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Abstract. We investigate optimal control problems governed by semilinear elliptic variational

inequalities involving constraints on the control. We present an augmented Lagrangian method

coupled with a Gauss-Seidel type splitting to solve a relaxed problem which is a good approxi-

mation of the genuine one. Implementation is based on SQP methods.

1. Introduction

The aim of this paper is to describe an efficient numerical method to solve an optimal control prob-

lem governed by a semilinear elliptic variational inequality. It is known that Lagrange multipliers

may not exist for such problems [7]. Nevertheless, providing qualifications conditions, one can ex-

hibit multipliers for relaxed problems. These multipliers usually allow to get optimality conditions

of Karush-Kuhn-Tucker type. It is an essential tool to develop numerical algorithms, especially

Lagrangian ones (coupled or not with SQP methods).

In this paper we describe a “continuous” algorithm and we give a convergence result. We

do not care about the discretization process. We shall discuss finite dimensional methods for the

discretized problem in a forthcoming paper together with a comparison with the method we present

here.

Here we have to deal with the infinite dimensional frame and nonlinear problems: the study

is more delicate but we get results that do not depend on the discretization process. The paper

is organized as follows. We first describe the problem and recall some important results about

Lagrange multipliers. Next section is devoted to the description of the algorithm, namely an aug-

mented Lagrangian method with a Gauss-Seidel splitting as in [3, 6] and we give a convergence

result; then, we describe different implementations for subproblems. In the last section, we discuss

some numerical examples and propose some conclusions.

2. Problem Setting

Let Ω be an open, bounded subset of R
n (n ≤ 3) with a smooth boundary ∂Ω. We shall denote ‖ ·‖

the L2(Ω)-norm, 〈·, ·〉 the duality product between H−1(Ω) and H1
o (Ω) and (·, ·) the L2(Ω)-inner

product. Let us set

K = {y | y ∈ H1
o (Ω) , y ≥ ψ a.e. in Ω} . (2.1)

where ψ is a H2(Ω) ∩H1
o (Ω) function. It is a non empty, closed, convex subset of H1

o (Ω).
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In the sequel g is a non decreasing, C1 real-valued function such that g′ is bounded, locally

Lipschitz continuous and f belongs to L2(Ω). Moreover, Uad is a non empty, closed, convex subset

of L2(Ω).

For each v in Uad we consider the following variational inequality problem : find y ∈ K with

a(y, z) +G(y) −G(z) ≥ (v + f, y − z) ∀z ∈ K . (2.2)

where G is a primitive function of g, and a is a bilinear form defined on H1
o (Ω) ×H1

o (Ω) by

a(y, z) =

n
∑

i,j=1

∫

Ω

aij

∂y

∂xi

∂z

∂xj

dx +

n
∑

i=1

∫

Ω

bi
∂y

∂xi

z dx+

∫

Ω

c y z dx , (2.3)

where aij , bi, c belong to L∞(Ω). Moreover, we assume that aij belongs to C0,1(Ω̄) (the space of

Lipschitz continuous functions in Ω) and that c is nonnegative. The bilinear form a(., .) is continuous

on H1
o (Ω) ×H1

o (Ω):

∃M > 0, ∀(y, z) ∈ H1
o (Ω) ×H1

o (Ω) a(y, z) ≤M ‖y‖H1
o
(Ω)‖z‖H1

o
(Ω) (2.4)

and is coercive :

∃ν > 0 , ∀y ∈ H1
o (Ω), a(y, y) ≥ ν‖y‖2

H1
o
(Ω) . (2.5)

We set A the elliptic differential operator from H1
o (Ω) to H−1(Ω) defined by

∀(z, v) ∈ H1
o (Ω) ×H1

o (Ω) 〈Ay, z〉 = a(y, z) .

For any v ∈ L2(Ω), problem (2.2) has a unique solution y = y[v] ∈ H1
o (Ω). As the obstacle function

belongs to H2(Ω) we have an additional regularity result : y ∈ H2(Ω)∩H1
o (Ω) (see [1, 2]). Moreover

(2.2) is equivalent to

Ay + g(y) = f + v + ξ , y ≥ ψ , ξ ≥ 0 , 〈ξ, y − ψ〉 = 0 , (2.6)

where “ξ ≥ 0” stands for “ξ(x) ≥ 0 almost everywhere on Ω”. The above equation is the optimality

system for problem (2.2) : ξ is the multiplier associated to the constraint y ≥ ψ. It is a priori an

element of H−1(Ω) but the regularity result for y shows that ξ ∈ L2(Ω), so that 〈ξ, y − ψ〉 =

(ξ, y − ψ).

Applying the simple transformation y∗ = y − ψ, we may assume that ψ = 0 in the sequel.

Of course functions g and f are modified as well, but their generic properties ( local lipschitz-

continuity, monotonicity) are not changed . Therefore we keep the same notations. Now, let us

consider the optimal control problem defined as follows :

min

{

J(y, v)
def
=

1

2

∫

Ω

(y − zd)
2 dx+

α

2

∫

Ω

(v − vd)
2 dx | y = y[v] , v ∈ Uad , y ∈ K

}

,

where zd, vd ∈ L2(Ω) and α > 0 are given quantities.

This problem is equivalent to the problem governed by a state equation (instead of inequality)

with mixed state and control constraints:

min

{

J(y, v) =
1

2

∫

Ω

(y − zd)
2 dx+

α

2

∫

Ω

(v − vd)
2 dx

}

, (P)

Ay + g(y) = f + v + ξ in Ω , y = 0 on Γ , (2.7)
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(y, v, ξ) ∈ D, (2.8)

where

D = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, (y, ξ) = 0}. (2.9)

There exists at least an optimal solution (ȳ, v̄, ξ̄) ∈ (H2(Ω) ∩ H1
o (Ω)) × L2(Ω) × L2(Ω) to this

problem (see [1, 2]). We cannot ensure the existence of Lagrange multipliers. This problem is a

non qualified problem (in the usual KKT sense) because the interior of the feasible set D is usually

empty even for weak topology. One can find in [7] finite and infinite dimensional counterexamples.

The problem turns to be qualified if the bilinear constraint (y, ξ) = 0 is relaxed in (y, ξ) ≤ ε. So,

following [2] we rather study the problem

(Pε)















min J(y, v)

Ay + g(y) = f + v + ξ in Ω, y ∈ H1
o (Ω),

(y, v, ξ) ∈ Dε

Dε,R = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, (y, ξ) ≤ ε, ‖ξ‖ ≤ R }

where R is fixed, such that R ≥ ‖ξ̄‖ and ε > 0. We denote Vad = { ξ ∈ L2(Ω) | ξ ≥ 0, ‖ξ‖ ≤ R }

which is obviously a closed, convex subset of L2(Ω). We proved in [2] that problem (Pε) has at

least one optimal solution (yε, vε, ξε). Moreover, for ε→ 0, we have that yε converges to ỹ strongly

in H1
o (Ω), vε converges to ṽ strongly in L2(Ω), ξε converges to ξ̃ weakly in L2(Ω), where (ỹ, ṽ, ξ̃)

is a solution of (P). Moreover, we can ensure existence of Lagrange multipliers for the relaxed

problem. For this purpose, we recall here the key result of [2] (there is a more general (abstract)

result in the quoted paper):

Theorem 2.1. Let (yε, vε, ξε) be a solution of (Pε) and assume −(f + wε) belongs to the L∞-

interior of Uad, where wε = g′(yε)yε−g(yε) is the non linearity gap at the solution. Then Lagrange

multipliers (qε, rε) ∈ L2(Ω) × R
+
o exist, such that

∀y ∈ K̃ (pε + qε, [A+ g′(yε)](y − yε)) + rε (ξε, y − yε) ≥ 0 , (2.10)

∀v ∈ Uad (α(vε − vd) − qε, v − vε) ≥ 0 , (2.11)

∀ξ ∈ Vad (rεyε − qε, ξ − ξε) ≥ 0 , (2.12)

rε [ (yε, ξε) − ε] = 0 , (2.13)

where pε is given by

A∗pε + g′(yε) pε = yε − zd on Ω, pε ∈ H1
o (Ω) , (2.14)

and

K̃ = { y ∈ H2(Ω) ∩H1
o (Ω) | y ≥ 0 in Ω } .

Note that the adjoint equation (2.14) has a unique solution, since the adjoint operator A∗ of

A is also coercive and continuous and g′(yε) ≥ 0.

From now, we focus on (Pε) to get a numerical realization via different algorithms. There are

two difficulties due to the different nonlinearities of the problem. The first one comes from the

state equation which is semilinear, but we have good hope to solve it with SQP methods since the

function g is non decreasing. The second one comes from the bilinear mixed state-control constraint
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(y, ξ) ≤ ε which is not convex. Anyway, we have already dealt with this kind of constraint in [3].

The challenge is to take both nonlinearities into account.

From now we assume the existence of Lagrange multipliers, that satisfy the optimality system of

Theorem 2.1. We may choose for example Uad = L2(Ω) or (see [2])

Uad = [ a, b ] with a+ 3 + ε ≤ b− ε, ε > 0, −b+ ε ≤ f ≤ −a− 3 − ε and g(x) = −
1

1 + x2
.

In this case 0 ≤ wε ≤ 3 so that −(f + wε) ∈ [ a+ ε, b− ε ] ⊂ IntL∞(Uad).

3. A SQP-Augmented Lagrangian Method

3.1. An Augmented Lagrangian Algorithm

It is easy to see that the multipliers given by Theorem 2.1 are associated to a saddle point of

the linearized Lagrangian function of problem (Pε). More precisely, let us define the Lagrangian

function :

Lε(y, v, ξ, q, r) = J(y, v) + (q, Ay + g(y) − f − v − ξ) + r[(y, ξ) − ε] ,

on (H2(Ω) ∩H1
o (Ω)) × L2(Ω) × L2(Ω) × L2(Ω) × R, and the augmented Lagrangian function :

Lc
ε(y, v, ξ, q, r) = Lε(y, v, ξ, q, r) +

c

2
‖Ay + g(y) − f − v − ξ‖2 +

c

2
[(y, ξ) − ε]2+ ,

where s+ = max (0, s) and c > 0.

Remark 3.1. We could replace the augmentation term [(y, ξ) − ε]2+ by any other augmentation

function with the same properties. For example, one could set

Lc
ε(y, v, ξ, q, r) = J(y, v) + (q, Ay + g(y) − f − v − ξ) + max(−

r

c
, (y, ξ) − ε)

+
c

2
‖Ay + g(y) − f − v − ξ‖2 +

c

2
[max(−

r

c
, (y, ξ) − ε)]2 ,

as in [11] or [14]. This does not change the forthcoming conclusions.

If (yε, vε, ξε) is a solution to problem (Pε), then Theorem 2.1 yields that

∀(q, r) ∈ L2(Ω) × R
+
o Lc

ε(yε, vε, ξε, q, r) ≤ Lc
ε(yε, vε, ξε, qε, rε) = J(yε, vε)

∀(y, v, ξ) ∈ K̃ × Uad × Vad ∇y,v,ξL
c
ε(yε, vε, ξε, qε, rε)(y − yε, v − vε, ξ − ξε) ≥ 0 .

(3.15)

Of course, we cannot conclude that (yε, vε, ξε, qε, rε) is a saddle-point of Lc
ε since we have a

lack of convexity. Anyway, if the bilinear constraint (y, ξ) ≤ ε were inactive, the problem would

be locally convex and we could use the classical Uzawa algorithm to compute the solution. We

use this remark and decide to use a variant of the Uzawa algorithm, even if we have no convexity

property. In order to get a fast convergence behavior and an efficient implementation we decide to

use a Gauss-Seidel type splitting as in [3, 6, 10].

This gives the following algorithm which convergence will be justified by fixed point argu-

ments.
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Algorithm A

• Step 1. Initialization : Set n = 0, choose qo ∈ L2(Ω), ro ∈ R
+
o , (v−1, ξ−1) ∈ Uad × Vad.

• Step 2. Compute

yn = arg min
{

Lc
ε(y, vn−1, ξn−1, qn, rn) , | y ∈ K̃

}

, (3.16)

vn = arg min {Lc
ε(yn, v, ξn−1, qn, rn) , | v ∈ Uad } , (3.17)

ξn = arg min {Lc
ε(yn, vn, ξ, qn, rn) , | ξ ∈ Vad } . (3.18)

• Step 3. Compute

qn+1 = qn + ρ1 [Ayn + g(yn) − vn − f − ξn] where ρ1 ≥ ρo > 0 , (3.19)

rn+1 = rn + ρ2 [(yn, ξn) − ε]+ where ρ2 ≥ ρo > 0 . (3.20)

Note that, if we do not care about constant terms

Lc
ε(y, vn−1, ξn−1, qn, rn) =

1

2
‖y − zd‖

2 + (qn, Ay + g(y)) + rn (y, ξn−1)

+
c

2

[

‖Ay + g(y) − vn−1 − f − ξn−1‖
2 + [(y, ξn−1) − ε]2+

]

,

and

Lc
ε(yn, vn, ξ, qn, rn) = (rnyn − qn, ξ) +

c

2

(

‖Ayn + g(yn) − vn − f − ξ‖2 + [(yn, ξ) − ε]2+
)

.

In addition, problem (??) of Step 2 is equivalent to

vn = πUad
([vd + qn + c (Ayn + g(yn) − f − ξn−1)]/[α+ c])

where πUad
denotes the L2(Ω)-projection on Uad.

The above algorithm A is based on the most “natural” penalization of the inequality con-

straint. We could replace this penalization by the one described in Remark 3.1.

3.2. A partial convergence result

Algorithm A may be interpretated as a successive approximation method to compute the fixed-

points of a function Φ defined below. We are able to prove that Φ is locally Lipschitz continuous but

we cannot estimate precisely the Lipschitz constant. Our feeling is that an appropriate choice of

parameters allows to make this constant strictly less that 1, so that Φ is contractive. To interpretate

Algorithm A, we define functions ϕi as follows :

(i) ϕ1 : L2(Ω) × L2(Ω) × L2(Ω) × R
+
o → H2(Ω) ∩H1

o (Ω) :

ϕ1(v, ξ, q, r) = y∗ = Arg min
{

Lc
ε(y, v, ξ, q, r) | y ∈ K̃

}

. (3.21)

(ii) ϕ2 : H2(Ω) ∩H1
o (Ω) × L2(Ω) × L2(Ω) → L2(Ω) :

ϕ2(y, q, ξ) = v∗ = πUad

(

vd + q + c(Ay + g(y) − f − ξ)

α+ c

)

. (3.22)

(iii) ϕ3 : (H2(Ω) ∩H1
o (Ω)) × L2(Ω) × L2(Ω) × R

+
o → L2(Ω) :

ϕ3(y, v, q, r) = ξ∗ = Arg min {Lc
ε(y, v, ξ, q, r) | ξ ∈ Vad } . (3.23)



6 M. Bergounioux and M. Haddou

(iv) ϕ4 : (H2(Ω) ∩H1
o (Ω)) × L2(Ω) × L2(Ω) × L2(Ω) × R

+
o → L2(Ω) × R

+
o :

ϕ4(y, v, ξ, q, r) = (q∗, r∗) = (q + ρ1[Ay + g(y) − v − f − ξ], r + ρ2 [(y, ξ) − ε]+) .

At last, let us define Φ : L2(Ω) × L2(Ω) × L2(Ω) × R
+
o → L2(Ω) × L2(Ω) × L2(Ω) × R

+
o :

Φ(v, ξ, q, r) = (v̄, ξ̄, q̄, r̄) ,

with

ȳ = ϕ1(v, ξ, q, r) ,

v̄ = ϕ2(ȳ, q, ξ) = ϕ2(ϕ1(v, ξ, q, r), q, ξ) ,

ξ̄ = ϕ3(ȳ, v̄, q, r) = ϕ3(ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), q, r) ,

(q̄, r̄) = ϕ4(ȳ, v̄, ξ̄, q, r)

= ϕ4(ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), ϕ3(ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), q, r), q, r) .

All product spaces are endowed with the ℓ1 product norm. So Algorithm A turns to be exactly the

successive approximation method applied to Φ, to solve

Φ(v, ξ, q, r) = (v, ξ, q, r) . (3.24)

To prove the convergence we should prove first that Φ is contractive. Then, we have to

show that the solution (ṽ, ξ̃, q̃, r̃) of (3.24) satisfies the optimality system of Theorem 2.1 with

ỹ = ϕ1(ṽ, ξ̃, q̃, r̃).

Theorem 3.2. The function Φ defined above is locally Lipschitz continuous.

We omit the proof which is quite long and technical (but easy) and can be found in [4].

In particular, it is almost impossible (in the general case) to obtain a precise estimate of the

Lipschitz-constant. We only know that the constant depends on the neighborhood of the initial

point (vo, ξo, qo, ro), the augmentation parameter c and the function g. We have to prove that this

constant is strictly less than 1 to apply some fixed point theorem. Anyway, our feeling is that it

is possible to let the constant strictly less than 1 if the different parameters of Algorithm, namely

ρ1, ρ2, c and the initial point (vo, ξo, qo, ro) are well chosen. Of course, the convergence will be local.

It remains to prove that the fixed point of Φ (whenever it exists) is a stationary point, i.e a

solution of the optimality system of Theorem 2.1.

Theorem 3.3. Every solution (ṽ, ξ̃, q̃, r̃) of (3.24) satisfies the relations (2.10)-(2.12) of Theorem

2.1.

Proof. Let be (ṽ, ξ̃, q̃, r̃) a fixed-point of Φ and set ỹ = ϕ1(ṽ, ξ̃, q̃, r̃). The definition of Φ yields

ṽ = ϕ2(ỹ, q̃, ξ̃) , ξ̃ = ϕ3(ỹ, ṽ, q̃, r̃) , (3.25)

(q̃, r̃) = ϕ4(ỹ, ṽ, ξ̃, q̃, r̃) . (3.26)

Relation (3.26) gives :

q̃ = q̃ + ρ1(Aỹ + g(ỹ) − ṽ − f − ξ̃) and r̃ = r̃ + ρ2[
(

ỹ, ξ̃
)

− ε]+ ,
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so that

Aỹ + g(ỹ) − ṽ − f − ξ̃ = 0 and
(

ỹ, ξ̃
)

≤ ε , (3.27)

since min{ρ1, ρ2} ≥ ρo > 0. As ỹ ∈ K̃, ṽ ∈ Uad and ξ̃ ∈ Vad, this means that (ỹ, ṽ, ξ̃) is feasible for

the problem (Pε).

Now we write successively the optimality systems related to the definitions of ϕ1, ϕ2 and ϕ3.

From the definition of ϕ1 we get for all y ∈ K̃

(ỹ − zd, y − ỹ) + (q̃, [A+ g′(ỹ)](y − ỹ)) + r̃
(

ξ̃, y − ỹ
)

+

c
(

Aỹ + g(ỹ) − ṽ − ξ̃ − f, [A+ g′(ỹ)](y − ỹ)
)

+ c[
(

ỹ, ξ̃
)

− ε]+

(

ξ̃, y − ξ̃
)

≥ 0 ,

and with (3.27)

(ỹ − zd, y − ỹ) + (q̃, [A+ g′(ỹ)](y − ỹ)) + r̃
(

ξ̃, y − ỹ
)

≥ 0 .

This is exactly relation (2.10) with (ỹ, ξ̃, q̃, r̃) instead of (yε, ξε, qε, rε).

Similarly, one can show that relations (2.11) and (2.12) are satisfied for (ỹ, ṽ, ξ̃, q̃, r̃).

3.3. Implementation : an “equivalent” algorithm

We detail here how we may solve subproblems (3.16) and (3.18). We first focus on (3.16) that may

be written as follows

min

{

1

2
‖y − zd‖

2 + (q̄, Ay + g(y)) + r̄
(

y, ξ̄
)

+
c

2

[

‖Ay + g(y) − w̄‖2 + [
(

y, ξ̄
)

− ε]2+
]

| y ∈ K̃

}

,

where q̄, r̄, ξ̄ and w̄ are given. This problem is not immediately amenable to SQP-methods due

to the lack of twice (continuous) differentiability of the objective functional. In fact, note that the

[·]+ term is not C2. However, noticing that the penalization, i.e. the term under brackets in (3.16)

together with c > 0, is exact if c is large enough ([9]) we decide to minimize the following cost

functional :
1

2
‖y − zd‖

2 + (q̄, Ay + g(y)) + r̄
(

y, ξ̄
)

+
c

2

[

‖Ay + g(y) − w̄‖2
]

for c sufficiently large, instead of the original one. Therefore, we rather solve

(Py) min

{

1

2
‖y − zd‖

2 + r̄
(

y, ξ̄
)

+ (q̄, Ay + g(y)) +
c

2

[

‖Ay + g(y) − w̄‖2
]

| y ∈ K̃
(

y, ξ̄
)

≤ ε

}

,

than (3.16). In this form, (Py) can be solved by SQP-techniqes. Problem (3.18) will be solved

similarly: we remove the non differentiable term in the cost functional to obtain a linear-quadratic

problem

(Pξ) min
{

(r̄ȳ − q̄, ξ) +
c

2

[

‖Aȳ + g(ȳ) − v̄ − f − ξ‖2
]

| ξ ∈ Vad , (ȳ, ξ) ≤ ε
}

,

We note that the update of multiplier rn has to be checked carefully: we may decide to

keep (3.20). This means that rn is constant equal to ro (fixed during the initalization process).

Alternatively, we may update rn by utilizing the Lagrange multiplier associated to the constraint

(yn, ξ) ≤ ε in (Pξ). Let r̃n denote the corresponding multiplier. Then Algorithm A becomes:



8 M. Bergounioux and M. Haddou

Algorithm A∗

Step 1. Initialization : Set n = 0, choose qo ∈ L2(Ω), ro ∈ R
+
o , (v−1, ξ−1) ∈ Uad × Vad.

Step 2. Compute

• (Py) to get

yn = arg min

{

1

2
‖y − zd‖

2 + rn (y, ξn−1) + (qn, Ay + g(y)) +
c

2
‖Ay + g(y) − vn−1 − f − ξn−1‖

2

| y ∈ K̃ and (y, ξn−1) ≤ ε
}

.

• vn = πUad
([qn + c (Ayn + g(yn) − f − ξn−1)]/[α+ c]) .

• (Pξ) to get

ξn = arg min
{

(rnyn − qn, ξ) +
c

2
‖Ayn + g(yn) − vn − f − ξ‖2 | ξ ∈ Vad , (yn, ξ) ≤ ε

}

,

with r̃n the multiplier associated with (yn, ξ) ≤ ε.

Step 3. Set rn = r̃n and compute

qn+1 = qn + ρ [Ayn + g(yn) − vn − f − ξn] where ρ ≥ ρo > 0 ,

We apply a classical SQP method to solve (Py): the linearized, associated sub-problem has

a quadratic cost functional and the same constraints as (Py) (that were already linear). Using a

slackness variable the discretized subproblem can be written formally as

(P ℓ)















min
1

2
ztQz + btz

atz = ε ,

z ≥ 0 ,

where Q =

(

H 0

0 0

)

is a N × N matrix such that H is a positive (N − 1) × (N − 1) matrix,

b, a ∈ R
N and ε > 0.

We tried many methods to solve this subproblem: interior-point algorithms ([8] for example),

projected Newton method and active set method as in [12, 5]. We decided to use an active set

method. We do not report here on the two others but their performance was inferior with respect

to the active set strategy. Since (Pξ) is a linear-quadratic problem there is no necessity for an SQP

step.

4. Numerical Experiments

In this section, we report on two 2D-examples. The discretization process was based on finite

difference schemes with a grid size N ×N . Of course, we have performed many tests, especially for

the linear case (g ≡ 0) where the results were completely consistent with the ones of [13] . In this

paper we do not consider control constraints though tests have been done : the method works well
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and we shall report on these examples in a forthcoming paper. The stopping criterion has been set

to

σn = max{‖yn − yn−1‖∞, ‖vn − vn−1‖2, ‖ξn − ξn−1‖2, ‖Ayn + g(yn) − vn − f − ξn‖2} ≤ tol ,

where tol is a prescribed tolerance. We have tried different updates for the multiplier rn

• Update (1): first, we decide to set rn ≡ ro during the whole iteration process. We have

tested large and small values for ro (including ro = 0 ). Note that the term rn (y, ξn−1)

acts as a penalization term in the cost functional of problem (Py) (and similarly for (Pξ)):

if ro is large then we may obtain (y, ξn−1) = 0. This will be observed numerically.

• Update (2): rn is the multiplier associated to the constraint (yn, ξ) ≤ ε obtained when

computing ξn, the solution to (Pξ).

Data and parameters were set to :

Ω =] 0 , 1 [×] 0 , 1 [ , A = −∆ , tol = 10−3, ε = 10−3, c = α, ρ = α , yo = ψ ( initialization) .

The choice of c is based on different numerical tests that showed that the choice was the “best”

(on can refer to Table 1. below). The algorithm is not sensitive to the choice of the initialization

point. The number of SQP iterations has been limited to 10: we never observed a situation where

this bound was reached.

4.1. Examples

1. Example 1 .

zd = 1 , vd = 0, α = 0.1 , Uad = L2(Ω) , g(y) = y3.

f(x1, x2) =

{

200
[

2 x1 (x1 − 0.5)2 − x2(1 − x2)(6x1 − 2)
]

if x1 ≤ 0.5 ,

200 (0.5− x1) else.

ψ(x1, x2) =

{

200
[

x1 x2 (x1 − 0.5)2(1 − x2)
]

if x1 ≤ 0.5 ,

200
[

(x1 − 1)x2 (x1 − 0.5)2(1 − x2)
]

else.

0

0.2

0.4

0.6

0.8

1 0

0.5

1

-100

-50

0

50

100

Source term 

0

0.2

0.4

0.6

0.8

1 0

0.5

1

-1

-0.5

0

0.5

1

Obstacle

Figure 1 : Data
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0

0.5

1 0
0.5

1

-2

0

2

State

0

0.5

1 0
0.5

1

0

50

100

Xi

0

0.5

1 0
0.5

1

0

0.1

0.2

Control

0

0.5

1 0
0.5

1

-1

0

1

Obstacle

Figure 2 : Optimal Solution

2. Example 2 .

vd = 0, α = 0.01 , Uad = L2(Ω) , g(y) = y3.

f(x1, x2) =

{

200
[

2x1 (x1 − 0.5)2 − x2(1 − x2)(6x1 − 2)
]

if x1 ≤ 0.5 ,

200 (0.5− x1) else.
, ψ = −∆−1(f), ψ ∈ H1

o (Ω) ,

zd(x1, x2) =

{

200
[

x1 x2 (x1 − 0.5)2(1 − x2)
]

if x1 ≤ 0.5 ,

200
[

(x1 − 1)x2 (x1 − 0.5)2(1 − x2)
]

else.

Numerical tests have been performed on a DEC-alpha station, using MATLAB software.

4.2. Numerical tests

4.2.1. Choice of the parameter c

We have already mentioned that a good choice for c was α. Table 1. presents the behavior of

the algorithm for different values of c for Example 1. The grid size was set to N = 20. We recall

that α = 10−1.

Update (1) with ro = 0 Update (2)

c # it. Total # it. σn # it. Total # it. σn

(1st level) (with SQP) (last iterate) (1st level) (with SQP) (last iterate)

Slow convergence Slow convergence

10 STOP at it. 100 201 3.52 STOP at it. 100 199 3.53

Slow convergence Slow convergence

1 STOP at it. 100 198 4.9 10−1 STOP at it. 100 205 5.8 10−1

10−1 (= α) 34 61 8 10−4 34 61 9 10−4

10−2 61 116 8 10−5 51 96 2 10−4

Table 1: Sensitivity with respect to the augmentation parameter c - Example 1 - N = 20
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Here the first columm (# it.) denotes the number of global iterations (first level of the loop)

and the second one the total number of iterations (including iterations during the SQP loop).

4.2.2. Update of multiplier rn

We have tested different updates for the multiplier rn. As mentioned before, if rn is constant

and “large” the constraint (y, ξ) = 0 could be satisfied, but the convergence rate is worse. It

seems that there is a conflict between the state-constraint and the constraint (y, ξ) = 0 during

the resolution of (Py). Example 1. shows that there may be no convergence (cyclic scattering).

Therefore, rn must be “small” (with respect to α): 0 for example. We observe also that updating

the multiplier with update (2), gives a similar convergence rate in the case of Example 1.

rn # it. (first level) Total # it.(with SQP) (y − ψ, ξ)

0 34 61 10−3

5 35 62 6.4 10−5

10 STOP at it. 100 230 0

Update (2) 34 61 10−3

Table 2 : Sensitivity with respect to the update of rn- Example 1 - N=20

0 5 10 15 20 25 30 35
0

10

20

30

40
Cost

0 5 10 15 20 25 30 35
-4

-2

0

2

4
Log 10 of state equation

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40
Cost

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

3
Log 10 of state equation

rn ≡ 0 rn ≡ 10

Figure 3 : Convergence rate for update (1) - Example 1 - N=20

However, this phenomenon is not stable : we observe with Example 2. that the choice of update

(2) may lead to divergence.

rn # it.(first level) Total # it.(with SQP) (y − ψ, ξ)

0 39 59 10−3

Update 2. STOP at it. 120 (Divergence) 167

Table 3: Sensitivity with respect to the update of rn - Example 2 - N=25
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0 20 40 60 80 100 120
0

0.5

1

1.5
Cost

0 20 40 60 80 100 120
-4

-2

0

2

4
Log 10 of state equation

Update (1) with rn ≡ 0 Update (2)

Figure 4 : Convergence rate for update (1) and (2) - Example 2 - N=25

4.2.3. Mesh dependence

At last we verify that there is no mesh independence (see Table 4 below):

Grid size # it.(first level) Total # it. (with SQP)

10 28 17

15 36 56

20 34 47

25 47 79

30 57 85

35 60 101

40 89 125

45 76 119

50 81 120

55 90 140

60 98 145

Table 4: Mesh dependence for rn ≡ 0 - Example 1

5. Conclusions

This algorithm is performant since it always provides solutions without a fine tuning of different

parameters. Most of time, we observe exponential decay for the state equation, but scattering is

possible (especially when the update of the multiplier rn is inappropriate). Generally, the cost

functional is decreasing but we are not able to prove it for the moment. The “bad points” of this

method are the following :

• There is no mesh independence

• The convergence is slow : the resolution of the quadratic subproblem (P ℓ) is the most

expensive step. We investigate multigrid methods to improve the convergence rate.
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We have just presented this method without a complete numerical checking. This will be done in

a forthcoming paper : most of numerical aspects will be reviewed and a comparison with other

methods (especially finite dimensional methods for complementarity problems) will be performed.
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