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Abstract

We investigate an infinite dimensional optimization problem which constraints

are singular integral-pointwise ones. We give some partial results of existence for

a solution in some particular cases. However, the lack of compactness, even in L1

prevents to conclude in the general case. We give an existence result for a weak

solution (as a measure) that we are able to describe. The regularity of such a solution

is still an open problem.
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1 Introduction

The generalized principal-agent model in the economic theory of delegation

as well as the principal’s optimization problem procedure ([1]) leads to the
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optimal control problem described below :

(P1)



minJ (h)
def
=

1∫
0

(1− 2 t

3
)h(t)− t2

√
h(t)

3

 dt

0 ≤ t h(t) ≤ α

t∫
0

h(s) ds ∀t ∈]0, 1] , h ∈ L1(0, 1) ,

where α = 3/2. It has been shown in[1] that this problem has a unique solution

if α ∈ [1, 5] and we obtained an analytical form. Anyway, the question remains

to prove the existence of the solution of this problem for any α and give some

regularity properties of this solution if possible.

The functional J is strictly convex with respect to h and the constraints are

linear. Therefore the solution of this problem (if it exists) is unique. Though

this problem seems quite simple, we are not able to prove any existence result

with classical minimization techniques since the function J is not coercive

and the feasible set is not bounded. In what follows, we set

Cα = {h : [0, 1] → R | 0 ≤ h(t) ≤ α

t

t∫
0

h(s) ds , a.e.t ∈ [0, 1] } .

Let us briefly recall the main results of [1] that have been established using the

Karush-Kuhn-Tucker type optimality system when α ∈ [1, 5]. Indeed in this

case we may exhibit the solution h∗ and the Lagrange multiplier λ∗ associated

to the constraint as :

h∗(t) = 3

(
α(α+ 1)

(α+ 3)(α+ 5)

)2

tα−1, λ∗(t) =
2

3 (α+ 1)
+

(5− α)(α+ 3)

6α(α+ 1)
t

3−α
2 (1.1)

The main result of [1] was the following :

Theorem 1.1 If 1 ≤ α ≤ 5, the problem

(P∞) minJ (h), h ∈ Cα ∩ L∞(0, 1) .
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has a unique solution h∗ given by (1.1). If 1 ≤ α ≤ 3, problem (P1) has a

unique solution h∗ given by (1.1) and J (h∗) = − α(α+ 1)

(α+ 3)(α+ 5)2
.

If α > 5, then λ∗ does not belong to L1(0, 1) and its sign is not constant: we

cannot conclude in this case.

The goal of this paper is to investigate all the values for α in a more general

setting to give a complete study of this problem. Next section is devoted to

the general formulation of the problem. Here we consider particular cases as

well. In section 3, we give a partial existence result when the problem is set

in the space L1(0, 1) and we present a general “weak” framework in section

4. We give a counter-example where the solution does not exist in the last

section.

2 General formulation of the problem and particular cases

To be more complete we now consider the problem

(Pp)


min J(h)

def
=

1∫
0

(
ω1(t)h(t)− ω2(t)

√
h(t)

)
dt

h ∈ Cα ∩ Lp(0, 1) .

where p ∈ [1,+∞] and we assume :

ω1, ω2 ∈ L∞(0, 1), ω2 ≥ 0, ω2 ≡/ 0 and ∃σo > 0 s.t. ∀t ∈ [0, 1] ω1(t) ≥ σo. (2.1)

We note that non-increasing nonnegative functions in L1 always belong to Cα

for any α ≥ 1. Note also that constant functions are not elements of Cα if

0 < α < 1.
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2.1 Case where α < 1

It is clear that if α ≤ 0 then Cα ∩ L1(0, 1) = {0} since

0 ≤ h(t) ≤ α

t

t∫
0

h(s) ds ≤ 0 ,∀t ∈]0, 1] .

Now we focus on the case α ∈]0, 1[.

Proposition 2.1 If α ∈]0, 1[ and 1
1−α

< p ≤ ∞ then Cα ∩ Lp(0, 1) = {0}

Proof - We use a real analysis argument: Hardy’s inequality on Lp((0,∞[)

(see [7] ex 14 p.69). Let F (t) = 1
t

∫ t
0 f(s) ds; then, for every f ∈ Lp((0,∞[) we

have ‖F‖p ≤ p
p−1
‖f‖p. Now, if f ∈ Cα ∩ Lp(0, 1) and non-zero (we extend it

by 0 on [1,∞[) then

‖f‖p ≤ α · p

p− 1
‖f‖p

Hence this inequality can only hold with 1 ≤ αp
p−1

and we get a contradiction.

This achieves the proof. 2

Note that the Hardy’s inequality is trivial for p = ∞.

Example 2.1 In the case where 1 < p ≤ 1
1−α

one can verify that t 7→ t−1/p

belongs to Cα ∩ Lq(0, 1) for any q ∈]1, p[. This is true if we choose p = 1
1−α

.

So ∀p ∈]1,
1

1− α
[ Cα ∩ Lp(0, 1) 6= {0} .

If α < 1, we conclude that the minimization problem has to be studied in

Lp(0, 1) for 1 ≤ p < 1
1−α

.
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2.2 The unconstrained case

As J is convex and Gâteaux-differentiable at any h that does not vanish, a

necessary and sufficient condition for hc to be the unconstrained minimizer of

J is

∀h ∈ L1(0, 1) ∇J(hc) · h =

1∫
0

ω1(t)−
ω2(t)

2
√
hc(t)

 h(t) dt = 0 .

A small computation gives (see also the direct computation at the beginning

of section 3),

hc(t) =

(
ω2(t)

2ω1(t)

)2

. (2.2)

This L∞- function is nonnegative. It is the solution to (P1) if the constraint

is satisfied that is when α satisfies

αc
def
= sup

t∈[0,1]

thc(t)∫ t
0 h

c(s)ds
≤ α .

More precisely

Proposition 2.2 Assume that αc < +∞. If α ≥ αc, then hc is the unique so-

lution to (Pp) for every p ∈ [1,+∞]. The optimal value is Iα = −1
4

∫ 1
0

ω2
2(t)

ω1(t)
dt .

Proof - We note that hc ∈ L∞(0, 1) with assumption (2.1). If α ≥ αc then

the unconstrained solution belongs to Cα ∩ Lp(0, 1) for every p ∈ [1,+∞]. 2

It may happen that αc = +∞. However, for instance, if ω2 and ω1 are propor-

tional then hc is the (constant) solution of the problem for all α ≥ αc = 1 (and

every p ∈ [1,+∞]) if we minimize over Cα∩Lp(0, 1)). If hc is non-increasing

then it belongs to Cα for any α; therefore, as hc is a Lp(0, 1)- function, then it

is the solution of the Lp problem for every p ∈ [1,+∞].
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Example 2.2 For the explicit case of [1] where ω1(t) ≡ 1− 2 t
3

and ω2(t) ≡ t2√
3

we obtain hc(t) = 3 t4

4(3−2t)2
, and a computation (with a formal computation soft-

ware for example) shows that t 7→ thc(t)∫ t

0
hc(s)ds

is increasing so that the “critical”

value for α is αc = hc(1)∫ 1

0
hc(s)ds

' 7.9671; moreover Iα = − 10
507

.

It remains to study the case where 1 ≤ α ≤ αc.

2.3 Case where the solution saturates the (upper) constraint

The trick in [1] was to assume a priori (with the help of numerical compu-

tation) that the solution h∗ to the problem (Pp) (for some p ∈ [1,+∞]) was

such that

∀a.e. t ∈ [0, 1] t h∗(t) =

t∫
0

h∗(s) ds and h∗(t) ≥ 0 . (2.3)

It is easy to see that functions that satisfy (2.3) are the following

h(t) = C tα−1 , C ∈ R+ .

We first note that h ∈ Lp(0, 1) if and only if 1 + p(α− 1) >0, that is, for any

p ∈ [1,+∞] if α ≥ 1 and p ≤ 1
1−α

else. The tool to prove that a “saturating”

function (i.e. verifying (2.3)) is the solution consists of finding an appropriate

Lagrange multiplier λ∗ ∈ Lp′(0, 1) (where 1
p′

+ 1
p

= 1) such that λ∗ ≥ 0. As the

problem is convex, this provides a sufficient condition to obtain the solution.

In what follows, we set

Ψ(h) = ω1 h− ω2

√
h and Lα(h)(t) = th(t)− α

t∫
0

h(s)ds .

The operator Lα is linear and continuous from Lp(0, 1) to Lp(0, 1).

Step 1. Computation of the “saturating” function that could be the solution

6



of (Pp)

We have seen that such a function can be written as h(t) = Ctα−1. We set

f(C)
def
= J(Ctα−1) = C

1∫
0

ω1(t)t
α−1 dt−

√
C

1∫
0

ω2(t) t
α−1

2 dt .

The infimum of f is attained at Cα such that f ′(Cα) = 0. This gives

h∗(t) = Cα t
α−1 with Cα =

1

2

∫ 1
0 ω2(t) t

α−1
2 dt∫ 1

0 ω1(t) tα−1 dt

2

. (2.4)

Note that ω1(·) tα−1 and ω2(·) t
α−1

2 are L1-functions since ω1 and ω2 are L∞-

functions and α > 0. Moreover, we get a rough estimate for Cα:

0 ≤ Cα ≤

 α

2σo

1∫
0

ω2(t) t
α−1

2 dt

2

≤
(

α

α+ 1

‖ω2‖∞
σo

)2

.

Step 2. Adjoint equation

The Lagrangian function is defined on Lp(0, 1)× Lp′(0, 1) as

L(h, λ) =

1∫
0

Ψ(h)(t) dt+

1∫
0

λ(t)Lα(h)(t) dt . (2.5)

We set V (t) =

t∫
0

h(s) ds; it is a L∞-function since h is at least a L1-function

and ‖V ‖∞ ≤ ‖h‖L1 . Performing an integration by parts yields

1∫
0

λ(t)

 t∫
0

h(s) ds

 dt =

1∫
0

λ(t)V (t) dt

=

 t∫
1

λ(s) ds

V (t)

1

0

−
1∫

0

h(t)

 t∫
1

λ(s) ds

 dt = −
1∫

0

 t∫
1

λ(s) ds

 h(t) dt .

Therefore

1∫
0

λ(t)Lα(h)(t) dt =

1∫
0

t λ(t)h(t) dt− α

1∫
0

λ(t)

 t∫
0

h(s) ds

 dt

=

1∫
0

t λ(t)h(t) dt+α

1∫
0

 t∫
1

λ(s) ds

 h(t) dt =

1∫
0

t λ(t) + α

 t∫
1

λ(s) ds

 h(t) dt .
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A formal computation of the derivative of L with respect to h gives

∂L
∂h

(h∗, λ∗) · h =

1∫
0

(
∂Ψ

∂h
(h∗) · h+ λ∗(t)Lα(h)(t)

)
dt

=

1∫
0

∂Ψ

∂h
(h∗) + tλ∗(t) + α

 t∫
1

λ∗(s) ds

 h(t) dt .
Therefore λ∗ must verify the so called adjoint equation :

∂Ψ

∂h
(h∗) + tλ∗(t) + α

 t∫
1

λ∗(s) ds

 = 0 . (2.6)

If the solution λ∗ of (2.6) is nonnegative and belongs to Lp′(0, 1) (where p has

to be chosen), then the following optimality system is satisfied by the pair

(h∗, λ∗) ∈ Lp(0, 1)× Lp′(0, 1):

(
∂L(h∗, λ∗)

∂h
, h− h∗

)
≥ 0 for all h ≥ 0, (2.7a)

λ∗ ≥ 0 and λ∗(t)Lα(h∗)(t) = 0 a.e. t ∈ [0, 1] , (2.7b)

Lα(h∗)(t) ≤ 0 and h∗(t) ≥ 0 a.e. t ∈ [0, 1] , (2.7c)

Therefore h∗ is the solution to (Pp).

Conversely, if λ∗ happens to be negative on a measurable set with non zero

measure, it proves that the saturating function cannot be the solution : indeed

if it were the solution, λ∗ should be nonnegative since the above optimality

system is necessary and sufficient and λ∗ is unique since it is given by (2.6).

Step 3. Resolution of the adjoint equation (2.6)

Setting Λ(t) =

t∫
1

λ∗(s) ds and using the computation of
∂Ψ

∂h
(h), the adjoint

equation is equivalent to

tΛ′(t) + αΛ(t) + ω1(t)h
∗(t)− ω2(t)

2
√
h∗(t)

= 0, ∀t ∈]0, 1], Λ(1) = 0 .
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A standard computation gives Λ(t) = t−α

t∫
1

Φα(s) ds , with

Φα(t) =
ω2(t)

2
√
Cα

t
α−1

2 − ω1(t)Cαt
2(α−1)

and Cα is given by (2.4). Note that Φα ∈ L∞(0, 1) if α ≥ 1 (because of

assumption (2.1)) and Φα ∈ L1(0, 1) if α ≥ 1/2.

As λ∗(t) = Λ′(t) we finally obtain λ∗(t) = t−α

Φα(t) +
α

t

1∫
t

Φα(s) ds

 .
Step 4. Sufficient conditions to get λ∗ ≥ 0

We are not able to give precise results since ω1 and ω2 are general functions.

Anyway, we may give sufficient conditions dealing with ω1, ω2 and α, that

have to be detailed once ω1 and ω2 are given.

An obvious necessary and sufficient condition to get λ∗ ≥ 0 is

∀t ∈]0, 1] Φα(t) +
α

t

1∫
t

Φα(s) ds ≥ 0.

A simple sufficient condition is : ∀t ∈]0, 1] Φα(t) ≥ 0 ; that is

∀t ∈ [0, 1] t3(
α−1

2
)ω1(t) ≤

C−3/2
α

2
ω2(t) .

This relation involves ω1, ω2 and gives “good values” of α.

Step 5. Sufficient conditions to get λ∗ ∈ Lp′(0, 1)

First we note that if α ≥ 1 then the “ solution ” h∗ ∈ L∞(0, 1). Therefore ,

we must find some q = p′ ∈ [1,+∞] such that λ∗ ∈ Lq(0, 1). The expression

of λ∗ shows that it belongs to L∞(]0, 1]): we must check its behaviour in a

neighborhood of t = 0. Once again, as we do not know ω1 and ω2 explicitly,

we only present the method since we cannot perform a complete study. If

we know the explicit expressions of ω1 and ω2, we know their behaviour in a

neighborhood of t = 0 (in fact only ω2 is needed since we assumed ω1(0) 6= 0).

Then, it is easy to describe the behaviour of Φα and λ∗ (see [1]) ; we may then

9



deduce suitable values for α to get some q ∈ [1,+∞] such that λ∗ ∈ Lq(0, 1).

3 Case where the function space is L1

In what follows, we denote by λ the Lebesgue measure on [0, 1] also denoted

by dt or ds in the integrals. We use the notations
∫ 1
0 f and

∫ 1
0 f dν instead of∫ 1

0 f(t) dt and
∫ 1
0 f(t) dν(t) to simplify the expressions.

3.1 Preliminary comments

We now denote Cα = Cα∩L1(0, 1) since there is no ambiguity on the functional

space. It is is a convex cone and is weakly closed since it is closed for the strong

topology in L1. Note that the family of sets Cα is non-decreasing.

We denote by Iα = inf{J(h), h ∈ Cα}. Under the assumption (2.1) on ω1 and

ω2 and from the following formula

J(h) =

1∫
0

ω1(t)

[√
h(t)− ω2(t)

2ω1(t)

]2

dt−
1∫

0

ω2
2(t)

4ω1(t)
dt. (3.1)

we get J(h) ≥ −
1∫

0

hc(t)ω1(t) dt with hc given by (2.2).We deduce that the

infimum Iα is finite since 0 ≤ hcω1 ∈ L1(0, 1).

First of all, we remark that we cannot apply the Dunford-Pettis criterion to

a bounded set of Cα in L1 in order to get weak compactness (see for example

[2]). It is due to the fact that the best bound we can get is 0 ≤ h(t) ≤ αM/t

for h ∈ Cα, || h ||1≤ M for a finite M (take hε(t) = t−ε for optimality). To

overcome this difficulty we performed a change of function. Roughly speaking

10



we consider th(t) instead of h(t). Unfortunately it was impossible to make the

Dunford- Pettis theorem work: the singularity was just moved from 0 to +∞.

So, we have to check for “weak” solutions that are not L1-functions but mea-

sures. First we give a useful property of the feasible set Cα ..

Lemma 3.1 For all h ∈ Cα ∩ L1 with h non identically zero, there exists

γ0 > 0 such that, if h̃ := γ0h: for all γ > 0,

J(h̃) ≤ J(γh̃) (3.2)

or equivalently

1∫
0

ω1h̃ =
1

2

1∫
0

ω2

√
h̃. (3.3)

In particular h̃ ∈ Cα and (3.2) implies

J(h̃) ≤ J(h) and J(h̃) = −
1∫

0

ω1h̃ = −1

2

1∫
0

ω2

√
h̃.

Proof - Let f(γ) = J(γh). The function f has a minimum at γ0 = 1
4

(∫ 1

0
ω2

√
h

)2(∫ 1

0
ω1h

) .

Let h̃ = γ0h then J(h̃) ≤ J(γh) for all γ > 0. In particular, J(h̃) ≤ J(h) and

J(h̃) ≤ J(γh̃) for all γ > 0. This last inequality is equivalent to v′(1) = 0 with

v(γ) = J(γh̃) i.e

2

1∫
0

ω1h̃ =

1∫
0

ω2

√
h̃.

The last inequality of the lemma is then obvious. This achieves the proof. 2

Now we may define

Kα = {h ∈ Cα | h satisfies (3.3) }. (3.4)
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Note that Kα is not convex; anyway we get the following result:

Proposition 3.1 The following equality holds true

Iα = inf
h∈Cα∩L1

J(h) = inf
h∈Kα∩L1

J(h).

Proof - Let hj be a minimizing sequence in Cα∩L1 of Iα. By lemma 3.1, there

exists γj > 0 such that h̃j = γjhj and satisfying J(h̃j) ≤ J(γh̃j) for all γ > 0.

In particular J(h̃j) ≤ J(hj). Then, we also have Iα = limj J(h̃j) with h̃j ∈ Kα

since J(h̃j) is a better approximation of Iα. This proves the relation. 2

3.2 A partial existence result in L1.

In this subsection, we deduce a conditional result about the solution of the

problem in the L1-setting. Such a result is not completely satisfactory since the

solution may not be in the feasible set. But this first partial result is important

to understand the problem under consideration. A decoupling argument is

used for the function h which is in L1 and its square root
√
h which is in L2.

Difficulties appear when we consider a minimizing sequence since L1 is not a

reflexive space but L2 is a reflexive space.

Any minimizing sequence hj ∈ Cα satisfies hj(t) ≤ αM/t. We cannot apply

Dunford-Pettis theorem to get a weak limit in L1([0, 1]). Indeed, the unit

approximation of δ0 defined by ωn = nχ[0,1/n] is in Cα, α ≥ 1 since ωn is non-

increasing and nonnegative. Then a weak limit of hj may not be a function.

We deal with this difficulty all along this paper.

12



In addition, the condition h ∈ Cα leads to the following weak formulation.

∀0 ≤ ϕ ∈ C([0, 1])

1∫
0

tϕ(t) dµ(t) ≤ α

1∫
0

ϕ(t)

 t∫
0

dµ(s)

 dt. (3.5)

with dµ = h dλ i.e h is seen as a density of measure with respect to the

Lebesgue measure. We shall make such a weak formulation precise in next

section. Next lemma will be useful in what follows when we shall deal with a

bounded measures sequence.

Lemma 3.2 Let µ be a nonnegative finite measure on [0, 1] satisfying (3.5).

Then for any 0 < δ ≤ 1 and for all A ∈ B([δ, 1]), where B([δ, 1]) denotes the

set of borelian sets of [δ, 1].

µ(A) ≤ αµ([0, 1])

δ
λ(A). (3.6)

Therefore the measure µ restricted to [δ, 1] is absolutely continuous with respect

to the Lebesgue measure λ.

Proof - Fix 0 < δ < 1 and let [a, b] ⊂ [δ, 1]. We assume that δ < a and

b < 1. We treat the other intervals of [0, 1] similarly. We define the sequence

(ϕn) of continuous functions such that ϕn(t) = 1 if t ∈ [a, b], zero outside

[a − 1/n, b + 1/n] and ϕn is linear on the set [a − 1/n, a] ∪ [b + 1/n]. In

particular 0 ≤ ϕn ≤ 1 and the support of ϕn is included in [δ, 1] for n large

enough. We have the following inequalities, for n large enough,

δµ([a, b]) ≤
1∫

0

tϕn(t) dµ(t) ≤ αµ([0, 1])

1∫
0

ϕn(t) dt ≤ αµ([0, 1])λ([a−1/n, b+1/n]).

Taking the limit over n, we get: µ([a, b]) ≤ αµ([0, 1])

δ
λ([a, b])

and we also deduce : µ(]a, b[) ≤ αµ([0, 1])

δ
λ(]a, b[).

13



Now since the lebesgue measure λ is regular measure:

∀A ∈ B λ(A) = inf{λ(Ω), A ⊂ Ω open in [0, 1]}.

Let Ω be an open set of R (with A ⊂ Ω), then Ω is a countable union of

disjoint intervals In of [0, 1]: Ω = ∪nIn. Hence

0 ≤ µ(A) ≤ µ(Ω) ≤
∑
n

µ(In) ≤ αµ([0, 1])

δ

∑
n

λ(In) =
αµ([0, 1])

δ
λ(Ω).

Taking the infimum over Ω, we get the inequality (3.6). 2

We also need the following lemma.

Lemma 3.3 Let µ be a nonnegative finite measure on [0, 1] satisfying (3.5).

Then µ = βδ0 + gλ with 0 ≤ β <∞ and 0 ≤ g ∈ L1.

Proof - Fix 0 < δ ≤ 1, By lemma 3.2, the measure µ restricted to [δ, 1] is

absolutely continuous with respect to λ the Lebesgue measure. By Radon-

Nikodym theorem, there exists a unique nonnegative density gδ ∈ L1([δ, 1])

such that µ|[δ,1] = gδλ. We define for all t ∈]0, 1], g(t) = gδ(t) for δ ≤ t ≤ 1

and g(0) = 0. By uniqueness of gδ, g is well-defined, nonnegative and g is

integrable. Indeed, for all 0 ≤ ϕ ∈ C([0, 1])

1∫
0

ϕg = lim
δ→0

1∫
δ

ϕgδ = lim
δ→0

1∫
δ

ϕdµ ;

with ϕ ≡ 1, we get the integrability of g. So, for any ϕ ∈ C([0, 1]), we get

1∫
0

ϕdµ = ϕ(0)µ({0}) +

1∫
0

ϕg,

that is : µ = βδ0 + gλ with β = µ({0}). 2

Remark 1 The above result is coherent with the compactness-concentration

principle (see [3–6]).
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Now, we may give the main result of this section

Theorem 3.1 Assume (2.1) and ω1 ∈ C([0, 1]), ω2 ∈ L2([0, 1]). Then, there

exists a positive finite measure ν on [0, 1] such that ν = βδ0 + gλ with 0 ≤

β <∞ and 0 ≤ g ∈ L1 with g non-identically zero and a L2-function
√
H ≥ 0

satisfying

∀0 ≤ ϕ ∈ C([0, 1])

1∫
0

tϕ(t) dν(t) ≤ α

1∫
0

ϕ(t)

 t∫
0

dν

 dt. (3.7)

The measure ν and the function
√
H satisfy the following conditions

∀0 ≤ Ψ ∈ L2([0, 1])

1∫
0

√
tΨ(t)

√
H(t) dt ≤

√
α

1∫
0

Ψ(t)

 t∫
0

dν(s)

1/2

dt. (3.8)

∀0 ≤ ϕ ∈ C([0, 1])

1∫
0

ϕH ≤
1∫

0

ϕdν (3.9)

1∫
0

ω1 dν =
1

2

1∫
0

ω2

√
H. (3.10)

Moreover, the constant β and the density g satisfy:

βω1(0) +

1∫
0

ω1g ≤
1

4

1∫
0

ω2
2

ω1

<∞.

Finally the infimum Iα is given by

Iα =

1∫
0

ω1 dν −
1∫

0

ω2

√
H = −1

2

1∫
0

ω2

√
H = −

1∫
0

ω1 dν. (3.11)

Remark 2 The couple (ν,
√
H) a priori depends on α and the minimizing

sequence.

An important corollary of this theorem is the proposition below :

Proposition 3.2 Under the hypothesis of Theorem 3.1 and if we assume β =

15



0 then a (unique) solution h∗ to (P1, ) exists : h∗ = g ∈ Cα ∩L1 is the density

of the measure ν.

Proof - We assume β = 0, we have from (3.9),

∀0 ≤ ϕ ∈ C([0, 1])

1∫
0

ϕg ≥
1∫

0

ϕH. (3.12)

we deduce that g ≥ H(≥ 0) almost everywhere and that
√
g ≥

√
H. This

is the crucial point of the proof. As a consequence, we derive the following

inequality

−
1∫

0

ω2

√
H ≥ −

1∫
0

ω2
√
g.

With (3.11), this gives Iα ≥
∫ 1
0 ω1H−

∫ 1
0 ω2

√
H = J(H) one one hand, and on

the other hand, Iα ≥
∫ 1
0 ω1g −

∫ 1
0 ω2

√
g = J(g).

Now, we prove that g ∈ Cα. By (3.7), for all 0 ≤ ϕ ∈ C([0, 1]),

1∫
0

tϕ(t)g(t) dt ≤ α

1∫
0

ϕ(t)

 t∫
0

g(s) ds

 dt.
This implies

0 ≤ tg(t) ≤ α

t∫
0

g(s) ds a.e.,

that is g ∈ Cα∩L1. Consequently, Iα = infh∈Cα∩L1 J(h) = J(g) with g ∈ Cα∩L1.

Uniqueness of the solution follows from the facts that the functional J and

the set Cα are convex. This achieves the proof. 2

Remark 3 We do not know if H ∈ Cα ∩ L1 and g = H.

3.3 Proof of Theorem 3.1

Step 1: Properties of some minimizing sequences and existence of Iα .

Let h̄k be a minimizing sequence in Cα ∩ L1 of Iα. By lemma 3.1, there exists

16



hk ∈ Kα such that Iα = limk J(hk) since J(hk) is a better approximation of

Iα. We replace the sequence (h̄k) by the sequence (hk). We have in particular

1∫
0

ω1hk =
1

2

1∫
0

ω2

√
hk.

Let us show that (hk) is a bounded sequence in L1.

Since,

1∫
0

ω1hk =
1

2

1∫
0

ω2√
ω1

√
ω1hk, then by Hölder inequality,

1∫
0

ω1hk ≤
1

2

 1∫
0

ω2
2

ω1

1/2 1∫
0

ω1hk

1/2

.

So

1∫
0

ω1hk ≤
1

4

1∫
0

ω2
2

ω1

. On one hand, this yields that (hk) is a bounded sequence

in L1 since ω1 ≥ σ0, hk ≥ 0 and ‖hk‖1 =

1∫
0

hk ≤
1

σ0

1∫
0

ω2
2

ω1

. The last term is

finite since ω2 ∈ L2 and ω1 ≥ σ0. On the other hand, as already obtained in a

previous section Iα is finite and a lower bound in terms of ω1 and ω2 is given

by:

Iα = − lim
k

1∫
0

ω1hk ≥ −1

4

1∫
0

ω2
2

ω1

. (3.13)

In what follows, we denote by M :=
1

σ0

1∫
0

ω2
2

ω1

.

Step 2: Existence and properties of ν and
√
H.

By step 1, the sequence (hk) is bounded in L1. We embed L1
+([0, 1]) of non-

negative integrable functions in the space M+([0, 1]) of nonnegative finite

measure on the set [0, 1]. Then we set νk = hkλ (with λ the Lebesgue mea-

sure). We have ‖νk‖ = ‖hk‖1 where ‖νk‖ denote the measure νk total variation

norm. Since M([0, 1]) is the dual space of C([0, 1]), we can extract from (hk)

a subsequence (still denoted similarly) that converges in the ∗-weak sense to
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a measure ν i.e

∀ϕ ∈ C([0, 1]) lim
k

1∫
0

ϕhk =

1∫
0

ϕdν.

In addition, ν is a finite nonnegative measure on [0, 1] : ‖ν‖ ≤M since ‖hk‖ ≤

M and ν is nonnegative because hk ≥ 0. We may deduce some properties of

ν : as

0 ≤ thk(t) ≤ α

t∫
0

hk(s) ds a.e.

then ∀0 ≤ ϕ ∈ C([0, 1])

1∫
0

tϕ(t)hk(t) dt ≤ α

1∫
0

ϕ(t)

 t∫
0

hk(s) ds

 dt.
We need the following lemma:

Lemma 3.4 Assume that νk is ?-weak convergent to ν. Then,

lim sup
k

t∫
0

dνk ≤
t∫

0

dν.

We apply the above lemma to νk = hkλ. By the monotone convergence theo-

rem, the following inequality holds:

1∫
0

tϕ(t) dν(t) ≤ α

1∫
0

ϕ(t)

 t∫
0

dν(s)

 dt. (3.14)

The inequality (3.14) is a weak formulation of h ∈ Cα. In fact, this formulation

(3.14) for the measure ν = hλ is equivalent to h ∈ Cα: this motivates the

introduction of assumption (H1) of next section.

Proof of lemma 3.4.- We fix t ∈ [0, 1]. If t = 1, we have lim
k

1∫
0

dνk =

1∫
0

dν. We

can assume t < 1. Let ϕn(t) = 1 on the set [0, t], ϕn(t) = 0 on the set [t+1/n, 1]

(for n large enough) and linear on the set [t, t + 1/n] then ϕn ∈ C([0, 1]). By

monotone convergence theorem, lim
n

1∫
0

ϕn dν =

t∫
0

dν. Let ε > 0 and N such

that for all n ≥ N ,

t∫
0

dν + ε ≥
1∫

0

ϕn dν ≥ lim sup
k

1∫
0

ϕn dνk ≥ lim sup
k

t∫
0

dνk.
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Let ε→ 0: we have proved the lemma. 2

We just proved that ν satisfies (3.5) . With lemma 3.3 we conclude that

ν = βδ0 + gλ.

Since
√
hk is bounded in the Hilbert space L2, we can extract a new subse-

quence (still denoted similarly) that weakly converges to h̃ ∈ L2. Since hk is

nonnegative, the h̃ is nonnegative as well and it can be named
√
H.

As ω1 ∈ C([0, 1]) and ω2 ∈ L2([0, 1]), we take the limit as k → +∞; we obtain

Iα =

1∫
0

ω1 dν −
1∫

0

ω2

√
H.

Step 3: Coupling conditions on (ν,
√
H).

We have: 0 ≤
√
t
√
hk(t) ≤

√
α

 t∫
0

hk(s) ds

1/2

a.e .

Thus : ∀0 ≤ ψ ∈ L2 0 ≤
1∫

0

√
tψ(t)

√
hk(t) dt ≤

1∫
0

ψ(t)

 t∫
0

hk(s) ds

1/2

dt.

By lemma 3.4, we deduce

0 ≤
1∫

0

√
tψ(t)

√
H(t) dt ≤

1∫
0

ψ(t)

 t∫
0

dν(s)

1/2

dt.

We also have

1∫
0

ω2

√
H =

1

2

1∫
0

ω1 dν.

At last, we have

∀0 ≤ ϕ ∈ C([0, 1]) lim
k

1∫
0

ϕ
(√

hk −
√
H
)2

≥ 0,

thus lim
k

 1∫
0

ϕhk − 2

1∫
0

ϕ
√
hk

√
H +

1∫
0

ϕH

 ≥ 0 and we conclude that

1∫
0

ϕdν ≥
1∫

0

ϕH. (3.15)

Step 4: The density g is non-zero a.e .

Let α > 0. Assume that g = 0 a.e so that ν = βδ0. We show that H = 0 a.e.
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as well. By (3.15), 0 ≤
1∫

0

ϕH ≤ βϕ(0) for every 0 ≤ ϕ ∈ C([0, 1]).

Let n ≥ 1 and ϕn(t) = 1 if t ∈ [1/n, 1] and ϕn(t) = nt if t ∈ [0, 1/n] then, by

monotone convergence 0 ≤
1∫

0

H ≤ lim
n

1∫
0

ϕn(t)H ≤ 0. Since H is nonnegative,

H = 0 a.e. We deduce that Iα = βω1(0) ≥ 0 and we get a contradiction.

Indeed, when α > 0 and h0(t) := tα−1 then h0 ∈ Cα and

Iα ≤ inf
γ≥0

J(γh0) = −
1∫

0

ω1γoh0 < 0 (3.16)

for some γo > 0. This achieves the proof. 2

Remark 4 1. With relation (3.16) it is easy to see that

∫
ω1 dν ≤

1

4

∫ ω2
2

ω1

;

moreover, if we choose constant test functions we obtain

∫
ω1 dν ≥

1

4

∫
ω2

2∫
ω1

;

the equality holds if ω1 and ω2 are proportional.

2. In step 1, we can consider a minimizing sequence satisfying a weaker con-

dition than
∫ 1
0 ω1hk = 1

2

∫ 1
0 ω2

√
hk namely J(hk) ≤ 0.

This implies that
∫ 1
0 ω1hk ≤

∫ 1
0 ω2

√
hk. This gives also a uniform bound on

the L1-norm of hk larger than the one given in step 1 but which is enough to

conclude that part.

The main challenge now, is to check when β = 0 so that the dirac measure at

0 disappears and we get a solution for problem (P1).
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4 A weak formulation : consideration in M+([0, 1]).

In this section, we consider the problem in the space of nonnegative finite

measures space M+([0, 1]) with solutions in the so-called “weak” feasible set.

With this formulation, we find a solution in the feasible set but we have lost

(a priori) the uniqueness of the solution.

We have seen in the previous section that a “solution” exists : it is a measure

and does not belong to the feasible set (except in the case β = 0). We now

define an extension of the problem in order to get a solution in a “weak”-

feasible set. Let M+([0, 1]) be the set of nonnegative finite measures on [0, 1].

We have to set some hypothesis on the measure µ ∈M+([0, 1]) and 0 ≤ h ∈ L1

(i.e h ∈ L1
+ ) to get a weak formulation for the feasible set. These assumptions

are motivated by relations (3.7)-(3.8)-(3.9) of Theorem 3.1.

(H1) ∀0 ≤ ϕ ∈ C([0, 1]),

1∫
0

tϕ(t) dµ(t) ≤ α

1∫
0

ϕ(t)

 t∫
0

dµ(s)

 dt.
(H2) ∀0 ≤ Ψ ∈ L2([0, 1]),

1∫
0

√
tΨ(t)

√
h(t) dt ≤

√
α

1∫
0

Ψ(t)

 t∫
0

dµ(s)

1/2

dt.

(H3) ∀0 ≤ ϕ ∈ C([0, 1]),

1∫
0

ϕh ≤
1∫

0

ϕdµ

Lemma 4.1 (1) The condition (H2) is equivalent to the pointwise inequality

√
t
√
h(t) ≤

√
α

 t∫
0

dν(s)

1/2

a.e

that is (2.4) if ν = hλ.

(2) If µ = hλ then (H1) is equivalent to the pointwise inequality

th(t) ≤ α

t∫
0

h(s) ds (4.1)
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almost everywhere on [0, 1]. In that case (H1) and (H2) are equivalent to

h ∈ Cα. The inequality (H3) is an equality and is obvious.

Proof - We only sketch the proof. The first assertion follows by a well- known

argument: we take a characteristic function of an appropriate set. This function

is in L1 since it contains bounded functions. The second assertion is deduced

by the density of continuous function in the space L1 and the same argument

of the first assertion. 2

Since (H1)− (H3) are natural generalizations of properties of (3.7) -(3.9) for

a couple (µ, h), we define the weak (or generalized) feasible set as follows

C̃α = {(µ, h) ∈M+([0, 1])× L1
+([0, 1]) | (H1)− (H3) are verified. } (4.2)

It is a cone (which is not necessarily convex) and the set Cα can be identified

as a subset of C̃α. The generalized functional is defined by

J̃(µ, h) =

1∫
0

ω1(t) dµ(t)−
1∫

0

ω2(t)
√
h(t) dt (4.3)

and the infimum of J̃ on C̃α is denoted by

Ĩα = inf{J̃(µ, h) : (µ, h) ∈ C̃α}. (4.4)

We have the following relation between the sets Cα and C̃α and the functionals

J and J̃ .

Lemma 4.2 For h ∈ Cα then (hλ, h) ∈ C̃α and J̃(hλ, h) = J(h) where λ is

the Lebesgue measure.
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The proof is straight forward. We have the analogue of lemma 3.1.

Lemma 4.3 For all (ν, h) ∈ C̃α with h and ν non identically zero, there exists

γ1 > 0 such that, if (ν1, h1) = (γ1ν,
√
γ1h)

∀γ > 0 J̃(ν1, h1) ≤ J̃(γν, γh) (4.5)

or equivalently

1∫
0

ω1 dν1 =
1

2

1∫
0

ω2

√
h1. (4.6)

In particular (ν1, h1) ∈ C̃α , relation (4.5) implies J̃(ν1, h1) ≤ J̃(ν, h) and (4.6)

implies J̃(ν1, h1) = −
1∫

0

ω1 dν1 = −1

2

1∫
0

ω2

√
h1.

The proof is analogue to the proof of lemma 3.1.

The previous lemma indicates that we can use some specific minimizing se-

quence to solve the minimization problem. Indeed, we can add the following

assumption on (ν, h) (similar to (3.10)) :

(H4)

1∫
0

ω1 dν =
1

2

1∫
0

ω2

√
h.

Then we may define the set K̃α as the set of (ν, h) ∈ C̃α satisfying (H4).

This set is the analogue of Kα defined in section 3.2 and we have a similar

proposition to proposition 3.1 :

Proposition 4.1 The following equality holds true

inf
(ν,h)∈C̃α

J̃(ν, h) = inf
(ν,h)∈K̃α

J̃(ν, h).

We now formulate the theorem that gives a solution in the feasible set C̃α (or
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K̃α).

Theorem 4.1 There exists a minimizer (µ∗, H∗) ∈ C̃α of J̃ on C̃α satisfying

(H4) as well. In addition

(1) The infimum Ĩα is given by

Ĩα =

1∫
0

ω1 dµ
∗ −

1∫
0

ω2

√
H∗ = J̃(µ∗, H∗). (4.7)

(2) The measure µ∗ has the following form µ∗ = β∗δ0 +g∗λ with 0 ≤ β∗ <∞

and 0 ≤ g∗ ∈ L1 with g∗ non-identically zero.

(3) The constant β∗ and the density g∗ satisfy:

β∗ ω1(0) +

1∫
0

ω1g
∗ ≤ 1

4

1∫
0

ω2
2

ω1

<∞.

(4) We have the relation

Ĩα = −1

2

1∫
0

ω2

√
H∗ = −

1∫
0

ω1 dµ
∗ (4.8)

Remark 5 In particular, the minimizer has the specific form given by Theo-

rem 3.1. The proposition 3.2 is valid for (µ∗, H∗) as well. The proof is similar.

Proof - Step 1: A priori estimate of minimizing sequences in M+([0, 1]) ×

L1([0, 1]).

By lemma 4.3 we may choose a minimizing sequence (µk, hk) in C̃α satisfying

(H4) as well :

1∫
0

ω1 dµk =
1

2

1∫
0

ω2

√
hk =

1

2

1∫
0

ω2√
ω1

√
ω1hk ≤

1

2

 1∫
0

ω2
2

ω1

1/2 1∫
0

ω1hk

1/2

.

We use (H3) with ϕ = ω1 ∈ C([0, 1]),

1∫
0

ω1 dµk ≤
1

2

 1∫
0

ω2
2

ω1

1/2 1∫
0

ω1 dµk

1/2

.

24



It yields

σo ‖µk‖ ≤
1∫

0

ω1 dµk ≤
1

4

 1∫
0

ω2
2

ω1


Then ‖µk‖ is uniformly bounded by M :=

1

4σ0

 1∫
0

ω2
2

ω1

.

Again by (H3), with ϕ = ω1 ∈ C([0, 1]), we deduce

0 ≤
1∫

0

ω1hk ≤
1∫

0

ω1 dµk

Hence ‖hk‖1 ≤M. Then (hk) remains in a bounded set of L1 and (
√
hk) in a

bounded set of L2.

Step 2: Existence of a ?-weak cluster point.

The sequence (µk) is ?-weak compact: it exists a subsequence still denoted

similarly which converges ?-weak to µ∗ in M+([0, 1]).

Similarly, as (
√
hk) is bounded in L2, there exists a subsequence (still denoted

similarly) which converges to
√
H∗ weakly in L2. Since ω2 ∈ L2 and ω1 ∈

C([0, 1]) we get

Ĩα =

1∫
0

ω1 dµ
∗ −

1∫
0

ω2

√
H∗.

Step 3: Conditions (H1)− (H4) for (µ∗, H∗).

• Condition (H1): Let 0 ≤ ϕ ∈ C([0, 1]) : then

lim
k

1∫
0

tϕ(t) dµk(t) ≤ α lim
k

1∫
0

ϕ(t)

 t∫
0

dµk(s)

 dt.

The left-hand side has the following limit

1∫
0

tϕ(t) dµ∗ since tϕ(t) is continu-

ous. We treat the right-hand side of the inequality above by lemma 3.4 and

monotone convergence theorem : lim sup
k

t∫
0

dµk ≤
t∫

0

dµ∗.

• Condition (H2): Let 0 ≤ Ψ ∈ L2([0, 1]); then

lim
k

1∫
0

√
tΨ(t)

√
hk(t) dt ≤

√
α lim

k

1∫
0

Ψ(t)

 t∫
0

dµk(s)

1/2

dt.
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The left-hand side is

1∫
0

√
tΨ(t)

√
H∗(t) dt. With lemma 3.4 and monotone con-

vergence theorem, the left-hand side is
√
α

1∫
0

Ψ(t)

 t∫
0

dµ∗(s)

1/2

dt.

• Condition (H3): A priori we cannot take the limit in the left-hand side of (H3)

for the subsequence (hk) since the weak limit is known to exist only for (
√
hk)

not for (hk). Let 0 ≤ ϕ ∈ C([0, 1]) and consider

1∫
0

ϕ
(√

hk −
√
H∗
)2

≥ 0 ;

then, with (H3) for (µk, Hk)

lim
k

1∫
0

ϕdµk ≥ lim
k

1∫
0

ϕhk ≥ lim
k

2

1∫
0

ϕ
√
hk

√
H∗ −

1∫
0

ϕH∗ =

1∫
0

ϕH∗ ;

this proves (H3) for (µ∗, H∗).

• Condition (H4):

1∫
0

ω1 dµ
∗ = lim

k

1∫
0

ω1 dµk = lim
k

1

2

1∫
0

ω2

√
hk =

1

2

1∫
0

ω2

√
H∗.

We deduce that (µ∗, H∗) ∈ C̃α and it is a solution of the minimization problem.

Step 4: Decomposition of µ∗.

By lemma 3.3, condition (H1) is satisfied by µ∗ ; so µ∗ = β∗δ0 + g∗λ with

0 ≤ β∗ < ∞ and 0 ≤ g∗ ∈ L1. To show that g∗ is not identically zero we

follows the same lines of proof of last step of Theorem 3.1. 2

We just proved that the “weak” problem (Q) has a solution which has the same

form as the measure found in Theorem 3.1. Therefore, the feasible domain of

(Q) can be reduced to elements (µ, h) ∈ C̃α such that the measure µ has the

specific form µ = βδo + g with β ∈ R+ and g ∈ L1(Ω)+. It is also obvious that

infQ ≤ inf P1 .

Unfortunately, we are not able to prove for the moment that the equality

holds, that is the weak formulation (Q) (which seems the most natural) is the
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appropriate relaxed problem for (P1) .

5 A counter -example

We give with a negative result which shows that the condition ω2 ∈ L∞(0, 1)

is necessary to get a general result in Lp(0, 1). We show that for each 1 < p ≤

+∞, there exists functions ω1 and ω2 such that the problem of minimization

has a solution in Cα but not in Lp.

Proposition 5.1 Let α ≥ 1. For every 1 < p ≤ +∞, there exists q 6= ∞ and

ω2 that verify

0 ≤ ω2 /∈ L∞(0, 1) and ω2 ∈ Lq(0, 1)

such that for any ω1 = σo > 0 (constant function) the minimization problem

(Pp) has no solution in Lp(0, 1). More precisely, (Pp) has a solution in Cα but

not in Lp(0, 1).

Proof - The idea is to construct an explicit solution satisfying the conditions

of the proposition above which is also a solution of the unconstrained problem.

Let be α ≥ 1, 1 < p ≤ +∞ and 0 < ε < 1 such that p ≥ 1/ε. We set ω2(t) =

t−ε/2: then ω2 ∈ Lq(0, 1) if and only if q < 2/ε. In particular ω2 /∈ L∞(0, 1).

We choose ω1(t) = σo = 1/2. Then the unconstrained solution is

hc(t) =
ω2

2(t)

4ω2
1(t)

= t−ε.

We see that hc ∈ Cα for any α ≥ 1 since it is nonnegative, non-increasing and

ε < 1. However, hc /∈ Lp(0, 1) since p ≥ 1/ε.
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Let be

hn(t) =


nε for 0 ≤ t ≤ 1

n

t−ε for
1

n
≤ t ≤ 1 ;

therefore hn ∈ Cα ∩ C[0, 1] since hn is a nonnegative, non-increasing and con-

tinuous function. We easily check that lim
n→+∞

J(hn) = J(hc). We deduce that

J(hc) ≤ inf
Cα∩Lp

J(h) ≤ inf
Cα∩C[0,1]

J(h) ≤ lim
n→+∞

J(hn) = J(hc) .

This completes the proof by uniqueness of the solution (when it exists). 2

Remark 6 (1) For ω1, ω2 as in the proof above, hc = t−ε is the minimizer

in L1(0, 1). It is also the solution under the constraint h ∈ Cα. Since hc

belongs to Lp(0, 1) for 1 ≤ p < 1/ε, it is the minimizer of J under the

constraint h ∈ Cα ∩ Lp(0, 1) for such a p (by uniqueness). In particular

for this example, we have proved that for any α ≥ 1 and any 1 ≤ p ≤ ∞,

inf{J(h), h ∈ Cα ∩ C[0, 1]} = inf{J(h), h ∈ Cα ∩ Lp} = J(hc)

(2) For 1 < p < 2 with 0 < ε < 1 such that 1/ε ≤ p < 2/ε then hc /∈ Lp(0, 1)

but ω2 ∈ Lp(0, 1).

(3) The choice of ω1 is independent of p and has all the regularity we can

expect since it is constant.

(4) The function ω2 is always in Lq(0, 1) with 1 ≤ q ≤ 2.

(5) The solution hc belongs to Cα for ε ∈ [1− α, 1[ if α ∈]0, 1[.
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6 Conclusion

Though this problem seems “simple”, it is still widely open. With results of

section 2 , we may assert there exists 0 < αo < αc such that we get existence

of a (more or less regular) solution if α /∈ [αo, αc]. The main challenge now,

is to give conditions on α and ωi to ensure that β (section 3) is equal to 0,

or a contrario, provide some counter-examples. We conjecture that under the

condition ω2 ∈ L∞ and appropriate conditions on α, there exists a solution

of the problem in Lp(0, 1) for some (any) 1 < p ≤ ∞. This is true for the

unconstrained problem under the condition

ω2 ∈ L∞(0, 1) and ω1 ≥ σo,

since the solution hc =
ω2

2

4ω2
1

is then bounded. It remains two points to clarify :

• Find the cases and the conditions on ω1 and ω2 to ensure β = 0.

• Define an appropriate relaxed problem in the space of measures such that

the minimum of the relaxed problem is equal to the infimum of the original

problem (in L1).
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problèmes elliptiques). Springer-Verlag, 1993.

[5] P-.L. Lions. The concentration-compactness principle in the calculus of

variations: the locally compact case I. Annales de l’Institut Henri-Poincaré -
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