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Abstract

The purpose of this paper is to investigate the performance of several adaptive wa-
velet constructions based on a modification of the original Lepski algorithm. First,
we provide a wide class of procedures which have the particularity to attain the
asymptotic minimax rate of convergence over certain zones of Besov balls under the
L

2 risk. Second, the method developed by Juditsky (1997) is studied. In particular,
we show that it is superior to other wavelet estimators in terms of maxiset (and
minimax) properties.
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1 Motivation

Let {Y n
t , t ∈ [0, 1]} be a random process defined by the following stochastic differential

equation :

dY n
t = f(t)dt+ n−

1
2 dWt, t ∈ [0, 1], n ∈ N

∗, (1.1)

where (Wt)t∈[0,1] is a standard Brownian motion and f is an unknown function of L
2([0, 1]) that

we wish to recover starting from the observations
{

∫ 1
0 h(t)dY

n
t ; h ∈ L

2([0, 1])
}

. This problem

has been investigated by many authors under various statistical setting. If we focus our attention
on the wavelet methods, the most popular reconstructions are based on the SureShrink and the
VisuShrink algorithms. By considering the minimax approach under the mean squared error,
we have :

sup
f∈Bs

π,r(R)
E

n
f (

∫ 1

0
|f̂(t) − f(t)|2dt) ≤ C(

ln(n)

n
)

2s
1+2s , π ≥ 1.

Here, f̂ denotes is the estimate of f derived by term-by-term thresholding, B s
π,r(R) is the

Besov balls (to be defined in Section 2) and E
n
f is the expectation with respect to the law

P
n
f of the observations. Such procedures are adaptive in the sense where it does not depend

on the unknown regularity parameter s. However, they are non-optimal since they come to
within a logarithmic factor of the minimax rate of convergence. For more details concerning the
procedures and the minimax results described above, see for instance Donoho and Johnstone
(1994, 1995).

Over the last decade, numerous efforts have been made to construct adaptive wavelet
procedures attaining the exact minimax rate of convergence. Such optimality is achieved for
the global thresholding procedure investigated by Kerkyacharian et al. (1996), the version of the
Lepski procedure developed by Juditsky (1997), or the block thresholding procedure introduced
by Cai (1999).

http://www.chesneau-stat.com
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The present paper can be divided into two parts.

The first part presents several adaptive wavelet procedures based on a modification of the
Lepski algorithm which are optimal over Bs

π,r(R) for π ≥ 2 under the L
2 risk. Initially described

by Lepski in a series of papers (see Lepskii (1990, 1991, 1992a,b)), this method has been widely
used by many authors in various statistical context. See for instance the following articles :
Lepskii and Spokoiny (1995), Juditsky (1997), Lepskii et al. (1997), Lepskii and Levit (1998),
Tsybakov (1998), Tsybakov (2000), Birge (2001), Butucea (2000), Kerkyacharian and Picard
(2002) and Autin (2005), to name a few. Among other results, we prove that the well-known
global thresholding can be viewed as a particular case of the proposed procedures

The second part is devoted to the modification of the Lepski algorithm developed by
Juditsky (1997). The idea of this construction is to apply the following term-by-term selection :
we keep only the estimators of the wavelet coefficients which are greater than an adaptive
threshold parameter determined for each resolution level. If we adopt the minimax point of
view, it was shown that they are optimal over Bs

π,r(R) for π ≥ 1 (including the case 1 ≤ π < 2)
under the L

2 risk. In this study, we prove that they can outperform the hard thresholding rules
in the maxiset sense.

The plan of the paper is organized as follows. Section 2 describes wavelet bases on the inter-
val and the Besov balls. Section 3 sets the main minimax results of some procedures constructed
from a modification of Lepski method. The performance of the estimator proposed by Juditsky
(1997) is examined in Section 4. Section 5 contains the proofs of Theorems, Propositions and
Lemmas.

2 Methodology

2.1 Wavelet bases and Besov balls

We summarize in this subsection the basics on wavelet bases on the unit interval [0, 1].

Let us consider the construction described by Cohen et al. (1993) : We consider φ a ”father”
wavelet of a multiresolution analysis on R and ψ the associated ”mother” wavelet. Assume that
Supp(φ) = Supp(ψ) = [1 −N,N ] and

∫ N

1−N
φ(t)dt = 1,

∫ N

1−N
tlψ(t)dt = 0 for l = 0, ..., N − 1.

Let us set
φj,k(x) = 2

j

2φ(2jx− k) and ψj,k(x) = 2
j

2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection ζ defined by :

ζ = {φτ,k(.), k = 0, ..., 2τ − 1; ψj,k(.); j ≥ τ, k = 0, ..., 2j − 1}

with an appropriate treatments at the boundaries, is an orthonormal basis of L
2([0, 1]).

Any function f of L
2([0, 1]) can be decomposed on ζ as :

f(x) =
∑

k∈∆τ

ατ,kφτ,k(x) +
∑

j≥τ

∑

k∈∆j

βj,kψj,k(x), x ∈ [0, 1],

where αj,k =
∫ 1
0 f(t)φj,k(t)dt, βj,k =

∫ 1
0 f(t)ψj,k(t)dt and ∆j = {0, ..., 2j − 1}.

Let us now present the main function spaces of the study :

Definition 2.1 (Besov balls). Let N ∈ N
∗, R > 0, 0 < s < N , 1 ≤ r ≤ ∞ and 1 ≤ π ≤ ∞. For

any function f measurable on [0, 1], we denote the associated N -th order modulus of smoothness
as

ρN (t, f, π) = sup
|h|≤t

(

∫

JNh

∣

∣

∣

∣

∣

N
∑

k=0

(

N

k

)

(−1)kf(u+ kh)

∣

∣

∣

∣

∣

π

du

)

1
π
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where JNh = {x ∈ [0, 1] : x + Nh ∈ [0, 1]}. We say that a function f of L
π([0, 1]) belongs to

the Besov balls Bs
π,r(R) if and only if

(
∫ 1

0

(

ρN (t, f, π)

ts

)r
1

t
dt

)

1
r

≤ R <∞

with the usual modification if r = ∞.

Let us set a well-known result which has been proved by Meyer (1990). Let 0 < s < N and
1 ≤ π ≤ ∞. Then f ∈ Bs

π,r(R) if and only if the associated wavelet coefficients αj,k and βj,k

satisfy :











(2τ( p

2
−1)∑

k∈∆τ
|ατ,k|

2)
1
2 + (

∑

j≥τ (2
j(s+ 1

2
− 1

π
)(
∑

k∈∆j
|βj,k|

π)
1
π )r)

1
r ≤ R <∞ if r <∞,

(2τ( p

2
−1)∑

k∈∆τ
|ατ,k|

2)
1
2 + supj≥τ 2j(s+ 1

2
− 1

π
)(
∑

k∈∆j
|βj,k|

π)
1
π ≤ R <∞ if r = ∞.

3 Some optimal adaptive wavelet procedures

In this section, we propose to study the performance of a wide family of adaptive wavelet
procedures constructed from an algorithm close to the Lepski method.

3.1 Wavelet procedures and assumptions

In this subsection, let j0 be an integer satisfying 2j0 � ln(n), let j∞ be an integer satisfying
2j∞ � n, let m be an integer such that m ∈ {j0, ..., j∞} and let u = (uj,k)j,k be positive sequence
depending on the data with uj,k ∈ {0, 1}.

We define the procedures f̂m,u by :

f̂m,u(x) =
∑

j≤j0

α̂j0,kφj0,k(x) +

m
∑

j=j0

∑

k∈∆j

β̂j,kuj,kψj,k(x), x ∈ [0, 1]. (3.1)

where α̂j,k =
∫ 1
0 φj,k(t)dY

n
t and β̂j,k =

∫ 1
0 ψj,k(t)dY

n
t .

Such constructions includes several well-known procedures as the linear procedures, the
hard thresholding procedures, the global thresholding procedures and the block thresholding
procedures. They can be viewed as a generalization of the µ-thresholding procedures developed
by Autin (2005).

Let us now consider the following assumption :

Assumption H. There exists a constant C > 0 such that the random positive sequence
u = (uj,k)j,k satisfies :

(
∑

k∈∆j

|β̂j,k|
2(1 − uj,k))

1
2 ≤ Cn−

1
2 2

j

2 , j ∈ {j0, ..., j∞}. (3.2)

3.2 Upper bounds

The notation a � b means : there exist two constants C > 0 and c > 0 such that cb ≤ a ≤
Cb. The notations a ∧ b and a ∨ b mean respectively : min(a, b) and max(a, b).

Theorem 3.1 below is standard.
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Theorem 3.1. Let R > 0. Let f̂js,u be the procedure described in (4.1) where js is an integer
satisfying :

2js � n
1

1+2s . (3.3)

Then, under the assumption H, for 0 < s < N , π ≥ 2, and r ≥ 1 there exists a constant C > 0
such that :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂js,u − f‖2

2) ≤ Cn
− 2s

1+2s , n ≥ n0,

for n0 large enough.

Due to the presence of the regularity parameter s, the procedure f̂js,u is not adaptive.

In order to determine adaptive procedures which attain the previous rate of convergence,
the main idea of Theorem 3.2 below is the following : we estimate the integer js by a random
integer ̂ depending on the data and we consider the procedure f̂̂,u. Such point of view is
inspired by the original Lepski algorithm developed in Lepskii (1990).

Theorem 3.2. Let R > 0. Let f̂̂,u be the procedure described in (4.1) where ̂ is the following
random integer :

̂ = min{l ∈ {j0, ..., j∞}; ‖f̂l,u − f̂l−1,u‖2 ≤ κ12
l
2n−

1
2 } − 1, (3.4)

and κ1 is the real number satisfying κ2
1 − 8 ln(2−1κ1) ≥ 20. (Let us precise that we have adopt

the convention f̂j0−1,u = 0).

Then under the assumption H, for 0 < s < N , π ≥ 2 and r ≥ 1 there exists a constant
C > 0 such that :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂̂,u − f‖2

2) ≤ Cn
− 2s

1+2s , n ≥ n0,

for n0 large enough.

See below two equivalent expressions of the random integer ̂ :

̂ =

{

min{l ∈ {j0, ..., j∞}; (
∑

k∈∆l
|β̂l,k|

2ul,k)
1
2 ≤ κ12

l
2n−

1
2 } − 1,

max{l ∈ {j0, ..., j∞}; (
∑

k∈∆l
|β̂l,k|

2ul,k)
1
2 > κ12

l
2n−

1
2 }.

Let us mention that the upper bound above is without logarithmic factor contrary to
the rate attained by the hard thresholding procedures under the same circumstances. See for
instance Donoho and Johnstone (1995). Let us recall than the hard thresholding procedure can
be defined by f̂j∞,u (see (4.1)) where :

uj,k = 1 �
|β̂j,k|≥κ2 � ln(n)

n � , (3.5)

where κ2 ≥ 4.

For sake of simplicity, such procedures will be denoted f̂h.

3.3 On the assumption H

Now, we propose to examine the connections which exist between the constructions f̂̂,u

and some well-known wavelet procedures by considering several sequences u satisfying the
assumption H.
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1. Let u = (uj,k)j,k be the positive sequence defined by :

uj,k = 1.

Then the procedure f̂̂,u is close to the ’true’ Lepski procedure introduced by Lepskii
(1990).

2. Let u = (uj,k)j,k be the positive sequence defined by :

uj,k = 1 �
(2−j �

l∈∆j
|β̂j,l|2)

1
2 ≥cn−

1
2 � ,

where c denotes a positive constant. If c ≥ κ1 then the procedure f̂̂,u becomes the global

thresholding procedure (defined by f̂j∞,u). For further details concerning such construc-
tion, see Kerkyacharian et al. (1996).

3. Let u = (uj,k)j,k be the positive sequence defined by :

uj,k = 1 �
|β̂j,k|≥cn

−
1
2 �

where c denotes a positive constant. For such a choice, let us notice that f̂̂,u becomes a
hybrid version of the hard thresholding procedure. Let us just remark that no logarithmic
factor appears in the threshold.

4. Finally, let us precise that the BlockShrink sequence described by Cai (1999) satisfies the
assumption H.

Remark 3.1. It is important to mention that the adaptive procedures described above have
several drawbacks. Among them, due to the definition of ̂, it seems difficult to exhibit a ’good’
rate of convergence for f̂̂,u over Bs

π,∞(R) in the case where 1 ≤ π < 2.

For instance, if we consider u = 1 and the statistical problem as given in (1.1) then we
have for 1 ≤ π < 2 :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂js,1 − f‖2

2) ≥ cn
− 2s′

1+2s′ > cn
− 2s

1+2s ≥ c inf
f̃

sup
f∈Bs

π,r(R)
E

n
f (‖f̃ − f‖2

2)

where s′ = s+ 1
2 − 1

π
. For a general proof, we refer the reader to Nemirovskii (1986). Thus, if

we estimate js by a random integer then it is natural that the obtained procedure does not attain
the minimax rate of convergence for 1 ≤ π < 2.

An alternative is developed in the section below.

4 Hard thresholding procedures with random threshold

Delyon and Juditsky (1996) have shown that the non-adaptive procedure defined by f̂j1,u

(see (4.1)) where :
uj,k = 1 �

|β̂j,k|≥κ3 � (j−js)+
n � ,

κ3 ≥ 4
√

ln(2) , j1 is an integer such that 2j1 � n
ln(n) and js is an integer such that 2js � n

1
1+2s

can be optimal over Bs
π,∞(R) in the case where π ≥ 1 for numerous statistical models.

Starting from this result and using Lepski algorithm, an adaptive construction was develo-
ped by Juditsky (1997). The main idea is to estimate an adaptive threshold parameter for each
resolution level.

We propose to discuss and compare the performance of this procedure with other well-
known constructions via the minimax point of view and the maxiset approach.
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4.1 The Juditsky procedure

For all l ∈ {0, ..., j}, we set :

β̃j,k(l) = β̂j,k1
�
|β̂j,k|≥κ3 � l

n � and Mj(l) = 2j−ln−1

where κ3 ≥ 4
√

ln(2).

We define the random integer l̂j by :

l̂j =











min
{

l ∈ {1, ..., j}; ∃r ∈ {0, ..., l − 1},
∑

k∈∆j
|β̃j,k(l) − β̃j,k(r)|

2 ≥ 9Mj(r)
}

− 1,

j if
∑

k∈∆j
|β̃j,k(l) − β̃j,k(r)|

2 ≤ 9Mj(r), ∀r < l ≤ j.

A slight modification of the construction described by Juditsky (1997) can be defined by :

f̂J(x) =
∑

j≤j0

α̂j0,kφj0,k(x) +
∑

j0≤j≤j1

∑

k∈∆j

β̃j,k(l̂j)ψj,k(x), x ∈ [0, 1], (4.1)

where j0 is an integer such that 2j0 � ln(n)3 and j1 is an integer such that 2j1 � n
ln(n) .

Remark 4.1. Let us precise that the original procedure is defined for j0 such that 2j0 � n
1

1+2N .
After calculus, one can chose j0 such that 2j0 � ln(n)3 without deteriorating the performance
of the procedure.

Theorem below is a L
2-version of Juditsky (1997, Theorem 1). It shows that the procedure

described above enjoys good minimax properties over Besov balls under the L
2 risk.

Theorem 4.1 (Juditsky (1997)). Let R > 0. Let f̂J be the procedure described in (4.1). Then
for (π−1 − 2−1)+ < s < N , π ≥ 1 and r ≥ 1 there exists a constant C > 0 such that :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂J − f‖2

2) ≤ Cn
− 2s

1+2s , n ≥ n0,

for n0 large enough.

It is important to mention that for the case 2 > π ≥ 1, the procedure f̂J is without
logarithmic factor (and can be optimal for several statistical models) contrary to the rate of
convergence attained by :

1. The hard thresholding procedure (see for instance Donoho et al. (1996)),

3. The kernel estimator developed by Lepskii et al. (1997),

2. The BlockShrink procedure introduced by Cai (1999).

4.2 Maxiset properties of f̂J

Now, let us investigate the maxiset properties of f̂J . For any estimator f̃ and any positive
sequence cn, we define the maxiset of f̃ at the rate of convergence cn by :

Max(f̃ , cn)(D) =

{

f ∈ L
2([0, 1]); sup

n>0
c−1
n Ef (‖f̃ − f‖2

2) ≤ D <∞

}

Proposition 4.1 below compares the maxiset associated to f̂J and f̂h at the rate n−α, α ∈]0, 1[.
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Proposition 4.1. Let f̂h be the hard thresholding procedure (see 3.5) and let f̂J be the procedure
defined by (4.1). Then for any α ∈]0, 1[ we have the following inclusion :

Max(f̂h, n−α) ⊆ Max(f̂J , n−α), n ≥ n0,

for n0 large enough. In other words, f̂J is better in the maxiset sense than f̂h.

Let us notice that we have a similar maxiset result for the hard thresholding and the
BlockShrink constructions (see for instance Autin (2005) or Chesneau (2006)).

Remark 4.2. It is easy to show that the previous inclusion holds if we consider the rate of
convergence ( ln(n)

n
)α, α ∈]0, 1[.

Conclusion : The Lepski method combined with wavelet bases can provide procedures
which enjoy optimal properties in the minimax and maxiset senses.

5 Appendix : proofs of Theorems

Proof of Theorem 3.1. Suppose that the parameters s, π and r of the Besov spaces Bs
π,r(R)

satisfy s > 0, π ≥ 2 and r ≥ 1. Firstly, let us investigate the rate of convergence attains by the
procedure f̂js,1.

The L
2 risk of f̂js,1 can be bounded by a sum of three components :

E
n
f (‖f̂js,1 − f‖2

2) ≤ 3(F1 + F2 + F3) (5.1)

where

F1 =
∑

k∈∆j0

E
n
f (|α̂j0,k − αj0,k|

2), F2 =

js
∑

j=j0

∑

k∈∆j

E
n
f (|β̂j,k − βj,k|

2) F3 =
∞
∑

j=js+1

∑

k∈∆j

|βj,k|
2.

Since α̂j,k −αj,k ∼ β̂j,k −βj,k ∼ N (0, n−1) and f ∈ Bs
π,r(R) ⊆ Bs

2,∞(R) (since π ≥ 2 and r ≥ 1),
it is easy to see that :

F1 + F2 + F3 ≤ C(2j0n−1 + n−1
js
∑

j=j0

2j + 2−2jss) ≤ Cn
− 2s

1+2s

for n large enough. So :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂js,1 − f‖2

2) ≤ Cn
− 2s

1+2s (5.2)

for n large enough. The assumption H yields :

‖f̂js,u − f̂js,1‖
2
2 =

js
∑

j=j0

∑

k∈∆j

|β̂j,k|
2(1 − uj,k) ≤ C2jsn−1 ≤ Cn

− 2s
1+2s . (5.3)

Combining (5.1)-(5.3), one gets :

E
n
f (‖f̂js,u − f‖2

2) ≤ 2(En
f (‖f̂js,1 − f‖2

2) + E
n
f (‖f̂js,u − fjs,1‖

2
2)) ≤ Cn

− 2s
1+2s

for n large enough. This ends the proof of Theorem 3.1.
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Proof of Theorem 3.2. Suppose that the parameters s, π and r of the Besov space Bs
π,r(R)

satisfy s > 0, π ≥ 2 and r ≥ 1. Firstly, let us show that there exists a constant C > 0
satisfying :

sup
f∈Bs

π,r(R)
E

n
f (‖f̂̂,u − f̂js,u‖

2
2) ≤ Cn

− 2s
1+2s (5.4)

for n large enough.

We have :

V = E
n
f (‖f̂̂,u − f̂js,u‖

2
2) ≤ 2(V1 + V2) (5.5)

where we have set :

V1 = E
n
f (‖f̂̂,u − f̂js,u)1{̂>js}‖

2
2) and V2 = E

n
f (‖f̂̂,u − f̂js,u)1{̂<js}‖

2
2).

Let us analyze each term Vi, i=1,2 in turn.

The upper bounds for V1. Using the equality max(uj,k, 1 − uj,k) = 1, the fact that the

integers js and ̂ belong to {j0, ..., j∞}, and the elementary decomposition β̂j,k = (β̂j,k −βj,k)+
βj,k, we observe that :

V1 ≤ C

j∞
∑

j=j0

∑

k∈∆j

E
n
f (|β̂j,k|

21{̂>js}) ≤ C(H1 +H2)

where

H1 =

j∞
∑

j=j0

∑

k∈∆j

E
n
f (|β̂j,k − βj,k|

21{̂>js}) and H2 =

j∞
∑

j=j0

∑

k∈∆j

|βj,k|
2
P

n
f (̂ > js). (5.6)

In order to bound the terms H1 and H2, let us consider the following lemma which will be
proved at the end of the present proof.

Lemma 5.1. If s > 0, π ≥ 2 and r ≥ 1 then there exists a constant C > 0 such that :

sup
f∈Bs

π,r(R)
P

n
f (̂ > js) ≤ Cn−2.

It follows from the Cauchy-Schwartz inequality and Lemma 5.1 that :

E
n
f (|β̂j,k − βj,k|

21{̂>js}) ≤ E
n
f (|β̂j,k − βj,k|

4)
1
2 ( sup

f∈Bs
π,r(R)

P
n
f (̂ > js))

1
2 ≤ Cn−2.

By virtue of the previous inequality and the definition of j∞, it comes :

H1 ≤ Cn−2
j∞
∑

j=j0

2j ≤ C2j∞n−2 ≤ Cn−1 ≤ Cn
− 2s

1+2s

for n large enough.

Lemma 5.1 allows us to dominate H2 :

H2 ≤ C‖f‖2
2 sup

f∈Bs
π,r(R)

P
n
f (ĵ > js) ≤ Cn

− 2s
1+2s
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for κ large enough. We deduce from the upper bounds of H1 and H2 that there exists a constant
C > 0 such that :

V1 ≤ Cn
− 2s

1+2s (5.7)

for κ large enough.

The upper bound for V2. By definition of ̂, for all j ≥ ̂+ 1 we have :

∑

k∈∆j

|β̂j,k|
2uj,k ≤ κ2

12
jn−1,

so :

V2 ≤ CE
n
f (

js
∑

j=̂+1

∑

k∈∆j

|β̂j,k|
2uj,k1{̂<js}) ≤ Cn−1

js
∑

j=j0

2j ≤ Cn−12js ≤ Cn
− 2s

1+2s . (5.8)

Putting (5.5) and (5.7)-(5.8) together, we deduce that the inequality (5.4) holds. Combining
this result with Theorem 3.1, we see that :

E
n
f (‖f̂̂,u − f‖2

2) ≤ C(En
f (‖f̂̂,u − f̂js,u‖

2
2) + E

n
f (‖f̂js,u − f‖2

2)) ≤ Cn
− 2s

1+2s

for n large enough. This completes the proof of Theorem 3.2.

Proof of Lemma 5.1. By definition of ̂, if ̂ > js, then there exists j∗ ∈ {js + 1, ..., j∞} such
that :

∑

k∈∆j∗

|β̂j∗,k|
2 ≥

∑

k∈∆j∗

|β̂j∗,k|
2uj∗,k > κ2

12
j∗n−1.

Since f ∈ Bs
π,r(R) ⊆ Bs

2,∞(R) (π ≥ 2 and 1 ≤ r ≤ ∞), for any j > js (where js an integer such

that 2js ≥ cn
1

1+2s with c is a constant suitably chosen) we have :

∑

k∈∆j

|βj,k|
2 ≤ R2−js(2s+1)2j ≤ R2−js(2s+1)2j ≤

κ2
1

4
2jn−1.

It follows from the l2 Minkowski inequality that :

(
∑

k∈∆j∗

|β̂j∗,k − βj∗,k|
2)

1
2 ≥ (

∑

k∈∆j∗

|β̂j∗,k|
2)

1
2 − (

∑

k∈∆j∗

|βj∗,k|
2)

1
2 >

κ1

2
2

j∗
2 n−

1
2 .

Using a tail probability of the χ2
2j which appears in Cai and Silverman (2001, Subsection

5.3), the choice of κ1 and the fact that 2j0 � ln(n), one gets :

P
n
f ((2−j∗

∑

k∈∆j∗

|β̂j∗,k − βj∗,k|
2)

1
2 ≥

κ1

2
n−

1
2 ) ≤ C2−

j∗
2 exp(−2j∗−1(4−1κ2

1 − 1 − 2 ln(2−1κ1)))

≤ Cn−22−
j∗
2 .

It follows that :

P
n
f (̂ > js) ≤

j∞
∑

j=js+1

P
n
f ((2−j

∑

k∈∆j

|β̂j,k − βj,k|
2)

1
2 ≥

κ1

2
n−

1
2 ) ≤ Cn−2

j∞
∑

j=js+1

2−
j

2 ≤ Cn−2.

The proof of Lemma 5.1 is thus complete.
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Proof of Proposition 4.1. The proof is a direct consequence of the construction of the procedure
f̂J . By a slight modification of the Juditsky (1997, Proposition 1), we can show that there exists
a constant C > 0 such that :

∑

k∈∆j

E
n
f (|β̃j,k(l̂) − βj,k|

2) ≤ C(min
λ≥0

Rj(λ) +
ln(n)5

n
), j ∈ {j0, ..., j1},

where

Rj(λ) = 2j−λn−1 +
∑

k∈∆j

(min(κ3

√

λ

n
, |βj,k|))

2.

Now, let us remark that for all λ ≥ 0, the Markov inequality gives us :

κ2
3λn

−1
∑

k∈∆j

1 �
|βj,k|>κ3 � λ

n � = κ2
3λn

−1
∑

m∈N

∑

k∈∆j

1 �
κ32m+1 � λ

n
≥|βj,k|>κ32m � λ

n �
≤

∑

m∈N

2−2m
∑

k∈∆j

|βj,k|
21 �

|βj,k|≤κ32m+1 � λ
n � .

So, we deduce that

Rj(λ) = 2j−λn−1 + κ2
3λn

−1
∑

k∈∆j

1 �
|βj,k|>κ3 � λ

n � +
∑

k∈∆j

|βj,k|
21 �

|βj,k|≤κ3 � λ
n � .

≤ 2j−λn−1 +
∑

m∈N

2−2m
∑

k∈∆j

|βj,k|
21 �

|βj,k|≤κ32m+1 � λ
n � .

Let us recall that if f ∈ Max(f̂h, n−α) for n0 large enough then :

•
sup
u>0

η(u)−α
∑

j

∑

k∈∆j

|βj,k|
21{|βj,k|≤u} ≤ R <∞,

where η is the continuous non decreasing function defined by :

η(u) =

{

u ln((u ∧ υ)−1)−
1
2 , u > 0,

0, u = 0,

and υ is a real number such that 0 < υ ≤ exp(− 1
2(1−α) + 1).

•

sup
n>0

nα
∑

j≥j1+1

∑

k∈∆j

|βj,k|
2 ≤ C <∞.

For more details concerning the previous result, see for instance Autin (2005) or Chesneau
(2006).

Combining all the previous results and using Kerkyacharian et al. (2005, Lemma 2), if
f ∈ Max(f̂h, n−α) then we have :

j1
∑

j=j0

Rj(κ
2
o ln(n)) ≤ C(n−12j∞2−κ2

o ln(n) +
∑

m∈N

2−2mη(

√

ln(n)

n
Cκoκ32

m+1)2α)

≤ C(2−κ2
o ln(n) + (

ln(n)

n
)α(ln((Cκoκ3

√

ln(n)

n
∧ υ)−1))−α)

≤ Cn−α.
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for κ0 large enough. Thus, if f ∈ Max(f̂h, n−α) then it follows from a decomposition similar
to Theorem 3.1 and the previous inequality that :

E
n
f (‖f̂J − f‖2

2) ≤ C(
∑

k∈∆j0

E
n
f (|α̂j0,k − αj0,k|

2) +

j1
∑

j=j0

Rj(κ
2
o ln(n)) + j1

ln(n)5

n
+

∑

j≥j1+1

∑

k∈∆j

|βj,k|
2)

≤ C(ln(n)3n−1 + n−α + j1
ln(n)5

n
+ n−α) ≤ Cn−α.

for n and κo large enough. We conclude that Max(f̂h, n−α) ⊆ Max(f̂J , n−α).
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