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Cells or bacteria carrying cilia on their surface show many striking features : alignment of cilia
in an array, two-phase asymmetric beating for each cilium, coordination between cilia and existence
of metachronal waves with a constant phase difference between two adjacent cilia. We give simple
theoretical arguments based on hydrodynamic coupling and an internal mechanism of the cilium
derived from the behavior of a collection of molecular motors, to account qualitatively for these
cooperative features. Hydrodynamic interactions can lead to the alignment of an array of cilia. We
study the effect of a transverse external flow and obtain a two-phase asymmetrical beating, faster
along the flow and slower against the flow, proceeding around an average curved position. We show
that an aligned array of cilia is able to spontaneously break the left-right symmetry and to create
a global average flow. Metachronism arises as a local minimum of the beating threshold and leads
to a rather constant flow.

I. INTRODUCTION

Many cells and bacteria have cilia or flagella on their
surfaces. Examples are sperm cells which have one flagel-
lum used for propulsion, the green alga Chlamydomonas

that uses two flagella, and the much studied protozoan
Paramecium which is covered by a layer of cilia. This
layer is made out of approximately four thousands cilia
which produce a very efficient motion with a velocity of
order 1mm/s in water, corresponding to 10 times the
Paramecium size/s. Humans have ciliated cells in sev-
eral organs: in the brain (cerebrospinal fluid flow), the
retina (photoreceptor connective cilia), the respiratory
tract (epithelial cells), the ear (hair bundles), the Falop-
ian tube or the kidney...

Cilia have two major roles: (i) detection (sensory cilia
or flagella), for example in the retina, the ear and the
kidney (ii) propulsion or creation of fluid flow (motile
cilia or flagella) as for Paramecium or in the respiratory
tract where the fluid flow is used to move away the mucus.

The common structure of most cilia and flagella is an
axoneme wrapped by the plasma membrane. The (9+2)
axoneme is made of 9 microtubule doublets arranged on
a circle around a central pair of microtubules [1]. The
cilium or flagellum is attached to the cell membrane by
a basal body made of 9 microtubule triplets which has a
structure very similar to that of a centriole. The basal
body is attached to the cell membrane by anchoring fibers
[2]. Typically the radius of an axoneme is 100 nm. The
main structural difference between cilia and flagella is
their length. The typical length of a cilium is 10µm
whereas a flagellum can be ten times longer.

Dynein molecular motors are attached to the 9 mi-
crotubule doublets; they move towards the microtubules
− ends linked to the basal body and exert forces on
the microtubules. Upon consumption of Adenosine-Tri-
Phosphate (ATP), dynein motion generates forces that
induce a sliding between adjacent microtubules. Because
the whole structure is attached at its basis, this sliding
motion induces the bending of the cilium or flagellum
and its beating.

We here focus on ciliated cells creating fluid flow.
These are cells with cilia on their surface, beating in one
preferred direction in a coordinated way. One central fea-
ture of cilia beating is the existence of two phases with
a broken symmetry. Each beating can be decomposed
into an effective stroke (ES) that propels the fluid and
a recovery stroke (RS) where the cilium is coming back
against the flow. In the example of Paramecium in water,
the effective stroke lasts typically 9ms whereas the recov-
ery stroke lasts 26ms. The typical beating frequency in
water is 30Hz [3]. The beating of Paramecium cilia is
3-dimensional but for some species like Opalina the cilia
remain in the same plane during their beating and the
beating is 2-dimensional. In this work, we discuss the
role of an external velocity field in this left-right symme-
try breaking between the effective stroke and the recovery
stroke for planar beating.

One of the most striking features of an assembly of
beating cilia is that they all beat in the same direction:
the surrounding fluid can only be propelled efficiently if
all the beatings have the same orientation. In all ma-
ture ciliated cells, the beating direction is defined by
the anchoring of the basal foot on the basal body. Only
newly formed or developing cilia are randomly oriented
[4]. When they start beating, they tend to spontaneously
align to finally beat in the same direction. One of the
questions addressed in this article is the nature of the
parameters that control this orientation.

The role of the central pair of microtubules in the cen-
ter of the axoneme is also a fundamental and complex
question. In many species (such as Chlamydomonas),
the central pair is both rotating and twisting within the
axoneme during the axoneme movement. Current models
postulate that the central pair modulates dynein activ-
ity along outer microtubule doublets [5]. It thus allows
the axoneme motion because if all the dyneins were act-
ing at the same time, no bending would occur. Evidence
in support of this model includes the observation that
sliding between adjacent doublets occurs preferentially
along doublets closest to one of the two microtubules of
the central pair (the C1) in Chlamydomonas flagella [6].
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Nevertheless, there exist also motile cilia with a (9+0)
axoneme having no central pair. This means that cilia
beating is possible even in the absence of the central pair
of microtubules. Despite its importance, we do not dis-
cuss the role of the central pair in the present work and
we postpone its discussion to future work.

Another important feature of ciliated cells, is the exis-
tence of waves propagating all along the surface. These
are called metachronal waves and might be due to the
coordination of adjacent cilia for example via hydrody-
namic interactions. Experimentally metachronal waves
are observed to propagate in all possible directions: in the
direction of the effective stroke (symplectic metachronal
waves), in the opposite direction (antiplectic), or even in
a perpendicular (laeoplectic or dexioplectic) or oblique
direction. The origin of these waves and the mechanisms
controlling their formation are not well understood. We
show in this article that metachronism can arise naturally
from the hydrodynamic couplings between cilia. Using
a two-state model for the dynein motion as an internal
mechanism of the cilia, metachronism appears to be a
local minimum in the oscillation threshold of the motors
[7, 8].

A last important feature of cilia beating that we wish
to mention, is the role of calcium ions. The local [Ca2+]
concentration has a strong influence on the beating pat-
tern of cilia or flagella. For example detergent-treated
Paramecium are able to swim forward at low [Ca2+] con-
centration (< 10−6M) and backward at high [Ca2+] con-
centration (> 10−6M) because of ciliary reversal: the
directions of effective and recovery strokes are switched
[9, 10]. In any case, the wild type Paramecium can have
a very efficient backward motion monitored by calcium
tanks in its body. We only discuss here qualitative as-
pects of the role of calcium.

In this paper, we address the question of the sponta-
neous alignment of an array of beating cilia and the possi-
bility of a spontaneous symmetry breaking in the beating
that leads to the appearance of a macroscopic fluid flow.
The internal mechanism of the cilia is described by the
model of references [7, 8] which is based on a two-state
model to describe the cooperative effects between dynein
motors and only considers the relative sliding of two mi-
crotubules in the axoneme. The coordination between
the cilia is due to hydrodynamic interactions which are
discussed in details in a coarse-grained description where
the effect of the cilia on the flow is replaced by an effec-
tive force. The outline of the paper is as follows. In the
next section, we give a simple model for the alignment
of beating cilia. In section III, we discuss the beating of
one cilium following the model of Jülicher and Camalet
[7, 8]. Finally, in section IV we discuss the spontaneous
breaking of the left-right symmetry of the beating due to
the flow created by the cilia themselves.

II. SPONTANEOUS ALIGNMENT OF AN

ARRAY OF CILIA: A SIMPLE MODEL

A. Experimental results

In an assembly of cilia covering the surface of a mature
cell, cilia are beating in a preferred direction, and only
newly formed or developing cilia are randomly oriented
[4]. We first discuss the experiments showing how this
preferred orientation is chosen.

As mentioned before, the ciliary axoneme grows from
a basal body analogous to a centriole. Two basal body
appendages, the basal foot and the striated rootlet, lo-
cated in the axial plane of the effective stroke, confer an
asymmetrical organization to the basal body. The basal
foot is laterally associated with two consecutive triplets
and points in the direction of the effective stroke [11, 12].
The striated rootlet, associated with the proximal end of
the basal body, sinks into the cytoplasm in the opposite
direction [11]. These two appendages define therefore an
orientation of a cilium independent of the beating mo-
tion.

During ciliogenesis, newly formed basal bodies migrate
toward the cell membrane where they anchor with no
apparent order. Anchoring induces axoneme assembly,
and cilia grow in random orientations. While cilia are
growing, they do not beat immediately. A reorientation
by rotation of the basal bodies in a common direction
occurs at the final stage of ciliogenesis, when mature cilia
beat [13]. The preferred direction of the assembly is then
well-defined. In the immotile-cilia syndrome, axonemes
are incomplete, and the ciliary activity is abnormal or
absent: the fluid is poorly or not propelled. On the cell
level, the basal bodies are randomly oriented [14].

These experimental facts suggest that the beating and
orientation of cilia are closely related. Our working hy-
pothesis is that the alignment of an assembly of beating
cilia is mostly due to hydrodynamical coupling between
cilia. The global flow created by the other cilia tend to
orient a given cilium and above a certain beating ampli-
tude, all cilia orient in the same direction. We now give
a very simple modelling of this cooperative alignment.

B. Alignment transition

We assume in the following that the beating is planar.
It is the case for Opalina for example, but not exactly
for Paramecium where the recovery stroke is not in the
plane of the effective stroke.

Near the top of the ciliary layer, observations show
that the velocity is time independent and uniform [15].
Consequently, we average the beating over one time pe-
riod and replace each cilium of length L (and its effective

and recovery stroke) by a single force (stokeslet) ~f , par-
allel to the surface, created in the fluid of viscosity η at
height h < L above the membrane, as sketched in figure
1.
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FIG. 1: a) Beating pattern of a single cilium showing the
Effective Stroke (ES), where the fluid is efficiently propelled,
and the slower Recovery Stroke (RS), where the cilium comes
back close to the surface to minimize the viscous effects. b)

Effective force in the fluid ~f applied at a height h above the
cell membrane, to mimic the cilium beating.

We choose the x axis in the direction of the effective
stroke and the z axis perpendicular to the cell surface
that we approximate by a plane. The stokeslet along the

x axis (~f = f ~ex), is located at point ~S = (0, 0, h).

The velocity created at point ~X = (x, y, z) by this
stokeslet with a no-slip boundary condition on the plane
z = 0 is given by :

~v( ~X) = G( ~X, ~S). ~f

where the response tensor tensor G is given in [16] and
reads:

8πη Gjk( ~X, ~S) =

(

δjk

ρ
+
ρjρk

ρ3

)

−
(

δjk

R
+
RjRk

R3

)

+2Sz (δkαδαl − δkzδzl)
∂

∂Rl

(

SzRj

R3
− δjz

R
− RjRz

R3

)

(1)

where ~ρ = ~X − ~S, ~R = ~X + ~S and α = x, y.
In order to simplify the hydrodynamic problem, we

assume in all the following that the cilia are far away from
each other. In this asymptotic limit, it is consistent to
describe the effect of the cilium in the fluid by a stokeslet.
We introduce the two-dimensional vector along the cell
surface ~r = (x, y) and consider the limit r ≫ z, h, L. We
are interested in the velocity in the vicinity of the ciliary
layer, typically 0 < z < 1.5 L. At lowest order in z/r,
the velocity reads:

~v(r, θ, z) =
3fh

2πη

z cos θ

r3
~er + O(z3/r3) ≃ ~u(r, θ) z̄ (2)

where we have defined a dimensionless height z̄ = z/L. In
the following, we use mostly the velocity ~u(r, θ). At this

i
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FIG. 2: Square lattice of cilia with a distance d between two
neighboring cilia. Cilium j exerts on the fluid a force f in the
direction φj ; θji = ( ~ex, ~eji) where ~eji is the unit vector from
cilium j to cilium i.

order, the flow field is a radial flow centered on the cilium-
stokeslet. Note that because of the no slip boundary
condition on the surface, the force appears in the velocity
field (Eq. 2) in the combination fh homogeneous to a
momentum.

We consider now a regular array of cilia; this is a
reasonable assumption for Paramecium, which shows a
beautiful and very regular array of cilia on its surface
[17]. We assume that this array is in an infinite plane.
Cilium i is defined by its position in the x, y plane (the
cell surface) by a vector ~ri and by the angle of its plane
of beating with the x axis, φi as displayed on Fig. 2.

The total velocity at the cilium i at height z, ~V (~ri, z)
is the sum of all the velocities ~vj(~ri, z) created by the
other cilia j 6= i:

~V (~ri, z) =
∑

j 6=i

~vj(~ri, z)

We single out the the z̄ dependence of ~V writing
~V (~ri, z) = ~U(~ri) z̄ with ~U(~ri) =

∑

j 6=i ~uj(~ri) and

~uj(~ri) ≃
3fhL

2πη

cos(θji − φj)

|~ri − ~rj |3
~eji (3)

where ~eji is a unit vector from cilium j to cilium i and
θji = ( ~ex, ~eji), as shown on Fig. 2.

We now use a mean field approximation, replacing
the velocity ~uj(~ri) by its average over the directions
< ~uj(~ri) >φ given by:

< ~uj(~ri) >φ=

∫ 2π

0

dφ P (φ) ~uj(~ri) (4)

where P (φ) is the probability for a cilium to make an
angle φ with the x axis. The average velocity at cilium i

is ~U(~ri) ≃
∑

j 6=i < ~uj(~ri) >φ.
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The mean field approximation assumes that the fluc-
tuations around a given angle determining the direction
of the flow are small. We choose the x axis in the direc-
tion of the flow without any loss of generality, so that the
probability P (φ) is peaked around φ = 0.

In order to determine the probability P (φ), we write a
stationary Fokker-Planck equation ∂φJ = 0. The prob-
ability current J = P∂tφ − Dr∂φP is the sum of two
terms: a convection term and a diffusion term where Dr

is a rotational diffusion coefficient. The beating plane
can fluctuate due to thermal fluctuations. Because of
the flow, if the beating plane of one cilium is at an an-
gle φ with the flow direction, the cilium is subject to a
torque Mflow

z = −αU sinφ along the z axis that tends
to align it in the direction of the flow, where Uz̄ is the
velocity of the global flow and α a viscous coefficient in-
volving the geometry of the cilium. A rotating cilium is
also subject to a viscous torque Mviscous opposing the
rotation Mviscous

z = −ζ∂tφ where ζ is the rotational fric-
tion constant. The total torque on the cilium vanishes
(Mflow

z +Mviscous
z = 0) and the probability distribution

satisfies the Fokker-Planck equation

∂2P

∂φ2
+
αU

Drζ

∂

∂φ
[P sinφ] = 0

Defining the effective temperature as Drζ = kBT and
imposing the normalization condition

∫

P (φ)dφ = 1, we
obtain:

P (φ) =
e

αU
kB T

cos φ

2πI0(
αU
kBT )

(5)

where I0(x) is the modified Bessel function defined in

[18]. The average velocity ~U can then be self-consistently
determined by calculating < ~uj(~ri) >φ, and summing
over all the lattice sites. We obtain

~U =
3fhL

2πηd3
K

I1(
αU
kBT )

I0(
αU
kBT )

~ex (6)

where K is a constant depending on the nature of the
lattice, d is the lattice constant (the distance between
cilia) and I1 is a modified Bessel function [18]. For a
square lattice, [19]:

Ksquare =
∑

(k,l) 6=(0,0)

k2

(k2 + l2)5/2
= 2 β(

3

2
)ζ(

3

2
) ≃ 4.52

(7)
β(s) and ζ(s) being respectively the Dirichlet and the
Riemann functions [18].

The self-consistent equation for the flow velocity can
be discussed by expanding the integrals I0 and I1 in the
vicinity of U = 0: there are two solutions U = 0, and
a solution at a finite velocity which exists only within a
certain range of parameters

U = 2
√

2
kBT

α

√

1 − 4πkBTηd
3

3KαfhL
(8)

This solution exists only if

3KαfhL

4πkBTηd3
> 1 (9)

Within the mean field approximation Eq. 9 defines a
dynamical phase transition between a non-moving fluid
with randomly oriented cilia and a moving fluid with a
global flow V (z) = Uz̄ 6= 0 given by Eq. 8 where all
cilia are spontaneously aligned in the same orientation.
This dynamical phase transition is second order (with a
continuous velocity at the transition) and it is associated
to a spontaneous breaking of the initial O(2) symmetry.

The influence of some of the parameters can be di-
rectly analyzed on Eq. 9. A decrease of the distance d
between two cilia favors the alignment, increasing the hy-
drodynamic coupling. A decrease of the temperature T
also favors alignment as the random thermal motion op-
poses the alignment. An increase of the effective hydro-
dynamic force of one cilium f is associated to an increase
the hydrodynamic interactions between cilia and leads to
a better alignment. The same effect occurs for α and the
cilium length L. Finally, increasing h helps to create a
global flow, since the velocity on the membrane vanishes
and the higher the force is exerted, the more efficient.

A more precise analysis requires the estimation of the
parameters f, α and h. The height is of the order of the
cilium size h ∼ L. The calculation of α is given in ap-
pendix I for a general beating (Eq. 54). It turns out that
α is linked to the difference of the areas covered during
the effective and recovery strokes. Here we approximate
α ∼ ξ⊥LA, where ξ⊥ is the perpendicular friction con-
stant per unit length of the cilium and A the amplitude
of the movement of the tip.

In order to give a simple estimation of the effective
hydrodynamic force, we consider that the friction coeffi-
cient takes the perpendicular value ξ⊥ during the effec-
tive stroke, and the parallel value ξ‖ during the recovery
stroke. Introducing the beating frequency ω, we estimate
f ∼ (ξ⊥ − ξ‖)LωA. A more precise calculation of these
two quantities as a function of the beating patterns is
given in appendix I.

Consequently, we obtain:

3KαfhL

4πkBTηd3
∼ ξ⊥(ξ⊥ − ξ‖)A2Lω

kBTη

L3

d3

The difference between the two local drag coefficients ξ⊥
and ξ‖ is the key to an efficient beating. Increasing the
amplitude A or the frequency ω of the beating favors
the alignment of cilia, as could be expected. Increasing
the viscosity of the medium also promotes the transition,
because it increases the coupling between cilia.

This naive mean field approximation is only a first step
of our study. In the following, we take a closer look at
the internal beating mechanism of one cilium and then at
the beating of an array of cilia to obtain a more precise
and quantitative description.
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III. AXONEMAL BEATING

In this section we discuss the beating mechanism of a
single cilium. We follow closely the work of Camalet and
Jülicher [8] which mimics the cilium by two microtubule
filaments sliding along one another under the action of
the dynein motors and uses a 2-state model to describe
the collective motion of the dyneins. We use as bound-
ary conditions for the motion those introduced recently
by Hilfinger and Jülicher [20] that seem to have good ex-
perimental support [21]. In the next section, we use the
same model to discuss the coordination between cilia.

A. Equation of motion

Each microtubule doublet within the axoneme can be
described effectively as an elastic rod. Deformations of
this rod lead to local sliding displacements of neighbor-
ing microtubules. Here, we only consider planar defor-
mations. In this case the geometrical coupling between
bending and sliding can be captured by considering two
parallel elastic filaments (corresponding to two micro-
tubule doublets) with a constant separation a along the
whole length of the rod (see Fig. 3). At one end, which
corresponds to the basal end of an axoneme, the two fil-
aments are elastically attached and are allowed to slide
with respect to each other, but not to tilt [20]. The basal
connection is characterized by an elasticity k and a fric-
tional drag γ. The configurations of the axoneme are
described by the shape of the filament pair given by the

position of one filament ~X(s) at arclength s. The shape of

the other filament is then given by ~X ′(s) = ~X(s)−a~n(s),
where ~n is the filament normal. In the following, we de-
scribe the filament conformation by the angle ψ between
the local tangent vector and the z axis or by the defor-
mation h in the transverse direction defined in Fig. 11.

The energetics of the filament pair is due to the bend-
ing elasticity. In addition to filament bending, we also
take into account internal stresses due to the active ele-
ments (dyneins). We characterize them by the force per
unit length f(s) acting at position s in opposite directions
on the two microtubules. This force density corresponds
to a shear stress within the cilium which tends to slide
the two filaments with respect to each other.

The local curvature is C = ∂sψ (see Fig. 11). The slid-
ing displacement, ∆(s, t) is related to the the sliding dis-
placement at the base ∆0(t) by ∆(s, t)−∆0(t) = aψ(s, t),
because we impose the boundary condition ψ(0, t) = 0.

A configuration of a filament pair of length L is asso-
ciated to the free energy functional:

G =
k

2
∆2

0 +

∫ L

0

ds[
κ

2
C2 − f∆ +

Λ

2
(∂s

~X)2]

Here, κ denotes the total bending rigidity of the fila-
ments. The inextensibility of the filaments is taken into

FIG. 3: Two filaments (full curves) ~X and ~X ′ at constant
separation a are rigidly connected at the bottom end where
s = 0. Internal forces f(s) are exerted in opposite directions,
tangential to the filaments. The displacement ∆ at the tip is
indicated.

account by the Lagrange multiplier Λ(s) which enforces

the constraint (∂s
~X)2 = 1.

The first term of this equation is the elastic energy
due to the basal sliding occurring with a connection of
elasticity k.

The tangent component of the integrated forces acting
on the filament between s and L is denoted by τ(s). As-
suming that there is no external force applied at the end
s = L of the cilium:

τ(s) = ~t(s).

∫ L

s

ds′
δG

δ ~X
= −~t(s).

∫ s

0

ds′
δG

δ ~X

We assume for simplicity, that the hydrodynamic ef-
fects of the surrounding fluid can be described by two
local friction coefficients ξ⊥ and ξ‖ for normal and tan-
gential motion. The total friction force per unit length

exerted by the cilium on the fluid is then ~fv[ ~X(s)] =

(ξ‖~t ~t+ ξ⊥~n ~n) ∂t
~X(s). The force balance at arclength s

can then be written as

∂t
~X = −(

1

ξ⊥
~n ~n+

1

ξ‖
~t ~t)

δG

δ ~X
(10)

which leads to:

∂t
~X =

~n

ξ⊥
(−κ

...
ψ − aḟ + ψ̇τ) +

~t

ξ‖
(κψ̇ψ̈+ aψ̇f + τ̇ ) (11)
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where the derivatives with respect to arclength have been
denoted by a dot.

The beating of the filaments is very sensitive to the
boundary conditions imposed at its ends. As the the

force density −δG/δ ~X is equilibrated by the density of
friction force exerted by the fluid on the system (see Eq.
10), the boundary contributions coming from the free
energy variation δG are equilibrated by external forces
~fext and torques ~Text = Text ~ey applied at the ends.

At the free end of the cilium, both the external force
and the external torque vanish and

~fext = −
(

κĊ + af
)

~n+ T~t = ~0, Text = κC = 0 (12)

At the base, s = 0, the boundary conditions are:

~fext =
(

κĊ + af
)

~n− T~t, Text = −κC + a

∫ L

0

dsf(s)

(13)
The external torque and force are chosen in such a way

that the base is fixed (∂t
~X = ~0) and that the cilium

remains perpendicular to the surface ( ∂t~t = ~0 or ψ(0) =
0).

The final boundary condition is associated to the basal
sliding

γ∂t∆0 = − δG

δ∆0
= −k∆0 +

∫ L

0

dsf(s) (14)

The determination of the cilium motion requires a
model for the shear force created by the dyneins that
we calculate using a two-state model.

B. 2-state model for the cilium

Following [8], we now introduce the 2-states model of
coupled molecular motors [22, 23] to describe the internal
mechanism of the cilium. This model allows the calcula-
tion of the shear force f due to the dyneins.

Each motor has two different chemical states, a
strongly bound state, 1, and a weakly bound state, 2.
The interactions between a motor and a filament in
both states are characterized by potential energy land-
scapes W1(x) and W2(x), where x denotes the posi-
tion of a motor along the filament. The potentials have
the filament symmetry: they are periodic with period l,
Wi(x) = Wi(x + l) and are, in general, spatially asym-
metric, Wi(x) 6= Wi(−x).

In the presence of ATP, the motors undergo transitions
between states with transition rates ω1 and ω2. Introduc-
ing the relative position ξ of a motor with respect to the
potential period, (x = ξ + nl with 0 ≤ ξ < l and n an
integer), we define the probability Pi(ξ, t) for a motor
to be in state i at position ξ at time t. The relevant
Fokker-Planck equations are:

∂tP1 + v ∂ξP1 = −ω1P1 + ω2P2

∂tP2 + v ∂ξP2 = ω1P1 − ω2P2

where v = ∂t∆ = a∂tψ(s) is the sliding velocity between
the 2 filaments.

The simplest choice of the two potentials Wi, is a saw-
tooth potential (with barrier height U ≫ kT ) represent-
ing a strongly bound state forW1, and a flat potentialW2

representing a weakly bound state. Here, for simplicity,
we use the symmetric potentials:

W1(x) = U sin2(π
x

l
)

W2(x) = W2

Although this choice is somehow arbitrary, we checked
that the final results only depend qualitatively on the
actual shape of the potentials and of the rates defined
below.

When a number of motors act together to propel a
filament, however, the direction of motion is a collective
property. The filament might move in either direction
[23]. The absence of asymmetry in the potentials implies
that an individual motor is not able to move directionally.
It is not the case for an assembly of motors: even with a
symmetric potential, provided that detachment can only
take place at a localized position near the bottom of a
potential well, oscillations can occur.

We define the distance from equilibrium Ω:

Ω = Sup[0,l[ |
ω1

ω2
− e

W1−W2

kT | ∝ e∆µ/kT − 1 (15)

Ω is related to the chemical potential difference between
ATP and its hydrolysis products, ∆µ = µATP −µADP −
µP . At equilibrium, ∆µ = 0 and Ω = 0. We assume for
simplicity that the binding rates ω2 and the detachment
rate ω1 are given by:

ω2(ξ) = ν(1 + Ω sin2(π
ξ

l
))

ω1(ξ) = νΩ cos2(π
ξ

l
)

Note that, with this choice the sum ω1 + ω2 = ν(1 + Ω)
does not depend on ξ, and that if Ω = 0, ω1 = 0 and no
directional movement is possible. Here ν is a constant
transition rate.

If we assume that the motors are uniformly distributed
along the filaments with a density ρ, the probabilities P1

and P2 satisfy the relationship P1 + P2 = ρ. The Fokker
Planck equation reduces then to a single equation for
P = P1

∂tP + (∂t∆)∂ξP = −(ω1 + ω2)P + ρω2(ξ) (16)

This model leads to an expression for the shear force
per unit of length f(s, t) created by the dyneins and driv-
ing the the cilium beating. Using the results of [22], and
the fact that W2 is a constant:

f(s, t) = −K∆ − λ∂t∆ − 1

l

∫ l

0

dξ P (ξ)∂ξW1 (17)
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where K is an elastic stiffness per unit length mimicking
the influence of the nexins which are proteins acting as
springs in the axonemal structure, and λ is an internal
friction coefficient per unit length modelling the friction
encountered by the motors. Equations 11 and 16 allow in
principle a complete calculation of the beating motion.

In the following, we assume that the beating oc-
curs with a ”small” amplitude which means that both
ψ(s, t) ≪ 1 and h(s, t) ≪ L. A quick look at the beating
pattern of a cilium of Paramecium shows that the beat-
ing occurs with a large amplitude. Nevertheless, this ap-
proximation allows us to extract interesting information
on the parameters controlling the beating. Moreover,
the work of Hilfinger shows that larger amplitude beat-
ing patterns are very similar to small amplitude patterns
[20]. We must however keep in mind that our approach
is valid only if the the system stays close to an oscilla-
tion bifurcation which is consistent with the fact that we
consider only small movements.

We use the deformation h, rather than ψ or ∆ to de-
scribe cilium motion and work at second order in |h| so

that ψ = ḣ + O(|h|3). In the absence of any external
flow, the equation of motion 11 projected on ~t imposes
that τ = O(|h|2). The projection of the equation of mo-
tion on ~n then yields:

ξ⊥∂th = −κ....h − aḟ + O(|h|3) (18)

The non-linear terms are not important here but they
will turn out important in the following section. Indeed,
experiments show that the beating is clearly asymmetri-
cal (ES and RS), and we must expand at least to next
order if we want to capture this phenomenon. With this
variable and at this order, the boundary conditions read:

h(s = 0) = 0, ḣ(s = 0) = 0

κ
...
h (s = L) + af(s = L) = 0, ḧ(s = L) = 0 (19)

The explicit solution of the equation of motion 18
is obtained by Fourier expansion in time h(s, t) =
∑∞

n=−∞ hn(s)einωt. The explicit derivation of the equa-
tion satisfied by the Fourier components is given in ap-
pendix II. At linear order the effect of the motors is char-
acterized by a susceptibility

χ(Ω, ω) = −K − λiω +
π2ρU

2l2
iΩω

(1 + Ω)((1 + Ω)ν + iω)
(20)

Using dimensionless variables, s̄ = s/L, ω̄ =
ξ⊥L

4

κ
ω,

χ̄n =
a2L2

κ
χ(Ω, nω) and h̄ = h/L, the equation of motion

for the Fourier component n reads

....
h̄ n + χ̄n

¨̄hn + inω̄ h̄n = 0 (21)

The boundary conditions at the base s̄ = 0 are

h̄n(0) = 0, ˙̄hn(0) = 0 (22)

At the free end of the cilium, s̄ = 1 :
...
h̄n(1) + χ̄n

˙̄hn(1) + Γ̄nh̄n(1) = 0, ¨̄hn(1) = 0 (23)

with Γ̄n = χ̄2
n/

(

k̄ − χ̄n + inγ̄ω̄
)

where we have intro-

duced the dimensionless parameters k̄ =
a2L

κ
k and

γ̄ =
a2

L3ξ⊥
γ.

C. Beating pattern

In the absence of any external flow the beating is sym-
metric and the Fourier components n=0 and n=2 of h
vanish for symmetry reasons. Close to the oscillation bi-
furcation threshold, cilium beating is dominated by the
first Fourier component n = 1.

The solution of the linear equation of motion 21 is
written as the sum of 4 exponentials

h̄1(s̄) = A1

(

eq1 s̄ + b1e
−q1 s̄ + c1e

q2s̄ + d1e
−q2s̄

)

(24)

where the two inverse decay lengths are given by

q1 =

(

− χ̄1

2
+

1

2
(χ̄2

1 − 4iω̄)1/2

)1/2

q2 =

(

− χ̄1

2
− 1

2
(χ̄2

1 − 4iω̄)1/2

)1/2

(25)

The boundary conditions are explicitly discussed in ap-
pendix II. The condition for existence of non vanishing
solutions is given by equation 63 of Appendix II. This is
a complex equation, that gives therefore two conditions
which determine both the the critical value of the dis-
tance from equilibrium where the oscillations start Ωc,
and the reduced oscillation frequency ω̄c. The critical
value Ωc is a Hopf bifurcation threshold: there are no
oscillations if Ω ≤ Ωc and cilium beating is only possible
if Ω ≥ Ωc. At the bifurcation threshold, the amplitude
of the oscillations vanishes. It is not possible to calculate
the amplitude of the oscillations above the bifurcation
threshold with the linear theory presented here. This re-
quires a complete determination of the third order terms
in the equation of motion which goes far beyond the scope
of this work. This very complex problem is attacked in
the work of Hilfinger and Jülicher [20].

An analytical determination of the Hopf bifurcation
threshold and of the beating frequency at the threshold
does not seem to be possible analytically. We therefore
rely on a numerical solution, choosing reasonable values
of the various parameters.

We study a cilium of length L = 12µm, which is the
length of a Paramecium cilium. It moves in a fluid of
viscosity η ∼ 4ηwater = 4 10−3Pa.s, which is higher than
the water viscosity in order to take into account the pro-
teins above the cell body. We estimate κ = 4 10−22J.m
corresponding to 20 microtubules [24]. The other pa-
rameters are l = 10nm, a = 20nm, U = 10kT , K ≃ 0,
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FIG. 4: Approximate cilium deformation h̄(s̄, t) at different
times steps (corresponding to different colors) during a beat-
ing period. The beating is symmetrical with respect to the
vertical axis. Deformations are propagating from base to tip.
With A1 = 1/70 the maximum deformation is h̄max ≃ 0.14.

ρ = 5 108m−1, and λ = 1Pa.s very similar to those of
[7]. In order to match the typical frequency observed
in Paramecium, and to obtain a realistic pattern of the
beating, we take ξ⊥ = 35.5η = 142 10−3Pa.s and we
choose k = 6.54Nm2, γ = 7.31 ηwater, and ν = 600s−1.

The value of ξ⊥ is rather high, but it must include
the hydrodynamic interactions of the cilium with the cell
surface (see [25]) which are not taken into account if we
use the classical friction per unit length of a rod.

The numerical resolution of Eq. 63 then yields
(Ωc, ω̄c) ≃ (6.55 10−9, 1294). This corresponds to a crit-
ical beating frequency fc ≃ 28Hz which is the typical
value for Paramecium [3]. The calculated beating pat-
tern of the cilium is shown on figure 4. It corresponds to
a wave (or a superposition of waves) propagating from
the base of the cilium to the free tip as observed experi-
mentally.

A detailed study shows that the equation giving the
bifurcation threshold and the beating frequency has sev-

eral solutions. (Ω
(n)
c , ω̄

(n)
c ) with Ω

(n+1)
c > Ω

(n)
c . A first

guess would be that the axoneme starts beating at the

lowest threshold (Ω
(1)
c , ω̄

(1)
c ). However, it is known exper-

imentally that during the beating the deformation waves
propagate from the base to the tip and not from the tip to
the base [26]. The first two oscillating modes correspond
to waves propagating in the opposite direction. In order
to be consistent with the experiments we do not consider
them here. A better choice of the transition rates ω1 and
ω2, would perhaps allow to justify this choice. The di-
rection of propagation of the wave is extremely sensitive
to the boundary conditions. We have allowed here basal
sliding as suggested by some experiments and we have
imposed that the cilium is clamped at its base with an
angle ψ = 0. This also seems consistent with some ex-
periments analyzed in [20]. The other extreme limit of
a completely free cilium (a vanishing external torque at
the base) leads to a wave propagating form the base to

External viscosity Critical frequency fc Simulations

ηw 28Hz 29Hz

2ηw 19Hz 17Hz

3ηw 14Hz 12Hz

TABLE I: Decrease of the beating frequency with increasing
external viscosity as observed in experiments [27]. Compari-
son with the simulations done in [28] for one single cilium.

the tip for the first mode. We have tried to use an in-
termediate boundary condition where the torque at the
base is an elastic torque and varying the related stiffness,
however we were not able to obtain a beating pattern
looking like the experimental one. We therefore proceed,
considering only the third beating mode.

The beating frequency fc varies with the viscosity of
the medium. Experimentally, when methyl-cellulose is
added in water, the viscosity increases significantly. We
predict here a decrease of fc with increasing external vis-
cosity as observed in the experiments of [27] and in nu-
merical simulations [28] (see Table I). We observe an ap-
proximate linear decrease of the beating frequency when
plotted against log(η/ηw) as in the simulations performed
in [28] (we find similar values for the frequency).

The effect of
[

Ca2+
]

on the beating pattern can also
be studied qualitatively. As mentioned in the introduc-
tion,

[

Ca2+
]

has a strong influence on the beating pat-
tern. Calcium concentration variations are at the ba-
sis of the shock responses of many organisms, changing
the ciliary-type beating into a flagellar-type beating in
Chlamydomonas, or switching the directions of effective
stroke and recovery stroke in Paramecium, or in reversing
the direction of the ”wave” propagation on the flagellum
and thus reversing the direction of the movement in Chri-

tidia [29].
This last example can be explained qualitatively within

our approach. In Chritidia, both directions are possible
for the deformation wave propagation. Calcium may af-
fect the chosen mode of beating, allowing the system to

choose Ω
(1)
c and its tip-to-base pattern instead of Ω

(3)
c .

On the other hand, calcium is also likely to change the
attachment/ detachment rate (and thus change the pa-
rameter ν) or the boundary conditions at the base of the
cilium (and thus change k). In Chlamydomonas, calcium
has a contractile effect on the striated fibers connecting
the basal bodies of the two flagella [30]. These changes
induce a change in the beating pattern, and may result
in a switch from base-to-tip to tip-to-base wavelike prop-
agation.

IV. LEFT-RIGHT BEATING SYMMETRY

BREAKING

In the presence of a transverse external flow, the beat-
ing can no longer be symmetrical as sketched on Fig.
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V

a) b)

FIG. 5: Effect of an external flow ~V on the beating of a single
cilium. a) Symmetrical beating. b) broken symmetry due to
the external flow.

5. The cilium tends to beat faster and quite straight in
the direction of the flow, whereas it comes back slower
and more curved against the flow. This looks like a two-
phases beating with an effective and a recovery stroke.

If the beating is asymmetrical, the cilium exerts a force
in the fluid that can itself produce a flow. In a cer-
tain range of parameters, one can therefore expect that a
continuous flow is spontaneously generated by hydrody-
namic interactions between cilia: an assembly of cilia,
beating symmetrically, is able to break spontaneously
this left-right symmetry of the beating to create a global
flow. This idea of a spontaneous breaking spontaneously
of the left-right symmetry has already been suggested in
[31] with a more abstract system (called rowers) having
two internal energy states.

In this section, we first study the effect of an external
velocity imposed by the experimentalist on the beating
symmetry of a single cilium. We then consider an ar-
ray of aligned cilia and determine the conditions under
which this assembly of cilia breaks its left-right symme-
try and generates a global flow. Metachronal coordina-
tion between cilia naturally emerges from hydrodynamic
couplings as a local minimum of the oscillation threshold
Ωc.

A. External breaking of the beating symmetry:

cilium submitted to an external flow

We impose an external flow ~V = V ~ex along the x axis
for simplicity. It is found experimentally that the velocity
above the cilia sub-layer is time independent and uniform
[15], justifying our choice. This flow is in this first part
externally fixed and we consider the limit of vanishingly
small flows.

The force per unit length exerted by the cilium on the

fluid ~fv[ ~X(s)] depends on the external velocity ~V .

~fv[ ~X(s)] = (ξ‖~t ~t+ ξ⊥~n ~n) (∂t
~X(s) − ~V ) (26)

The equation of motion 11 reads then:

∂t
~X = ~V +

~n

ξ⊥
(−κ

...
ψ−aḟ+ψ̇τ)+

~t

ξ‖
(κψ̇ψ̈+aψ̇f+τ̇) (27)

The boundary conditions are the same as in the absence
of the neighboring cilia and are given by Eq. 12, 13, 14.

Following the same procedure as for a cilium in the
absence of flow, we find the equation of motion for the
deformation of the cilium h:

ξ⊥∂th = ξ⊥V − κ
....
h − aḟ − ξ‖V (hḧ+

ξ⊥
2ξ‖

ḣ2) + O(|h|3)

(28)
The introduction of the external flow breaks the h −→
−h symmetry (or left-right symmetry) introducing in 18
terms of zeroth and second order in h in the equation of
motion. The boundary conditions do not depend on the
external flow.

As above, we expand the deformation of the cilium h in
Fourier components in time. Using the same notations as
before, the equation of motion of the Fourier components
can be written as

....
h̄ n + χ̄n

¨̄hn + inω̄ h̄n = V̄ δ0,n − V̄

2
(ξ̄ h̄¨̄h+ ˙̄h

2
)n (29)

for n = 0, 1, 2 and where we have introduced the new
dimensionless parameters:

V̄ =
ξ⊥L

3

κ
V ξ̄ =

2ξ‖

ξ⊥

In the limit of small external velocities, we have neglected
terms of order V̄ 2.

The equation for the first mode is identical to Eq. 61,
with the same boundary conditions. At this order in
V̄ , the fundamental mode is not affected by the exter-
nal flow. Consequently, the oscillation threshold and the
beating frequency are the same as in the absence of flow
and the Fourier component h1 is given by Eq. 24.

The zeroth Fourier component h̄0 gives the average
deformation of the cilium. It is a solution of

....
h̄ 0 − K̄ ¨̄h0 = V̄ − V̄

2

[

ξ̄ (h̄1
¨̄h∗1 + h̄∗1

¨̄h1) + | ˙̄h1|2
]

(30)

with the same boundary condition as before. Neverthe-
less, h̄0 does not vanish at first order in velocity because
of the broken symmetry due to the external flow which is
reflected in the right hand side of Eq. 30. The complete
solution for h̄0 is rather tedious to obtain and lengthy.
We do not display it here explicitly. We write it as the

sum of two contributions; h̄Eq
0 , corresponds to the cur-

vature of the cilium under the flow V at equilibrium, i.e.
in the absence beating (h̄1 = 0), and h̄ATP

0 , corresponds
to the corrections to this equilibrium deformation due to
the beating when there is enough ATP in the medium

h̄0 = h̄Eq
0 + h̄ATP

0 . If as above, we ignore the elasticity of
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FIG. 6: a) Average position of a cilium which is curved
in the direction of the flow, h̄0(s̄) =< h̄(s̄, t) >. b) Second
Fourier component of the deformation 2ℜ[h̄2(s̄)e

2iωt] at dif-
ferent times during a beating period. The scale is dilated:
|h̄2| ≪ 0.1 with the parameters ξ̄ = 1, A1 = 1/70 and V̄ = 1.

the nexins (K̄ → 0) :

h̄Eq
0 (s̄) =

V̄

24
s̄2(s̄2 − 4s̄+ 6)

h̄ATP
0 (s̄) =

V̄

2
A2

1φ0(s̄) (31)

where A1 is the amplitude of the first Fourier mode of
the oscillation defined in Eq. 24 and φ0(s̄) is a linear
combination of exponentials. In the limit V = 0, h̄0 = 0
as expected. The average deformation of the cilium is
plotted on Fig. 6 which shows the bent shape under the
action of the external flow.

The second Fourier component gives the asymmetry of
the beating. It is obtained from the equation of motion

....
h̄ 2 + χ̄2

¨̄h2 + 2iω̄ h̄2 = − V̄
2

[

ξ̄ h̄1
¨̄h1 + ˙̄h1

2
]

(32)

We do not give here the lengthy explicit expression of
h̄2 but we write it as

h̄2(s̄) =
V̄

2
A2

1φ2(s̄)

where φ2(s̄) is a linear combination of exponentials. Here
also, in the limit V = 0, h̄2 = 0. The plot h̄2 against s̄ at
different times on Fig. 6, leads to a complicated pattern.

The total deformation of the cilium h̄(s̄, t) ≃ h̄0(s̄) +
h̄1(s̄)e

iωct + h̄2(s̄)e
2iωct + c.c. is plotted against s̄ at dif-

ferent times equally spaced on Fig. 7. In order to stress
the fact that the beating is easier and faster in the direc-
tion of the flow, and more difficult and slower against the
flow, we have chosen rather large values of the parame-
ters, ξ̄ = 1, A1 = 1/5 and V̄ = 2, and we plot h̄(s̄, t) for
s̄ ∈ [0, 0.2] on Fig. 7.

The external flow thus breaks the left-right symmetry
in two ways. First the average position of the cilium is

FIG. 7: Beating pattern at the basis of the cilium (s̄ ∈ [0, 0.2])
with the parameters ξ̄ = 1, A1 = 1/5 and V̄ = 2 : the cilium
beats faster in the direction of the flow and slower in the
opposite direction around a curved average position.

not the vertical axis but a cilium curved in the direction
of the flow. Second, the beating itself is no longer left-
right symmetric: the cilium goes faster in the direction
of the flow and comes back slower against the flow. The
beating pattern looks like a two-phases beating with an
effective stroke and a recovery stroke. The external flow
may therefore be an important factor in the asymmetry
of the beating.

Another important result, is that, because the beating
propagates a base-to-tip deformation, the curved cilium
exerts a finite average force in the fluid in the direction
of the flow. Thus, if an external flow breaks the left-right
beating symmetry, the cilia create a force in its direction
and can amplify this flow. This is the basis of the left-
right spontaneous symmetry breaking that we discuss in
the next section.

The external flow is not always the only source of sym-
metry breaking. If it were so, a Paramecium would al-
ways go in the same direction once it started moving.
This is not the case, this organism is able to go backward
when it bumps into an obstacle thanks to the release of
calcium that reverses the beating.

The calculations of this section have been made with
a velocity ~V uniform over the cilium length. This is
not consistent with the presence of a cell wall where the
cilium is anchored. Nevertheless, the main idea was to
study how an external flow can break the beating sym-
metry in the simplest way. Similar calculations can be

performed with a linearly varying velocity ~V = Uz̄; they
do not lead to any new physical effects.

B. Spontaneous breaking of the beating symmetry:

array of aligned cilia

We now consider a regular array of cilia on a cell body,
beating all in the same direction. Starting from a sym-
metrical beating, we show that the left-right symmetry
is spontaneously broken within a certain range of the
parameters controlling the beating due to the hydrody-
namic couplings between cilia.
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1. Equations of motion

For a cilium located in the xy plane at position ~r, we

call ~V [ ~X(s)] the velocity created by the other cilia at the

point ~X(s) of arclength s. The equation of motion of
the cilium is similar to that obtained previously with an
external flow field and we write up to third order in h as

ξ⊥∂th = −κ....h − aḟ + ξ⊥~n.~V + O(h3,~t.~V h) (33)

where the projection of the local external velocity on the
cilium normal is

~n.~V = Vx(1 − ḣ2/2 − Vzḣ+ O(h4)) (34)

The boundary conditions for the motion are the same as
in the previous section.

The velocity ~vj [ ~Xi(si)] created at arclength si of the
cilium i by a cilium j is given by

~vj [ ~Xi(si)] =

∫ L

0

dsj G[ ~Xi(si), ~Xj(sj)]. ~fj [ ~Xj(sj)]

where G is the second order hydrodynamic tensor given

by Eq. 1 and ~fj = ~f beat
j is the force per unit of length

created by the beating of the cilium j. The total velocity
at the arclength si of the cilium i is thus given by

~V [ ~Xi(si)] =
∑

j 6=i

~vj [ ~Xi(si)] = ~V (~ri, si, t) (35)

As in section II, we consider the limit L ≪ d and we
only keep terms of the second order in s/r, r being the
distance between cilia so that

G. ~f =
(

[G. ~fx].~ex

)

~ex + O(s3/r3)

This means that only the velocity along the x axis created

by the component fx of ~f plays a role and that we can
ignore the other component Vz of the velocity. Using the
notations of Fig. 2, and noting that z = s + O(h2), we
obtain

Vx(~ri, si, t) =
3si

2πη

∑

j 6=i

cos2 θij

|~ri − ~rj |3
∫ L

0

dsjfjx(sj)sj+O(h3,
s3

r3
)

(36)
As in the previous sections, we expand the velocity,

the force and the cilium deformation in Fourier modes
in time. For simplicity, we only consider here the first
two Fourier components and do not look at the Fourier
component h2 that characterizes the asymmetry of the
beating. The Fourier components of the velocity are re-
lated to the Fourier components of the force by

Vn(si) ≃
3si

2πη

∑

j 6=i

cos2 θij

|~ri − ~rj |3
∫ L

0

dsjfjn(sj)sj

The Fourier components of the force f0 =< fx > and
f1 are calculated using the expression of f beat and its
average over one time period given by Eq. 52 in the
small movements approximation:

f0 ≃ 2ω(ξ⊥ − ξ‖)ℑ[2ḣ0h1ḣ
∗
1 − ḣ∗1

∫ s

0

duḣ1(u)ḣ0(u)]

f1 ≃ iωξ⊥h1 (37)

where ℑ is the imaginary part of a complex number.
We assume that all cilia are identical, and that they

all beat with the same pattern. The only difference in
the beating patterns of cilia j and i is a possible phase
difference that we call ϕij . Defining

In =

∫ L

0

dsifn(si)si

and dropping the index i, we write the Fourier compo-
nents of the velocity as

V0(s) =
3I0s

2πη

∑

j 6=i

cos2 θij

|~ri − ~rj |3
=

3KI0
2πηd3

s (38)

V1(s) =
3I1s

2πη

∑

j 6=i

cos2 θij

|~ri − ~rj |3
eiϕij =

3K[{ϕij}]I1
2πηd3

s

The geometrical constant K is given by Eq. 7 for a square
lattice of cilia spaced by d. The constant K[{ϕij}] de-
pends on the relative phases between the cilia. If the
phases ϕij are randomly distributed, then K[{ϕij}] ≃ 0
and V1 = 0. There is no oscillating component of the
velocity.

On the contrary, because we know that metachronism
occurs in an array of beating cilia, we choose a constant
phase difference ϕ between two consecutive cilia in the di-
rection of the plane of beating : ϕi,j+1−ϕi,j = ϕ. This is
the case for simplectic and antiplectic metachronal coor-
dination. We only consider those cases (and not laeoplec-
tic or dexioplectic metachronism) here. Experimentally,
for Opalina (simplectic) and Pleurobrachia (antiplectic)
that both have planar beatings, no metachronal wave in
the transverse direction of the beating can be seen [25].

We stress that we do not impose the phase difference
ϕ. The system is free to adjust its phase. We then write
K[{ϕij}] = K(ϕ) with

K(ϕ) =
∑

(k,l) 6=(0,0)

k2eikϕ

(k2 + l2)5/2
(39)

Note that K(0) = K. The function K(ϕ) is plotted on
Fig. 8 for a lattice of 106 cilia.

Note that for two particular values of ϕ that we denote
by ϕs and ϕa this function vanishes, K(ϕs) = K(ϕa) = 0,
as in the case where the relative phases of the cilia are
randomly distributed. This corresponds to a constant
flow with no oscillating component.
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FIG. 8: K(ϕ) over one period (ϕ ∈ [0, 2π]). Some remark-
able values: K(0) = Kmax ≃ 4.52; K(π) = Kmin ≃ −2.32;
K(ϕs) = K(ϕa) = 0 with ϕs ≃ 1.34 and ϕa ≃ 4.94.

We now define the two dimensionless velocities U and
u(ϕ) by

Ū =
ξ⊥L

3

κ

3KI0L
2πηd3

ū(ϕ) =
ξ⊥L

3

κ

3K(ϕ)I1L

2πηd3
(40)

The equations of motions of the Fourier components h̄0

and h̄1 can then be written as

....
h̄0 − K̄ ¨̄h0 = Ū s̄

....
h̄1 + χ̄1

¨̄h1 + iω̄h̄1 = ū(ϕ)s̄ (41)

In writing Eq. 41, we only kept the term Ū s̄ = O(h3)
that breaks the left-right symmetry and that lead to
h0 6= 0, ignoring any other term that would not create a
macroscopic motion.

2. Beating pattern and metachronal waves

We first study the equation of motion of the first
Fourier mode in Eq. 41, which corresponds to the os-
cillatory motion of the cilium. The right hand side of
this equation of motion does not vanish due to the ex-
istence of an oscillatory external flow due to the other
cilia. Note however that we have not treated in details
the hydrodynamic interactions for one cilium and that
we have only taken them into account through the two
local friction coefficients ξ⊥ and ξ‖. We are here more
interested in the qualitative aspects of the coordination
between cilia than in the accurate calculation of the flows
created by each cilium.

The general solution of Eq. 41 can be written as h̄1 =
h̄h

1 + h̄p
1 with

h̄h
1 (s̄) = A1e

q1s̄ +B1e
−q1 s̄ + C1e

q2 s̄ +D1e
−q2s̄

h̄p
1(s̄) =

ū(ϕ)

iω̄
s̄ (42)

It is convenient to rewrite the external velocity as ū(ϕ) =
iω̄C1γ(ϕ) with

γ(ϕ) =
3K(ϕ)ξ⊥L

3

2πηd3
C1 =

∫ 1

0

ds̄ h̄1(s̄)s̄ (43)

The constant C1 can be determined self-consistently as
it varies linearly with h̄1. We obtain

h̄1(s̄) =
∑

i

Ai(e
qis̄ + β(qi, ϕ)s̄) (44)

with

β(qi, ϕ) =
γ(ϕ)

1 − γ(ϕ)/3

qie
qi − eqi + 1

q2i
(45)

The effect of the hydrodynamic interactions between cilia
is embodied here in the coefficient γ(ϕ). The variation
of this coefficient with the phase difference ϕ is similar
to that of K(ϕ). The limit where γ(ϕ) = 0, leads back to
the previous situation were one cilium is beating alone;
it may however correspond to the finite phase shifts be-
tween cilia ϕ = ϕs or ϕa.

The four boundary conditions on h̄1 can as before be
written in a matrix form and the oscillation threshold and
the beating frequency can be determined as the zeros of a
determinant insuring the consistency of this matrix equa-
tion. This leaves an unknown amplitude of the beating
motion that could only be calculated by expanding the
equation of motion to higher order. The beating pattern
can then be written as

h̄1(s̄) = A1[Eϕ(q1, s̄)+b1Eϕ(−q1, s̄)+c1Eϕ(q2, s̄)+d1Eϕ(−q2, s̄)]

with

Eϕ(q, s̄) = eqs̄ + β(q, ϕ)s̄

The values of both the oscillation threshold Ωc and the
frequency ω̄c depend on the phase shift between cilia ϕ,
through γ(ϕ). We first discuss the variation of this bi-
furcation point with the constant γ(ϕ) which is a more
convenient variable. On Fig. 9, we plot Ωc and the crit-
ical frequency fc against γ.

There is a local minimum of Ωc for γ∗ ≃ −1.15 and a
local maximum for γ ≃ 1. The beating frequency fc, is
a decreasing function of γ.

We here need a selection criterion that determines
the value of the phase shift between cilia. The sim-
plest conjecture for the selection criterion is that the sys-
tem chooses the local minimum of Ωc corresponding to
γ∗ ≃ −1.15. This corresponds to a metachronal wave
propagating in the assembly of cilia, as widely confirmed
by experimental observations ([26, 27] for instance).

With this selection criterion, the oscillation thresh-
old is Ωc ≃ 6.538 10−9 and the critical frequency is
fc ≃ 31Hz. The hydrodynamical couplings between
cilia decrease the oscillation threshold Ωc and increase
the critical frequency fc. The coordination between cilia
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FIG. 9: Oscillation threshold Ωc and critical frequency fc as
functions of γ for γ ∈ [−3, 2]. Ωc has a local minimum that
corresponds to the existence of metachronal waves.

FIG. 10: Beating pattern of a cilium in an array in the pres-
ence of a metachronal wave. The pattern is different from
that of an isolated cilium mostly around the basis. The first
Fourier component 2ℜ[h̄1e

iωt] at various time steps during a
period is plotted. The parameters are A1 = 1/70; the maxi-
mum deformation is h̄max ≃ 0.15.

favors cilium beating by creating a metachronal wave cor-
responding to γ < 0.

The beating pattern is slightly changed as shown on
Fig. 10 where we have plotted 2ℜ[h̄1e

iωt] at different
time steps with the same amplitude A1 = 1/70.

The phase difference ϕ∗ between two consecutive cilia
corresponding to γ∗ ≃ −1.15 depends on the values of

the parameters. If we take η = 4ηw and d/L = 1
so that our calculations remain consistent and in or-
der to be close to what is observed experimentally, then
K(ϕ∗) ≃ −0.07 which yields ϕ∗ ≃ ±1.37 ≃ ±0.44π. This
value corresponds to a wavelength λ = 4.6d ∼ 5d for
the metachronal waves or approximatively 6 cilia, which
is the correct order of magnitude ( the wave length is 7
cilia in [27]).

3. Global flow and left-right symmetry breaking

We now discuss the left-right symmetry breaking and
the appearance of a global flow. We solve Eq. 41 for the
zeroth Fourier component of the deformation, with the
same boundary conditions as before, in the limit K̄ → 0.
We obtain

h̄0(s̄) = Ū
s̄2

6
(1 − s̄

2
+
s̄3

20
) (46)

The cilium oscillates around a curved average position
h̄0 6= 0 if Ū 6= 0, if there exists a global flow. We show
below that this is possible within a certain range of pa-
rameters.

We define the two dimensionless functions

H0(s̄) =
h̄0(s̄)

Ū
=

s̄2

6
(1 − s̄

2
+
s̄3

20
)

H1(s̄) =
h̄1(s̄)

A1
= Eϕ(q1, s̄) + b1Eϕ(−q1, s̄)

+ c1Eϕ(q2, s̄) + d1Eϕ(−q2, s̄)

The determination of the average velocity U requires the
calculation of the integral of I0 defined in Eq. 37; we
obtain

I0 = 2CϕA1
2Ū(ξ⊥ − ξ‖)L

3ω (47)

with

Cϕ =

∫ 1

0

ds̄ ℑ[2Ḣ0H1Ḣ
∗
1 − Ḣ∗

1

∫ s̄

0

ds̄′Ḣ0Ḣ1] (48)

which can be numerically calculated knowingH0 and H1.
Cϕ depends on ϕ through H1. Using the value of φ cor-
responding to metachronal waves, we obtain

Cϕ ≃ 34.5

A self-consistent equation is then be obtained for the
average velocity Ū

Ū =
3KCϕ(ξ⊥ − ξ‖)L

3

πηd3
A1

2ω̄ Ū (49)

If Cϕ < 0 this equation has the only solution U = 0 and
no global flow can exist, the left-right symmetry is not
broken. If Cϕ > 0 this equation can have two extra non
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zero solutions U 6= 0 corresponding to a global flow along
the x axis given by

< V (s̄, t) >= V0(s̄) = Us̄

and the left-right symmetry is then broken.
The condition for appearance of a global flow is

3KCϕA1
2

π

ξ⊥ − ξ‖

η

ξ⊥L
4ω

κ

L3

d3
> 1 (50)

As for the oscillation amplitude, our calculation only
gives the threshold of appearance of the global flow. A
determination of the actual value of the velocity would
require an expansion of the equations of motion to higher
orders.

V. DISCUSSION AND CONCLUDING

REMARKS

We have studied in this paper how hydrodynamic in-
teractions between cilia contribute to the coordination
of the beating motion in ciliated cells. Three major ef-
fects have been studied, the spontaneous alignment of
an array of cilia, the breaking of the symmetry of the
beating and the appearance of a macroscopic flow and
the existence of metachronal waves. We have shown for
all these problems that there exist a dynamic transition
where symmetry is broken and where a coordination be-
tween the beating of neighboring cilia appears.

Our work is based on several simplifying approxima-
tions that we believe make the analysis tractable ana-
lytically but that should preserve the essential physical
effects. We only studied hydrodynamic interactions be-
tween distant cilia that can be treated by introducing
simple distribution of forces in the fluid to describe the
motion of one cilium. This is rarely true experimentally
but the hydrodynamic interactions between closer cilia
are even stronger and strongly favor the transitions that
we study. We have replaced the complex architecture
of the axoneme by two microtubules sliding against one
another under the action of dynein motors which are de-
scribed by a two state model for molecular motors as
done earlier by Camalet and Jülicher. This is a rather
sketchy description but it allows a calculation of the in-
ternal forces that drive the cilium motion and it gives
some physical insight. Future work will have to take into
account the nine-fold symmetry of the axoneme and the
influence of its central doublet. Finally, we have only
considered small amplitude beating. This is sufficient to
determine the oscillation threshold but it does not allow
a quantitative comparison between the calculated beat-
ing and the experimental one that often occur far from
any threshold. All our results are qualitatively consistent
with the experimental observations and for example the
beating frequency is close to both the experimental ones
and to the ones obtained in numerical simulations [32].

The essential result of our work is the natural emer-
gence of metachronal waves and of a macroscopic flow

created by an array of cilia if the amplitude of beat-
ing is large enough. The criterion for appearance of the
global uniform component of the flow given by Eq. 50
requires only very small amplitudes (A1 ≥ 5 10−4) which
means that as long as the left-right symmetry is broken, a
macroscopic flow should appear. An essential ingredient
for the macroscopic flow to appear is that the constant
Cϕ defined in Eq. 48 be positive so that the average force
created by one cilium favors the flow and does not oppose
it (which occurs if ϕ = 0).

As long as we allow a constant phase shift between
neighboring cilia we observe metachronal coordination as
a consequence of hydrodynamic interactions and of the
internal beating mechanism of the cilium. A selection
criterion is then needed for these waves. We have con-
jectured that the existing metachronal wave is the one
that corresponds to the local minimum of the oscillation
threshold. A more complete calculation that goes far be-
yond the scope of this work would have to consider the
nucleation of the metachronal wave and to determine the
fastest growing wave. One of the interesting predictions
of our calculation is that the existence of metachronal
waves leads to a flow which is far more stationary than
if all the cilia were beating in synchrony. The oscillat-
ing component of the flow is proportional to the constant
K(ϕ) (see Eq. 40) which has a much smaller value when
metachronal waves exist (K(ϕ∗) ≃ −0.07) than if all cilia
are beating in synchrony (K(0) = K ≃ 4.52). Metachro-
nism thus contributes to the creation of a very steady
movement of swimming organisms that could for example
make easier the detection of the organism environment.

Our most important conclusion is the idea that
metachronism and the existence of macroscopic flow
around ciliated organisms can exist as self-organized phe-
nomena driven by hydrodynamic couplings. We must
stress however that other mechanisms could be at the
origin of these cooperative effects.

Aknowledgements : We thank A. Hilfinger, P.
Dupuis-Williams, N. Spassky, M. Cosentino Lago-
marsino, J. Prost and M. Bornens for useful discussions.

Appendix I: Average force created by a single

beating cilium in a viscous fluid

The aim of this appendix is to calculate the force and
momentum averaged over one time period created by a
general periodic beating of a single cilium. We make
two assumptions: the beating is planar and there is a
stationary external flow. In section IV, the average flow
is created by the neighboring cilia.

We call φ the angle between the plane of beating and

the direction of the external flow ~V that we take along
the x axis. The cilium of length L is located at the ori-
gin and it is fixed at its basis. We denote by h(s, t)
the distance between a point at arclength s on the cil-
ium and the z axis at time t and by Z(s, t) the distance
between a point at the arclength s on the cilium and
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FIG. 11: Sketch of a beating cilium in a plane at an angle φ
with the direction of the external flow V .

the xy plane. The angle between the tangent vector ~t
to the cilium and the z axis is denoted by ψ(s, t) (see
Fig. 11). The coordinates of the tangent vector are
~t = (cosφ sinψ, sinφ sinψ, cosψ). The angle ψ is related
to the cilium deformation h by sinψ = ∂sh

The point on the cilium at the arclength s is located

at position ~X = (x, y, z), with:

x = cosφ

∫ s

0

du sinψ(u, t) = h(s, t) cosφ

y = sinφ

∫ s

0

du sinψ(u, t) = h(s, t) sinφ

z =

∫ s

0

du cosψ(u, t) = Z(s, t)

The velocity of this point is calculated by derivation with

respect to time, ~v = ∂t
~X .

The force per unit length exerted by the cilium on the

fluid expressed in the Frenet basis (~t, ~n,~b) is:

~f = (ξ‖~t ~t+ ξ⊥~n ~n+ ξ⊥~b ~b)(~v − ~V ) (51)

where ξ‖ and ξ⊥ are the two local friction coefficients for
tangential and normal motion respectively. We decom-

pose this force as a sum of two forces, ~f beat depending

on the local velocity and ~fflow depending on the exter-
nal flow velocity and calculate the average force over a

beating period < ~f > =
1

T

∫ T

0
dt ~f(t).

The average beating force < ~f beat > can be explicitly

calculated

< f beat
x > = (ξ⊥ − ξ‖)

cosφ

2

∫ s

0

du < ∂tψ(u) cos∆(u, s) >

< f beat
y > = (ξ⊥ − ξ‖)

sinφ

2

∫ s

0

du < ∂tψ(u) cos∆(u, s) >

< f beat
z > = −(ξ⊥ − ξ‖)

1

2

∫ s

0

du < ∂tψ(u) sin∆(u, s) >

∆(u, s) = 2ψ(s) − ψ(u) (52)

This force is proportional to (ξ⊥ − ξ‖) as mentioned in
section II. The difference between the two local friction
coefficients ξ⊥ and ξ‖ is at the basis of the flow generation
by an assembly of beating cilia. Indeed, this is because
the shape of the beating in the effective stroke is differ-
ent from that in the recovery stroke that a force can be
exerted in the fluid on average.

The average force due to the external flow is

< fflow
x > = (ξ⊥ − ξ‖)V cos2 φ < sin2 ψ > −ξ⊥V

< fflow
y > = (ξ⊥ − ξ‖)V cosφ sinφ < sin2 ψ >

< fflow
z > = (ξ⊥ − ξ‖)V < sinψ cosψ >

It is important to note that < fflow
x (s) >< 0 : this force

opposes the flow. The last term of fflow
x is a static term,

whereas the first positive term depends on the beating
pattern and reduces the effects of this static term. In
an assembly of cilia, the external velocity is due to the
beatings of the other cilia which are themselves created
by the forces on these cilia.

In section II, we introduce a viscous coefficient α which
characterizes the tendency for a cilium, beating in a
plane at an angle φ with the flow, to align with the
other cilia. A torque along the z axis due to the flow
Mflow

z = −αU sinφ is exerted on this cilium. We now
express α as a function of the cilium beating pattern. We

call mz = −( ~X× ~f).~ez the torque along z exerted by the
fluid on the cilium per unit of length (the minus sign is

due to the fact that ~f is the force exerted by the cilium
on the fluid). The local torque per unit length exerted
by the fluid on the cilium is

mz(s, t) = −ξ⊥V h(s, t) sinφ = −ξ⊥Lh̄(s, t)Z̄(s, t)U sinφ

where we have used the dimensionless coordinates s̄ =
s/L, h̄ = h/L. The total momentum along z averaged
over time, is obtained by integration

Mz = −ξ⊥L2

∫ 1

0

ds̄ < h̄(s̄, t)Z̄(s̄, t) > U sinφ (53)

This defines the friction coefficient α:

α = ξ⊥L
2

∫ 1

0

ds̄ < h̄(s̄, t)Z̄(s̄, t) > (54)

which can be calculated if the motion of the cilium is
known.
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Appendix II

In this appendix, we derive the equations satisfied by
the Fourier components of the deformation h of a single
beating cilium and we determine the threshold of spon-
taneous oscillations of the cilium.

Fourier mode expansion

Axoneme beating is periodic and can be studied by
expansion in Fourier modes in time of all the physical
parameters:

h(s, t) =

∞
∑

n=−∞

hn(s)einωt

The definition is similar for the other parameters. Start-
ing from Eq. 17 and Eq. 14, we obtain the Fourier com-
ponents:

fn(s) = −(K + inωλ)∆n − 1

l

∫ l

0

dξ Pn(ξ)∂ξW1

∆0n =
1

k + inωγ

∫ L

0

dsfn(s) (55)

In order to determine the non linear relationship be-
tween f and ∆, we follow the lines of [33] and write:

fn = f (0)
n +

∑

l

f
(1)
nl ∆l +

∑

lm

f
(2)
nlm∆l∆m + O(∆3)

The coefficients f
(k)
n,n1,...,nk can be calculated by first

rewriting Eq. 16 as

Pn = Rδn,0 −
iω

ν(1 + Ω)

∑

lm

lδn,l+m∆l∂ξPm (56)

where

R = ρ
ω2(ξ)

ω1 + ω2
= ρ

1 + Ω sin2(πξ/l)

1 + Ω

is the static probability (ω = 0), corresponding to a
medium with not enough ATP to generate the beating.
Inserting the ansatz

Pn = Rδn,0 +
∑

l

P
(1)
nl ∆l +

∑

lm

P
(2)
nlm∆l∆m + O(∆3)

into Eq. 56, we obtain a recursion relation for the

P
(k)
n,n1,...,nk

:

P (k)
n,n1,...,nk

= − iω

ν(1 + Ω)

∑

m

nkδn,nk+m∂ξP
(k−1)
m,n1,...,nk−1

that now allows us to calculate f
(k)
n,n1,...,nk

.

Our choice of a symmetric potential W1 imposes that
a change ∆ → −∆ must change f → −f . This sym-
metry imposes thus f (2k) = 0. The only non-vanishing

coefficient at linear order is f
(1)
nl = χ(Ω, nω)δn,l with

χ(Ω, ω) = −K − λiω +
π2ρU

2l2
iΩω

(1 + Ω)((1 + Ω)ν + iω)
(57)

The force and the sliding displacement are thus related
by

fn = χ(Ω, nω)∆n+O(|∆|3) = χ(Ω, nω)(∆0n+aḣn+O(|h|3))
(58)

This relationship 58 models the response of the molecular
motors to the bending of the axoneme.

From Eq. 55 we obtain

∆0n =
χ(Ω, nω)a

k + inω − χ(Ω, nω)L
hn(L) + O(|h|3) (59)

We solve the equation of motion of the cilium (Eq.18) for
each order of the Fourier expansion.

Equation of motion of the Fourier modes

We look for an approximate solution of the form

h(s, t) ≃ h0(s) + h1(s)e
iωt + h2(s)e

2iωt + c.c.

At linear order, there is no coupling between the modes
and using Eq.18, the equation of motion of the nth

Fourier component reads

....
h n +

χ(Ω, nω)a2

κ
ḧn + i

nωξ⊥
κ

hn = 0 (60)

It is convenient to introduce the dimensionless variables:

s̄ = s/L ω̄ =
ξ⊥L

4

κ
ω χ̄n = χ̄(Ω, nω̄) =

a2L2

κ
χ(Ω, nω)

In dimensionless form, Eq. 57 can be written

χ̄(Ω, ω̄) = −K̄ − λ̄iω̄ +
π2

2
ρ̄Ū

i Ωω̄

ν̄ + iω̄

with

K̄ =
a2L2

κ
K λ̄ =

a2

ξ⊥L2
λ ν̄ =

ξ⊥L
4

κ
ν Ū =

a2L2

κl3
U

We have anticipated here the fact that Ω ≪ 1.

Defining, h̄ = h/L, and denoting by a dot the deriva-
tion with respect to s̄, we obtain the equation of motion
Eq. 21 and the boundary conditions given by Eq. 22,23.
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Beating motion

In the absence of external flow only the first Fourier
component of h does not vanish and satisfies the equation
of motion :

....
h̄ 1 + χ̄1

¨̄h1 + iω̄ h̄1 = 0 (61)

where the relevant dimensionless parameters are

χ̄1 = χ̄(Ω, ω̄) Γ̄1 =
χ̄2

1

k̄ − χ̄1 + iγ̄ω̄

The boundary conditions are given by Eq. 22 and 23 for
n = 1. The solution to this linear equation is a superposi-
tion of exponentials given by Eq. 24. The four boundary
conditions on h̄1 can be written in a matrix form:

M1(Ω, ω̄).A1 = 0 (62)

where A1 is the vector made by the amplitudes of the
exponentials in Eq. 24 and the matrix M1 is given by

M1(Ω, ω̄) =











1 1 1 1

q1 −q1 q2 −q2
F(q1) F(−q1) F(q2) F(−q2)
q21e

q1 q21e
−q1 q22e

q2 q22e
−q2











with

F(q) = eq(q3 + χ̄1q + Γ̄1)

The system 62 has non trivial solutions only if

detM1(Ω, ω̄) = 0 (63)

Since Eq. 63 is a complex equation, it determines both
the oscillation threshold Ωc and the dimensionless beat-
ing frequency ω̄c.
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[23] F. Jülicher and J. Prost, Phys. Rev. Lett. 75, 2618

(1995).
[24] S. Ishijima and Y. Hiramoto, Cell Struct. Funct. 19, 349

(1994).
[25] M. Murase, The dynamics of cellular motility (Wiley,

Chichester, 1992).
[26] E. Horstmann, Movie, IWF, Göttingen (1959),

http://mkat.iwf.de.
[27] H. Machemer, J. Exp. Biol. 57, 239 (1972).
[28] S. Gueron and K. Levit-Gurevich, Biophys. J. 74, 1658

(1998).
[29] P. Sugrue, M. Hirons, J. Adam, and H. M.E., Biol. Cell.

63, 127 (1988).
[30] M. Hayashi, T. Yagi, Y. K., and R. Kamiya, Cell. Motil.

Cytoskeleton. 41, 49 (1998).
[31] M. Cosentino Lagomarsino, B. Bassetti, and P. Jona,

Eur. Phys. J. B. 26, 81 (2002).
[32] S. Gueron, K. Levit-Gurevich, N. Liron, and J. Blum,

Proc. Natl. Acad. Sci. USA. 94, 6001 (1997).
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