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Résumé

A system of ordinary differential equations coupled with a parabolic partial differ-

ential equation is studied in order to understand an interaction between two crops and

a pathogen. Two different types of crops are planted in same field in some pattern so

that the spread of pathogen can be controlled. The pathogen prefers to eat one crop.

The other crop, which is not preferred by pathogen, is introduced to control the spread

of pathogen in the farming land. The “optimal” initial planting pattern is sought to

maximize plant yields while minimizing the variation in the planting pattern. The

optimal pattern is characterized by a variation inequality involving the solutions of

the optimality system. Numerical examples are given to illustrate the results.
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1 Introduction

We consider a system with two ordinary differential equations (ODEs) and one parabolic

partial differential equation (PDE) modeling the planting of two different types of crops (u

and v) in same field in some pattern so that the spread of pathogen (w) can be controlled.

The pathogen prefers to eat crop u. The crop v, which is not preferred by pathogen, is

introduced to control the spread of pathogen in the farming land (Ω = (0, 1)).

The state system is the following :

du

dt
= r1u(k1 − u) − k3uw in Q = Ω × (0, T )

dv

dt
= r2v(k2 − v) − k4vw

wt = d1wxx + α1k3uw + α2k4vw − µw

with initial and boundary conditions :

u(x, 0) = u0(x), v(x, 0) = v0(x) = a− u0(x) w(x, 0) = w0(x) for x ∈ Ω

w(0, t) = 0 = w(1, t) on ∂Ω × (0, T ).

The coefficients and terms can be interpreted as :

u(x, t) = crop preferred by pathogen (first state variable).

v(x, t) = crop not preferred by pathogen (second state variable).

w(x, t) = pathogen (third state variable).

r1, r2 = growth rates.

d1 = diffusion coefficient.

k1, k2 = the carrying capacities.

α1, α2, k3, k4 = interaction coefficients.

µ = pathogen natural death rate.

The control set is

U = {u0(x) ∈ H1
0 (0, 1)|0 ≤ u0(x) ≤ a}

We seek to maximize the objective functional over u0 ∈ U :

J(u0) =

∫ 1

0

[

(A1u+A2v)(x, T ) −
1

2

(

(u′0)
2 +B1u

2
0 +B2(a− u0)

2
)

]

dx. (1.1)

The positive constants A1 and A2 represent the relative importance of the terms u and

v respectively and B1 and B2 are multipliers of the cost of implementing the control.

Minimizing the u′0 term represents low variation in u0. A planting pattern with high
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variation would be unrealistic to implement. The goal would be to maximize plant yields

(subject to relative importance of the two crops) while minimizing the variation in the

initial planting pattern.

Intercropping for weed and pest management has been considered in a variety of con-

texts [5, 8, 9], but mostly in the setting of systems of ODEs differential equations or

difference equations. Here we have a combination of a parabolic PDE for diffusion of the

pathogen with ODEs for the crops. Due to inclusion of the u′ variation term in the ob-

jective functional, our characterization of the optimal planting pattern is a variational

inequality [7], instead of simply an algebraic expression in terms of the state and adjoint

variables. Such a variational inequality is somewhat novel in control of PDE problems and

requires an unusual numerical algorithm.

In section 2, we discuss the existence of an optimal control, i.e. the optimal planting

pattern. The optimality system, which characterizes the optimal control, is derived in

section 3. The optimality system involves the state system and the adjoint system together

with the characterization of the optimal control given by a variational inequality. Section 4

treats the uniqueness of the optimal control by obtaining the uniqueness of the solutions of

the optimality system for T sufficiently small. Finally in section 5, we discuss our numerical

algorithm and illustrate numerical examples for our problem.

2 Existence of an Optimal Control

The following assumptions are made throughout this paper.

1. α2k4 < µ

2. r1, r2, d1, k3, k4, α1, α2, µ are positive constants and α1k3 > α2k4.

3. 0 < a ≤ 1.

Assumption 1 means that the u ≡ 0 would cause the pathogen to decay when it only

eats the second crop. Assumption 2 means that the consumption of crop u contributes

more to the growth of the pathogen than would comsumption of crop v.

The underlying solution space for system (1.1) is V = (L2(Q))2 × L2(0, T ;H1
0 (Ω)).

Definition 2.1 We say a triple of functions u, v,w ∈ V , with wt ∈ L2(0, T ;H−1(Ω)), is

a weak solution of (1.1) with given boundary and initial conditions provided

u(x, t) = u0(x) +
∫ t

0 [r1u(k1 − u) − k3uw] (x, s) ds

v(x, t) = v0(x) +
∫ t

0 [r2v(k2 − v) − k4vw] (x, s) ds
∫ T

0 < wt, φ > dt+ d1

∫

Q
∇u∇φdx dt
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=
∫

Q
(α1k3uw + α2k4vw − µw)φdx dt

for all φ ∈ L2(0, T ;H1
0 (Ω)), where the < , > inner product is the duality between H−1(Ω)

and H1
0 (Ω), and

u(x, 0) = u0(x), v(x, 0) = v0(x) w(x, 0) = w0(x), w(0, t) = 0 = w(1, t) (2.1)

Remark : Since u, v ∈ C(0, T ;L2(Ω)) from Evans [1], the initial conditions (2.1) make

sense.

We will prove an existence and uniqueness result for the state system (1.1). This result

will be established in Theorem 2.1.

Theorem 2.1 Given u0 ∈ U , there exists a unique solution (u, v,w) in V solving (1.1)

and (2.1).

Proof : We consider the following problems

dU
dt

= r1k1U

U(x, 0) = u0(x) for x ∈ Ω

dV
dt

= r2k2V

V (x, 0) = v0(x) for x ∈ Ω

Wt = d1Wxx + α1k3UW + α2k4VW − µW

W (x, 0) = w0(x) for x ∈ Ω

W (0, t) = 0 = W (1, t) on ∂Ω × (0, T ).

The functions U, V,W are supersolutions of system equations in (1.1), which are L∞

bounded in Q. To obtain the existence, we will construct three sequences by means of

iteration, using the above supersolutions.

Define : u1 = U, v1 = V,w2 = W,u0 = 0, v0 = 0, w1 = 0, where the superscripts denote

the iteration step. For i = 2, 3, · · ·, we define ui, vi and wi+1 as the solution of the following

problems respectively :

ui
t +Rui = f(ui−2, wi) in Q

ui(x, 0) = u0(x) for x ∈ Ω

vi
t +Rvi = g(vi−2, wi) in Q

vi(x, 0) = v0(x) for x ∈ Ω

wi
t − d1w

i
xx +Rwi = h(ui−1, vi−1, wi−2) in Q

wi(x, 0) = w0(x) for x ∈ Ω

wi(0, t) = 0 = wi(1, t) on ∂Ω × (0, T ).
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where f(ui−2, wi) = Rui−2 + r1u
i−2

(

k1 − ui−2
)

− k3u
i−2wi

g(vi−2, wi) = Rvi−2 + r2v
i−2

(

k2 − vi−2
)

− k4v
i−2wi

h(ui−1, vi−1, wi−2) = Rwi−2 + α1k3u
i−1wi−2 + α2k4v

i−1wi−2 − µwi−2.

R is a constant satisfying sup
Q

((k3 + k4 + µ)W + 2r1U + 2r2V ).

Since (2.2),(2.2) and (2.2) are linear problems, the solutions ui, vi, wi, for i = 1, 2, · · ·,

exist.

Claim 1 :

For i = 1, 2, · · ·, 0 ≤ ui ≤ U , 0 ≤ vi ≤ V , 0 ≤ wi ≤W in Q.

Claim 1 can be proved by induction using the maximum principle.

Note that for ui ≥ 0, vi ≥ 0, wi ≥ 0, i = 1, 2, · · ·,

f is increasing in ui−2, and decreasing in wi.

g is increasing in vi−2, and decreasing in wi.

h is increasing in ui−1, vi−1 and decreasing in wi−2.

Claim 2 :

There exists u, v,w, u, v, w in V such that the following monotone pointwise conver-

gence holds.

u2i ր u, u2i+1 ց u in Q

v2i ր v, v2i+1 ց v in Q

w2i ց w, w2i+1 ր w in Q.

Proof of Claim 2 :

To prove the convergence we use the induction method. Since w1 = 0, we have

(w5 − w3)t − d1(w
5 − w3)xx +R(w5 − w3) = w3(R + α1k3u

4 + α2k4v
4 − µ) ≥ 0

and thus 0 ≤ w1 ≤ w3 ≤ w5. Similarly we have u3 ≤ u1, v3 ≤ v1, w2 ≥ w4, u0 ≤ u2 and

v0 ≤ v2. Also u2 ≤ u3, v2 ≤ v3 and w4 ≥ w3 since

(u2 − u3)t +R(u2 − u3) = −u1(R+ r1(k1 − u1) − k3w
3) ≤ 0

(v2 − v3)t +R(v2 − v3) = −v1(R+ r2(k2 − v1) − k4w
3) ≤ 0

(w4 − w3)t − d1(w
4 − w3)xx +R(w4 − w3) = w2(R+ α1k3u

3 + α2k4v
3 − µ) ≥ 0.

Fix i, assume that for all j ≤ i− 1 such that

u2j ր u2j+1 ց

v2j ր v2j+1 ց

w2j ց w2j+1 ր .
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Now we compare w2i+1 and w2i. From (2.2), we have

(w2i+2 − w2i)t − d1(w
2i+2 − w2i)xx +R(w2i+2 − w2i)

= h(u2i+1, v2i+1, w2i) − h(u2i−1, v2i−1, w2i−2) ≤ 0.

Then w2i+2 ≤ w2i. Other cases can be proved using similar arguments. Hence by bound-

edness of ui, vi, wi and monotone properties of f, g, h, we get the pointwise convergence.

Claim 3 :

The subsequences of {ui}, {vi}, {wi} satisfy :

u2j ⇀ u, u2j+1 ⇀ u, v2j ⇀ v, v2j+1 ⇀ v, w2j ⇀ w, w2j+1 ⇀ w weakly in V.

Proof of Claim 3 :

Since RHS of (2.2), (2.2) and (2.2) are bounded in L∞(Q), then the sequences

{(

u2i, v2i, w2i
)}

,
{(

u2i+1, v2i+1, w2i+1
)}

are uniformly bounded in V .

Hence using the weak compactness of the sequences in V , we get

u2j ⇀ u, u2j+1 ⇀ u, v2j ⇀ v, v2j+1 ⇀ v, w2j ⇀ w, w2j+1 ⇀ w weakly in V.

Since we have pointwise convergence on each sequence by claim 2, this weak convergence

is also on the whole (even or odd) sequence (not just on a subsequence).

Claim 4

The subsequences of {ui}, {vi}, {wi} satisfy

u2j → u, u2j+1 → u, v2j → v, v2j+1 → v, w2j → w, w2j+1 → w strongly in L2(Q).

Proof of Claim 4 :

Using the V boundedness on u2i, u2i+1, v2i, v2i+1, w2i, w2i+1 and the system in (2.2)-

(2.2), we obtain that

‖w2i
t ‖, ‖w2i+1

t ‖ are bounded in L2(0, T ;H−1(Ω)).

Hence, using weak compactness again, we have

w2i
t ⇀ wt, w2i+1

t ⇀ wt weakly in L2(0, T ;H−1(Ω)).

Using a compactness result by Simon [10] for w and, we have

w2i → w, w2i+1 → w strongly in L2(Q).
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Since equations (2.2), (2.2) are ODEs in time with parameters x and bounded RHS, the

sequence is uniformly Lipschitz in t for each x, we can pass to limit in u, v by using weak

solution definition

u2i → u, u2i+1 → u, v2i → v, v2i+1 → v pointwise uniformly in t, for each x

Now we prove the uniqueness, i. e., u = u, v = v and w = w. Passing to the limit in

the u2i, u2i+1, v2i, v2i+1, w2i, and w2i+1 PDE’s, we obtain :

ut = r1k1u− r1u
2 − k3uw in Q

u(x, 0) = u0(x) for x ∈ Ω
(2.2)

ut = r1k1u− r1u
2 − k3uw in Q

u(x, 0) = u0(x) for x ∈ Ω
(2.3)

vt = r2k2v − r2v
2 − k4vw in Q

v(x, 0) = v0(x) for x ∈ Ω
(2.4)

vt = r2k2v − r2v
2 − k4vw in Q

v(x, 0) = v0(x) for x ∈ Ω
(2.5)

wt − d1wxx = α1k3uw + α2k3vw − µw in Q

w(0, t) = 0 = w(1, t) on ∂Ω × (0, T )

w(x, 0) = w0(x) for x ∈ Ω

(2.6)

wt − d1wxx = α1k3uw + α2k3vw − µw in Q

w(0, t) = 0 = w(1, t) on ∂Ω × (0, T )

w(x, 0) = w0(x) for x ∈ Ω

(2.7)

Let u = eλtf , u = eλtf , v = eλtg, v = eλtg, w = eλth and w = eλth, where λ > 0 is to

be chosen. To illustrate the transformed system, we write equation (2.2) :

ft + λf = r1k1f − r1e
λtf2 − k3e

λtfh in Q (2.8)

We consider the weak formulation of the f − f , g − g and h − h problems, and after

adding both weak formulations, we obtain on Q1 = Ω × (0, t1) :

∫

Q1
{(f − f)t(f − f) + λ(f − f)2 + (g − g)t(g − g) + λ(g − g)2} dx dt

+
∫

Q1
{(h− h)t(h− h) + d1|∇(h− h)|2 + λ(h− h)2} dx dt

=
∫

Q1
{r1k1(f − f)2 − r1e

λt(f2 − f
2
)(f − f) − k3e

λt(f − f)(fh− f h)} dx dt

+
∫

Q1
{r2k2(g − g)2 − r2e

λt(g2 − g2)(g − g) − k4e
λt(g − g)(gh − g h)} dx dt

+
∫

Q1
{α1k3(fh− fh)(h − h) + α2k4(gh− gh)(h − h) − µ(h− h)2} dx dt.
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We obtain

1
2

∫

Ω{[f − f ]2(x, T ) + [g − g]2(x, T ) + [h− h]2(x, T )} dx +
∫

Q1
{[d1(|∇(h− h)|)2] dx dt

+
(

λ− C1 − C2e
λt1

) ∫

Q1
[(f − f)2 + (g − g)2 + (h− h)2] dx dt ≤ 0

where C1, C2 depend on the coefficients and the solution bounds.

If we choose λ > C1 + C2 and t1 such that t1 <
1

λ
ln

(

λ− C1

C2

)

, then inequality (2.9)

holds if and only if

f = f, g = g, w = w a.e. in Q.

Similarly the proof can be completed for time intervals ([t1, 2t1], [2t1, 3t1] . . .). Therefore,

u = u, v = v and v = v a.e. in Q, and u, v,w solve the state system (1.1). Hence the

solution to the state system (1.1) exists and the uniqueness of u, v,w as solutions of (1.1)

follows similarly as in the above argument.

Theorem 2.2 There exists an optimal control in U that maximizes the functional J(u0).

Proof : sup{J(u0)|u0 ∈ U} < ∞ since the state variables and controls are uniformly

bounded. Thus there exists a maximizing sequence u0 ∈ U such that

lim
n→∞

J(un
0 ) = sup {J(u0) |u0 ∈ U}.

By the existence and uniqueness of solutions to the state system (1.1), we define

un = u(un
0 ), vn = v(un

0 ), wn = w(un
0 ) for each n.

On a subsequence, as n → ∞, un
0 → u∗0 in L2(Q) and (un

0 )′ → (u∗0)
′ weakly in L2(Q)

Passing to the limit in the un, vn, wn system and using the convergences as in Theorem

2.1, we have that (u, v,w) is weak solution of (1.1) associated with u∗0. Since the payoff

functional is upper semi-continuous with respect to the weak convergence, we have

J(u∗0) ≤ sup {J(un
0 ) |un

0 ∈ U}. (2.9)

Therefore u∗0 is an optimal control that maximizes the payoff functional.

3 Derivation of the Optimality System

We now derive the optimality system which consists of the state system coupled with

the adjoint system. In order to obtain the necessary conditions for the optimality system
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we differentiate the objective functional with respect to the control. As our objective

functional also depends on state variables, we differentiate the state variables with respect

to the control u0

Theorem 3.1 The mapping u0 ∈ U → (u, v,w) ∈ V is differentiable in the following

sense :

u(u0 + ǫl) − u(u0)

ǫ
⇀ ψ1 weakly in L2(Q)

v(u0 + ǫl) − v(u0)

ǫ
⇀ ψ2 weakly in L2(Q)

w(u0 + ǫl) − w(u0)

ǫ
⇀ ψ3 weakly in L2(0, T ;H1

0 (Ω))

as ǫ → 0 for any u0 ∈ U and l ∈ L∞(Q) s.t. (uo + ǫl) ∈ U for ǫ small. Also ψ1, ψ2, ψ3

(depending on u, v,w, u0, l) satisfy the following system :

(ψ1)t = r1(k1 − 2u)ψ1 − k3(uψ3 + wψ1) in Q

(ψ2)t = r2(k2 − 2v)ψ2 − k4(vψ3 +wψ2) in Q

(ψ3)t = d1(ψ3)xx + α1k3(uψ3 + wψ1) + α2k4(vψ3 + wψ2) − µψ3 in Q

ψ1(x, 0) = l, ψ2(x, 0) = −l, ψ3(x, 0) = 0 for x ∈ Ω

ψ3(0, t) = 0 = ψ3(1, t) on ∂Ω × (0, T )

Proof : Define uǫ = u(u0 + ǫl), vǫ = v(u0 + ǫl), u = u(u0), v = v(u0) and w = w(u0). We

do a change of variables : uǫ = eλtf ǫ, u = eλtf , vǫ = eλtgǫ, v = eλtg, wǫ = eλthǫ, w = eλth,

where λ > 0 is to be chosen below.

On the set Q1 = Ω × (0, t1) for 0 < t1 ≤ T , we illustrate the “h” equation :

∫

Q1

[

(

hǫ−h
ǫ

) (

hǫ−h
ǫ

)

t
+ λ

(

hǫ−h
ǫ

)2
+ d1

∣

∣

(

hǫ−h
ǫ

)

x

∣

∣

2
]

dx dt

=
∫

Q1

[

α1k3e
λt

(

f ǫ
(

hǫ−h
ǫ

)2
+ h

(

fǫ−f
ǫ

)

(

hǫ−h
ǫ

)

)

+α2k4e
λt

(

gǫ
(

hǫ−h
ǫ

)2
+ h

(

gǫ−g
ǫ

)

(

hǫ−h
ǫ

)

)

− µ
(

hǫ−h
ǫ

)2
]

dx dt

Continuing to estimate using L∞ bounds on the coefficients and f, g, h, f ǫ, gǫ and hǫ, we

have

1
2

∫

Ω×{t1}

[

(

fǫ−f
ǫ

)2
+

(

gǫ−g
ǫ

)2
+

(

hǫ−h
ǫ

)2
]

dx+
∫

Q1
d1

∣

∣

(

hǫ−h
ǫ

)

x

∣

∣

2
dx dt

+
(

λ−
(

C1 + C2e
λt1

)) ∫

Q1

[

(

fǫ−f
ǫ

)2
+

(

gǫ−g
ǫ

)2
+

(

hǫ−h
ǫ

)2
]

dx dt

≤ C
∫

Ω l
2 dx.
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For λ > C1 + C2 and t1 small such that t1 <
1

λ
ln
λ− C1

C2
, we conclude

∥

∥

∥

∥

f ǫ − f

ǫ

∥

∥

∥

∥

2

L2(Q1)

+

∥

∥

∥

∥

gǫ − g

ǫ

∥

∥

∥

∥

2

L2(Q1)

+

∥

∥

∥

∥

hǫ − h

ǫ

∥

∥

∥

∥

2

L2(0,t1;H1
0 (Ω)

≤ C

∫

Ω
l2 dx.

Similarly this estimate can be carried out on intervals [t1, 2t1], [2t1, 3t1], · · · and the esti-

mate finally holds on [0, T ]. This estimate justifies the convergence of f, g and h quotients,

and hence

uǫ − u

ǫ
⇀ ψ1 weakly in L2(Q)

vǫ − v

ǫ
⇀ ψ2 weakly in L2(Q)

wǫ − w

ǫ
⇀ ψ3 weakly in L2(0, T ;H1

0 (Ω))

Similarly we obtain

(

wǫ−w
ǫ

)

t
⇀ (ψ3)t weakly in L2(0, T ;H−1(Ω))

and wǫ−w
ǫ

→ ψ3, strongly in L2(Q)

uǫ−u
ǫ
, vǫ−v

ǫ
are uniformly Lipschitz in t for each x.

These convergences also give uǫ → u, vǫ → v, wǫ → w strongly in L2(Q).

To see the system satisfied by ψ1, ψ2, ψ3, consider terms from the system satisfied by
uǫ − u

ǫ
,
vǫ − v

ǫ
and

wǫ − w

ǫ
; for example

1
ǫ
r1

(

(uǫ)2 − u2
)

= r1
1
ǫ
(uǫ − u) (uǫ + u) → 2r1uψ1 as ǫ→ 0,

1
ǫ
k3 (uǫwǫ − uw) = k3

1
ǫ
(uǫ (wǫ − w) + w (uǫ − u)) → k3(uψ3 + wψ1),

since uǫ → u, wǫ → w as ǫ→ 0.

The above estimates justify passing the limit in the system satisfied by
uǫ − u

ǫ
,
vǫ − v

ǫ

and
wǫ − w

ǫ
, and we conclude that ψ1, ψ2, ψ3 solves (3.1).

To derive the optimality system and to characterize the pairs of optimal controls, we

need adjoints and adjoints of the operators associated with ψ1, ψ2, ψ3 system as

L









ψ1

ψ2

ψ3









=









0

0

0









,
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where L









ψ1

ψ2

ψ3









=









L1ψ1

L2ψ2

L3ψ3









−M









ψ1

ψ2

ψ3

















L1ψ1

L2ψ2

L3ψ3









=









(ψ1)t

(ψ2)t

(ψ3)t − d1(ψ3)xx









M =









r1(k1 − 2u) − k3w 0 −k3u

0 r2(k2 − 2v) − k4w −k4v

α1k3w α2k4w α1k3u+ α2k4v − µ









.

We define the adjoint PDE system as L∗









p

q

r









=









0

0

0









where

L∗









p

q

r









=









L∗
1p

L∗
2q

L∗
3r









−M τ









p

q

r









(3.1)

with








L∗
1p

L∗
2q

L∗
3r









=









−pt

−qt

−rt − d1rxx









and M τ is the transpose of matrix M. Note that A1, A2 from the objective functional will

occur as final time values for p, q.

To clarify the characterization of our optimal control, we make the following definition

involving a variational inequality with upper and lower obstacles [3] :

Definition 3.1 u0 ∈ U is a weak solution of the following bilateral variational inequality

min{max (− (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) , u0 − a) , u0 − 0} = 0

if for all v0 ∈ U ,

∫

Ω
[(u0)x(v0 − u0)x + {q(x, 0) − p(x, 0) +B1u0 −B2(a− u0)} (v0 − u0)] dx ≥ 0.

Theorem 3.2 Existence of Weak Solution

Given an optimal control u0 and corresponding solution (u, v,w) = (u(u0), v(u0), w(u0))
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there exists a weak solution (p, q, r) ∈ (L2(Q))2 × L2(0, T ;H1
0 (Ω)) satisfying the adjoint

system :

L∗
1p = (r1(k1 − 2u) − k3w)p + α1k3wr

L∗
2q = (r2(k2 − 2v) − k4w)q + α2k4wr

L∗
3r = −k3up− k4vq + (α1k3u+ α2k4v − µ)r

and transversality conditions

p(x, T ) = A1, q(x, T ) = A2, r(x, T ) = 0 where x ∈ Ω

r(0, t) = 0 = r(1, t) where t ∈ [0, T ].

And furthermore u0(x) must satisfy the following variational inequality in the weak sense.

min{max (− (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) , u0 − a) , u0 − 0} = 0

Proof : Let u0(x) be an optimal control (which exists by Theorem 2.2) and (u, v,w)

be its corresponding state solution. Let (u0(x) + ǫl) ∈ U for ǫ > 0, and uǫ, vǫ, wǫ be

the corresponding weak solution of state system (1.1). Since the adjoint equations are

linear, there exists a weak solution p, q, r satisfying (3.2 - 3.2). We compute the directional

derivative of the objective functional J(u0) with respect to u0 in the direction l at u0.

Since J(u0) is the maximum value, we have

0 ≥ limǫ→0+
J(u0(x)+ǫl)−J(u0)

ǫ

= limǫ→0+

{

∫ 1
0

[

A1

(

uǫ−u
ǫ

)

+A2

(

vǫ−v
ǫ

)]

(x, T ) dx − 1
2

∫ 1
0

((u0+ǫl)t)2−(u0)2
x

ǫ
dx

−1
2

∫ 1
0

[

B1
(u0+ǫl)2−u2

0

ǫ
+B2

(a−(u0+ǫl))2−(a−u0)2

ǫ

]

dx
}

=
∫ 1
0 [(A1ψ1 +A2ψ2)(x, T ) − (u0)xlx −B1u0l +B2(a− u0)l] dx

=
∫ 1
0 [(pψ1 + qψ2)(x, T ) − (u0)xlx −B1u0l +B2(a− u0)l] dx

=
∫ 1
0 (pψ1(x, 0) + qψ2(x, 0) − (u0)xlx −B1u0l +B2(a− u0)l) dx

+
∫ T

0

∫ 1
0 [p(ψ1)t + (r1(k1 − 2u) − k3w)p+ α1k3wr]ψ1 dx dt

+
∫ T

0

∫ 1
0 [q(ψ2)t + (r2(k2 − 2v) − k2w)q + α2k4wr]ψ2 dx dt

+
∫ T

0

∫ 1
0 [r(ψ3)t + d1(ψ3)xrx − k3up− k4vq + (α1k3u+ α2k4v − µ)r]ψ3 dx dt

=
∫ 1
0 [(pψ1 + qψ2)(x, 0) − (u0)xlx −B1u0l +B2(a− u0)l] dx+

∫

Q
(p, q, r)L









ψ1

ψ2

ψ3









dx dt

=
∫ 1
0 [lp(x, 0) − lq(x, 0) − (u0)xlx −B1u0l +B2(a− u0)l] dx
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The above inequality can be re-written in a formal way as (after integrating by parts

the (u0)xlx term) :
∫ 1

0
l [p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)] dx ≤ 0

On the set where u0 = 0, we choose variation l with support on this set and l ≥ 0, which

implies − (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) ≥ 0.

0 < u0 < a, l arb sign, − (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) = 0

u0 = a, l ≤ 0, − (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) ≤ 0

This can be written in the compact form as

min{max (− (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) , u0 − a) , u0 − 0} = 0.

Our optimality system (OS) is :

L1u = r1u(k1 − u) − k3uw

L2v = r2v(k2 − v) − k4vw

L3w = α1k3uw + α2k4vw − µw

L∗
1p = (r1(k1 − 2u) − k3w)p + α1k3wr

L∗
2q = (r2(k2 − 2v) − k4w)q + α2k4wr

L∗
3r = −k3up− k4vq + (α1k3u+ α2k4v − µ)r (3.2)

min{max (− (p(x, 0) − q(x, 0) + (u0)xx −B1u0 +B2(a− u0)) , u0 − a) , u0 − 0} = 0

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) for x ∈ Ω

w(0, t) = 0 = w(1, t), r(0, t) = 0 = r(1, t) on (0, T )

p(x, T ) = A1, q(x, T ) = A2, r(x, T ) = 0 for x ∈ Ω

r(0, t) = 0 = r(1, t) where t ∈ [0, T ].

The weak solution of the optimality system exists by Theorem 2.2 and 3.2. For small T ,

we now prove the uniqueness of weak solutions of optimality system, which gives the char-

acterization (3.2) of the unique optimal control in terms of the solutions of the optimality

system. Note that such a small T restriction is common in optimal control problems in-

volving parabolic PDEs ; see the uniqueness results in optimal control of the PDE/ODE

systems in [2, 6].

4 Uniqueness of the Optimality System

Theorem 4.1 For T sufficiently small and B1 + B2 sufficiently large, weak solutions of

the optimality system are unique.
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Proof :

Suppose u, v,w, p, q, r, u0 and u, v,w, p, q, u0 are two solutions of the optimal system

(3.2). We change the variables for λ > 0 to be chosen such that

u = eλtu1 u = eλtu2

v = eλtv1 v = eλtv2

w = eλtw1 w = eλtw2

p = e−λtp1 p = e−λtp2

v = e−λtq1 q = e−λtq2

r = e−λtr1 r = e−λtr2.

The variational inequality for u0 becomes

∫

Ω

[

(u0)x(v0 − u0)x +
{

e−λt(q1 − p1)(x, 0) +B1u0 −B2(a− u0)
}

(v0 − u0)
]

dx ≥ 0.

Substituting v0 = u0 in the u0 variational inequality, and adding the resulting inequalities,

we obtain

∫

Ω(u0 − u0)
2
x + (B1 +B2)(u0 − u0)

2

≤
∫

Ω e
−λt(u0 − u0) ((q1 − q2) − (p1 − p2)) (x, 0) dx.

Using the weak form of the state and adjoint systems and the above inequality, gives

∫

Ω

[

(p1 − p2)
2 + (q1 − q2)

2 + (r1 − r2)
2
]

(x, 0) dx

+
∫

Ω

[

(u1 − u2)
2 + (v1 − v2)

2 + (w1 − w2)
2
]

(x, T ) dx

+λ
∫

Q

[

(u1 − u2)
2 + (v1 − v2)

2 + (w1 − w2)
2 + (p1 − p2)

2 + (q1 − q2)
2 + (r1 − r2)

2
]

dx dt

+
∫

Ω

[

((u0 − u0)x)2 + (B1 +B2)(u0 − u0)
2
]

dx+
∫

Q
d1

(

|(w1 − w2)x|
2 + |(r1 − r2)x|

2
)

dx dt

≤
(

C1 + C2e
2λT

)

[

∫

Q

{

(u1 − u2)
2 + (v1 − v2)

2 + (w1 −w2)
2

+(p1 − p2)
2 + (q1 − q2)

2 + (r1 − r2)
2
}

dx dt
]

+
∫

Ω
1
2

[

(p1 − p2)
2 + (q1 − q2)

2
]

(x, 0) dx + 1
2

∫

Ω(u0 − u0)
2 dx+ 1

2

∫

Ω(u0 − u0)
2 dx,

where the last term comes from the initial conditions on u, v, u, v. If we take λ large and

then T small, we have

λ− C1 − C2e
2λT > 0.

If we also assume B1 +B2 >
5

2
, then we obtain the uniqueness.



Crop Problem 15

5 Numerical Realization

We perform the numerical realization of the problem using the optimality system (3.2)

that we recall thereafter :


























du

dt
= r1u(k1 − u) − k3uw , u(0) = uo

dv

dt
= r2v(k2 − v) − k4uw , v(0) = a− uo

∂w

∂t
= d1

∂2w

∂x2
+ (α1k3u+ α2k4v − µ)w , w|x=0,x=1 = 0, w(0) = wo

(5.1)







































−
dp

dt
= (r1(k1 − 2u) − k3 w) p+ α1k3w r , p(T ) = A1

−
dq

dt
= (r2(k2 − 2 v) − k4 w) q + α2k4w r , q(T ) = A2

−
∂r

∂t
= d1

∂2r

∂x2
+ (α1k3u+ α2k4v − µ) r − k3u p− k4 v q , r|x=0,x=1 = 0,

r(T ) = 0 .

(5.2)

min
0≤uo≤a

1

2

∫ 1

0

[

duo

dx

]2

+ (B1 +B2)u
2
o − 2 (aB2 + p(0) − q(0)) uo dx . (5.3)

In the sequel, we set B = B1 +B2 and f = (B2 + p(0) − q(0)).

These equations are coupled and we are going to solve this system via a relaxation method

that can be roughly described a follows :

Relaxation forward-backward method

1. Initialization step Choose uo

2. Iteration n : un is known.

(a) Solve the forward system (5.1) : we get (un, vn, wn).

(b) Solve the backward system (5.2) with (un, vn, wn) : we get (pn, qn, rn).

(c) Solve the Variational Inequality (5.3) with fn = B2 + pn(0) − qn(0) : we get

un+1.

3. Check a stopping criterion and set n = n+ 1 if necessary.

The discretization of the system is done via finite difference methods with respect to

the time variable and the space variable. The implicit Euler scheme is used to solve the

forward system ODE’s and the space-discretized part of PDE’s and the Crank-Nicholson

scheme is used for the backward (linear) system. This choice has been made using many

numerical tests : though the Crank-Nicholson scheme is inconditionnally stable we could

not avoid scattering for some examples that were particularly ill-conditionned. The state

system (5.1) is a non-linear system, we use Newton’s method to solve it. The initial point
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is chosen as the previous iterate so that the convergence is quite fast. Note that the ratio

between the time discretization step and the space discretization step has to be small

enough (CFL condition) to avoid numerical unstability.

To solve the Variational Inequality (5.3), we discretize the energy functional with the

trapezoidal integration rule (for example) and use the classical projected gradient method

to solve it. Indeed the functional is quadratic and constraints are bound constraints. The

discretized problem turns out to be

min
1

2
X ′MX − F ′X, 0 ≤ Xi ≤ a , i = 1, · · · , N + 1

where X = (uo(xi))i=1,N is the discretized control function, X ′ denotes the transpose of

X, F is the (space) discretized vector for f = B2 + p(0)− q(0) and M = A+B Id . Also

A is the discretized 1D- Laplacian matrix :

A =
1

(∆x)2





























2 −1 0 · · · · · ·

−1 2 −1 0
...

0 −1 2 −1
...

...
. . .

. . .
. . .

...
... 0 −1 2 −1

· · · · · · · · · −1 2





























We have performed numerical tests with the following parameters :

r1 r2 d1 k1 k2 α1 α2 k3 k4 µ a A1 A2 B1 B2 T

0.5 0.5 1 1 1 0.25 0.25 0.4 0.4 0.2 1 2 1 1 1 1

We have set wo(x) = 10x(1− x), N = 200, K = 10 and the initial guess for uo is equal to

0.5 ; the tolerance has been set to 10−4 and the parameter of projected gradient method

is ρ = 0.5. We report hereafter the results.

Global iteration n # of projected gradient iterations ‖un
o − un−1

o ‖

1 1.852e+04 4.960937e+00

2 12 1.200432e-03

3 1 9.998819e-05

So the global iterations number is 3 and the value of the cost functional is J∗ = 1.591363.



Crop Problem 17
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