.

• – We suppose that there exists a neighborhood J∆ of ∆ and a function V ∈ C2(J∆,R+) such that
limx→∆ V (x) = +∞ and AV 6 0 on J∆. For every x ∈ J∆ we have

AV (x) =
1

m(x)

(

V ′(x)

p′(x)

)′

6 0

hence V ′/p′ is decreasing on J∆. There also exists C > 0 such that V ′(x) 6 Cp′(x) for every x ∈]c, ∆[
since p′ > 0. It follows that lim

x→∆
p(x) − p(c) = +∞ because V tends to infinity in ∆.

– Conversely we must find the good Lyapunov function V . Let c > 0 be such that p(c) > 0 (c exists
because ∆ is repulsive). Since p is strictly increasing we have for every x ∈]c, ∆[, p(x) > p(c) > 0. We
also define the function V on ]c, ∆[ by

∀x ∈]c, ∆[, V (x) = p(x) − p(c).

The point ∆ is repulsive thus V increases to infinity when x tends to ∆. Moreover V ∈ C2(]c, ∆[,R+)
and AV = 0.

• – Let V ∈ C2(J∆,R+) be such that limx→∆ V (x) = +∞ and ε > 0 such that AV 6 −ε. Thus we have

∫

J∆

AV (x)m(x)dx 6 −ε

∫

J∆

m(x)dx, (13)
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and since AV (x) =
1

m(x)

(

V ′(x)

p′(x)

)′

we obtain for every c ∈ J∆,

∫ ∆

c

AV (x)m(x)dx = lim
x→∆

V ′(x)

p′(x)
− V ′(c)

p′(c)
. (14)

By (13) we derive that

∫ ∆

c

m(x)dx 6
1

ε

(

V ′(c)

p′(c)
− lim

x→∆

V ′(x)

p′(x)

)

.

As the functions V and p are increasing on J∆ we have lim
x→∆

V ′(x)

p′(x)
> 0, which gives

∫∆

c m(x)dx 6 C

(i.e. ∆ strongly repulsive).
– Conversely we assume that ∆ is strongly repulsive. Let c ∈ I and V the function defined on ]c, ∆[ by

∀x ∈]c, ∆[, V (x) =

∫ x

c

(

p′(y)

∫ ∆

y

m(z)dz

)

dy.

It is clear that V ∈ C2(]c, ∆[,R+) and that for every x ∈]c, ∆[, V ′(x) = p′(x)
∫ ∆

x
m(z)dz. Moreover

∀x ∈]x, ∆[, AV (x) = −1

• We prove (3) in the same manner as (1). For the converse we consider the function V (x) = p(x) − p(c)
on ]c, ∆[ with c such that p(c) > 0.

�

The above Proposition provides a useful criterion to know the nature of a boundary point. However, when
the boundary point ∆ is finite, a “natural” Lyapunov function has a minimum at ∆ and it is not the case of
V . But an easy transform allows us to obtain this property. This is the interest of the following Corollary.

Corollary 2.14. Let ∆ a boundary point of I.

(1) ∆ is a repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a strictly
monotone function v ∈ C2(J̄∆,R+) satisfying v(∆) = 0, such that

∀x ∈ J∆, Av(x) >
1

2
σ2(x)

(v′(x))2

v(x)
, (15)

(2) ∆ is a strongly repulsive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and
a strictly monotone function v ∈ C2(J̄∆,R+) having a minimum at ∆, such that

∃ε > 0, ∀x ∈ J∆, Av(x) >
1

2
σ2(x)

(v′(x))2

v(x)
+ εv(x), (16)

(3) ∆ is an attractive boundary point of I if and only if there exists a neighborhood J∆ ⊂ I of ∆ and a
strictly monotone function v ∈ C2(J̄∆,R+) having a minimum at ∆, such that

∀x ∈ J∆, Av(x) <
1

2
σ2(x)

(v′(x))2

v(x)
. (17)
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Proof. Let J∆ a neighborhood of ∆ strictly included in I. We consider the case in which ∆ is the right endpoint
of I i.e. J∆ =]c, ∆[ with c ∈ I. We define first for L > 0 the function φL by

φL : [0, exp(L)[ → R+,

x 7→ − ln(x) + L.

The function φL is a strictly decreasing one-to-one C∞ function. Moreover, for every C2 function v with values
in [0, exp(L)[ we have

A (φL ◦ v) = −Av

v
+

1

2
σ2 (v′)2

v2
. (18)

• – We assume that there exists v ∈ C2([c, ∆],R+) strictly monotone satisfying v(∆) = 0 and (15). We
also define on ]c, ∆[ the function V by ∀x ∈]c, ∆[, V (x) = (φL ◦ v) (x) with L = ln(v(c)). It is a strictly
monotone function which tends to infinity in ∆. By (15) and (18) we obtain AV 6 0 on ]c, ∆[. The
proposition (2.13) implies that ∆ is repulsive.
– Conversely if ∆ is repulsive then there exists V ∈ C2(]c, ∆[,R+) strictly monotone which goes to +∞
when x tends to ∆. We also define v = φ−1

L ◦ V on ]c, ∆[ with L = infx∈]c,∆[ V (x), and we extend if

by continuity on [c, ∆] letting v(c) = 1 and v(∆) = 0. By AV 6 0 and (18) we have Av > 1
2σ2 (v′)2

v on
]c, ∆[.

• – Let v a strictly monotone function on [c, ∆] such that v(∆) = 0. For θ > 0 and L = ln(v(c) + θ)
we define V (x) = (φL,θ ◦ v)(x) for every x ∈]c, ∆[. This function V is strictly monotone on ]c, ∆[ and
admits a limit (finite or not) when x tends to ∆. From (16) and (18) we deduce that

∀x ∈]c, ∆[, AV (x) 6 −ε.

– Conversely we consider the function v = φ−1
L ◦ V on ]c, ∆[ with L = infx∈]c,∆[ V (x) and we extend if

by continuity letting v(c) = 1 and v(∆) = limx→∆ exp(−V (x)).
• The proof is similar to the two firsts items.

�

Remark 2.15. If ∆ is such that b(∆) = σ(∆) = 0, then ∆ is a critical point for the equation u′ = b(u). It is
worth noting that there exists a link between the nature of the critical point ∆ for the ODE u′ = b(u) and the
nature of the boundary point ∆ for the SDE.

Indeed, if ∆ is a stable critical point then there exists a Lyapunov function F ∈ C2 such that F ′b(u) < 0
for every u in a neighborhood of ∆. If F ′/F is decreasing, the above corollary implies that ∆ is an attractive
boundary point for the SDE.

If ∆ is an unstable point for the ODE u′ = b(u), it may be repulsive, strongly repulsive or attractive for the
SDE, as shown in the following example.

Example 2.16. We consider, like in [9], the function V : R → R+ defined by

V (x) =

{

(

x − 3 sgn(x)
)2

if |x| > 3,
1
72 (x2 − 9)2 if |x| 6 3

and b(x) =

{

−2
(

x − 3 sgn(x)
)

if |x| > 3,

− 1
18x3 + 1

2x if |x| 6 3
,

and b = −V ′. The ordinary differential equation u′ = b(u) has 3 critical points: −3, 0 and 3. The points −3
and 3 are stable and the point 0 is unstable.

Let c ∈]0, 2[ a parameter and σ defined by σ(x) = cx. We consider the process
(

Xt

)

t>0
solution of the SDE

dXt = b(Xt)dt + σ(Xt)dBt. It is clear that the point 0 is a boundary point for
(

Xt

)

t>0
. Moreover we check

that

AV (x) = −
(

4 − c2
)

x2 + 12 sgn(x) if |x| > 3.
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Figure 1. Fonction V
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Figure 2. Drift b = −V ′

By Proposition 2.13 the points −∞ and +∞ are then strongly repulsive.
On the other hand, we use Corollary 2.14 to determine the nature of the boundary point 0 according to c.

Assume that I =]0, +∞[ and let v the function defined on [0, +∞[ by v(x) = x2. We have

∀x ∈]0, 3[, Av(x) = (1 + c2)x2 − 1

9
x4 and

1

2
σ2(x)

(v′(x))2

v(x)
= 2c2x2, (19)

and then

• if c < 1 the boundary point 0 is strongly repulsive (for ]0, +∞[ and ]−∞, 0[ by symmetry). Indeed the

condition (16) is satisfied with ε = 1−c2

2 and J∆ =
]

0, 3
√

1−c2

2

[

.

• if c > 1 it is easy to check that the boundary point 0 is attractive.
• if c = 1 we consider the function v(x) = x exp(x) and we check that 0 is a repulsive boundary point.

Thus the nature of the boundary point 0 (which is always stable for the ODE u′ = b(u)) may change according
to c. By Theorem 2.11 the ergodic behavior of

(

Xt

)

t>0
is the following:

• if c ∈]1, 2[ then Xt
a.s−−→ 0 (for every starting point X0),

• if c = 1 then 1
t

∫ t

0 δXs
(dx) ⇒ δ0,

• if c < 1 then for every f ∈ L1(m)

1

t

∫ t

0

f(Xs)ds
a.s−−→











∫

fdν− if X0 ∈]0, +∞[

f(0) if X0 = 0
∫

fdν+ if X0 ∈] −∞, 0[

with ν− the invariant measure of
(

Xt

)

t>0
on ] −∞, 0[ and ν+ the invariant measure on ]0, +∞[.

3. Behavior of the Euler scheme with decreasing step

We consider now the Euler scheme
(

Xn

)

n>0
built using a positive sequence

(

γn

)

n>1
going to 0. We assume

that
(

γn

)

n>1
satisfies limn

∑n
k=1 γk = +∞ and we denote Γn =

∑n
k=1 γk. The inhomogeneous Markov chain

(

Xn

)

n>0
is defined by

Xn+1 = Xn + γn+1b(Xn) +
√

γn+1σ(Xn)Un+1,
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with
(

Un

)

n>1
a real white noise i.e. a sequence of i.i.d. random variables such that E [U1] = 0 and var(U1) = 1.

Furthermore, we assume that U1 is a generalized Gaussian (cf. [12]) i.e. such that

∃κ > 0, ∀θ ∈ R, E
[

exp(θU1)
]

6 exp

(

κ|θ|2
2

)

.

For example U1 is a standard Gaussian or a Bernoulli random variable. A consequence of the generalized
Gaussian property is the following

∀a > 0, P
[

|U1| > a
]

6 exp

(

− a2

2κ

)

. (20)

We consider a diffusion
(

Xt

)

t>0
on the real line with b and σ continuous on R. Moreover we assume that b

and σ have sublinear growth i.e.

∃Cb > 0, |b|2 6 Cb(1 + |x|), and ∃Cσ > 0, |σ|2 6 Cσ(1 + |x|). (21)

In the sequel ∆ denotes a finite point of R such that b(∆) = σ(∆) = 0, and J∆ denotes an open interval with
endpoint ∆ (J∆ =]∆, ∆ + ε[ if ∆ is a left endpoint of I =]∆, +∞[ and J∆ =]∆ − ε, ∆[ if it is a right endpoint
of I =] −∞, ∆[).

3.1. Euler scheme

We prove the following Theorem which gives the behavior of one trajectory of the Euler scheme
(

Xn

)

n>0
in

this degenerate situation.

Theorem 3.1. We assume that σ satisfies σ(x) 6= 0 for every x ∈] − ∞, ∆[∪]∆, +∞[ and that there exists
U∆ =]∆ − ε, ∆ + ε[ with ε > 0, and a convex function v ∈ C2(U∆,R+) satisfying v(∆) = 0 and

∀x ∈ U∆, (v′b)(x) > 0 and ∃cσ > 0, ∀x ∈ U∆, |(v′σ)(x)| 6 cσv(x). (22)

If the step sequence
(

γn

)

n>1
satisfies ∀C > 0,

∑

n>1 exp
(

− C
γn

)

< +∞ then the Euler scheme jump above ∆ a

finite number of times i.e.

P
[

∃n0 > 0, ∀n > n0, Xn ∈] −∞, ∆[
]

+ P
[

∃n0 > 0, ∀n > n0, Xn ∈]∆, +∞[
]

= 1.

We first prove the following lemma.

Lemma 3.2. We assume there exists a convex function v ∈ C2(J̄∆,R+) satisfying v(∆) = 0 and

∀x ∈ J̄∆, (v′b)(x) > 0 and ∃cσ > 0, ∀x ∈ J∆, |(v′σ)(x)| 6 cσv(x). (23)

Then, on the event
{

Xn ∈ J̄∆

}

P
[

∆ ∈ (Xn, Xn+1)
∣

∣Fn

]

6 exp

(

− 1

c2
σγn+1

)

.

Proof. We assume that ∆ is a left endpoint of I and we denote by An+1 the event {∆ ∈ (Xn, Xn+1)} (the
geometric segment with endpoints Xn and Xn+1). Since v is continuous and v(∆) = 0 it is clear that

An+1 = {∃t ∈ [0, 1], Xn + t(Xn+1 − Xn)) = ∆} ,

⊂ {∃t ∈ [0, 1], v(Xn + t(Xn+1 − Xn)) = 0} . (24)
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Consider t ∈ [0, 1] such that ∆ = Xn + t(Xn+1 − Xn). As v is C2 on J̄∆, Taylor’s formula gives

v(Xn + t(Xn+1 − Xn)) = v(Xn) + v′(Xn)t(Xn+1 − Xn) +
v′′(ξn+1)

2
t2(Xn+1 − Xn)2,

with ξn+1 ∈]∆, Xn[. The convexity of v implies

0 = v(Xn + t(Xn+1 − Xn)) > v(Xn) + tγn+1(v
′b)(Xn) + t

√
γn+1(v

′σ)(Xn)Un+1.

Since v′b > 0 on J̄∆ we have from (24)

An+1 ∩
{

Xn ∈ J̄∆

}

⊂
{

∃t ∈ [0, 1], v(Xn) + t
√

γn+1(v
′σ)(Xn)Un+1 6 0

}

∩
{

Xn ∈ J̄∆

}

,

⊂
{

∃t ∈ [0, 1], t
√

γn+1|(v′σ)(Xn)Un+1| > v(Xn)
}

∩
{

Xn ∈ J̄∆

}

.

Hence for any n > 0, we have on the event
{

Xn ∈ J̄∆

}

P [An+1 | Fn] 6 P

[

|Un+1| >
v(Xn)

√
γn+1|(v′σ)(Xn)|

∣

∣

∣

∣

Fn

]

,

6 P

[

|Un+1| >
1

cσ
√

γn+1

∣

∣

∣

∣

Fn

]

,

by the domination assumption (23) on v′σ. We conclude using property (20) of the random variable U1. �

Proof. By Lemma 3.2 we prove easily that for every n > 0

P
[

∆ ∈ (Xn, Xn+1)
∣

∣Fn

]

6 exp

(

− 1

c2
σγn+1

)

on Xn ∈ U∆. (25)

We now consider the event {Xn /∈ U∆}. Then we have

{∆ ∈ (Xn, Xn+1)} =

{

∃t ∈ [0, 1], Un+1 =
∆ − Xn

t
√

γn+1σ(Xn)
−√

γn+1
b(Xn)

σ(Xn)

}

,

⊂
{

|Un+1| >
|∆ − Xn|√
γn+1|σ(Xn)| −

√
γn+1

|b(Xn)|
|σ(Xn)|

}

.

As the drift b is dominated by Cb(1 + |x|), we have

{∆ ∈ (Xn, Xn+1)} ⊂
{

|Un+1| >

( |∆ − Xn|√
γn+1Cb(1 + |Xn|)

−√
γn+1

)

Cb(1 + |Xn|)
|σ(Xn)|

}

,

and using the triangular inequality and |Xn − ∆| > ε we prove that |∆−Xn|
1+|Xn| > 1

1+ 1+|∆|
ε

. We also deduce that

there exists n1 > 0 and C > 0 such that for any n > n1,

P [{∆ ∈ (Xn, Xn+1)} ∩ {Xn /∈ U∆} | Fn] 6 P

[{

|Un+1| >
C

√
γn+1

Cb(1 + |Xn|)
|σ(Xn)|

}

∩ {Xn /∈ U∆}
∣

∣

∣

∣

Fn

]

,

6 P

[{

|Un+1| >
CCb

Cσ
√

γn+1

}

∩ {Xn /∈ U∆}
∣

∣

∣

∣

Fn

]

, (26)

using |σ| 6
√

Cσ

√
V .
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From (25) and (26) combined with (20), we get

∃n1 > 0, ∃C > 0, ∀n > n1, P
[

∆ ∈ (Xn, Xn+1)
∣

∣Fn

]

6 exp

(

− C

γn+1

)

.

By the condition on the sequence
(

γn

)

n>1
and the conditional Borel-Cantelli Lemma we deduce that the event

{∆ ∈ (Xn, Xn+1)} occurs a finite number of times. �

Remark 3.3. The condition on the step sequence
(

γn

)

n>1
is not restrictive. Indeed, it is satisfied for

(

γn

)

n>1

defined by γn = γ0n
−r with γ0 > 0 and r ∈]0, 1], or γn = log(n)−r with r > 1.

The technical assumption “v convex” is not very restrictive in practice. The important point to note is the
condition v′b > 0 which implies that ∆ is unstable for the ODE u′ = b(u). But ∆ may be repulsive as well as
attractive for the SDE (cf. Remark 2.15). The condition v′σ = O(v) in a neighborhood of ∆ is very important
and it seems difficult to relax it.

Remark 3.4. It is easy to extend the above Theorem to the case of finitely many boundary points ∆i. If
for every ∆i, there exists a neighborhood U∆i

and a convex function vi ∈ C2(U∆i
,R) such that v(∆) = 0 and

satisfying (22), then
P [∃i ∈ {0, . . . , l} , ∃n0 > 0, ∀n > n0, Xn ∈]∆i, ∆i+1[] = 1,

with ∆0 = −∞ and ∆l+1 = +∞.

3.2. Weighted empirical measures

Let
(

ηn

)

n>1
a positive sequence, called weight sequence, such that Hn =

∑n
k=1 ηk increases to +∞ when n

tends to +∞. We define the weighted empirical measures
(

νη
n

)

n>1
by

∀n > 1, νη
n(dx) =

1

Hk

n
∑

k=1

ηkδXk−1
.

In this section we assume that the diffusion satisfies a stability condition i.e.

∃α > 0, ∀|x| > M, xb(x) +
1

2
σ2(x) 6 −αx2.

This condition implies that the points −∞ and +∞ are strongly repulsive and that the empirical measures
(

νt

)

t>0
are tight. Since b and σ have sublinear growth, this condition implies also the tightness of the weighted

empirical measures
(

νη
n

)

n>1
of the scheme and that any weak limit is an invariant probability for the diffusion

(cf. [7] or [8]).
A consequence of Theorem 3.1 is the following proposition which describe the convergence of

(

νη
n

)

n>1
ac-

cording to the behavior of b and σ in a neighborhood of ∆. For more clearness, we parametrize b and σ.

Proposition 3.5. Let ∆ the unique point of R such that b(∆) = σ(∆) = 0. We assume that in a neighborhood
of ∆ we have b(x) = sgn(x − ∆)ρb(x) and σ(x) = ρσ(x) with ρb > 0,

ρb(x) ∼ cb|x − ∆|β and σ(x) ∼ cσ|x − ∆|ς , (27)

where β, ς, cb and cσ are positive real numbers and ς > 1. If the step sequence
(

γn

)

n>1
satisfies ∀C > 0,

∑

n>1 exp(−C/γn) < +∞, then

• if 1 + β − 2ς > 0 then ∆ is an attractive boundary point and νη
n ⇒ δ∆,

• if 1 + β − 2ς = 0 and cσ >
√

2cb then ∆ is an attractive boundary point and νη
n ⇒ δ∆,
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• if 1 + β − 2ς = 0, cσ <
√

2cb and β = 1 (which implies ς = 1) then ∆ is a strongly repulsive boundary
point and νη

n ⇒ ν+ or νη
n ⇒ ν−,

• if 1 + β − 2ς < 0, cσ 6
√

2cb and β ∈]0, 1] then ∆ is a strongly repulsive boundary point and νη
n ⇒ ν+

or νη
n ⇒ ν−,

where ν+ is the invariant probability on ]∆, +∞[ and ν− the invariant probability on ] −∞, ∆[.

Proof. To simplify notation, we assume without loss of generality that ∆ = 0.
Let U∆ =]∆ − ε, ∆ + ε[ a neighborhood of ∆ and the convex function v(x) = x2. Then for every x ∈ U∆ we

have
v′b = 2x sgn(x)ρb(x) > 0.

Moreover v′σ ∼ cσ|x|ς+1
with ς > 1 hence there exists C > 0 such that |v′σ| 6 Cv. By Theorem 3.1 we know

then that the scheme lives in ] −∞, ∆[ or in ]∆, +∞[ after an almost-surely finite random time.
Furthermore, with v(x) = x2 we have

∀x ∈ U∆, Av(x) = 2|x|ρb(x) + σ2(x) = 2cb|x|1+β
+ c2

σ|x|2ς
+ o
(

|x|(1+β)∨(2ς)
)

, (28)

and
1

2
σ2(x)

(v′(x))2

v(x)
= 2σ2(x) ∼ 2c2

σ|x|2ς .

– If 1 + β > 2ς, there exists a neighborhood of 0 in which Av < 1
2σ (v′)2

v . Hence by Corollary 2.14, 0 is

an attractive boundary point. The sequence of weighted empirical measures
(

νη
n

)

n>1
of the scheme is tight on

[0, +∞[ and on ] − ∞, 0], and any weak limit is an invariant probability. However, δ0 (the Dirac at 0) is the
unique invariant probability on [0, +∞[ or on ]−∞, 0]. Thus any weak limit of

(

νη
n

)

n>1
is δ0, which proves the

first item.
– If 1 + β = 2ς, Av(x) = (2cb + c2

σ)|x|2ς + o
(

|x|2ς
)

. If cσ >
√

2cb there exists a neighborhood of 0 in which

Av < 2σ2 and we conclude as above.
If β = 1 and cb <

√
2cb, we have for every x in U∆, Av(x) > 2σ2(x) + εx2. By Corollary 2.14, the point 0

is then strongly repulsive. Any weak limit of
(

νη
n

)

n>0
is a probability on ] −∞, 0[ or on ]0, +∞[, therefore we

have νη
n ⇒ ν− or νη

n ⇒ ν+ (we recall that the boundary points −∞ and +∞ are strongly repulsive).
– The proof for the case 1 + β < 2ς, cς 6

√
2cb and β ∈]0, 1] is similar. �

To illustrate this result we take the same example as in the previous section (Example 2.16).

Example 3.6. Let b and σ be defined by

b(x) =

{

−2
(

x − 3 sgn(x)
)

if |x| > 3,

− 1
18x3 + 1

2x if |x| 6 3
, and σ(x) = cx with c ∈]0, 2[.

We recall that the nature of the boundary point 0 for the diffusion
(

Xt

)

t>0
depends on parameter c. If c ∈]1, 2[,

0 is an attractive boundary point, if c = 1 it is repulsive and if c ∈]0, 1[ it is strongly repulsive.
By the above Proposition, we know that the weighted empirical measure

(

νη
n

)

n>1
weakly converge to δ0 when

c ∈]1, 2[ and to ν+ or ν− when c ∈]0, 1[. Note that the convergence to ν+ or ν− does not depend on the initial
condition and is not previsible.

We give a representation of the density of ν approximated by νη
n with n = 106. More precisely, we have

discretized the interval [−2, 8] using 200 intervals Ii of length 0.05 and we have computed νη
n(1Ii

) for each Ii

with n = 106. The step sequence
(

γn

)

n>1
is defined by γn = n−1/3 and the weight sequence

(

ηn

)

n>1
is defined

by ηn = 1. The results of this approximation of the stationary density are given in Figure 3 for different values
of c.

We remark that for a small noise (c = 0.1), the invariant probability concentrates around a stable point of
the ODE u′ = b(u) (the point 3), and the more coefficient of diffusion increases, the more the invariant measure
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Figure 3. Approximation of the stationary density for different values of c.

is spread out. For c = 0.75 we show that the invariant measure is infinite at 0, and for c = 1 the invariant
measures seems to be the Dirac mass at 0.

4. Numerical example in dimension 2

To conclude this paper we give a numerical example in dimension 2. We represent the empirical measures of
the Euler scheme in a degenerate situation where there are two invariant measures. The first one is the Dirac
mass at ∆ = (0, 0) and the second one is a probability measure on R2\ {(0, 0)}.

We consider the deterministic Van der Pol equation defined by

{

x′ = y,

y′ = (1 − x2)y − x.
(29)

This non-linear system of R2 has a stable point (0, 0) and an attractive limit cycle. If we add sufficient strong
noise in whole space but not in (0, 0), the point (0, 0) becomes an attractive point for the stochastic system and
the invariant measure of this system is δ(0,0).
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Write b(x, y) =

(

y
(1 − x2)y − x

)

and σ(x, y) =

(

cx 0
0 cy

)

. We consider the following perturbed Van der Pol

equation
dut = b(ut)dt + σ(ut)dBt

with ut = (Xt, Yt) ∈ R2. We discretize the solution
(

Xt

)

t>0
using a decreasing step Euler scheme

(

Xn

)

n>0

and the step sequence
(

γn

)

n>1
is defined by γn = 0.5n−1/3. To guarantee stability of this scheme, we replace

the function b by the function b̃(x, y) =

(

y
(1 − x2 ∧ 4)y − x

)

. The scheme is thus defined by X0 = (1, 1) and

for every n > 0
Xn+1 = Xn + γnb̃(Xn) +

√
γnσ(Xn)Un+1,

where Un is a normalized Gaussian of R2.
An approximation of the density of ν is done using an histogram of νη

n for n = 106 and ηn = 1. The histogram
is built using a step h = 0.2. The results are presented in Figure 4.

We note that for a small noise (c = 0.5) the point (0, 0) seems not charged by the invariant probability. And
for higher values of c the invariant probability concentrates in a neighborhood of (0, 0).
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Figure 4. Approximation of the stationary density of the perturbed Van der Pol equation
for different values of c.


