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Abstract

The determination of directional power density distribution of an electromagnetic
wave from the electromagnetic field measurement can be expressed as an ill-posed inverse
problem. We consider the resolution of this inverse problem via a maximum entropy reg-
ularization method. A finite dimensional algorithm is derived from optimality conditions,
and we prove its convergence. A variant of this algorithm is also studied. This second one
leads to a solution which maximizes entropy in the probabilistic sense. Some numerical
examples are given.
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1 Introduction

In this paper, we present entropy regularization algorithms in order to determine an elec-
tromagnetic wave propagation directions, from the measurement of the six components of
the electromagnetic field. Most of existing methods assume that the electromagnetic wave is
similar to a single plane wave. In this case, for a fixed frequency, the electromagnetic field
is fully described by the wave normal direction vector k. Nevertheless, this assumption is
generally too restrictive. For a more realistic analysis of an electromagnetic wave in a plasma,
Storey and Lefeuvre have introduced the concept of wave distribution function (WDF) [5].
This function describes the wave energy density distribution for every frequency and propa-
gation modes. The WDF f is related to the spectral matrix V of the electromagnetic field
component by a fredholm integral of the first kind [5]

V (w) =

∫

q(k,w)f(k,w) dk (1)

1
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where k is the wave normal vector and w the frequency. In practice the WDF is computed
for the most significant frequency (often there is only one significant frequency) of the spec-
trogram. The integrating kernel q is a known function depending of the propagation media.
The spectral matrix V is defined with the measured electromagnetic field e : R

+ → R
s by

V = ê(w)ê∗(w) where ê denotes the Fourier Transform of e and s ∈ N
∗ is the number of

field components. It is an Hermitian matrix. This definition of the spectral matrix is an
approximation of the real spectral matrix. Indeed, e is a random signal and we should use
mean values of e. Here we assume e is deterministic. In what follows, we will identify the
spectral matrix to vector of C

n where n = s2. Solutions of the inverse problem of determining
f from measurements of V were proposed by Lefeuvre using a maximum entropy method [6].
However, for a fixed frequency, we have to solve the integral equation problem

V =

∫

q(x)f(x) dx

where the unknown function f is nonnegative. This inverse problem is known to be ill-posed.
The concept of WDF can be transposed to the case of electromagnetic wave propagating

in vacuum. Equation (1) remains valid if we use the vacuum kernels instead of the plasma
kernels and if the electromagnetic wave has a single polarization mode [7]. The use of the
WDF concept for electromagnetic wave propagating in vacuum has been studied for the
interpretation of ground penetrating radar investigations, and in particular the one proposed
for the NetLander mission to Mars [7]. The aim of this instrument was to explore the first
kilometers of Mars subsurface to study its geological structure and look for water.

Here we use a maximum entropy regularization method to solve this problem. We mini-
mize the quantity

‖V −

∫

q(x)f(x) dx‖2
Cn + µH(f)

with the constraint f ≥ 0, where H is an negentropic term (to be defined later) and µ a
regularization parameter. In fact, H is not the negentropy in the probabilistic sense since f is
not a density. But the minimization of H leads to a smooth solution. The main disadvantage
of the maximum entropy solution of [6], is that the constraints on the solution are too strong.
The regularization process provides a relaxed problem and the error we introduce allows to
search a solution in a much wider domain. Moreover, we obtain a solution not far from the
data that looks like a minimizer of H.

The maximum entropy regularization method is a useful tool to solve such inverse prob-
lems. Amato et al. [1] have studied the convergence of this method to show that it is a
correct regularization process. This convergence is also studied in [3] by making a link with
the classical Tikhonov method [11, 12]. A generalization is investigated in [8].

The mathematical model of the problem is described in section 2. We define the negen-
tropy in section 3. In section 4 we set the optimization problem : the feasible domain of
this problem has to be relaxed to find optimality conditions. We present two algorithms, but
the solutions we obtain do not minimize negentropy. So we modify the optimization problem
section 5. Finally we present numerical tests in section 6.
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2 Mathematical model

In this section we present the mathematical model. We consider a measured space (E,A, σ),
where E is a compact subset of R

p, p ≥ 1 and the measure σ verifies σ(E) < +∞. The power
density on (E,A) can be defined as :

Definition 1 The Power density is a couple (α,m) where α ∈ R
+ and m is a probability

measure on (E,A). Let A ⊂ E : the power πA of the subset A is given by

πA = αm(A).

The aim of this paper is to determine a power density (α,m) which verifies the equation

α

∫

E
q dm = V

where V ∈ C
n is known and q ∈ L2(E,Cn, σ) is the integration kernel. In plasma physics,

we have to solve this kind of problem to determine the power density distribution of an
electromagnetic wave m and the total power α from the measurement of the electromagnetic
field components. In this case we typically have n = 36.

The set of probability measures is too large and we will only consider measures that are
continuous with respect to the measure σ. We denote H = L2(E,R, σ) ( ⊂ L1(E,R, σ) thanks
to our assumptions). For all F ∈ H and F ≥ 0 σ.a.e we can define a power density (α, Fαdσ)
where α = ‖F‖L1(E,R,σ) and F

αdσ is the measure of density F
α with respect to σ. Note that :

F 7→
∫

E αq dm where α = ‖F‖L1(E,R,σ) and m = Fdσ
α is a linear bounded operator from H to

C
n.

More generally, we consider a linear bounded operator ψ = (ψ1, · · · , ψn) : H → C
n,

ψ∗ : C
n → H its adjoint operator and we assume that R(ψ∗) ⊂ L∞(E,R, σ) (R denotes the

range). We have to solve
ψ[F ] = V (2)

From the Riesz Theorem, we deduce there exist n functions qi ∈ L2(E,C, σ), i = 1, ..., n such
that ψi[F ] = 〈qi, F 〉H. These functions are integration kernels, and we have

∀l ∈ C
n, ψ∗(l) = Re

(

n
∑

i=1

liq̄i

)

where q̄i denotes the conjugate complex of qi. The condition R(ψ∗) ⊂ L∞(E,R, σ) is equiv-
alent to

∀i = 1, ..., n, qi ∈ L∞(E,C, σ).

The problem of solving equation (2) is an ill-posed problem. Indeed ψ is an operator
from H (an infinite dimensional Hilbert space) to the finite dimensional Hilbert space C

n.
So, the operator ψ is not injective and there is no uniqueness of the solution (if it exists).
In addition, We want to determine a solution which is also stable, that is continuous with
respect to the data V . This will be crucial for the physical and numerical stability. To deal
with this challenge, we use a maximum entropy regularization method.
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The principle of Tikhonov’s regularization method is to minimize the quantity

‖ψ[F ] − V ‖2
Cn + µΩ(F ) (3)

where µ is called the regularization parameter and Ω is a suitable regularizing functional.
This method is equivalent to minimize the functional Ω on the set { ‖ψ[F ] − V ‖Cn ≤ δ(µ) }
[1]. In this paper we use an entropic term as the regularizing functional (see section 3) and we
restrict the domain to the Hilbert space H whereas usually, maximum entropy regularization
is performed in L1. We will see in the following section that there is no problem to define
the entropy. First we recall some definitions.

3 About entropy

Let be the function φ : R
+ → R defined by

φ(x) =

{

x ln(x) if x > 0
0 else.

The notation m1 ≪ m2 means that the measure m1 is absolutely continuous with respect to
the measure m2.

Definition 2 Let f, g ∈ L1(E,R, σ) such that fdσ and gdσ are two probability measures and
fdσ ≪ gdσ. We define the relative information content of f with respect to g by

I(f, g) =

∫

E
f ln

f

g
dσ (4)

If the condition fdσ ≪ gdσ is not verified then I(f, g) = +∞. If g is the non informative
probability density (see the definition below) then I(f, g) is called the information content of
f . The negentropy (negative entropy) of f is then defined by

H(f) = I(f, g)

The non-informative probability density is a known function of the model. Physically,
it is the probability density of a noise measured in the system. For example, in the case of
an electromagnetic wave in vacuum WDF, E is the unit sphere. Now, since isotropy occurs
(there is no privileged direction of propagation for a plane wave in vacuum) we deduce that
the non informative density probability is constant over the unit sphere. So, we may assume
that the non-informative probability density is given by

∀x ∈ E, g(x) =
1

σ(E)
(5)

For the sake of simplicity, we will suppose that σ(E) = 1, so the negentropy of f is

H(f) =

∫

E
φ ◦ f dσ (6)
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Entropy of a probability density can be seen as a “distance” between f and the density
of the non-informative probability g. To calculate the solution of the inverse problem we
minimize a functional involving negentropy. Thus, we determine the solution which contains
the less information with respect to the density g. From the physical point of view, this
allows to preserve the physical significant information. So, it is primordial to know the non-
informative density g quiet accurately. One can refer to [10] for the axiomatic derivation of
the maximum entropy principle. Next lemma gives some properties of H.

Lemma 1 In the sequel we denote K = {f ∈ L2(E,R, σ)|f ≥ 0 σ.a.e}. For all f ∈ K,
−e−1 ≤ H(f) < +∞. The functional H : L2(E,R, σ) → R is lower semi-continuous (l.s.c),
strictly convex on K and verifies: ∀ε > 0,∀f ∈ K such that f ≥ ε σ.a.e, ∀g ∈ K, ∀λ ∈ [0, 1]

H(f + λ(g − f)) −H(f) = λ

∫

E
(1 + ln f(x))(f − g)(x) dσ(x) + o(λ) (7)

Proof. Let be f ∈ L2(E,R, σ),

H(f) =

∫

{x∈E|f(x)<1}
φ ◦ f(x) dσ(x) +

∫

{x∈E|f(x)≥1}
φ ◦ f(x) dσ(x);

as
∀x ∈ [0, 1], −e−1 ≤ x lnx ≤ 0

and
∀x ≥ 1, 0 ≤ x lnx < x2

so we deduce
H(f) ≤ ‖f‖L2(E,R,σ) < +∞ and H(f) ≥ −e−1

The proof of the lower semi-continuity of functional H can be found in [8, 1].
We now prove (7): let f ∈ K such that f ≥ ε let g ∈ K. We have

For a.e. x ∈ E, φ(f(x) + λ(g(x) − f(x))) − φ(f(x)) = λ(1 + ln f(x))(g(x) − f(x)) + o(λ)

since φ is derivable on R
+∗ and φ′(x) = 1 + lnx.

The functional H is strictly convex by the strict convexity of φ on R
+.

�

4 A penalized problem

We now define the penalized cost functional or smoothing functional Jµ we want to minimize

{

Jµ : H −→ R

F 7−→ ‖V − ψ[F ]‖2
Cn + µH(F )

(8)

where µ > 0 is a regularization parameter. We have
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Lemma 2 The functional Jµ is l.s.c and strictly convex on K. In addition, if ε > 0, f, g ∈ K
with f ≥ ε σ.a.e, then

∀λ ∈]0, 1[, Jµ(f + λ(g − f)) − Jµ(f) = λ〈DJµ(f), g − f〉H + o(λ) (9)

where
DJµ(f) = µ(1 + ln f) − 2ψ∗[V − ψ[f ]] (10)

and
Jµ(g) ≥ Jµ(f) + 〈DJµ(f), g − f〉H (11)

Proof. The functional F 7→ ‖V − ψ[F ]‖2
Cn is continuous on H by continuity of ψ, hence it

is l.s.c. We conclude that Jµ is l.s.c on K by Lemma 1. Furthermore, F 7→ ‖V − ψ[F ]‖2
Cn is

Fréchet-differentiable and its gradient is −2ψ∗[V −ψ[F ]], so equation (9) is proved by Lemma
1 as well.

The functional Jµ is strictly convex on K by strict convexity of H and by convexity of
the term ‖V − ψ[F ]‖2

Cn . So, we can write

Jµ(f + λ(g − f)) < (1 − λ)Jµ(f) + λJµ(g)

Jµ(f + λ(g − f)) − Jµ(f)

λ
< Jµ(g) − Jµ(f)

Equation (11) follows by taking the limit of the last equation when λ→ 0.

�

The penalized optimization problem stands

(Pµ)

{

minJµ(F )
F ∈ K = {f ∈ H | f ≥ 0 σ.a.e}

.

The existence of a solution to problem (Pµ) is not obvious since the cost functional is not
coercive in H. To illustrate this fact let us give a simple counter-example : we set E = [0, 1],

σ is the Lebesgue’s measure on [0, 1] and f : E → R, x 7→ x−
1
2 . Then H(f) = 2 < ∞

and we can build a sequence {fk}k∈N ⊂ H such that fk → f a.e., ‖fk‖H → +∞ and
H(fk) → H(f) < +∞.

Nevertheless, since Jµ is strictly convex, the solution to (Pµ) is unique if it exists. It is a
function of H: Fµ,V . The power density can be obtained by setting α = ‖Fµ,V ‖L1(E,R,σ) and

m =
Fµ,V

α dσ.
Therefore, we do not minimize the negentropy of definition 2 since Fµ,V is not a probability

density. Rigorously the negentropy of the solution is H(
Fµ,V

α ). Moreover, the cost functional
does not verify equation (9) on the whole set K because φ is not derivable at 0. So, we have
to modify this problem, taking a smaller feasible set. We study the modified problem in next
section to determine approximate first order optimality conditions.
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4.1 Relaxation of the feasible set

We just mentioned that (Pµ) cannot be directly solved because Jµ is not coercive and (9)
is not satisfied. So we choose a smaller feasible set to ensure (9). To deal with the lack of
coercivity, we bound this new domain. For 0 < ε < T < +∞, we set

Kε,T = {f ∈ H | ε ≤ f σ.a.e and ‖f‖H ≤ T} . (12)

It is a closed, convex subset of H. The “relaxed” problem reads

(Pε,T
µ )

{

min Jµ(F )
F ∈ Kε,T

Theorem 1 Problem (Pε,T
µ ) has a unique solution F ε,Tµ ∈ Kε,T . A necessary and sufficient

condition of optimality is

∀f ∈ Kε,T , 〈DJµ(F
ε,T
µ ), f − F ε,Tµ 〉H ≥ 0 (13)

where
DJµ(F

ε,T
µ ) = −2ψ∗[V − ψ[F ε,Tµ ]] + µ(1 + lnF ε,Tµ )

Proof. The existence and uniqueness of the solution is standard, see [2] (Cor.III.20 p.46).
We call it F ε,Tµ . Then

∀g ∈ Kε,T ,∀λ ∈ [0, 1], Jµ(F
ε,T
µ + λ(g − F ε,Tµ )) − Jµ(F

ε,T
µ ) ≥ 0 .

With Lemmas 1 and 2 this is equivalent to

∀g ∈ Kε,T , 〈DJµ(F
ε,T
µ ), g − F ε,Tµ 〉H ≥ 0.

�

With the optimality condition (13), we may now construct the solution to (Pµ).

Lemma 3 If there exists F ε,Tµ ∈ Kε,T such that

F ε,Tµ = exp(−1 +
2

µ
ψ∗[V − ψ[F ε,Tµ ]]), (14)

i.e. F ε,Tµ is a fixed point of a functional

{

Γµ : H −→ H

F 7−→ exp
(

−1 + 2
µψ

∗[V − ψ[F ]]
) ,

then for all 0 < ε′ ≤ ε and T ′ ≥ T , F ε,Tµ is the unique solution of (Pε′,T ′

µ ). Furthermore F ε,Tµ
is the unique solution of problem (Pµ) and we note it Fµ,V .
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Proof. Let F ε,Tµ ∈ Kε,T , such that

F ε,Tµ = exp

(

−1 +
2

µ
ψ∗[V − ψ[F ε,Tµ ]]

)

σ.a.e .

We get
µ ln(F ε,Tµ ) = −µ+ 2ψ∗[V − ψ[F ε,Tµ ]] σ.a.e .

So
∀f ∈ Kε, 〈−2ψ∗[V − ψ[F ε,Tµ ]] + µ(1 + ln(F ε,Tµ )), f − F ε,Tµ 〉H = 0,

and we see that F ε,Tµ verifies (13). Therefore F ε,Tµ is the solution of (Pε,T
µ ). As Kε,T ⊂ Kε′,T ′

for all 0 < ε′ ≤ ε and T ′ ≥ T ,we conclude that F ε,Tµ is the solution of problem (Pε′,T ′

µ ). It is

also the solution of problem (Pµ) : suppose that F ′ ∈ K exists, such that Jµ(F
′) ≤ Jµ(F ε,Tµ )

then the function

F̃ =
F ε,Tµ + F ′

2

verifies F̃ ≥ ε
2 = ε̃ and ‖F̃‖H ≤ 1

2(‖F ε,Tµ ‖H + ‖F ′‖H) = T̃ , so F̃ ∈ Kε̃,T̃ . Since F ε,Tµ is the

solution of (P ε̃,T̃
µ ) we have J(F ε,Tµ ) ≤ J(F ′) and we deduce that F ε,Tµ is a solution of (Pµ).

Moreover, it is the unique solution of (Pµ) since Jµ is strictly convex.

�

Lemma 3 also shows that if the functional Γµ has a fixed point, it is unique.
We are now able to find the solution as a fixed point. In next subsection we study the

existence of a sequence that converges to this fixed point. That will be the essential tool to
set an infinite dimensional algorithm.

4.2 An infinite dimensional algorithm

Let us define the sequence {Fk}k∈N of H by

{

F0 ∈ H

Fk+1 = exp(−1 + 2
µψ

∗[V − ψ[Fk]])
.

If it converges, the limit is a fixed point of the functional Γµ. It is also the solution to (Pµ).

Lemma 4 The functional Γµ is continuous from H to L∞(E,R, σ). Furthermore we have
the inequality

‖Γµ(F )‖L∞(E,R,σ) ≤ exp

(

−1 +
2

µ
Cψ∗ [‖V ‖Cn + Cψ‖F‖H]

)

. (15)

Proof. We remark that F 7→ exp(F ) is continuous from L∞(E,R, σ) to itself and ψ∗ is
continuous from C

n to L∞(E,R, σ).
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Inequalities are obtained with the continuity of operators ψ and ψ∗: there exist two
constants Cψ and Cψ∗ such that

‖ψ(F )‖Cn ≤ Cψ‖F‖H

‖ψ∗(x)‖L∞(E,R,σ) ≤ Cψ∗‖x‖Cn

Since exponential function is non decreasing one obtains the results by injecting the last
inequalities in the expression of Γµ.

�

Now we show the convergence of the sequence {Fk}k∈N . The following lemma gives a
condition on the regularization parameter µ which implies that the sequence {Fk}k∈N stays
in a ball of fixed radius.

Lemma 5 Let F be such that ‖F‖H ≤ R; if

µ ≥
2Cψ∗ [‖V ‖Cn + CψR]

1 + ln (R)
(16)

then ‖Γµ(F )‖H ≤ R and ‖Γµ(F )‖L∞(E,R,σ) ≤ R

Proof. We have

µ ≥
2Cψ∗ [‖V ‖Cn + CψR]

1 + ln (R)

µ[1 + ln (R)] ≥ 2Cψ∗ [‖V ‖Cn + CψR]

so

R ≥ exp

(

−1 +
2

µ
Cψ∗ [‖V ‖Cn + CψR]

)

and we deduce the two inequalities.

�

We will use a fixed point criterion: if the functional Γµ is a contraction, then the sequence
is converging. In the following lemma, we give a condition on µ for the sequence to converge.

Lemma 6 Γµ is Fréchet-differentiable on H and its derivative is

dΓµ(F ).h = −
2

µ
Γµ(F )ψ∗ ◦ ψ[h]. (17)

Let ‖F0‖H ≤ R, if µ verifies (16) and if

µ > 2R2Cψ∗Cψ (18)

then the sequence (Fk)k∈N converges in H and in L∞(E,R, σ) to the unique fixed point Fµ,V
of Γµ.
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Proof. Functional Γµ is differentiable since F 7→ exp(F ) is differentiable from L∞(E,R, σ)
to itself, and F 7→ ψ∗[ψ[F ]] is linear continuous from H to L∞(E,R, σ). By Lemma 5, we
deduce that for all k ∈ N, 0 ≤ Fk ≤ R. Furthermore, equation (18) leads to

sup
{F∈H|0≤F≤R}

‖dΓµ(F )‖L(L∞ ,L∞) < 1

We conclude using the Banach fixed point theorem on the complete set {F ∈ H| 0 ≤ F ≤ R}
with the distance induced by L∞. The sequence converges to the unique fixed point Fµ,V ∈
{F ∈ H| 0 ≤ F ≤ R} of Γµ strongly in L∞(E,R, σ) and in H (by compactness).

�

We may summarize in :

Theorem 2 If µ verifies (16) and (18) (i.e. µ large enough), then problem (Pµ) has a unique
solution Fµ,V limit of the sequence {Fk}k∈N defined by

{

F0 ∈ {F ∈ H| 0 ≤ F ≤ R}

Fk+1 = exp
(

−1 + 2
µψ

∗[V − ψ[Fk]]
)

= Γµ(Fk)

The convergence stands in L∞ and in H.

Shortly speaking, we have an infinite dimensional algorithm that converges to the solu-
tion of the maximum entropy regularization problem for a fixed parameter µ great enough.
Theorem 2 shows that the solution Fµ,V of (Pµ) is obtained as the limit of the sequence
{Fk}k∈N and belongs to L∞(E,R, σ).

However this algorithm is not useful from the numerical point of view. Indeed, it is
an infinite dimensional one and an inappropriate discretization process may lead to slow
computations. Nevertheless, we are able to derive a finite dimensional algorithm from the
optimality condition (13). This is the aim of next subsection.

4.3 A finite dimensional algorithm

Lemma 3 suggests to look for the solution Fµ,V of problem (Pµ) as Fµ,V = Gµ,V where

Gµ,V = exp

(

−1 +
2

µ
ψ∗[λ]

)

(19)

where λ ∈ C
n has to be determined. Next Lemma gives a sufficient optimality condition on

λ to solve (Pµ). In addition, we have an analytic expression for the solution.

Lemma 7 Let λ ∈ C
n such that

λ = V −

∫

E
q(σ) exp

(

−1 +
2

µ
ψ∗[λ](σ)

)

dσ (20)

then the function Gµ,V ∈ H, defined by (19), is the unique solution of (Pµ)
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Proof. By definition of Gµ,V and with the assumption R(ψ∗) ⊂ L∞(E,R, σ), there exist
ε > 0 and T > ε such that Gµ,V ∈ Kε,T . Writing the expression of Fµ,V in (13) we can see

that it is verified. So Fµ,V is the unique solution of problem (Pε,T
µ ). With Lemma 3 and the

strict convexity of Jµ it follows that it is the unique solution of (Pµ).

�

Therefore we only need to find the value of λ ∈ C
n to determine Gµ,V . So the problem

turns to be a finite dimensional one. Let us define the sequence {λk}k∈N of C
n as

{

λ0 ∈ C
n

λk+1 = γµ(λk)
def
= V −

∫

E q(σ) exp
(

−1 + 2
µψ

∗[λk](σ)
)

dσ
(21)

The function γµ : C
n → C

n defined in (21) is differentiable and its derivative is

dγµ(λ).h = −
2

µ

∫

E
q(σ)q̄t(σ) exp

(

−1 +
2

µ
ψ∗[λ](σ)

)

.h dσ; (22)

thus

‖dγµ(λk).h‖Cn ≤
2

µ
ρ(k)
µ ‖h‖Cn (23)

where ρ
(k)
µ is the spectral radius of matrix M

(k)
µ of dimension (n, n), such that for all 1 ≤

i, j ≤ n (we use euclidean norm on C
n)

M
(k)
µ,ij =

∫

E
qi(σ)q̄j(σ) exp

(

−1 +
2

µ
ψ∗[λk](σ)

)

dσ

Using the Frobenius norm of matrix M
(k)
µ we have the inequality

ρ(k)
µ ≤ ‖M (k)

µ ‖Fr ≤ exp

(

−1 +
2

µ
Cψ∗‖λk‖Cn

)

√

√

√

√

∑

1≤i,j≤n

∣

∣

∣

∣

∫

E
qi(σ)q̄j(σ) dσ

∣

∣

∣

∣

2

(24)

The sequence {λk}k∈N converges to the fixed point of γµ only if ρ
(k)
µ is small enough for any

k. So we cannot use it to calculate λ. However, we are able to construct another sequence
converging to λ noting that for all τ > 0, λ = γµ(λ) is equivalent to λ = λ− τ [λ− γµ(λ)]. So
we can obtain λ as limit of the sequence {lk}k∈N

{

l0 ∈ C
n

lk+1 = lk − τ [lk − γµ(lk)]
(25)

This sequence will be used to determinate the solution practically. If τ is chosen small enough
and µ is great enough it converges.

Lemma 8 Assume that for every k ∈ N the spectral radius of M
(k)
µ is less than mµ ∈ R

+∗;
then the sequence lk converges if 0 < τ < 1

1+ 2
µ
mµ
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Proof. The matrix M
(k)
µ is hermitian of nonnegative type since for all σ ∈ E, q(σ)q̄t(σ) is

nonnegative hermitian and exp
(

−1 + 2
µψ

∗[λk](σ)
)

> 0. Let hτ : C
n → C

n be the function

λ 7→ λ− τ [λ− γµ(λ)]. The derivative of hτ is

∀λ, v ∈ C
n, dhτ (λ).v = ([1 − τ ]I −

2

µ
τMµ)v

Since M
(k)
µ is hermitian, there exists an orthogonal basis of eigenvectors and we call B(k) the

transition matrix. So B
(k)
∗ ([1 − τ ]I − 2

µτM
(k)
µ )B(k) = [1 − τ ]I − 2

µτ∆
(k)
µ , where 2

µτ∆
(k)
µ is a

diagonal matrix with positive elements. Thus, the spectral radius of [1 − τ ]I − 2
µτM

(k)
µ is

strictly less than 1−τ since the spectral radius of M
(k)
µ is less than to mµ and 0 < τ < 1

1+ 2
µ
mµ

.

We deduce

‖lk+1 − lk‖Cn ≤ ‖(1 − τ)I − τM (k)
µ ‖‖lk − lk−1‖Cn

≤ (1 − τ)‖lk − lk−1‖Cn

because ‖A‖2 = ρ(A∗A). So the sequence converges.

�

We have a proof of the convergency of sequence {lk}k∈N if the spectral radius of the matrix
M (k)µ is uniformly bounded with respect to k. In next Lemma, we give an estimate of the
spectral radius of M (k)µ with the Frobenius norm.

Lemma 9 Let ‖l0‖Cn ≤ R; if

µ ≥ 2Cψ∗R

(

log

(

R− ‖V ‖Cn

C ′
ψ

)

+ 1

)−1

(26)

where C ′
ψ > 0 verifies

‖ψ(F )‖Cn ≤ C ′
ψ‖F‖L∞(E,R,σ) ,

then the whole sequence is bounded by R, and the spectral radius ρ
(k)
µ of M

(k)
µ satisfies

ρ(k)
µ ≤ exp

(

−1 +
2

µ
Cψ∗R

)

√

√

√

√

∑

1≤i,j≤n

∣

∣

∣

∣

∫

E
qi(σ)q̄j(σ) dσ

∣

∣

∣

∣

2

(27)

Proof. We prove the result by induction. Let us assume there exists k ∈ N
∗ such that

∀j ≤ k, ‖lj‖Cn ≤ R, then

‖lk+1‖Cn ≤ (1 − τ)R+ τ

(

‖V ‖Cn + C ′
ψ exp

(

−1 +
2

µ
Cψ∗R

))

and condition (26) implies

‖V ‖Cn + C ′
ψ exp

(

−1 +
2

µ
Cψ∗R

)

≤ R.

For all k ∈ N we have ‖lk‖ ≤ R and (27) is a direct consequence of (24).
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�

Proposition 1 If (µ,R) satisfies condition (26) then γµ has an unique fixed point λ in the
closed ball B(0, R). Moreover if ‖l0‖Cn ≤ R and τ is small enough, then λ is the limit of the
sequence {lk}k∈N.

We now give a more precise description of the algorithm defined by (25) :

Algorithm A1

1. Initialization

Given V ∈ C
n, choose l0 ∈ C

n, µ > 0, ǫ > 0, τ ∈]0, 1].

2. Iteration k

(a) Compute

γµ(lk−1) = V −

∫

E
q(σ) exp

(

−1 +
2

µ
ψ∗[lk−1](σ)

)

dσ

.

(b) Compute lk = lk−1 − τ [lk−1 − γµ(lk−1)]

3. Stopping criterion

If |lk − lk−1| < ǫ, then STOP, else k := k + 1 and go to 2.

The algorithm converges if the regularization parameter is great enough. The main ad-
vantage of this method is that it determines a vector of C

n which is the fixed point of a
functional. Moreover we have an analytic expression for this solution. The convergence of
the algorithm is linear since we have shown that ‖lk+1 − lk‖Cn ≤ (1 − τ)‖lk − lk−1‖Cn in
Lemma 8. The number τ has to be chosen as great as possible for a faster convergence.

Now we perform a sensitivity analysis of the optimal value function with respect to µ and
V . Let V ∈ C

n be fixed. We suppose that for the data V the sequence (21) converges for all
µ ≥ µ0 > 0. We define the function C1 by

{

C1 : [µ0,+∞[ −→ R

µ 7−→ Jµ(Fµ,V ) + µe−1 (28)

Similarly for any λ > 0 fixed, we suppose that the sequence (21) converges for all V ∈ B(0, R)
where R > 0, and we define the function C2 by

{

C2 : B(0, R) ⊂ C
n −→ R

V 7−→ Jµ(Fµ,V ) + µe−1 (29)

Proposition 2 Let C1 and C2 be the functions defined by (28) and (29).

1. C1 is continuous and increasing.

2. C2 is continuous and verifies

C2 ≤ ‖V ‖2
Cn +

µ

e
(30)
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Proof. Let be µ1 > µ2 ≥ µ0. For all F ∈ K, Jµ1(F ) > Jµ2(F ) since (H(F ) + e−1) ≥ 0,
hence C1 is increasing. To prove continuity we suppose there exists a sequence {µk}k∈N and
a δ > 0 such that µk → µ and for all k, |C1(µk) − C1(µ)| > δ. Let ε > 0 be small enough, so

∃N ∈ N such that |µ− µN | <
δ(µ−ε)
2C1(µ) and |µ− µk| < ε. Assume that µN < µ then

Jµ(FµN ,V ) − C1(µN ) = (µ− µN )H(FµN ,V )

so |Jµ(FµN ,V ) − C1(µN )| < δ/2 since H(FµN ,V ) ≤ C1(µ)
µN

. Hence Jµ(FµN ,V ) < C1(µ). This
contradiction proves the result. The case µN ≥ µ can be shown similarly.
We can show the continuity of C2 by the same way. The inequality (30) is obtained by taking
F = 0.

�

We just proved the fixed point existence if µ is large enough; in fact, it is true for any
µ > 0 : we use a scaling method to prove it :

Proposition 3 For every µ > 0, the solution Fµ of problem (Pµ) exists and verifies (14).
Moreover, Fµ can be computed with the sequence {ℓ′k}n∈N defined by

{

ℓ′o ∈ C
n

ℓ′k+1 = (1 −
τo
α

)ℓ′k + τo γµo(ℓ
′
k)

for some µo > µ > 0, τo ∈]0, 1[ and α = µo

µ .

Proof. With proposition 1, we know that there exist ℓo ∈ C
n, µo > 0 and 0 < τo < 1 such

that the sequence {ℓk }k∈N defined by (25) converges. Then the solution Fµ of problem (Pµ)
exists for every µ ≥ µo.
Assume now that µ < µo and set α := µo

µ > 1. As shown in the proof of Lemma 8, the
eigenvalues of the gradient of the function ℓ 7→ (1 − τo)ℓ+ τoγµo(ℓ) are nonnegative, and the
spectral radius is bounded by 1−τo. As −dγµo is nonnegative and α > 1, we deduce as before
that the sequence {ℓ′k} defined by

{

ℓ′o ∈ C
n

ℓ′k+1 = (1 − τo
α )ℓ′k + τoγµo(ℓ

′
k)

is converging to some ℓ′ that verifies

ℓ′ = (1 −
τo
α

)ℓ′ + τoγµo(ℓ
′) ,

τo
α
ℓ′ = τoγµo(ℓ

′) ;

Setting λ =
ℓ′

α
yields

λ = γµo(αλ) = V − ψ[exp(−1 +
2

µo
ψ∗(αλ))]

λ = V − ψ[exp(−1 +
2α

µo
ψ∗(λ))] = V − ψ[exp(−1 + 2µψ∗(λ))] = γµ(λ) .

We conclude with Lemma 7, that (Pµ) has a (unique) solution.
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�

In summary, we have a finite dimensional algorithm that converges to the solution of
maximum entropy regularization for all µ > 0. However, last proposition show that the
number of iteration increase when µ decrease since the speed of convergency is (1 − τ0µ

µ0
).

We know the analytic expression of the solution and the problem is now a finite dimen-
sional one. However, the entropy involved in the functional we have minimized is not the
entropy in the sense of definition 2 because the solution is not a probability density. The
algorithm we present in the next section allows to find a solution which maximize the true
entropy. It is a variant of the previous one.

5 Computing the probability density

We look for a solution that maximizes entropy in the sense of definition 2. This leads to the
problem

(P̃µ)

{

min ‖V − αψ[F ]‖2
Cn + µH(F )

(α,F ) ∈ R
+ ×

{

f ∈ K|‖f‖L1(E,R,σ) = 1
}

Here, α ∈ R
+ is the total power and F is a probability density because of the constraint

F ∈
{

f ∈ K|‖f‖L1(E,R,σ) = 1
}

. So, if the solution exists, it minimizes negentropy as defined
in definition 2.

We cannot solve (P̃µ) in the same way as problem (Pµ): indeed the cost functional is no
more convex because of the bilinear term αψ[F ]. On the other hand, the feasible domain is
convex since ∀f, g ∈

{

f ∈ K | ‖f‖L1(E,R,σ) = 1
}

, ∀λ ∈ [0, 1], we have λf +(1−λ)g ∈ K, and

‖λf + (1 − λ)g‖L1(E,R,σ) = λ‖f‖L1(E,R,σ) + (1 − λ)‖g‖L1(E,R,σ) = 1

by positivity of f, g. Anyway, if F is solution of (Pµ), we can view ‖F‖L1(E,R,σ) as an
approximation of the power. So we use the previous section results on (Pµ). Let us define
the sequence {lk}k∈N by















lo ∈ C
n

δk,µ =
Re(〈V, gµ(lk)〉Cn)

〈gµ(lk), gµ(lk)〉Cn

lk+1 = V − δk,µgµ(lk)

(31)

where gµ : C
n → C

n is defined by

gµ(l) = V − γµ(l) =

∫

E
q(σ) exp

(

−1 +
2

µ
ψ∗[l](σ)

)

dσ. (32)

We assume that
∀l ∈ C

n, Re(〈V, gµ(l)〉Cn) ≥ 0 ;

since δk,µ is an estimation of the power, it has to be positive. If δk,µ → δ∗ and lk → l∗ then

l∗ = V − δ∗gµ(l
∗) (33)

Last equation is quite similar to the necessary and sufficient condition of optimality (13) of
problem (Pµ).
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Proposition 4 Let be l∗ = V − δ∗gµ(l
∗) with δ∗ > 0; we define

Fl∗ = exp

(

−1 +
2

µ
ψ∗[l∗]

)

and fl∗ =
Fl∗

‖Fl∗‖L1(E,R,σ)

Then fl∗ is a probability density and it is the unique solution of problem
{

min ‖ V
δ∗‖Fl∗‖L1(E,R,σ)

− ψ(F )‖2
Cn + µ

δ∗‖Fl∗‖L1(E,R,σ)

∫

E φ ◦ F (σ) dσ

F ∈
{

f ∈ H|f ≥ 0 σ.a.e, ‖f‖L1(E,R,σ) = 1
} (34)

Moreover, fl∗ verifies

∀α ∈ R, ‖V − δ∗‖Fl∗‖L1(E,R,σ)ψ[fl∗ ]‖
2
Cn ≤ ‖V − αψ[fl∗ ]‖

2
Cn (35)

Proof. We have

l∗ = V − δ∗gµ(l
∗) ⇒ −2ψ∗[V − δ∗gµ(l

∗) − l∗] = 0

⇒ −2ψ∗[V − δ∗gµ(l
∗)] + µ

(

2

µ
ψ∗[l∗]

)

= 0

⇒ −2ψ∗[V − δ∗ψ[Fl∗ ]] + µ(1 + lnFl∗) = 0

Dividing the last equation by δ∗ gives a sufficient optimality condition for problem (34). So
Fl∗ is the unique solution to this problem. As {f ∈ H | f ≥ 0 σ.a.e, ‖f‖L1 = 1} ⊂ K, we get
the conclusion.

To show (35) we suppose that ψ[fl∗ ] 6= 0 (otherwise the result is obvious). Let us define
{

θ : R −→ R

α 7−→ ‖V − α‖Fl∗‖L1(E,R,σ)ψ[fl∗ ]‖
2
Cn

.

It is a continuous and strictly convex function. The unique minimizer of θ (denoted α∗ )
verifies

θ′(α) = −2‖Fl∗‖L1(E,R,σ)Re(〈V − α∗‖Fl∗‖L1(E,R,σ)ψ[fl∗ ], ψ[fl∗ ]〉Cn) = 0

that is

α∗ =
Re(〈V,ψ[fl∗ ]〉Cn)

‖Fl∗‖L1(E,R,σ)‖ψ[fl∗ ]‖
2
Cn

= δ∗

�

The above proposition shows that if the sequence given by (31) converges, then its limit
provides a power density (δ∗, fl∗dσ) which minimizes the error with the data V . Moreover
fl∗ has a minimal negentropy in the probabilistic sense. Now, we show that, the obtained

solution is the unique solution of problem
(

P̃δ∗‖Fl∗‖µL1(E,R,σ)

)

. Let us call

Jµ(α,F ) = ‖V − αψ[F ]‖2
Cn + µH(F ),

we have Jµ(1, F ) = Jµ(F ).
The previous result proves that if the sequence defined by (31) converges then its limit is

a solution of problem (P̃µδ∗‖Fl∗‖L1(E,R,σ)
). We have a result of convergence:
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Proposition 5 Assume there exists c > 0 such that

∀µ ≥ 0,∀l ∈ C
n, ‖gµ(l)‖Cn ≥ c ; (36)

then there exists a µ0 suh that sequence defined by (31) converges for every µ ≥ µo large
enough.

Proof. We have to compute the derivative of the function defining the sequence (31) :

ϕµ : l 7→ V −
Re(〈V, gµ(l)〉Cn)

〈gµ(l), gµ(l)〉Cn

gµ(l) .

We get

ϕ′
µ(l) = −

Re(〈V, gµ(l)〉Cn)

‖gµ(l)‖2
Cn

∇gµ(l)

−gµ(l)

[

Re(〈V,∇gµ(l)〉Cn)

‖gµ(l)‖2
Cn

− 2
Re(〈V,∇gµ(l)〉Cn)

‖gµ(l)‖2
Cn

Re(〈gµ(l),∇gµ(l)〉Cn)

‖gµ(l)‖2
Cn

]

A short computation gives

sup
l∈Cn

‖ϕ′
µ(l)‖ ≤ 2‖V ‖κµ(1 + 2κµ) ,

where

κµ
def
= sup

l∈Cn

‖∇gµ(l)‖

‖gµ(l)‖
.

Thanks to assumption (36) and equation (23), there exists a constant c′ > 0 such that

κµ <
c′

µ
. It is clear there exists µ0 > 0 such that ϕµ is contractive for every µ ≥ µ0. �

Remark 1 Assumption (36) seems to be surprising, but in fact it is primordial. This as-
sumption can easily be derived from the physical model: gµ(l) is the spectral matrix corre-
sponding to the WDF exp(−1 + 2

µψ
∗[l]) > 0. Since the WDF is positive, it means that the

electromagnetic wave has a non-zero energy and thus the spectral matrix cannot be zero. We
can see (36) from the model noting that the spectral matrix trace is the constant function 1
on the sphere.

Remark 2 We do not have proved the convergency for all µ > 0. Anyway, in practice
V << ψ. So we have to perform a (physical) normalization process : this means that we

use the operator εψ instead of ψ where ε > 0 is a small number (usually ε ≃ ‖V ‖
‖ψ‖ ). Hence,

we have to solve the problem (P̃µ/ε2) (according to the proof of Proposition 3), and the new
regularization parameter µ̃ = µ

ε2
is large.

We now can write the algorithm more precisely and we introduce a relaxation parameter τ
useful for numerical computations :
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Algorithm A2

1. Initialization

Given V ∈ C
n, choose ℓo ∈ C

n, µ > 0, τ ∈]0, 1[, ǫ > 0.

2. Iteration k

(a) Compute

gµ(ℓk−1) =

∫

E
q(σ) exp

(

−1 +
2

µ
ψ∗[ℓk−1](σ)

)

dσ .

(b) Compute

δk−1,µ =
Re(〈V, gµ(ℓk−1)〉Cn)

〈gµ(ℓk−1), gµ(ℓk−1)〉Cn

.

(c) Compute ℓk = (1 − τ)lk−1 + τ [V − δk−1,µgµ(ℓk−1)].

3. Stopping criterion

If |ℓk − ℓk−1| < ǫ, then STOP, else k := k + 1 and go to 2.

Remark 3 In this section we have supposed that R(ψ∗) ⊂ L∞(E,R, σ) to established the
algorithms. If this condition is not verified we can slightly modify the operator ψ to overcome
this problem. More precisely if ψ : F 7→

∫

E q(σ)F (σ) dσ with q 6∈ L∞(E,Cn, σ), we can find
a qε ∈ L∞(E,Cn, σ) such that ‖q − qε‖L2(E,Cn,σ) ≤ ε. The function qε allows to define a
new operator ψε : F 7→

∫

E q
ε(σ)f(σ) dσ which verifies R(ψε) ⊂ L∞(E,R, σ) and ‖ψε[F ] −

ψ[F ]‖Cn ≤ ε‖F‖H. This new operator can be used for the computation instead of ψ, and it
verifies the desired condition.

6 Numerical tests

In this section we perform some numerical tests for the resolution of (2) with the two algo-
rithms previously described. For these tests we consider the propagation of an electromag-
netic wave in vacuum. We give below the corresponding expression of operator ψ. We denote
ǫr = ‖V − ψ[Fµ,V ]‖2

Cn the error and α is the computed approximation of total power P .
For the numerical computation of the solution, we need to find τ > 0 small enough for

the algorithms to converge. The number τ must be great enough for a fast computation. To
determine this parameter we have used the following rule:

• let τo > 0, k = 0 and ℓo = 0.

• Iteration k : τk and ℓk are known; compute ℓk+1

• if ‖ℓk+1 − ℓk‖Cn ≥ ‖ℓk − ℓk−1‖Cn then τk+1 = τk r where 0 < r < 1.
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In the computation we used r = 0.5. We can also utilize a linear search strategy for the best
value of τ . We have chosen to stop the algorithms when ‖lk+1 − lk‖Cn < ǫ where ǫ > 0 is
chosen small enough (here ǫ = 10−12).

All numerical tests were performed on a Power Mac 2×G4 with the scientific software
Scilab 2.6. For these examples the average time for one iteration was 28.5 ms. This is
corresponding to the average number of 35 iterations per second.

6.1 Wave distribution function in vacuum

In the case of an electromagnetic wave propagating in vacuum, we have the relation

V =

∫ π

0

∫ 2π

0
q(θ, φ)F (θ, φ) sin θ dφ dθ (37)

where V is the data vector, F is the WDF of the electromagnetic wave and q is the integrating
kernel of vacuum. Writing the components of the spectral matrix as a vector provides the
data V . We see with (37) that we integrate over the unit sphere : θ ∈ [0, π] denotes the polar
angle and φ ∈ [0, 2π] the azimuthal angle. This is quite clear because WDF is the directional
distribution of the power of electromagnetic wave. The expression of q is analytically known
[7].

According to (37) we put E = [0, π] × [0, 2π], dσ = sin θ
2π dθ dφ and we define the operator

ψ by
{

ψ : H −→ C
n

F 7−→
∫ π
0

∫ 2π
0 q(θ, φ)F (θ, φ) sin θ dφ dθ

. (38)

This operator is continuous on H and the adjoint operator verifies R(ψ∗) ⊂ L∞(E,Cn, σ)
[7]. From the expression of ψ, we see that we have to compute a double integral. For this
computation we have used the Gauss-Legendre quadrature method with 20 points on the
interval [0, π] and 40 points on [0, 2π]. In the following tests, this integration method seems
to be accurate enough because the results don’t change dramatically if the number of Gauss
points is larger.

Numerical validation of algorithms was done with simulated data. In the first tests V
was obtained for a WDF that was a sum of dirac measures. The data vector of a dirac
in (θd, φd) of power P is simulated by taking V = P/ sin(θd) q(θd, φd). The case of a dirac
is important because it physically corresponds to an electromagnetic plane wave. Second
tests are performed with data corresponding to an almost everywhere continuous WDF. The
simulation has been made by computing the integral (37). For some of these examples, a
noisy data V δ was introduced with ‖V − V δ‖Cn ≤ δ where δ > 0 is the noise level.

The choice of the regularization parameter is a difficult task in the case of noisy data. It
must be chosen small enough to make a small error, and large enough to guarantee stability.
A commonly used rule is the discrepancy principle of Morozov [4]. We choose µ such that
‖V − ψ[Fµ]‖Cn = δ i.e. we don’t make a smaller error than the noise level. In the numerical
tests, since we used simulated data, we decided to choose µ such that δ ≤ ‖V −ψ[Fµ]‖Cn ≤ 2δ.
This choice is made a posteriori using the fact that the function µ 7→ ‖V − ψ[Fµ,V ]‖Cn is
quite linear when µ is small (see Figure 1.). Note that the noise level δ is known from the
experience.
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Figure 1. Iterative search of the regularization parameter µ that fits the Morozov
discrepancy principle

6.2 Test of A1

We first used algorithm A1 for data corresponding to a Dirac measure or a sum of Dirac
measures. We present the results in the case of one single Dirac and the sum of three Dirac
measures to illustrate the behaviour of the algorithm that is able to detect more than one
direction.

6.2.1 Case of one Dirac measure

We have made computations with θd = 1.5, φd = 2 and for Pi = i/2 with i = 1, .., 50. For
each value of Pi we have computed the relative power error given by

ǫiα =
|αi − Pi|

Pi

where αi is the computed approximation of total power Pi. For this example we set µ = 1.
The function ǫα(P ) is plotted in figure 1. We see that the error increases when P decreases;
it is less than 10 % for a power P ≥ 4. We have also computed the mean direction (θ̄, φ̄)
given by

θ̄ =
1

‖F‖L1(E,R,σ)

∫

E
θF (θ, φ) dσ(θ, φ) , φ̄ =

1

‖F‖L1(E,R,σ)

∫

E
φF (θ, φ) dσ(θ, φ). (39)

of a Dirac with φd = 2, P = 8 and for θd varying from 0 to π. From these values we can
compute the angles errors ǫθ and ǫφ by

ǫθ =
|θd − θ̄|

π
, ǫφ =

|φd − φ̄|

2π
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Figure 2. Variation of the average direction θ̄ (plotted with +, the true value is the solid
line), φ̄ (plotted with ×) and errors ǫθ, ǫφ for a dirac with P = 8, φd = 2 and θd varying
from 0 to π. The plot named “relative power error” show the variation of ǫα for a Dirac

with θd = 1.5, φd = 2 and P varying from 0.5 to 25.

We can see how the average direction changes with θd. We see that the average direction is
close the true one when it is far enough from the poles. The “large” error on φd near the
poles can be explained by the “bad” representation of the unit sphere in (39) Similarly, we
obtain a large error if φd is chosen near 0 or 2π. Another value for φd far enough from the
edge of E gives similar result as plotted in Figure 2. We conclude that the results obtained
in this case are satisfactory. The method is able to detect the direction and the power of a
dirac with small errors if the direction is not too close to the edge of E and if the power is
great enough.

6.2.2 Case of the sum of three Dirac measures

We have built an example for a sum of three Dirac measures which support is vertices of
an equilateral triangle on E. For this example we have added a noise to the simulated data
V . It verifies ‖V − V δ‖Cn < 1 (precisely = 0.764, this correspond to a relative noise level of
3.1%). The regularization parameter µ was chosen according to the noise level; we have taken
µ = 0.5 because the corresponding solution has a small error and 1 = δ < ‖V − ψ[F ]‖Cn ,
more precisely the relative error is 5.5% (see Table 6.2.2 for the results). We plot the contour
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of the solution on Figure 3. We observe three peaks centered on the directions of the three
Dirac measures. The solution is in this way satisfactory.

We have performed a sensitivity analysis with respect to µ. Indeed, in section 3 we gave
an interpretation of entropy as the “ distance”to the non-informative probability density g.
To see the numerical effects of entropy, we computed the solution for the same data with
different values for µ. Theoretically, a great value of µ leads to a solution with a great
entropy, that is a solution not too “far” from g. In Figure 3 we see the result obtain for
µ = 50 and the different results are reported in Table 1. We see that the error ǫr quickly
increases with µ while H is decreasing. The number of iteration is dramatically increasing
when µ becomes small, so that we are not able to compute the µ-solution for all µ with this
algorithm. We observe that we need more and more iteration when µ→ 0, to converge. The
solution obtained for µ = 50 is very flat and has a very large error ǫr = 117.6. We remark that
the optimal value function is not increasing but there is no contradiction with proposition 2
since we have to add µ

e to obtain an increasing function.

µ α ǫα ǫr H Jµ Min Max #It. τ

0.5 9.891 2.07% 1.842 -1.452 5.741 2.200E-6 6.947 8377 2.5E-3
1 9.868 1.83% 3.159 -1.660 9.360 1.521E-4 4.597 3317 6.25E-2
5 9.814 1.27% 10.27 -1.990 24.691 2.678E-2 3.136 465 0.05
50 8.008 17.35% 117.633 -2.338 17.862 0.195 1.725 7 1

Table 1 : Results obtained for a simulated noisy data V of a sum of three Dirac measures.
We have made four computation for different values of the regularization parameter µ. The

Min and Max are respectively the minimum and the maximum of the solution on E.
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Figure 3 :Up : contour plot of the solution obtained by algorithm (25) for three Dirac
measures and µ = 0.5. Down: solution obtained for three dirac, with µ = 50.

6.3 Test of A2 on a continuous density

In the previous section we presented tests of the first algorithm to identify a three-Dirac
distribution. Now we give an example of reconstruction of an a.e. continuous distribution
with algorithm A2. Let be Ft(θ, φ) = 4(cos2 θ + sin2 φ), the function used to simulate the
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data vector V . In this example we use a noisy data V δ with ‖V − V δ‖ = 0.670 which is
about 5.1% compared with ‖V ‖Cn . To avoid a so-called inverse-crime we have used a finer
quadrature-rule to compute the data V : more precisely we used 64 points on the interval
[0, π] and 128 points on [0, 2π].

The function Ft is represented in Figure 4. We use a spherical plot : the value of the
function is described by a gray level code on each hemisphere. We see that Ft is not continuous
at the two poles of the sphere: this discontinuity is explained by the “bad” representation of
the unit sphere : E = [0, π] × [0, 2π]. The solution obtained by algorithm A2 is also plotted
in Figure 4.

Figure 4. Left : spherical plot of the initial function Ft which provides the data vector V .
Right : solution obtained by algorithm A2 corresponding to the data V of the function Ft

We see that the computed solution looks like Ft. We used the following parameters : ǫ =
10−12, µ = 3, τ = 0.008. The algorithm stopped after 1818 iterations, the error with respect
to the data ǫr and the negentropy H are respectively 1.127 and −2.460. (The error is about
8.0% compared to ‖V ‖Cn ). We see that this solution is satisfying because ǫr is greater than
the noise level but it is small enough anyway.

This example allows to compare problems (Pµ) and (P̃µ). Let µe be defined by µe =
µ δ∗‖Fl∗‖L1(E,R,σ) with the notations of proposition 4. With this proposition we know that
fl∗ achieves the minimum of functional

F 7→ ‖V −
µe
µ
ψ[F ]‖2

Cn + µeH(F )

over K. So fl∗ is the solution of (P̃µe). We can now compare the two problems by computing
the solution of (Pµe).

We found µe = 176.35 with the computation of the solution of (P̃µe). The computed
solution of problem (Pµe) is very far from the data (ǫr = 5133.6). So, for this example, the
solution of (P̃µe) is much better than the solution of (Pµe). For (P̃µ) we get a much smaller
error for a much larger µ.
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7 Conclusion

In plasma physics, the determination of the directional power density distribution of an
electromagnetic wave from the measurement of the field components is an inverse ill-posed
problem. This problem can be written as

ψ[F ] = V

where ψ is a linear bounded operator from H = L2(E,R, σ) to C
n, V the spectral matrix

and F the wave distribution function (WDF). Lefeuvre et al. [6] have proposed to solve
this problem by maximizing an entropic term −H(F ) = −

∫

E F lnF dσ under the constraint
ψ[F ] = V . However this constraint is too “restrictive”, it indeed limits the feasible domain
to a linear subspace of H . That’s why we have studied the relaxed problem

(Pµ)

{

min Jµ(F ) = ‖V − ψ[F ]‖2
Cn + µH(F )

F ∈ K = {f ∈ H|f ≥ 0 σ.a.e}
,

where µ is a regularization parameter. The latter parameter has to be chosen small enough
to allow a solution with a small error thanks to the data V , and large enough for stability.
Solving (Pµ) permit us to search the solution in a much larger domain. More precisely the
obtained solution verifies ‖ψ[F ]−V ‖Cn ≤ ε with ε > 0, this inequality is clearly more realistic
from the numerical point of view. The regularization by the negentropy functional is also
important from the physical point of view. Instead of using standard method to solve the
problem (Pµ), we have first built a fixed point algorithm in C

n (algorithm A1) thanks to a
sufficient condition of optimality. Moreover, the uniqueness of the obtained solution has been
proved. We have shown the existence of the solution for every value of the regularization
parameter. Nevertheless in the numerical computation we have seen that it is not possible
to compute the solution for too small value since the computational time goes to infinity.

As both this above method and the Lefeuvre’s one give solutions which don’t maximize
entropy in the probabilistic sense, since they are not probability densities, we have built a
second algorithm (algorithm A2) derived from the first one which allows the “true” entropy
to be maximized.

We have performed numerical tests on experimental data from a satellite that is devoted

to the study of magnetosphere. We have compared the solution given by the algorithms

described in the present paper to the ones obtained with two different methods that are

commonly used by physicists. Results show that the method we described is more accurate

and stable. They are reported in [9].
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