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Abstract

Cells or bacteria carrying cilia on their surface show many striking features :
alignment of cilia in an array, two-phase asymmetric beating for each cilium,
coordination between cilia and existence of metachronal waves with a con-
stant phase difference between two adjacent cilia. We give simple theoretical
arguments based on hydrodynamic coupling and an internal mechanism of
the cilium derived from the behavior of a collection of molecular motors, to
account qualitatively for these cooperative features. Hydrodynamic interac-
tions can lead to the alignment of an array of cilia. We study the effect of a
transverse external flow and obtain a two-phase asymmetrical beating, faster
along the flow and slower against the flow, proceeding around an average
curved position. We show that an aligned array of cilia is able to sponta-
neously break the left-right symmetry and to create a global average flow.
Metachronism arises as a local minimum of the beating threshold and leads
to a rather constant flow.

Key words: cilia; coordination; beating; symmetry breaking; hydrody-
namic interactions; metachronal waves
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1 Introduction

Many cells and bacteria have cilia or flagella on their surfaces. Examples
are sperm cells which have one flagellum used for propulsion, the green
alga Chlamydomonas that uses two flagella, and the much studied proto-
zoan Paramecium which is covered by a layer of cilia. This layer is made
out of approximately four thousands cilia which produce a very efficient mo-
tion with a velocity of order 1mm/s in water, corresponding to 10 times
the Paramecium size/s. Humans have ciliated cells in several organs: in the
brain (cerebrospinal fluid flow), the retina (photoreceptor connective cilia),
the respiratory tract (epithelial cells), the ear (hair bundles), the Falopian
tube or the kidney...

Cilia have two major roles: (i) detection (sensory cilia or flagella), for
example in the retina, the ear and the kidney (ii) propulsion or creation of
fluid flow (motile cilia or flagella) as for Paramecium or in the respiratory
tract where the fluid flow is used to move away the mucus.

The common structure of most cilia and flagella is an axoneme wrapped
by the plasma membrane. The (9+2) axoneme is made of 9 microtubule
doublets arranged on a circle around a central pair of microtubules (). The
cilium or flagellum is attached to the cell membrane by a basal body made of 9
microtubule triplets which has a structure very similar to that of a centriole.
The basal body is attached to the cell membrane by anchoring fibers ().
Typically the radius of an axoneme is 100 nm. The main structural difference
between cilia and flagella is their length. The typical length of a cilium is
10pum whereas a flagellum can be ten times longer.

Dynein molecular motors are attached to the 9 microtubule doublets; they
move towards the microtubules — ends linked to the basal body and exert
forces on the microtubules. Upon consumption of Adenosine-Tri-Phosphate
(ATP), dynein motion generates forces that induce a sliding between adjacent
microtubules. Because the whole structure is attached at its basis, this sliding
motion induces the bending of the cilium or flagellum and its beating.

We here focus on ciliated cells creating fluid flow. These are cells with
cilia on their surface, beating in one preferred direction in a coordinated
way. One central feature of cilia beating is the existence of two phases with a
broken symmetry. Each beating can be decomposed into an effective stroke
(ES) that propels the fluid and a recovery stroke (RS) where the cilium is
coming back against the flow. In the example of Paramecium in water, the
effective stroke lasts typically 9ms whereas the recovery stroke lasts 26ms.
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The typical beating frequency in water is 30Hz (). The beating of Parame-
cium cilia is 3-dimensional but for some species like Opalina the cilia remain
in the same plane during their beating and the beating is 2-dimensional. In
this work, we discuss the role of an external velocity field in this left-right
symmetry breaking between the effective stroke and the recovery stroke for
planar beating.

One of the most striking features of an assembly of beating cilia is that
they all beat in the same direction: the surrounding fluid can only be pro-
pelled efficiently if all the beatings have the same orientation. In all mature
ciliated cells, the beating direction is defined by the anchoring of the basal
foot on the basal body. Only newly formed or developing cilia are randomly
oriented (f]). When they start beating, they tend to spontaneously align to
finally beat in the same direction. One of the questions addressed in this
article is the nature of the parameters that control this orientation.

The role of the central pair of microtubules in the center of the axoneme is
also a fundamental and complex question. In many species (such as Chlamy-
domonas), the central pair is both rotating and twisting within the axoneme
during the axoneme movement. Current models postulate that the central
pair modulates dynein activity along outer microtubule doublets (). It thus
allows the axoneme motion because if all the dyneins were acting at the same
time, no bending would occur. Evidence in support of this model includes
the observation that sliding between adjacent doublets occurs preferentially
along doublets closest to one of the two microtubules of the central pair (the
C1) in Chlamydomonas flagella (). Nevertheless, there exist also motile cilia
with a (9+0) axoneme having no central pair. This means that cilia beating
is possible even in the absence of the central pair of microtubules. Despite
its importance, we do not discuss the role of the central pair in the present
work and we postpone its discussion to future work.

Another important feature of ciliated cells, is the existence of waves prop-
agating all along the surface. These are called metachronal waves and might
be due to the coordination of adjacent cilia for example via hydrodynamic
interactions. Experimentally metachronal waves are observed to propagate
in all possible directions: in the direction of the effective stroke (symplec-
tic metachronal waves), in the opposite direction (antiplectic), or even in a
perpendicular (laeoplectic or dexioplectic) or oblique direction. The origin
of these waves and the mechanisms controlling their formation are not well
understood. We show in this article that metachronism can arise naturally
from the hydrodynamic couplings between cilia. Using a two-state model
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for the dynein motion as an internal mechanism of the cilia, metachronism
appears to be a local minimum in the oscillation threshold of the motors
0.5

A last important feature of cilia beating that we wish to mention, is
the role of calcium ions. The local [Ca®*] concentration has a strong influ-
ence on the beating pattern of cilia or flagella. For example detergent-treated
Paramecium are able to swim forward at low [C'a®"] concentration (< 1075M)
and backward at high [C'a®*] concentration (> 1075M) because of ciliary re-
versal: the directions of effective and recovery strokes are switched (f, [[0). In
any case, the wild type Paramecium can have a very efficient backward mo-
tion monitored by calcium tanks in its body. We only discuss here qualitative
aspects of the role of calcium.

In this paper, we address the question of the spontaneous alignment of an
array of beating cilia and the possibility of a spontaneous symmetry break-
ing in the beating that leads to the appearance of a macroscopic fluid flow.
The internal mechanism of the cilia is described by the model of references
([, B) which is based on a two-state model to describe the cooperative ef-
fects between dynein motors and only considers the relative sliding of two
microtubules in the axoneme. The coordination between the cilia is due to
hydrodynamic interactions which are discussed in details in a coarse-grained
description where the effect of the cilia on the flow is replaced by an effective
force. The outline of the paper is as follows. In the next section, we give
a simple model for the alignment of beating cilia. In section J, we discuss
the beating of one cilium following the model of Jiilicher and Camalet ([, B).
Finally, in section @ we discuss the spontaneous breaking of the left-right
symmetry of the beating due to the flow created by the cilia themselves.

2 Spontaneous alignment of an array of cilia:
a simple model

2.1 Experimental results

In an assembly of cilia covering the surface of a mature cell, cilia are beating in
a preferred direction, and only newly formed or developing cilia are randomly
oriented (fl). We first discuss the experiments showing how this preferred
orientation is chosen.
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As mentioned before, the ciliary axoneme grows from a basal body anal-
ogous to a centriole. Two basal body appendages, the basal foot and the
striated rootlet, located in the axial plane of the effective stroke, confer an
asymmetrical organization to the basal body. The basal foot is laterally asso-
ciated with two consecutive triplets and points in the direction of the effective
stroke ([, [F). The striated rootlet, associated with the proximal end of the
basal body, sinks into the cytoplasm in the opposite direction ([1l). These
two appendages define therefore an orientation of a cilium independent of
the beating motion.

During ciliogenesis, newly formed basal bodies migrate toward the cell
membrane where they anchor with no apparent order. Anchoring induces
axoneme assembly, and cilia grow in random orientations. While cilia are
growing, they do not beat immediately. A reorientation by rotation of the
basal bodies in a common direction occurs at the final stage of ciliogenesis,
when mature cilia beat ([[J). The preferred direction of the assembly is then
well-defined. In the immotile-cilia syndrome, axonemes are incomplete, and
the ciliary activity is abnormal or absent: the fluid is poorly or not propelled.
On the cell level, the basal bodies are randomly oriented ([I4).

These experimental facts suggest that the beating and orientation of cilia
are closely related. Our working hypothesis is that the alignment of an
assembly of beating cilia is mostly due to hydrodynamical coupling between
cilia. The global flow created by the other cilia tend to orient a given cilium
and above a certain beating amplitude, all cilia orient in the same direction.
We now give a very simple modelling of this cooperative alignment.

2.2 Alignment transition

We assume in the following that the beating is planar. It is the case for
Opalina for example, but not exactly for Paramecium where the recovery
stroke is not in the plane of the effective stroke.

Near the top of the ciliary layer, observations show that the velocity is
time independent and uniform ([[J). Consequently, we average the beating
over one time period and replace each cilium of length L (and its effective
and recovery stroke) by a single force (stokeslet) f, parallel to the surface,
created in the fluid of viscosity n at height h < L above the membrane, as
sketched in figure [I.

We choose the x axis in the direction of the effective stroke and the z
axis perpendicular to the cell surface that we approximate by a plane. The
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stokeslet along the x axis (f = fé3), is located at point S = (0,0, h).
The velocity created at point X = (x,y, z) by this stokeslet with a no-slip
boundary condition on the plane z = 0 is given by :

7(X) = G(X,9).f

where the response tensor tensor G is given in ([I§) and reads:

st () - (5 )
+ZSZ(5ka5al_5kzézl)i S:R; 0 RiR,
OR,

R3 R R3 (1)
Whereﬁ:)?—g, ézf+§anda:x,y.

In order to simplify the hydrodynamic problem, we assume in all the
following that the cilia are far away from each other. In this asymptotic
limit, it is consistent to describe the effect of the cilium in the fluid by a
stokeslet. We introduce the two-dimensional vector along the cell surface
7 = (z,y) and consider the limit r > z h,L. We are interested in the
velocity in the vicinity of the ciliary layer, typically 0 < z < 1.5 L. At
lowest order in z/r, the velocity reads:

3fh zcosf
2mn 13

o(r,0,2) = e+ O ) ~i(r,0) z (2)
where we have defined a dimensionless height z = z/L. In the following, we
use mostly the velocity u(r, ). At this order, the flow field is a radial flow
centered on the cilium-stokeslet. Note that because of the no slip boundary
condition on the surface, the force appears in the velocity field (Eq. f]) in the
combination fh homogeneous to a momentum.

We consider now a regular array of cilia; this is a reasonable assumption
for Paramecium, which shows a beautiful and very regular array of cilia on
its surface ([4). We assume that this array is in an infinite plane. Cilium
i is defined by its position in the z,y plane (the cell surface) by a vector r;
and by the angle of its plane of beating with the x axis, ¢; as displayed on
Fig. B.

The total velocity at the cilium i at height z, V/(7%, z) is the sum of all
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the velocities ¥;(7;, z) created by the other cilia j # 1
V(7 2) = 3 (72)
J#i
We single out the the z dependence of V writing V (7, 2) = U(7) z with
U(7i) = 22 ;(73) and
_3fhLcos(0i — ¢;) -

u]<'r> 27”7 |’I“_;— —j»|3 6] ( )

where €;; is a unit vector from cilium j to cilium ¢ and 6;; = (é;,¢€5;), as
shown on Fig. P

We now use a mean field approximation, replacing the velocity u;(7;) by
its average over the directions < w;(7;) >, given by:

<) >g= /0 " 46 P(6) 07 (4)

where P(¢) is the probability for a cilium to make an angle ¢ with the x
axis. The average velocity at cilium i is U () ~ Dz < Ui (T7) >4

The mean field approximation assumes that the fluctuations around a
given angle determining the direction of the flow are small. We choose the
x axis in the direction of the flow without any loss of generality, so that the
probability P(¢) is peaked around ¢ = 0.

In order to determine the probability P(¢), we write a stationary Fokker-
Planck equation d,J = 0. The probability current J = P0,¢ — D,04P is
the sum of two terms: a convection term and a diffusion term where D,
is a rotational diffusion coefficient. The beating plane can fluctuate due to
thermal fluctuations. Because of the flow, if the beating plane of one cilium
is at an angle ¢ with the flow direction, the cilium is subject to a torque
M7v = —qUsin ¢ along the z axis that tends to align it in the direction
of the flow, where Uz is the velocity of the global flow and a a viscous
coefficient involving the geometry of the cilium. A rotating cilium is also
subject to a viscous torque MU opposing the rotation MU = —(9;¢
where ( is the rotational friction constant. The total torque on the cilium
vanishes (M7w + MPiseous = () and the probability distribution satisfies the
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Fokker-Planck equation

PP aU 0 .
907 + DrCﬁ_qﬁ[Psm(b] =0

Defining the effective temperature as D,( = kgT and imposing the normal-
ization condition [ P(¢)d¢ = 1, we obtain:

aU
ek:BT

- 2mlo (%)

cos ¢

P(¢) ()

where Iy(x) is the modified Bessel function defined in ([[§). The average ve-
locity U can then be self-consistently determined by calculating < w;(7;) >4,
and summing over all the lattice sites. We obtain

€z (6)

where K is a constant depending on the nature of the lattice, d is the lattice
constant (the distance between cilia) and [; is a modified Bessel function

([[§). For a square lattice, ([L9):

k2 3.3
Ksquare = Z m =2 ﬁ<§)C(§> ~ 4.52 (7)
(k,1)#(0,0)

B(s) and ((s) being respectively the Dirichlet and the Riemann functions
.

The self-consistent equation for the flow velocity can be discussed by
expanding the integrals Iy and [; in the vicinity of U = 0: there are two
solutions U = 0, and a solution at a finite velocity which exists only within
a certain range of parameters

kBT 47T]€BT77d3
U=2V2— |l — —— 8
V2 o 3KafhL (®)
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This solution exists only if

3KafhL

SRa/hl -y
kg Tnd ~ )

Within the mean field approximation Eq. P defines a dynamical phase tran-
sition between a non-moving fluid with randomly oriented cilia and a moving
fluid with a global flow V(z) = Uz # 0 given by Eq. § where all cilia are
spontaneously aligned in the same orientation. This dynamical phase tran-
sition is second order (with a continuous velocity at the transition) and it is
associated to a spontaneous breaking of the initial O(2) symmetry.

The influence of some of the parameters can be directly analyzed on
Eq. B. A decrease of the distance d between two cilia favors the alignment,
increasing the hydrodynamic coupling. A decrease of the temperature 7" also
favors alignment as the random thermal motion opposes the alignment. An
increase of the effective hydrodynamic force of one cilium f is associated to
an increase the hydrodynamic interactions between cilia and leads to a better
alignment. The same effect occurs for a and the cilium length L. Finally,
increasing h helps to create a global flow, since the velocity on the membrane
vanishes and the higher the force is exerted, the more efficient.

A more precise analysis requires the estimation of the parameters f,«a
and h. The height is of the order of the cilium size h ~ L. The calculation of
« is given in appendix I for a general beating (Eq. p4). It turns out that « is
linked to the difference of the areas covered during the effective and recovery
strokes. Here we approximate a ~ &, LA, where £, is the perpendicular
friction constant per unit length of the cilium and A the amplitude of the
movement of the tip.

In order to give a simple estimation of the effective hydrodynamic force,
we consider that the friction coefficient takes the perpendicular value &,
during the effective stroke, and the parallel value {; during the recovery
stroke. Introducing the beating frequency w, we estimate f ~ (£, —§j)LwA.
A more precise calculation of these two quantities as a function of the beating
patterns is given in appendix I.

Consequently, we obtain:

3Kath fJ_(fJ_ - §||)A2Lw L_3
ArkgTnd3 kgTn a3

The difference between the two local drag coefficients £, and | is the key to
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an efficient beating. Increasing the amplitude A or the frequency w of the
beating favors the alignment of cilia, as could be expected. Increasing the
viscosity of the medium also promotes the transition, because it increases
the coupling between cilia.

This naive mean field approximation is only a first step of our study. In
the following, we take a closer look at the internal beating mechanism of one
cilium and then at the beating of an array of cilia to obtain a more precise
and quantitative description.

3 Axonemal beating

In this section we discuss the beating mechanism of a single cilium. We follow
closely the work of Camalet and Jiilicher (f) which mimics the cilium by
two microtubule filaments sliding along one another under the action of the
dynein motors and uses a 2-state model to describe the collective motion of
the dyneins. We use as boundary conditions for the motion those introduced
recently by Hilfinger and Jiilicher (R0) that seem to have good experimental
support (BI). In the next section, we use the same model to discuss the

coordination between cilia.

3.1 Equation of motion

Each microtubule doublet within the axoneme can be described effectively as
an elastic rod. Deformations of this rod lead to local sliding displacements
of neighboring microtubules. Here, we only consider planar deformations.
In this case the geometrical coupling between bending and sliding can be
captured by considering two parallel elastic filaments (corresponding to two
microtubule doublets) with a constant separation a along the whole length
of the rod (see Fig. B). At one end, which corresponds to the basal end of
an axoneme, the two filaments are elastically attached and are allowed to
slide with respect to each other, but not to tilt (BJ). The basal connection is
characterized by an elasticity k& and a frictional drag 7. The configurations
of the axoneme are described by the shape of the filament pair given by the
position of one filament X (s) at arclength s. The shape of the other filament
is then given by X'(s) = X (s)—aii(s), where 7 is the filament normal. In the
following, we describe the filament conformation by the angle ¢ between the
local tangent vector and the z axis or by the deformation h in the transverse
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direction defined in Fig. []

The energetics of the filament pair is due to the bending elasticity. In
addition to filament bending, we also take into account internal stresses due
to the active elements (dyneins). We characterize them by the force per
unit length f(s) acting at position s in opposite directions on the two micro-
tubules. This force density corresponds to a shear stress within the cilium
which tends to slide the two filaments with respect to each other.

The local curvature is C' = 0yt (see Fig. [[1]). The sliding displacement,
A(s, t) is related to the the sliding displacement at the base Ay (t) by A(s,t)—
Ag(t) = arp(s,t), because we impose the boundary condition 1(0,¢) = 0.

A configuration of a filament pair of length L is associated to the free
energy functional:

L
G = Eaz +/ ds|0? — A+ R, Xy
2 0 2 2

Here, k denotes the total bending rigidity of the filaments. The inextensibility
of the filaments is taken into account by the Lagrange multiplier A(s) which
enforces the constraint (9,X)2 = 1.

The first term of this equation is the elastic energy due to the basal sliding
occurring with a connection of elasticity k.

The tangent component of the integrated forces acting on the filament
between s and L is denoted by 7(s). Assuming that there is no external force
applied at the end s = L of the cilium:

L s
7(s) = F(s)/ ds' 5—65 = —F(s)./ ds' 5—6_;,
s 0

We assume for simplicity, that the hydrodynamic effects of the surround-
ing fluid can be described by two local friction coefficients §; and § for
normal and tangential motion. The total friction force per unit length ex-
erted by the cilium on the fluid is then f,[X(s)] = (&t £+ ot ) 9, X (s).
The force balance at arclength s can then be written as

X = —(—d i+ —T1) = 10
i (éL g 35)( (10)
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which leads to:

—»

0. X = 5—( K —af +9r) + 3 (%¢¢+a¢f+ 7) (11)

where the derivatives with respect to arclength have been denoted by a dot.

The beating of the filaments is very sensitive to the boundary conditions
imposed at its ends. As the the force density —0G/ 6X is equilibrated by
the density of friction force exerted by the fluid on the system (see Eq. [[0),
the boundary contributions coming from the free energy variation 0G are
equilibrated by external forces femt and torques Tm = T..: €, applied at the
ends.

At the free end of the cilium, both the external force and the external
torque vanish and

fiar == (hC+af ) i+ TT=0, Ty =nC =0 (12)

At the base, s = 0, the boundary conditions are:

foat = (/@C”Jraf) 7—TE T — —nc+a/L dsf(s) (13)
0

The external torque and force are chosen in such a way that the base is fixed
(0,X = 0) and that the cilium remains perpendicular to the surface ( 9,f = 0
or (0) =0).

The final boundary condition is associated to the basal sliding

0G

L
YO0 Ag = Ty = —kAg +/0 dsf(s) (14)

The determination of the cilium motion requires a model for the shear
force created by the dyneins that we calculate using a two-state model.

3.2 2-state model for the cilium

Following (B), we now introduce the 2-states model of coupled molecular
motors (B2, B3) to describe the internal mechanism of the cilium. This model
allows the calculation of the shear force f due to the dyneins.

Each motor has two different chemical states, a strongly bound state,
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1, and a weakly bound state, 2. The interactions between a motor and
a filament in both states are characterized by potential energy landscapes
Wi (x) and Wy(z), where x denotes the position of a motor along the filament.
The potentials have the filament symmetry: they are periodic with period
[, Wi(z) = Wi(x + 1) and are, in general, spatially asymmetric, W;(z) #
Wi(—x).

In the presence of ATP, the motors undergo transitions between states
with transition rates w; and ws. Introducing the relative position £ of a
motor with respect to the potential period, (z = £ + nl with 0 < ¢ <[ and
n an integer), we define the probability P;(£,t) for a motor to be in state i
at position £ at time ¢. The relevant Fokker-Planck equations are:

atP1+U8£P1 = —W1P1+LL)2P2
8,5P2+1)8§P2 = (UlPl—CUQPQ

where v = ;A = a0;1(s) is the sliding velocity between the 2 filaments.

The simplest choice of the two potentials W;, is a saw-tooth potential
(with barrier height U > kT') representing a strongly bound state for Wy, and
a flat potential Wy representing a weakly bound state. Here, for simplicity,
we use the symmetric potentials:

Wi(z) = Usin2(7r§)
WQ(SL’) = W2

Although this choice is somehow arbitrary, we checked that the final results
only depend qualitatively on the actual shape of the potentials and of the
rates defined below.

When a number of motors act together to propel a filament, however,
the direction of motion is a collective property. The filament might move
in either direction (BJ). The absence of asymmetry in the potentials implies
that an individual motor is not able to move directionally. It is not the case
for an assembly of motors: even with a symmetric potential, provided that
detachment can only take place at a localized position near the bottom of a
potential well, oscillations can occur.

We define the distance from equilibrium €:

Q = Suppy | Z—: — e | o AT (15)
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Q) is related to the chemical potential difference between ATP and its hydrol-
ysis products, Ay = parp — ptapp — pip. At equilibrium, Ay = 0 and Q = 0.
We assume for simplicity that the binding rates ws and the detachment rate
wy are given by:

we(§) = V(1+Qsin2(ﬂg))

wi(§) = v COSQ(ﬂ'%)

Note that, with this choice the sum w; + wy = v(1 + 2) does not depend on

&, and that if 2 = 0, w; = 0 and no directional movement is possible. Here
v is a constant transition rate.

If we assume that the motors are uniformly distributed along the filaments

with a density p, the probabilities P; and P; satisfy the relationship P+ P, =

p. The Fokker Planck equation reduces then to a single equation for P = P;

O P + (0;A)0c P = —(w1 + wa) P + pws(§) (16)

This model leads to an expression for the shear force per unit of length
f(s,t) created by the dyneins and driving the the cilium beating. Using the
results of (B2), and the fact that W5 is a constant:

F(s.8) = —KA — \9A — l/l dg P(E)DW, (17)
L Jo

where K is an elastic stiffness per unit length mimicking the influence of
the nexins which are proteins acting as springs in the axonemal structure,
and A is an internal friction coefficient per unit length modelling the friction
encountered by the motors. Equations [L]] and [L§ allow in principle a complete
calculation of the beating motion.

In the following, we assume that the beating occurs with a "small” am-
plitude which means that both ¢ (s,t) < 1 and h(s,t) < L. A quick look
at the beating pattern of a cilium of Paramecium shows that the beating
occurs with a large amplitude. Nevertheless, this approximation allows us
to extract interesting information on the parameters controlling the beating.
Moreover, the work of Hilfinger shows that larger amplitude beating patterns
are very similar to small amplitude patterns (20). We must however keep
in mind that our approach is valid only if the the system stays close to an
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oscillation bifurcation which is consistent with the fact that we consider only
small movements.

We use the deformation h, rather than 1 or A to describe cilium motion
and work at second order in |h| so that 1) = h + O(|h|?). In the absence
of any external flow, the equation of motion [[J] projected on ¢ imposes that
7 = O(|h|?). The projection of the equation of motion on 7 then yields:

§L0h = —kh —af +O(|h) (18)

The non-linear terms are not important here but they will turn out important
in the following section. Indeed, experiments show that the beating is clearly
asymmetrical (ES and RS), and we must expand at least to next order if we
want to capture this phenomenon. With this variable and at this order, the
boundary conditions read:

kh(s=L)+af(s=L)=0, h(s=L)= (19)
The explicit solution of the equation of motion [[§ is obtained by Fourier
expansion in time h(s,t) = > 02 hy(s)e"™ . The explicit derivation of

the equation satisfied by the Fourier components is given in appendix II. At
linear order the effect of the motors is characterized by a susceptibility

w2 pU iQw

Q =-K-—X\ 2
X&) M I+ )+ i) (20)
L4 2L2
Using dimensionless variables, § = s/L, v = 3! W, Xn = a4 X(Q, nw)
K K

and h = h/L, the equation of motion for the Fourier component n reads

Ry + Xn hp 4+ inw hy, =0 (21)
The boundary conditions at the base 5 = 0 are
hn,(0) =0, h,(0)=0 (22)

At the free end of the cilium, s =1 :

Bon(1) 4+ Xnha(1) + Thhn(1) =0, hy(1) =0 (23)
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with I', = X2/ (k — X» + inj@) where we have introduced the dimensionless
2

- q
arameters k = —k and 7 =
P K " L3£J_

.

3.3 Beating pattern

In the absence of any external flow the beating is symmetric and the Fourier
components n=0 and n=2 of h vanish for symmetry reasons. Close to the
oscillation bifurcation threshold, cilium beating is dominated by the first
Fourier component n = 1.

The solution of the linear equation of motion PJ] is written as the sum of
4 exponentials

hi(5) = Ay (€% + bie™ ™% + 1™ + dye” ) (24)

where the two inverse decay lengths are given by

(25)

The boundary conditions are explicitly discussed in appendix II. The
condition for existence of non vanishing solutions is given by equation J of
Appendix II. This is a complex equation, that gives therefore two conditions
which determine both the the critical value of the distance from equilibrium
where the oscillations start )., and the reduced oscillation frequency w.. The
critical value €. is a Hopf bifurcation threshold: there are no oscillations if
Q < Q. and cilium beating is only possible if > .. At the bifurcation
threshold, the amplitude of the oscillations vanishes. It is not possible to
calculate the amplitude of the oscillations above the bifurcation threshold
with the linear theory presented here. This requires a complete determination
of the third order terms in the equation of motion which goes far beyond the
scope of this work. This very complex problem is attacked in the work of
Hilfinger and Jiilicher (BQ).

An analytical determination of the Hopf bifurcation threshold and of the
beating frequency at the threshold does not seem to be possible analytically.
We therefore rely on a numerical solution, choosing reasonable values of the
various parameters.

We study a cilium of length L = 12um, which is the length of a Parame-
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cium cilium. It moves in a fluid of viscosity 7 ~ 4nyater = 4 1073 Pa.s, which
is higher than the water viscosity in order to take into account the proteins
above the cell body. We estimate x = 4 10722.J.m corresponding to 20 mi-
crotubules (B4). The other parameters are [ = 10nm, a = 20nm, U = 10kT,
K ~0,p=>510*n"! and A = 1Pa.s very similar to those of (). In order
to match the typical frequency observed in Paramecium, and to obtain a
realistic pattern of the beating, we take £, = 35.5n7 = 142 10~2Pa.s and we
choose k = 6.54Nm?, v = 7.31 Nyater, and v = 6005,

The value of &, is rather high, but it must include the hydrodynamic
interactions of the cilium with the cell surface (see (BJ)) which are not taken
into account if we use the classical friction per unit length of a rod.

The numerical resolution of Eq. [ then yields (€2, @) ~ (6.55 1079, 1294).
This corresponds to a critical beating frequency f. ~ 28 H z which is the typ-
ical value for Paramecium (fJ). The calculated beating pattern of the cilium
is shown on figure [l It corresponds to a wave (or a superposition of waves)
propagating from the base of the cilium to the free tip as observed experi-
mentally.

A detailed study shows that the equation giving the bifurcation threshold
and the beating frequency has several solutions. (Qﬁ"),wén)) with Q"™ >
Q™. A first guess would be that the axoneme starts beating at the lowest
threshold (Q((;l),w((;l)). However, it is known experimentally that during the
beating the deformation waves propagate from the base to the tip and not
from the tip to the base (Rd). The first two oscillating modes correspond
to waves propagating in the opposite direction. In order to be consistent
with the experiments we do not consider them here. A better choice of the
transition rates wy and wsy, would perhaps allow to justify this choice. The
direction of propagation of the wave is extremely sensitive to the boundary
conditions. We have allowed here basal sliding as suggested by some exper-
iments and we have imposed that the cilium is clamped at its base with an
angle ©» = 0. This also seems consistent with some experiments analyzed
in (20). The other extreme limit of a completely free cilium (a vanishing
external torque at the base) leads to a wave propagating form the base to
the tip for the first mode. We have tried to use an intermediate boundary
condition where the torque at the base is an elastic torque and varying the
related stiffness, however we were not able to obtain a beating pattern look-
ing like the experimental one. We therefore proceed, considering only the
third beating mode.
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The beating frequency f. varies with the viscosity of the medium. Ex-
perimentally, when methyl-cellulose is added in water, the viscosity increases
significantly. We predict here a decrease of f, with increasing external vis-
cosity as observed in the experiments of (R7) and in numerical simulations
(BY) (see Table[). We observe an approximate linear decrease of the beating
frequency when plotted against log(n/n,) as in the simulations performed in
(BY) (we find similar values for the frequency).

The effect of [Ca®T] on the beating pattern can also be studied qualita-
tively. As mentioned in the introduction, [C'a®"] has a strong influence on
the beating pattern. Calcium concentration variations are at the basis of
the shock responses of many organisms, changing the ciliary-type beating
into a flagellar-type beating in Chlamydomonas, or switching the directions
of effective stroke and recovery stroke in Paramecium, or in reversing the
direction of the "wave” propagation on the flagellum and thus reversing the
direction of the movement in Chritidia (B9).

This last example can be explained qualitatively within our approach. In
Chritidia, both directions are possible for the deformation wave propagation.
Calcium may affect the chosen mode of beating, allowing the system to choose
O and its tip-to-base pattern instead of oY,

On the other hand, calcium is also likely to change the attachment/ de-
tachment rate (and thus change the parameter v) or the boundary conditions
at the base of the cilium (and thus change k). In Chlamydomonas, calcium
has a contractile effect on the striated fibers connecting the basal bodies of
the two flagella (B(]). These changes induce a change in the beating pattern,
and may result in a switch from base-to-tip to tip-to-base wavelike propaga-
tion.

4 Left-right beating symmetry breaking

In the presence of a transverse external flow, the beating can no longer be
symmetrical as sketched on Fig. []. The cilium tends to beat faster and
quite straight in the direction of the flow, whereas it comes back slower and
more curved against the flow. This looks like a two-phases beating with an
effective and a recovery stroke.

If the beating is asymmetrical, the cilium exerts a force in the fluid that
can itself produce a flow. In a certain range of parameters, one can therefore
expect that a continuous flow is spontaneously generated by hydrodynamic
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interactions between cilia: an assembly of cilia, beating symmetrically, is
able to break spontaneously this left-right symmetry of the beating to create
a global flow. This idea of a spontaneous breaking spontaneously of the
left-right symmetry has already been suggested in (BI]) with a more abstract
system (called rowers) having two internal energy states.

In this section, we first study the effect of an external velocity imposed
by the experimentalist on the beating symmetry of a single cilium. We
then consider an array of aligned cilia and determine the conditions under
which this assembly of cilia breaks its left-right symmetry and generates a
global flow. Metachronal coordination between cilia naturally emerges from
hydrodynamic couplings as a local minimum of the oscillation threshold (2.

4.1 External breaking of the beating symmetry: cilium
submitted to an external flow

We impose an external flow V = Ve, along the x axis for simplicity. It

is found experimentally that the velocity above the cilia sub-layer is time

independent and uniform ([[J), justifying our choice. This flow is in this first

part externally fixed and we consider the limit of vanishingly small flows.
The force per unit length exerted by the cilium on the fluid f,[X(s)]

depends on the external velocity V.

FlX ()] = (gF T+ €vii @) (9, X (s) = V) (26)

The equation of motion [ reads then:

0% —V 4 §i<_mz; _af +97) + gi”wwawm (27)
iR

The boundary conditions are the same as in the absence of the neighboring
cilia and are given by Eq. [3, [3, [4.
Following the same procedure as for a cilium in the absence of flow, we
find the equation of motion for the deformation of the cilium h:
1

§L0h =6V =KW —af =&V (hh + 2—5”712) +O(h) (28)

The introduction of the external flow breaks the h — —h symmetry (or
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left-right symmetry) introducing in [[§ terms of zeroth and second order in h
in the equation of motion. The boundary conditions do not depend on the
external flow.

As above, we expand the deformation of the cilium A in Fourier compo-
nents in time. Using the same notations as before, the equation of motion of
the Fourier components can be written as

ceee = — _ V e ~2
h o+ Xn hn +inw h, =V 5(5 hh+h ), (29)
for n =0, 1,2 and where we have introduced the new dimensionless parame-
ters: I 5
ol £ 2
K §1

In the limit of small external velocities, we have neglected terms of order V2.

The equation for the first mode is identical to Eq. [ll, with the same
boundary conditions. At this order in V, the fundamental mode is not af-
fected by the external flow. Consequently, the oscillation threshold and the
beating frequency are the same as in the absence of flow and the Fourier
component h; is given by Eq. P4.

The zeroth Fourier component hy gives the average deformation of the
cilium. It is a solution of

Wo— K by =V = 5 [€ (ubi + Fih) + 1P (30)
with the same boundary condition as before. Nevertheless, hy does not vanish
at first order in velocity because of the broken symmetry due to the external
flow which is reflected in the right hand side of Eq. BJ. The complete
solution for hg is rather tedious to obtain and lengthy. We do not display it
here explicitly. We write it as the sum of two contributions; 7165 7 corresponds
to the curvature of the cilium under the flow V' at equilibrium, i.e. in the
absence beating (h; = 0), and Eg‘TP , corresponds to the corrections to this
equilibrium deformation due to the beating when there is enough ATP in the
medium hy = th h{'TP . If as above, we ignore the elasticity of the nexins
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(K —0):
hl(s) = 2—252(52 — 45+ 6)
BT = 5 AG(s) (31)

where A; is the amplitude of the first Fourier mode of the oscillation defined
in Eq. P4 and ¢¢(S) is a linear combination of exponentials. In the limit
V =0, ho = 0 as expected. The average deformation of the cilium is plotted
on Fig. [ which shows the bent shape under the action of the external flow.

The second Fourier component gives the asymmetry of the beating. It is
obtained from the equation of motion

cere 3 — V ) - 2

h2—|—)_(2 h2+2Z(I) h2:_§ [§ h1h1+h1] (32)
We do not give here the lengthy explicit expression of hy but we write it

as

o(5) = 5 A2 (5)

where ¢5(S) is a linear combination of exponentials. Here also, in the limit
V =0, hy = 0. The plot hy against 5 at different times on Fig. f, leads to a
complicated pattern.

The total deformation of the cilium h(3,t) ~ ho(5)+hy(5)e™<t4-hy(5)e? w4
c.c. is plotted against 5 at different times equally spaced on Fig. []. In order
to stress the fact that the beating is easier and faster in the direction of the
flow, and more difficult and slower against the flow, we have chosen rather
large values of the parameters, £ = 1, A, = 1/5 and V = 2, and we plot
h(s,t) for 5 € [0,0.2] on Fig. 1.

The external flow thus breaks the left-right symmetry in two ways. First
the average position of the cilium is not the vertical axis but a cilium curved
in the direction of the flow. Second, the beating itself is no longer left-right
symmetric: the cilium goes faster in the direction of the flow and comes
back slower against the flow. The beating pattern looks like a two-phases
beating with an effective stroke and a recovery stroke. The external flow may
therefore be an important factor in the asymmetry of the beating.

Another important result, is that, because the beating propagates a base-
to-tip deformation, the curved cilium exerts a finite average force in the fluid
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in the direction of the flow. Thus, if an external flow breaks the left-right
beating symmetry, the cilia create a force in its direction and can amplify
this flow. This is the basis of the left-right spontaneous symmetry breaking
that we discuss in the next section.

The external flow is not always the only source of symmetry breaking.
If it were so, a Paramecium would always go in the same direction once it
started moving. This is not the case, this organism is able to go backward
when it bumps into an obstacle thanks to the release of calcium that reverses
the beating.

The calculations of this section have been made with a velocity V uniform
over the cilium length. This is not consistent with the presence of a cell wall
where the cilium is anchored. Nevertheless, the main idea was to study how
an external flow can break the beating symmetry in the simplest way. Similar
calculations can be performed with a linearly varying velocity V=U Z; they
do not lead to any new physical effects.

4.2 Spontaneous breaking of the beating symmetry:
array of aligned cilia

We now consider a regular array of cilia on a cell body, beating all in the same
direction. Starting from a symmetrical beating, we show that the left-right
symmetry is spontaneously broken within a certain range of the parameters
controlling the beating due to the hydrodynamic couplings between cilia.

4.2.1 Equations of motion

For a cilium located in the zy plane at position 7, we call V[X (s)] the velocity
created by the other cilia at the point X (s) of arclength s. The equation of
motion of the cilium is similar to that obtained previously with an external
flow field and we write up to third order in h as

E.0h=—kh —af + &7V +OM0EVh) (33)
where the projection of the local external velocity on the cilium normal is

7V =V,(1—h%/2 = V.h + O(hY) (34)



Flow, alignment and metachronal waves among cilia 23

The boundary conditions for the motion are the same as in the previous
section.

The velocity 27][)?@(51)] created at arclength s; of the cilium ¢ by a cilium
7 is given by

—

5[ Ki(s)] = / ds; GIX(5:), X;(57)]. £ (5,)]

where G is the second order hydrodynamic tensor given by Eq. [| and f; =
fz?e“t is the force per unit of length created by the beating of the cilium j.

The total velocity at the arclength s; of the cilium ¢ is thus given by

VIXi(s)] = > [ Xi(s:)] = V(7% 51, 1) (35)

As in section B}, we consider the limit L < d and we only keep terms of
the second order in s/r, r being the distance between cilia so that

G.f= ([G.ﬁ].éx) &, + O(s3/r?)

This means that only the velocity along the x axis created by the component
fz of f plays a role and that we can ignore the other component V, of the
velocity. Using the notations of Fig. P, and noting that z = s + O(h?), we
obtain

. 3s; cos?0;; [* 5 8

As in the previous sections, we expand the velocity, the force and the
cilium deformation in Fourier modes in time. For simplicity, we only con-
sider here the first two Fourier components and do not look at the Fourier
component hy that characterizes the asymmetry of the beating. The Fourier
components of the velocity are related to the Fourier components of the force
by

3s; cos? 0, L
s =t S [ dsitles
JF#i I 0

The Fourier components of the force fo =< f, > and f; are calculated
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using the expression of £ and its average over one time period given by
Eq. B9 in the small movements approximation:

o = 2w(Es — )3 (2hohih — i /Osduhl(u)ho(u)]

i = wih (37)

where $ is the imaginary part of a complex number.

We assume that all cilia are identical, and that they all beat with the
same pattern. The only difference in the beating patterns of cilia j and 7 is
a possible phase difference that we call ¢;;. Defining

L
I, = / ds; fn(si)si
0
and dropping the index ¢, we write the Fourier components of the velocity as

31ys cos? 0;; 3K,
= s
27 o |75 — 752 2mnd?

(38)

311s cos?0;; .o 3K[{eiHI
V 1) Wij 1)
1(s) ; |7 — 7P ¢ 2mnd3 5

The geometrical constant IC is given by Eq. [] for a square lattice of cilia
spaced by d. The constant K[{y;;}| depends on the relative phases between
the cilia. If the phases ¢;; are randomly distributed, then K[{;;}] ~ 0 and
Vi = 0. There is no oscillating component of the velocity.

On the contrary, because we know that metachronism occurs in an array
of beating cilia, we choose a constant phase difference ¢ between two con-
secutive cilia in the direction of the plane of beating : ¢; j 11 —¢;; = . This
is the case for simplectic and antiplectic metachronal coordination. We only
consider those cases (and not laeoplectic or dexioplectic metachronism) here.
Experimentally, for Opalina (simplectic) and Pleurobrachia (antiplectic) that
both have planar beatings, no metachronal wave in the transverse direction
of the beating can be seen (P9).

We stress that we do not impose the phase difference ¢. The system is
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free to adjust its phase. We then write KC[{y;;}] = K(p) with

k2€ikgo

Ke)= > [(CESEEE (39)

(k,1)#(0,0)

Note that /C(0) = K. The function K(y) is plotted on Fig. B for a lattice of
10° cilia.

Note that for two particular values of ¢ that we denote by ¢s and ¢,
this function vanishes, C(¢s) = K(p,) = 0, as in the case where the relative
phases of the cilia are randomly distributed. This corresponds to a constant
flow with no oscillating component.

We now define the two dimensionless velocities U and u(p) by

3 3
b GlP3KLL (o) = € L3 3K (o), L

40
Kk 2mnd? Kk 2mnd? (40)

The equations of motions of the Fourier components hy and h; can then be
written as

ho —Khy = Us
;—7,1 +)_(17ll+i@}_ll = ?_L(QO)E (41)

In writing Eq. [, we only kept the term Us = O(h?) that breaks the
left-right symmetry and that lead to hy # 0, ignoring any other term that
would not create a macroscopic motion.

4.2.2 Beating pattern and metachronal waves

We first study the equation of motion of the first Fourier mode in Eq. [,
which corresponds to the oscillatory motion of the cilium. The right hand
side of this equation of motion does not vanish due to the existence of an
oscillatory external flow due to the other cilia. Note however that we have
not treated in details the hydrodynamic interactions for one cilium and that
we have only taken them into account through the two local friction coeffi-
cients §; and . We are here more interested in the qualitative aspects of
the coordination between cilia than in the accurate calculation of the flows
created by each cilium.
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The general solution of Eq. ] can be written as h; = h? + h¥ with
77];(5) = Alemg + Bleiqlg + Cle‘”g + Dle*@g
- U
CHORELCE (42)

w

It is convenient to rewrite the external velocity as u(y) = iwCyy(p) with

3K(p)6L L?
2mnd3

() = C, = /01 ds hi(5)5 (43)

The constant C; can be determined self-consistently as it varies linearly with

hy. We obtain B .
hi(5) =) A€ + Blai, )3) (44)

with

o) g —en 1
1—7(v)/3 q
The effect of the hydrodynamic interactions between cilia is embodied here
in the coefficient v(¢). The variation of this coefficient with the phase dif-
ference ¢ is similar to that of C(¢). The limit where v(¢) = 0, leads back
to the previous situation were one cilium is beating alone; it may however
correspond to the finite phase shifts between cilia ¢ = @, or @,.

The four boundary conditions on h; can as before be written in a ma-
trix form and the oscillation threshold and the beating frequency can be
determined as the zeros of a determinant insuring the consistency of this
matrix equation. This leaves an unknown amplitude of the beating motion
that could only be calculated by expanding the equation of motion to higher
order. The beating pattern can then be written as

B(qi, @) = (45)

}_Ll(g) = A1 [5¢<ql, §) -+ b15¢<—ql, §) —+ 015¢<QQ, §) + dl(‘:@(—q% 5)]

with )
590(q7 §) = eqs + ﬁ(qv So)g

The values of both the oscillation threshold (). and the frequency w. de-
pend on the phase shift between cilia ¢, through (). We first discuss the
variation of this bifurcation point with the constant v(y) which is a more
convenient variable. On Fig. P, we plot €. and the critical frequency f.
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against .

There is a local minimum of Q. for v* ~ —1.15 and a local maximum for
~v =~ 1. The beating frequency f., is a decreasing function of ~.

We here need a selection criterion that determines the value of the phase
shift between cilia. The simplest conjecture for the selection criterion is that
the system chooses the local minimum of €2, corresponding to v* ~ —1.15.
This corresponds to a metachronal wave propagating in the assembly of cilia,
as widely confirmed by experimental observations ((R6, B7) for instance).

With this selection criterion, the oscillation threshold is €. ~ 6.538 10~
and the critical frequency is f. ~ 31Hz. The hydrodynamical couplings
between cilia decrease the oscillation threshold ). and increase the critical
frequency f.. The coordination between cilia favors cilium beating by creat-
ing a metachronal wave corresponding to v < 0.

The beating pattern is slightly changed as shown on Fig. [[(J where we have
plotted 2R[h;e™!] at different time steps with the same amplitude A; = 1/70.

The phase difference ¢* between two consecutive cilia corresponding to
~v* ~ —1.15 depends on the values of the parameters. If we take n = 4n,, and
d/L =1 so that our calculations remain consistent and in order to be close
to what is observed experimentally, then IC(¢*) ~ —0.07 which yields ¢* ~
+1.37 ~ £0.447m. This value corresponds to a wavelength A\ = 4.6d ~ 5d for
the metachronal waves or approximatively 6 cilia, which is the correct order
of magnitude ( the wave length is 7 cilia in (27)).

4.2.3 Global flow and left-right symmetry breaking

We now discuss the left-right symmetry breaking and the appearance of
a global flow. We solve Eq. []] for the zeroth Fourier component of the
deformation, with the same boundary conditions as before, in the limit K —

0. We obtain
ho(3) = 01— 54+ 2 (46)
0= "6 2 " 20

The cilium oscillates around a curved average position hy # 0 if U # 0,
if there exists a global flow. We show below that this is possible within a
certain range of parameters.
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We define the two dimensionless functions

_ _}_l()(g) - 52 5 5
B === = 5l-375)
v
() =" 01,9 + 018 01,5) + ol F) + i)
1

The determination of the average velocity U requires the calculation of the
integral of I, defined in Eq. B1; we obtain

[0 = 2@¢A12U<§J_ - fH)st (47)
with . .
c, = / ds S[2H,H HE — / 45 Ho ] (48)
0 0
which can be numerically calculated knowing H, and H;. C, depends on ¢

through H;. Using the value of ¢ corresponding to metachronal waves, we
obtain

C, ~ 345

A self-consistent equation is then be obtained for the average velocity U

BKC, (€1 — §)L°
™nd3

U= Ao U (49)
If C, < 0 this equation has the only solution U = 0 and no global flow can
exist, the left-right symmetry is not broken. If C, > 0 this equation can have
two extra non zero solutions U # 0 corresponding to a global flow along the
x axis given by

<V(s5,t) >=Vy(5) =Us

and the left-right symmetry is then broken.
The condition for appearance of a global flow is

3ICCLP.,412 §1—¢ £ LAw L_3
0 n ko d3

> 1 (50)

As for the oscillation amplitude, our calculation only gives the threshold of
appearance of the global flow. A determination of the actual value of the
velocity would require an expansion of the equations of motion to higher
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orders.

5 Discussion and concluding remarks

We have studied in this paper how hydrodynamic interactions between cilia
contribute to the coordination of the beating motion in ciliated cells. Three
major effects have been studied, the spontaneous alignment of an array of
cilia, the breaking of the symmetry of the beating and the appearance of a
macroscopic flow and the existence of metachronal waves. We have shown
for all these problems that there exist a dynamic transition where symmetry
is broken and where a coordination between the beating of neighboring cilia
appears.

Our work is based on several simplifying approximations that we believe
make the analysis tractable analytically but that should preserve the essential
physical effects. We only studied hydrodynamic interactions between distant
cilia that can be treated by introducing simple distribution of forces in the
fluid to describe the motion of one cilium. This is rarely true experimentally
but the hydrodynamic interactions between closer cilia are even stronger and
strongly favor the transitions that we study. We have replaced the complex
architecture of the axoneme by two microtubules sliding against one another
under the action of dynein motors which are described by a two state model
for molecular motors as done earlier by Camalet and Jiilicher. This is a rather
sketchy description but it allows a calculation of the internal forces that drive
the cilium motion and it gives some physical insight. Future work will have to
take into account the nine-fold symmetry of the axoneme and the influence
of its central doublet. Finally, we have only considered small amplitude
beating. This is sufficient to determine the oscillation threshold but it does
not allow a quantitative comparison between the calculated beating and the
experimental one that often occur far from any threshold. All our results are
qualitatively consistent with the experimental observations and for example
the beating frequency is close to both the experimental ones and to the ones
obtained in numerical simulations (B2).

The essential result of our work is the natural emergence of metachronal
waves and of a macroscopic flow created by an array of cilia if the ampli-
tude of beating is large enough. The criterion for appearance of the global
uniform component of the flow given by Eq. b( requires only very small am-
plitudes (A; > 5 107%) which means that as long as the left-right symmetry
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is broken, a macroscopic flow should appear. An essential ingredient for the
macroscopic flow to appear is that the constant C, defined in Eq. [§ be
positive so that the average force created by one cilium favors the flow and
does not oppose it (which occurs if ¢ = 0).

As long as we allow a constant phase shift between neighboring cilia we
observe metachronal coordination as a consequence of hydrodynamic inter-
actions and of the internal beating mechanism of the cilium. A selection
criterion is then needed for these waves. We have conjectured that the ex-
isting metachronal wave is the one that corresponds to the local minimum
of the oscillation threshold. A more complete calculation that goes far be-
yond the scope of this work would have to consider the nucleation of the
metachronal wave and to determine the fastest growing wave. One of the
interesting predictions of our calculation is that the existence of metachronal
waves leads to a flow which is far more stationary than if all the cilia were
beating in synchrony. The oscillating component of the flow is proportional
to the constant K(p) (see Eq. E0) which has a much smaller value when
metachronal waves exist (IC(¢*) ~ —0.07) than if all cilia are beating in syn-
chrony (K(0) = K ~ 4.52). Metachronism thus contributes to the creation
of a very steady movement of swimming organisms that could for example
make easier the detection of the organism environment.

Our most important conclusion is the idea that metachronism and the
existence of macroscopic flow around ciliated organisms can exist as self-
organized phenomena driven by hydrodynamic couplings. We must stress
however that other mechanisms could be at the origin of these cooperative
effects.

Aknowledgements : We thank A. Hilfinger, P. Dupuis-Williams, N.
Spassky, M. Cosentino Lagomarsino, J. Prost and M. Bornens for useful
discussions.

Appendix I: Average force created by a single
beating cilium in a viscous fluid

The aim of this appendix is to calculate the force and momentum averaged
over one time period created by a general periodic beating of a single cilium.
We make two assumptions: the beating is planar and there is a stationary
external flow. In section [], the average flow is created by the neighboring
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cilia.

We call ¢ the angle between the plane of beating and the direction of
the external flow V that we take along the = axis. The cilium of length L
is located at the origin and it is fixed at its basis. We denote by h(s,t) the
distance between a point at arclength s on the cilium and the z axis at time
t and by Z(s,t) the distance between a point at the arclength s on the cilium
and the zy plane. The angle between the tangent vector ¢ to the cilium and
the z axis is denoted by (s, t) (see Fig. [[1]). The coordinates of the tangent
vector are £ = (cos ¢ sine), sin ¢sine), cosvp). The angle v is related to the
cilium deformation h by sin ¢y = dsh

The point on the cilium at the arclength s is located at position X =
(x,y, z), with:

r = cosgb/sdu sin(u,t) = h(s,t)cos ¢
0
y = sinqb/s du siny(u,t) = h(s,t)sin¢
0
— d 1) = Z(s,t
z /0 u cos(u,t) (s,1)

The velocity of this point is calculated by derivation with respect to time,
7=0,X.

The force per unit length exerted by the cilium on the fluid expressed in
the Frenet basis (, 7, b) is:

-,

f= (i T+ it it + €06 b)(T—V) (51)

where §| and §; are the two local friction coefficients for tangential and
normal motion respectively. We decompose this force as a sum of two forces,
f_be“t depending on the local velocity and ff low depending on the external
flow velocity and calculate the average force over a beating period < f > =

1 7. =
?fo dt f(t).
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The average beating force < fj’e“t > can be explicitly calculated

< fheat > = (¢ - §||)602S¢ /05 du < Oyp(u) cos A(u, s) >
< fé’eat > = (&L— £||)Si121¢ /Os du < Opb(u) cos A(u, s) >
< fleet > = (¢ — §||)% /08 du < Oy(u) sin A(u, s) >
Alu,s) = 2¢(s) — ¥(u) (52)

This force is proportional to (§; — &) as mentioned in section B. The dif-
ference between the two local friction coefficients £, and | is at the basis of
the flow generation by an assembly of beating cilia. Indeed, this is because
the shape of the beating in the effective stroke is different from that in the
recovery stroke that a force can be exerted in the fluid on average.

The average force due to the external flow is

< fllov > = (& —¢)Veos? ¢ <sin®¢p > —€V
<fgl°w > = (&L — &)V cosgsing < sin*¢p >
< fllov > = (& — &)V <sinycosyp >

It is important to note that < f/%(s) >< 0 : this force opposes the flow.
The last term of f/1°% is a static term, whereas the first positive term depends
on the beating pattern and reduces the effects of this static term. In an
assembly of cilia, the external velocity is due to the beatings of the other
cilia which are themselves created by the forces on these cilia.

In section P}, we introduce a viscous coefficient « which characterizes the
tendency for a cilium, beating in a plane at an angle ¢ with the flow, to
align with the other cilia. A torque along the z axis due to the flow M/lw =
—aU sin ¢ is exerted on this cilium. We now express «a as a function of the
cilium beating pattern. We call m, = —()Z' X f).@ the torque along z exerted
by the fluid on the cilium per unit of length (the minus sign is due to the
fact that f is the force exerted by the cilium on the fluid). The local torque
per unit length exerted by the fluid on the cilium is

m.(s,t) = —E,Vh(s,t)sing = —&, Lh(s,t)Z(s,t)U sin ¢

where we have used the dimensionless coordinates § = s/L, h = h/L. The
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total momentum along z averaged over time, is obtained by integration
1 _ —
M, = —@LQ/ ds < h(s,t)Z(5,t) > Using (53)
0
This defines the friction coefficient a:
1
0—¢ L / d5 < (50 Z(5.1) > (54)
0

which can be calculated if the motion of the cilium is known.

Appendix 11

In this appendix, we derive the equations satisfied by the Fourier components
of the deformation A of a single beating cilium and we determine the threshold
of spontaneous oscillations of the cilium.

Fourier mode expansion

Axoneme beating is periodic and can be studied by expansion in Fourier
modes in time of all the physical parameters:

h(s,t) = hn(s)e™

The definition is similar for the other parameters. Starting from Eq. [L7] and
Eq. [[4, we obtain the Fourier components:

1 l
fu(s) = —(K +inw\)A, — 7/ d¢ P, (£)0:W,
0
1 L

In order to determine the non linear relationship between f and A, we
follow the lines of (BJ) and write:

Fo= 1O 3T fPOA+ YT 8 A, + O(AY)
l Im
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The coefficients f,S’ill ne can be calculated by first rewriting Eq. [[q as

w
P, = - — l N O:P,
n Rén,O l/(l + Q) % 5n,l+m laf m (56)

where

wa(§) 14 Qsin?(m€ /1)

W1 + Wo P 1—|—Q

is the static probability (w = 0), corresponding to a medium with not enough
ATP to generate the beating. Inserting the ansatz

Py =Réo+ > PN+ PDAA, +O(AY)
l

.....

k _ (k—1)
Pr(mzl ..... nE m Z nk(sn nkerang N1 yeeey N1

that now allows us to calculate fn O

Our choice of a symmetric potential Wy imposes that a change A — —A
must change f — —f. This symmetry imposes thus f**) = 0. The only
non-vanishing coefficient at linear order is fy(;) = Xx(Q, nw)dy,; with

72 pU 1Qw

X(Qw) = —K — Nw + 202 (14+Q)(1+ Qv +iw)

(57)

The force and the sliding displacement are thus related by
fo = x(Q,1w) A, + O(|AP) = X(2,10)(Don + ahy + O(Ih[*))  (58)

This relationship models the response of the molecular motors to the
bending of the axoneme.
From Eq. b we obtain

X(©, nw)a
k+inw — x(Q, nw)L

Ao, = ha(L) + O(|R) (59)

We solve the equation of motion of the cilium (Eq[[§) for each order of the
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Fourier expansion.

Equation of motion of the Fourier modes

We look for an approximate solution of the form
h(s,t) =~ ho(s) + hi(s)e™" + hy(s)e*™ + c.c.

At linear order, there is no coupling between the modes and using Eq.[[§, the
equation of motion of the n!* Fourier component reads

W@ nw)a?s;  nwes

hon+ hy, + 1

K

By =0 (60)

It is convenient to introduce the dimensionless variables:

L* a’L?
S b= One) = (0, mw)

_ 2 i Qw
0,0) = —K — Nio + —
x(8,@) Wt U+ iw
with
B a2L2 B a2 5LL4 _ a2L2
K = A= A U= U=
K §LL? Y K kI3

We have anticipated here the fact that Q < 1.
Defining, h = h/L, and denoting by a dot the derivation with respect
to §, we obtain the equation of motion Eq. PI] and the boundary conditions

given by Eq. PR3

Beating motion

In the absence of external flow only the first Fourier component of h does
not vanish and satisfies the equation of motion :

hi+x1 hi+iohi =0 (61)
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where the relevant dimensionless parameters are
=2
_ _ - = X1
= v(Q,© [ =—2
=X A

The boundary conditions are given by Eq. P and B3 for n = 1. The solution
to this linear equation is a superposition of exponentials given by Eq. R4.
The four boundary conditions on h; can be written in a matrix form:

M, (Q,©).A; =0 (62)

where A; is the vector made by the amplitudes of the exponentials in Eq.
P4 and the matrix M is given by

1 1 1 1
- q1 —1 q2 —q2
M,(Q,w) =
1< ) }—(Ch) F(_Ch) }—(CJQ) f(—QQ)
q%€Q1 q%efth q%e‘” q%e"”
with )
F(q) = e*(¢® + x1g + T1)

The system [2 has non trivial solutions only if
det M;(Q,w) =0 (63)

Since Eq. Bq is a complex equation, it determines both the oscillation
threshold €2, and the dimensionless beating frequency ..
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Tables

Table [ll.

Decrease of the beating frequency with increasing external viscosity as ob-

served in experiments (7). Comparison with the simulations done in (P§)
for one single cilium.

External viscosity Critical frequency f, Simulations
Nw 28Hz 29H z
2N 19H 2 17Hz
3N 14H = 12H 2

Table 1: Viscosity and beating frequency
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Figure Legends

Figure [I.

a) Beating pattern of a single cilium showing the Effective Stroke (ES), where
the fluid is efficiently propelled, and the slower Recovery Stroke (RS), where
the cilium comes back close to the surface to minimize the viscous effects. b)
Effective force in the fluid f applied at a height h above the cell membrane,
to mimic the cilium beating.

Figure [2.

Square lattice of cilia with a distance d between two neighboring cilia. Cilium
j exerts on the fluid a force f in the direction ¢;; 0;; = (€;, €;;) where €;; is
the unit vector from cilium 5 to cilium .

Figure B.

Two filaments (full curves) X and X’ at constant separation a are rigidly
connected at the bottom end where s = 0. Internal forces f(s) are exerted
in opposite directions, tangential to the filaments. The displacement A at
the tip is indicated.

Figure H.

Approximate cilium deformation h(s,t) at different times steps (correspond-
ing to different colors) during a beating period. The beating is symmetrical
with respect to the vertical axis. Deformations are propagating from base to
tip. With A; = 1/70 the maximum deformation is hyq, =~ 0.14.

Figure .

Effect of an external flow V on the beating of a single cilium. a) Symmetrical
beating. b) broken symmetry due to the external flow.

Figure [.

a) Average position of a cilium which is curved in the direction of the
flow, ho(s) =< h(s,t) >. b) Second Fourier component of the deforma-
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tion 2R[h(5)e*™’] at different times during a beating period. The scale is
dilated: |hs| < 0.1 with the parameters £ =1, A; = 1/70 and V = 1.

Figure [7.

Beating pattern at the basis of the cilium (5 € [0,0.2]) with the parameters
€=1, A =1/5and V = 2 : the cilium beats faster in the direction of the
flow and slower in the opposite direction around a curved average position.

Figure 8.

K(¢) over one period (p € [0,27]). Some remarkable values: K(0) = K00 >~
4.52; K(m) = Kpin ~ —2.32; K(ps) = K(pa) = 0 with ¢5 ~ 1.34 and
Ya >~ 4.94.

Figure @.

Oscillation threshold 2. and critical frequency f. as functions of ~ for v €
[—3,2]. Q. has alocal minimum that corresponds to the existence of metachronal
waves.

Figure [I0.

Beating pattern of a cilium in an array in the presence of a metachronal wave.
The pattern is different from that of an isolated cilium mostly around the
basis. The first Fourier component 2R[h;e**] at various time steps during a
period is plotted. The parameters are A; = 1/70; the maximum deformation
iS hynas = 0.15.

Figure [L1].

Sketch of a beating cilium in a plane at an angle ¢ with the direction of the
external flow V.
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