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1 Introduction

Let H
n be the real hyperbolic space of dimension n, that is, the complete and simply

connected Riemannian manifold of constant curvature −1. Using the Poincaré model, we

identify H
n with the unit ball of R

n and its boundary at infinity ∂H
n with the unit sphere

S
n−1 of R

n.

We denote by Δ the Laplace-Beltrami operator acting on functions on H
n.

Definition 1.1. For λ ∈ C, say that f : H
n

→ C is a λ-eigenfunction when f is C2 and

satisfies Δf + λf = 0. Denote by Eλ the space of the λ-eigenfunctions which are bounded.

The purpose of this paper is to describe the space Eλ. The Harnack inequality (see, e.g.,

[6, page 199]) implies that the gradient of a bounded λ-eigenfunction f is bounded by a

constant which only depends on λ and on the sup norm of f. This implies, using the Ascoli

theorem, that the space Eλ with the sup norm is a Banach space.

For s ∈ C, we set λs = s(n − 1 − s). The basic example of a λs-eigenfunction is

provided by x → Ps(x, ξ), where P(x, ξ) is the Poisson kernel of H
n and ξ is any point of

the boundary at infinity ∂H
n of H

n. Any λs-eigenfunctions can be described in terms of

hyperfunctions on ∂H
n. Namely, for any λs-eigenfunction, there is a hyperfunction on

∂H
n such that

f(x) = Ps(T)(x) =
〈
T, Ps(x, ·)〉; (1.1)
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this is a theorem of Helgason and Minemura (cf. [7, 9]), which was also proven later by

Agmon [1].

Definition 1.2. Call the function x → 〈T, Ps(x, ·)〉 the Poisson-Helgason transform of T .

Denote it by Ps(T).

Furthermore, one knows that the hyperfunction T is unique, except for the cases

when s = −1, −2, . . . , −k, . . . (see [9, Proposition 2.1]). Moreover, if f grows slowly, that is,

at most exponentially with the hyperbolic distance, then T is a distribution. This result

has been proven initially by Ōshima and Sekiguchi [10] using microlocal techniques. In

[15], the authors give a new proof within the framework of asymptotic expansions (see

[15, Theorem 2-2]). In particular, the hyperfunction which represents a bounded eigen-

function is indeed a distribution. Thus, to describe the space of bounded eigenfunctions

is equivalent to describe the distributions T on S
n−1 such that Ps(T) is bounded.

When T is equal to the normalized Lebesgue measure dσ on ∂S
n−1, then the eigen-

function Ps(dσ) is the spherical λs-eigenfunction: this is the unique eigenfunction hs

such that hs(o) = 1, and which is invariant under the subgroup (� O(n)) of the isometries

of H
n which fix the origin o.

First of all, it is easy to see that the only values of s such that Eλs �= {0} are con-

tained in the strip {s ∈ C; �(s) ∈ [0, n − 1]}. Indeed, let f ∈ Eλs be a nonzero function and

let x ∈ H
n be a point where f(x) �= 0. Up to precomposing f with an isometry which sends

o to x, we can assume that f(o) �= 0. Then, by averaging f over the subgroup (� O(n)) of

all rotations which fix o, we obtain a λs-eigenfunction which is bounded, nonzero, and

invariant under the orthogonal group O(n). But the unicity of the spherical function hs

implies that this function is a multiple of hs; therefore the spherical function hs has to

be bounded. It is now easy to see that the only values of s for which this can occur are

exactly those such that �s ∈ [0, n − 1].

We denote by H the vertical strip {s ∈ C | �s ∈ ]0, n − 1[}. The method we use in

this paper does not allow to deal with the values of s such that �s = 0 or n− 1. Therefore,

we will focus on the values of s ∈ H.

When n = 2, there is a characterization of the distributions T such that Ps(T) is

bounded [11]: for �s �= 0, they are exactly the distributional derivatives of �(s)-Hölder

functions on ∂H
2. In higher dimension, the notion of derivatives depends on the data of a

vector field, and so does not have easily an intrinsic meaning. One way to avoid this dif-

ficulty is to use the spherical Laplacian Δσ acting on functions on S
n−1. If a distribution

T satisfies 〈T, 1〉 = 0, there is an integer k and a continuous function H such that the dis-

tribution T can be written as Δk
σ(H). Then the regularity of T can be measured in terms of

the integer k and of the regularity of H. We use the Lipschitz spaces of order α for α > 0
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in order to measure the regularity of a function H : S
n−1

→ C. Let us recall the definition

and the basic properties of Lipschitz spaces.

Let θ ∈ [−π, π] and Rθ be a rotation of angle θ acting on S
n−1. Let H be a function

on S
n−1. We denote by Dθ(H) = D1

θ(H) the function H ◦ Rθ − H, and for n ≥ 1, we define

inductively Dn
θ (H) = Dθ ◦ Dn−1

θ (H).

Let α > 0 and let [α] be its integer part. Denote by Λα(Sn−1) the space of (equiv-

alence classes of) bounded measurable functions on S
n−1 for which there exists a con-

stant C > 0, such that for any rotation Rθ of angle θ, one has

∥∥D[α]+1
θ (H)

∥∥
∞

≤ C|θ|α. (1.2)

One can define a norm on the space Λα(Sn−1), by setting ‖H‖α equal to the infimum of

the L∞ -norm of H and of the constants C with this property. With this norm, the space

Λα(Sn−1) becomes a Banach space: it is called the Lipschitz space of order α.

If α ∈ ]0, 1[, the space Λα(Sn−1) is the classical Hölder space of order α, and the

norm is equivalent to the classical Hölder norm. In fact, a smoothing argument shows

that any function in Λα(Sn−1) is almost everywhere equal to a Hölder-continuous func-

tion of order α. Any function in Λ1(Sn−1) admits a continuous representative as well (see

[14, page 331]).

If α > 1, the following holds. Let X be any vector field on S
n−1. Then, for H ∈

Λα(Sn−1), the Lie derivative LXH is contained in Λα−1(Sn−1), with a norm bounded in

terms of ‖H‖α and the norm of the vector field X. By induction, one can characterize, for

α > 1, α /∈ N, the space Λα(Sn−1) as the space of functions which are [α]-times differen-

tiable and which have all mixed derivatives of order [α] − 1 in Λα−[α]+1(Sn−1).

We will use the following important property of the Lipschitz spaces. For any

integer m ≥ α, one can replace in the definition of Λα(Sn−1) the quantity ‖D[α]+1
θ (H)‖∞

by ‖Dm+1
θ (H)‖∞ . The space defined in that way is equal to Λα(Sn−1) and the two norms

are equivalent (see, e.g., [14, page 331]). In particular, for α ∈ ]0, n − 1[, one can define the

space Λα(Sn−1) as the space of functions H ∈ L∞ (Sn−1) such that ‖Dn
θ (H)‖∞ ≤ C|θ|α, for

some constant C independent of θ.

In the following, we denote by Λ0
α(Sn−1) the space of functions H ∈ Λα(Sn−1)

such that
∫

Sn−1 H dσ = 0.

Given an integer j ≥ 0, we denote by Δ
j
σΛ0

α(Sn−1) the space of those distributions

on S
n−1 which can be written as Δ

j
σ(H) for a function H ∈ Λ0

α(Sn−1).

The paper is devoted to prove the following theorem, which describes the spaces

Eλs for s ∈ H.
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Theorem 1.3. Let s = δ + it ∈ H.

If n is odd, then Ps induces an isomorphism between the Banach spaces

Δ
(n−1)/2
σ Λ0

δ(Sn−1) ⊕ C dσ and Eλs ;

If n is even, then Ps induces an isomorphism between the Banach spaces

Δ
n/2
σ Λ0

δ+1(Sn−1) ⊕ C dσ and Eλs . �

In this theorem, the λs-eigenfunctions which vanish at the origin are exactly the

image of Δ
(n−1)/2
σ Λ0

δ(Sn−1) by the Poisson-Helgason transform. The image of the complex

line C dσ is equal to the multiples of the spherical function hs which equals 1 at the origin

o.

Note that Theorem 1.3 does not include the bounded harmonic functions on H
n;

they correspond to the case s = n − 1. The boundary values of those are characterized

by the Fatou theorem: they are exactly the functions in L∞ (Sn−1). However, derivatives

of order n − 1 of functions in Λn−1(Sn−1) are not in L∞ (Sn−1), in general. Therefore,

Theorem 1.3 cannot hold in the case s = n − 1.

The proof of Theorem 1.3 contains two parts. The first one amounts to show that

Ps restricted to Δ
(n−1)/2
σ Λ0

δ(Sn−1)⊕R dσ or to Δ
n/2
σ Λ0

δ+1(Sn−1)⊕R dσ according to the par-

ity of n takes range in Eλs and that it is a continuous operator. This is done in Section 2.

If the real part of s is not of the form n−1−2j with j ∈ N, the proof is a direct computation

using easy estimates on the Poisson kernel. The other cases are obtained by interpolation

of analytic families of operators.

The second part amounts to show that the restriction of Ps is surjective. This is

proven in two steps. First, we consider the case when δ = �s ≥ (n − 1)/2. Under this

assumption, we assign in Section 4 to any function f ∈ Eλs a “boundary value”: it is a

distribution T on S
n−1 which is contained in the expected space, that is, it satisfies T =

Δ
(n−1)/2
σ H for some Lipschitz function H in Λδ(Sn−1) if n is odd or T = Δ

n/2
σ H for some

Lipschitz function H in Λδ+1(Sn−1) if n is even. The proof relies on estimates of a certain

differential operator Dλ acting on functions on the real line; this operator is the radial

part of the Laplace operator on H
n, written in polar coordinates. These estimates are

obtained in Section 3; we use in an essential way the assumption that δ ≥ (n − 1)/2.

In Section 5, one proves, under the assumption δ = �s ≥ (n − 1)/2, that the dis-

tribution T reproduces f, that is, that Ps(T) = f. This shows that Ps is onto under the

assumptions of Theorem 1.3 and �s ≥ (n − 1)/2.

In Section 6, we extend this to the case δ < (n − 1)/2 by using a relation between

the (n − 1 − s)th power of the Poisson kernel and its sth power: they are related by a

fractional integration (resp., derivation) operator which is studied in Proposition 6.1.

We study some continuity properties of this operator acting on Lipschitz spaces
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(Proposition 6.1(4)). This result is similar to the one for fractional integration (resp.,

derivation) operator acting on functions on R
n, but as we did not find any reference, we

propose an elementary proof of it.

Finally, since Ps is continuous, onto, and injective, the isomorphism statement in

Theorem 1.3 follows from the Banach closed graph theorem.

The computations in Section 3 to Section 5 use heavily estimates on the Green

function and on the spherical function of the operator Δ + λsI. These estimates are well

known, but in order to make the paper self-contained, we give the proofs in an appendix.

In all the sequel, we assume that n ≥ 3.

2 Continuity properties of the Poisson-Helgason transform Ps

In order to prove the direct part of Theorem 1.3, we use the following estimate on the

derivatives of the Poisson kernel.

Claim 2.1. Let j ∈ N and s = δ + it in C. There exists a polynomial Q in one complex

variable so that for any ζ and ξ in S
n−1, for any point x ∈ H

n at distance r from o on the

ray [oζ[, one has

∣∣Δj
σPs(x, ξ)

∣∣ ≤ C(s)
e−δr

(
e−r + |ζ − ξ|

)2δ+2j
, (2.1)

where C(s) = |Q(s)|. �

Proof. In the ball model, the Poisson kernel can be written as

P(x, ξ) =
1 − |x|2

|x − ξ|2
. (2.2)

In Euclidean polar coordinates, one has x = (tanh(r/2))ζ. Therefore,

P(x, ξ) =

1 −

(
tanh

(
r

2

))2

(
tanh

(
r

2

))2

+ 1 − 2 tanh

(
r

2

)
〈ζ, ξ〉

. (2.3)

The statement follows after differentiating this formula. �

Proposition 2.2. Let n ≥ 3. Let s ∈ H.

If n is odd, then Ps maps continuously Δ
(n−1)/2
σ Λδ(Sn−1) to L∞ (Hn). If n is even,

then Ps maps continuously Δ
n/2
σ Λδ+1(Sn−1) to L∞ (Hn). �
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As it was said in Section 1, this result is false for s = n − 1 since, by the Fatou

theorem, the Poisson-Helgason transform Pn−1 is an isomorphism from L∞ (Sn−1) to E0.

Proof. Assume first that n is odd. Let f ∈ Λδ(Sn−1). We choose the integer j ≥ 1 such that

n − 1 − δ = 2j − α with α ∈ ]0, 2]. Suppose also that n − 1 − δ is not an even integer, that is,

that α �= 2.

The Green formula implies that for any x ∈ H
n, one has

I := Ps
(
Δ(n−1)/2

σ f
)
(x) =

〈
Δj

σPs(x, ·), Δ(n−1)/2−j
σ f

〉
. (2.4)

But the function h = Δ
(n−1)/2−j
σ f belongs to Λα(Sn−1) with norm bounded by C‖f‖δ.

As j ≥ 1, for any ζ ∈ S
n−1, one has

I =

∫

Sn−1

Δj
σPs(x, ·)h(·)dσ =

∫

Sn−1

Δj
σPs(x, ·)(h(·) − h(ζ)

)
dσ. (2.5)

Let now ζ be the end of the ray ox on the sphere and denote by r the hyperbolic

distance from x to o. For θ ∈ [0, π], denote by B(ζ, θ) ⊂ S
n−1 the spherical ball of radius θ

around ζ and set P(x, θ) = P(x, ξ) for any ξ ∈ ∂B(ζ, θ).

Using geodesic polar coordinates on S
n−1 around the point ζ, this last integral

also equals

∫π

0

Δj
σPs(x, θ)

( ∫

∂B(ζ,θ)

(
h(·) − h(ζ)

)
dσθ

)
dθ, (2.6)

where dσθ is the Riemannian measure on the sphere ∂B(ζ, θ) for the induced Riemannian

metric. Denoting by ξ ′ the symmetric of ξ ∈ ∂B(ζ, θ) with respect to the center ζ, one has

∣∣∣∣

∫

∂B(ζ,θ)

(
h(·) − h(ζ)

)
dσθ

∣∣∣∣ =
1

2

∣∣∣∣

∫

∂B(ζ,θ)

(
h(ξ) + h(ξ ′) − 2h(ζ)

)
dσθ(ξ)

∣∣∣∣. (2.7)

Since h ∈ Λα(Sn−1) with α ∈ ]0, 2[, |h(ξ)+h(ξ ′)− 2h(ζ)| ≤ ‖h‖α|ξ− ζ|α. So, the left integral

above is bounded by C‖h‖αθn−2+α.

Since n − 2 + α = δ + 2j − 1, it follows from Claim 2.1 that for any x ∈ H
n,

|I| ≤ ‖h‖α

(
c1

∫e−r

0

e−δr

e−(2δ+2j)r θδ+2j−1 dθ + c2

∫π

e−r

e−δr θδ+2j−1

θ2δ+2j
dθ

)
. (2.8)

Therefore, |I| ≤ C‖h‖α for a constant C which does not depend on h. So, ‖Ps(Δ(n−1)/2
σ f)‖∞

≤ C‖Δ(n−1)/2−j
σ f‖α ≤ C‖f‖δ. The result of the proposition is proved except when n − 1 − δ

is an even integer.
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To deal with the case α = 2, that is, when (n − 1) − δ is even, we use interpolation

of analytic families of operators. We give first a complement to the last proof. Let δ0 =

n − 1 − 2j. Choose δ2 in ]0, n − 1[ with δ0 < δ2 < δ0 + 2. Let s = δ + it, with δ ∈ ]0, δ2].

Then, for f ∈ Λδ2
, one has ‖Ps(Δ(n−1)/2

σ f)‖∞ ≤ C ′(s)‖f‖δ2
for a constant C ′(s)

which is independent of f and is the absolute value of some polynomial R at point s. In-

deed, writing δ2 = n − 1 − 2j + α2, the argument above gives, for f ∈ Λδ2
(Sn−1) and

h = Δ
(n−1)/2−j
σ f,

∣∣Ps
(
Δ(n−1)/2

σ f
)
(x)
∣∣

≤ C(s)‖h‖α2

(
c1

∫e−r

0

e−δr

e−(2δ+2j)r θδ2+2j−1 dθ + c2

∫π

e−r

e−δr θδ2+2j−1

θ2δ+2j
dθ

)
,

(2.9)

for r = d(o, x). Therefore, if δ and δ2 satisfy δ2 < 2δ, one has

∣∣Ps
(
Δ(n−1)/2

σ f
)
(x)
∣∣ ≤ C ′(s)‖f‖δ2

e−(δ2−δ)r, (2.10)

where C ′(s) can be chosen to be the modulus of a polynomial R which does not vanish in

the strip �s ≥ 0.

Choose now δ1 and δ2 with δ1 < δ0 < δ2 and sufficiently close so that δ2 <

2δ1. Consider the Lipschitz spaces Λδ1
(Sn−1) and Λδ2

(Sn−1); it is known that the spaces

Λδ(Sn−1) for δ ∈ [δ1, δ2] form an interpolating family [2]. On the closed strip B = {s |

�s ∈ [δ1, δ2]}, consider the analytic family of operators Ts = (1/R(s))Ps ◦ Δ
(n−1)/2
σ . Those

operators are defined on Λδ2
(Sn−1) and satisfy the following properties:

(1) each operator Ts maps continuously Λδ2
(Sn−1) to the Banach (separable)

space Cb(Hn) of bounded continuous functions on H
n (with the uniform

norm);

(2) for all f ∈ Λδ2
(Sn−1), for all x ∈ H

n, the function s → Ts(f)(x) is continuous,

analytic in the interior of B and bounded over B;

(3) for f ∈ Λδ2
(Sn−1), one has ‖Tδ1+itf‖ ≤ ‖f‖δ1

and ‖Tδ2+itf‖ ≤ ‖f‖δ2
.

Then the hypotheses of the interpolation theorem (see, e.g., [3, Theorem 1]) are satisfied.

This theorem gives that for �s = δ ∈ B, Ts is continuous from Λδ(Sn−1) to Cb(Hn). Making

δ = δ0 finishes the proof of Proposition 2.2 for odd values of n.

The proof for even values of n is the same. �
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3 Estimates of the solutions of Dλf = g

In this section, we study the differential operator Dλ which is defined as acting on func-

tions on ]0,∞[ by

Dλ = (sinh r)2

(
∂2

∂r2
+ (n − 1) coth r

∂

∂r
+ λ Id

)
. (3.1)

Recall that the hyperbolic Laplacian has the following form in polar hyperbolic

coordinates (r, ζ) around o. For a C2 function u = u(r, ζ) : H
n \ {o} → C, one has

Δu =
∂2u

∂r2
+ (n − 1) coth r

∂u

∂r
+

1

(sinh r)2
Δσu(r, ·). (3.2)

From this expression, the solutions of Dλu = 0 are precisely the radial λ-eigenfunctions.

In Propositions 7.1 and 7.2,we will recall the behaviour near ∞ of the two basic solutions

of the eigenfunction equations, that is, the spherical function hs and the Green function

gs. The next result studies similarly the behaviour of a solution u of Dλu = v in terms of

the behaviour of v.

To simplify notations, we write λ = λs = s(n − 1 − s).

Throughout this section, we make the assumption that δ = �s ≥ (n − 1)/2.

Proposition 3.1. Let r0 > 0 and let l be an integer such that l ≤ n − 3 − δ. Let v be a

smooth function on [r0,∞[ such that |v(r)| ≤ Ce−lr for r ≥ r0. Let u : [r0,∞[→ C be a

smooth function such that Dλu = v. Then, if l < n − 3 − δ, one has

∣∣u(r)
∣∣ ≤ κ

(
C +

∣∣u
(
r0

)∣∣ +
∣∣u ′(r0

)∣∣)e−(l+2)r. (3.3)

If l = n − 3 − δ, one has

∣∣u(r)
∣∣ ≤ κ

(
C +

∣∣u
(
r0

)∣∣ +
∣∣u ′(r0

)∣∣)re−(n−1−δ)r. (3.4)

In both cases, κ is a constant which depends only on r0 and on s. �

Proof. The solution u of Dλu = v is uniquely determined by its behaviour up to first or-

der at r0. Let a and b in C be such that ags(r0) + bhs(r0) = 0 and ag ′
s(r0) + bh ′

s(r0) = 1.

This solution (a, b) exists and is unique, since the determinant of this system equals the

Wronskian of gs and hs at r0 which does not vanish. Then, by substracting from u the

combination ags + bhs, one reduces to the case when u(r0) = u ′(r0) = 0. This linear com-

bination grows less than κ(|u(r0)| + |u ′(r0)|)e−(n−1−δ)r, where κ is a constant depending

only on r0. Therefore, to prove Proposition 3.1, we can assume that u(r0) = u ′(r0) = 0.
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Let U(r) be the vector with coordinates u ′(r) and u(r) and let V(r) be the vector

with coordinates v(r)/(sinh r)2 and 0. Then

U ′(r) = A(r)U(r) + V(r) on
[
r0,∞

[
, (3.5)

where

A(r) =

(
−(n − 1) coth r −λ

1 0

)

. (3.6)

Let M(r) be the solution of M ′(r) = −M(r)A(r) which vanishes at r0; then

U(r) =

∫r

r0

M−1(r)M(t)V(t)dt. (3.7)

For any solution Y(r) of the equation Y ′(r) = A(r)Y(r), the vector M(r)Y(r) is constant.

This holds in particular for the spherical vector Hs(r) with coordinates (h ′
s(r), hs(r)) and

for the Green vector Gs(r) = (g ′
s(r), gs(r)). Now, since the Wronskian W(t) does not van-

ish, we may write V(t) as a linear combination of these two vectors: V(t) = α(t)Hs(t) +

β(t)Gs(t). It comes out that

U(r) =

( ∫r

r0

α(t)dt

)
Hs(r) +

( ∫r

r0

β(t)dt

)
Gs(r), (3.8)

where α(t) and β(t) are given, respectively, by

α(t) = cn−1v(t)gs(t)(sinh t)n−3, β(t) = −cn−1v(t)hs(t)(sinh t)n−3. (3.9)

Using the classical estimates on hs and gs recalled in the appendix, one obtains easily

the required estimates of Proposition 3.1. �

Corollary 3.2. Let r0 > 0. Let j ∈ N, l ∈ Z be such that l + 2j ≤ n − 1 − δ. Let v be a smooth

function on [r0,∞[ such that |v(r)| ≤ Ce−lr. Assume that u is a smooth function on [r0,∞[

which solves the differential equation D
j
λu = v. Then if l + 2j < n − 1 − δ, one has

∣
∣u(r)

∣
∣ ≤ κ

(
C +

2j−1
∑

p=0

∣
∣u(p)(r0

)∣∣
)

e−(l+2j)r. (3.10)

If l + 2j = n − 1 − δ, one has

∣∣u(r)
∣∣ ≤ κ

(
C +

2j−1
∑

p=0

∣∣u(p)(r0

)∣∣
)

re−(n−1−δ)r, (3.11)

where the constant κ depends only on r0 and on s. �
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Proof. By decreasing induction on m, 1 ≤ m ≤ j − 1, one proves, using Proposition 3.1,

that

∣∣Dmu(r)
∣∣ ≤ κm

(

C +

2(j−m)−1
∑

0

∣∣u(p)(r0

)∣∣
)

e−(l+2(j−m))r (3.12)

for r ≥ r0, where the constant κm depends only on r0. For m = 0, it gives the result. Notice

that one needs to use the degenerate case of Proposition 3.1 only at the last step of the

induction and when l + 2j = n − 1 − δ. �

4 Construction of a distribution on S
n−1 associated to a bounded eigenfunction

Now, we begin the proof of the fact that Ps is onto. Let f ∈ Eλs . We are going to construct

an explicit distribution T such that f = Ps(T). Notice first that we may assume that f(o) =

0, since up to replacing f by f − f(o)hs, we get a bounded eigenfunction in Eλs which has

L∞ -norm less than 2‖f‖∞ . In this section, we associate to f a distribution Ts on S
n−1 and

study its Lipschitz regularity. In the next section,we will prove that it satisfies Ps(Ts) = f.

As in the preceding section, we assume that �s = δ ∈ [(n − 1)/2, n − 1[ and we

write λ = λs = s(n − 1 − s) to simplify notations. Consider for r > 0 the function

T(r, ξ) = (sinh r)n−1

(
f
∂gs

∂r
−

∂f

∂r
gs

)
(r, ξ), (4.1)

where gs is the Green function: notice that the Green function depends on s and not only

on λs (cf. Section 6).

Proposition 4.1. Let s = δ + it with δ ∈ [(n − 1)/2, n − 1[. Then the distributions T(r, ·)
converge to a distribution T = Ts on S

n−1. Furthermore, if δ = n−1−2j+α, with α ∈ ]0, 2],

there is a function H ∈ Λ0
α(Sn−1) such that T = Δ

j
σ(H). This function H satisfies ‖H‖α ≤

C‖f‖∞ for a constant C which depends only on s. �

Remark 4.2. As a corollary, we obtain that the limit distribution T can always be written

as T = Δ
(n−1)/2
σ h with h ∈ Λ0

δ(Sn−1) if n is odd or that T = Δ
n/2
σ h with h ∈ Λ0

δ+1(Sn−1)

if n is even. Indeed, since H has mean-value zero over S
n−1, one may write it as H =

Δ
(n−1)/2−j
σ h if n is odd and H = Δ

n/2−j
σ h if n is even. As powers of Laplacians give iso-

morphisms between Lipschitz spaces of different parameters (see [12]), we get that h ∈
Λ0

δ(Sn−1) if n is odd and that h in Λ0
δ+1(Sn−1) if n is even since H ∈ Λ0

α(Sn−1).
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Proof. The following properties of T(r, ·) are easy to establish.

(1)
∫

Sn−1 T(r, ·)dσ = 0: this comes from the Green formula since f(o) = 0 and since

in the distributional sense, Δgs +λsgs equals the Dirac mass at the origin

δo.

(2) (∂T/∂r)(r, ξ) = −(sinh r)n−3gs(r)Δσf(r, ξ): this comes by differentiating the

expression of T(r, ξ) and using the expression for the Laplacian in polar

coordinates.

In order to illustrate the method, we consider first the easiest case δ = �s ∈
]n − 3, n − 2[. By (1), there is a unique smooth function ξ → H(r, ξ) which has zero mean

and such that T(r, ·) = ΔσH(r, ·). By (2), we have

∂

∂r
H(r, ·) = −(sinh r)n−3gs(r)f(r, ·). (4.2)

Fix an r0 > 0. Using the estimates on gs and the boundedness of f, one obtains that there

exists C > 0 which depends only on s and such that for any r ≥ r0,

∣∣(sinh r)n−3gs(r)f(r, ·)
∣∣ ≤ C‖f‖∞e(n−3−δ)r. (4.3)

Therefore,

H(·) = H
(
r0, ·) −

∫
∞

r0

(sinh t)n−3gs(t)f(t, ·)dt (4.4)

defines a continuous function on S
n−1. In the distributional sense, we have

ΔσH(·) = lim
r→∞

T(r, ·) =: T(·). (4.5)

We are going to prove that H ∈ Λ0
δ−(n−3)(S

n−1). By assumption δ − (n − 3) ∈ ]0, 1[ so it

suffices to show that ‖DθH‖∞ ≤ C‖f‖∞ |θ|δ−(n−3), for a constant C which only depends

on s. Recall that Dθ is the first-order difference operator DRθ
associated to the rotation

Rθ ∈ O(n), that is, the operator which assigns to a function F the function DRθ
F = F◦Rθ−F.

We have

DθH(·) = DθH
(
r0, ·) −

∫
∞

r0

(sinh t)n−3gs(t)Dθf(t, ·)dt = I + II,

|II| ≤
∣
∣∣∣

∫
∞

r0

(sinh t)n−3gs(t)Dθf(t, ·)dt

∣
∣∣∣

≤
∣∣
∣∣

∫− log |θ|

r0

(sinh t)n−3gs(t)Dθf(t, ·)dt

∣∣
∣∣ +
∣∣
∣∣

∫
∞

− log |θ|

(sinh t)n−3gs(t)Dθf(t, ·)dt

∣∣
∣∣

= (1) + (2).

(4.6)
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By the Harnack inequalities, since f is bounded, the gradient of f is bounded in terms of

‖f‖∞ and s; it follows that

∣∣Dθf(r, ξ)
∣∣ ≤ C‖f‖∞ |θ|er (4.7)

for some constant C which only depends on s. This gives

(1) ≤ ‖f‖∞

∫− log |θ|

r0

et(n−2−δ)|θ|dt ≤ C‖f‖∞ |θ|δ−(n−3). (4.8)

Clearly, one has also, for any r, ‖Dθf(r, ·)‖∞ ≤ 2‖f‖∞ , so that one gets

(2) =

∣∣∣∣

∫
∞

− log |θ|

(sinh t)n−3gs(t)Dθf(t, ·)dt

∣∣∣∣

≤ C‖f‖∞

∫
∞

− log |θ|

et(n−3−δ)dt ≤ C‖f‖∞ |θ|δ−(n−3).

(4.9)

So |II| ≤ C‖f‖∞ |θ|δ−(n−3). It remains to estimate the term I = DθH(r0, ·). We have

ΔσDθH(r0, ·) = Dθf(r0, ·). By the Harnack inequality, and due to the compacity of S
n−1,

Δ−1
σ is a continuous operator for the L∞ -norm, so one has

|I| ≤ ∥∥DθH
(
r0, ·)∥∥

∞
≤ C‖f‖∞ |θ| ≤ C‖f‖∞ |θ|δ−(n−3), (4.10)

for a constant C which only depends on s. It follows that H ∈ Λ0
δ−(n−3)(S

n−1), with a norm

smaller than C‖f‖∞ .

We now show how this method can be extended to handle the general case. We are

going to use the results of Section 3 on the operator Dλ; this is why we need to assume

that �s = δ ∈ [(n − 1)/2, n − 1[. Let us denote by j the integer such that δ = n − 1 − 2j + α

with α ∈ ]0, 2].

Since f is a λ-eigenfunction, it satisfies

Dλf(r, ξ) = −Δσf(r, ξ). (4.11)

From the study of the Green function gs in the appendix, there is an r0 depending only

on s such that gs(r) does not vanish for r ≥ r0. Therefore, by iterating the differential

equation satisfied by T(r, ·), we see that for r ≥ r0, one has

D
j−1
λ

(
(sinh r)3−n

gs(r)
∂T

∂r
(r, ·)

)
= (−1)jΔj

σf(r, ·). (4.12)
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Since T(r, ·) has zero mean, there exists a unique smooth function H(r, ·) on S
n−1 which

has zero mean and such that T(r, ·) = Δ
j
σH(r, ·). This uniqueness property of H(r, ·) im-

plies that

D
j−1
λ

(
(sinh r)3−n

gs(r)
∂H

∂r
(r, ·)

)
= (−1)jf(r, ·). (4.13)

Since f is bounded and since 2(j− 1) ≤ n− 1− δ, Corollary 3.2 can be applied with

l = 0. This gives

∣∣∣∣
(sinh r)3−n

gs(r)
∂H

∂r
(r, ·)

∣∣∣∣ ≤ C

(

‖f‖∞ +

2j−3
∑

0

∣∣∣∣
∂pH

∂rp

(
r0, ·)

∣∣∣∣

)

e−2(j−1)r if α < 2,

∣∣∣
∣
(sinh r)3−n

gs(r)
∂H

∂r
(r, ·)

∣∣∣
∣ ≤ C

(

‖f‖∞ +

2j−3
∑

0

∣∣∣
∣
∂pH

∂rp

(
r0, ·)

∣∣∣
∣

)

re−2(j−1)r if α = 2,

(4.14)

for a constant C, which only depends on s and on r0. One also has

Δj
σ

(
∂pH

∂rp

(
r0, ·)

)
=

∂pT

∂rp

(
r0, ·). (4.15)

Going back to the definition of T(r, ·) and using the Harnack inequality, one finds

∥∥∥∥
∂pT

∂rp

(
r0, ·)

∥∥∥∥
∞

≤ C‖f‖∞ , (4.16)

for p ≤ 2j − 3, the constant C only depending on r0 and j. Therefore, we have

∥
∥∥∥

∂pH

∂rp

(
r0, ·)

∥
∥∥∥

∞

≤ C‖f‖∞ ,

∥∥∥∥
∂H

∂r
(r, ·)

∥∥∥∥
∞

≤ C(sinh r)n−3
∣∣gs(r)

∣∣e−2(j−1)r‖f‖∞ ≤ C‖f‖∞e−αr if α < 2,

≤ C(sinh r)n−3
∣∣gs(r)

∣∣re−2(j−1)r‖f‖∞ ≤ C‖f‖∞ re−αr if α = 2,

(4.17)

for a constant C which only depends on r0 and on s. In any cases, since the last term is

integrable over [r0,∞[, uniformly on S
n−1,we may define a continuous function H on S

n−1

by setting

H(·) = lim
r→∞

H(r, ·) = H
(
r0, ·) +

∫
∞

r0

∂H

∂t
(t, ·)dt. (4.18)

In the distributional sense, this function satisfies

Δj
σH(·) = lim

r→∞

Δj
σH(r, ·) =: T(·). (4.19)
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We are now going to prove that H ∈ Λ0
α(Sn−1). Let Rθ ∈ O(n) be a rotation of angle

θ ∈ ]−π, π[. Since α ∈ ]0, 2], we just need to prove that ‖D3
θH‖∞ ≤ C‖f‖∞ |θ|α for a constant

C which does not depend on θ nor on Rθ (see [14, page 331]). We have

D3
θH(·) = D3

θH
(
r0, ·) +

∫
∞

r0

∂D3
θH

∂t
(t, ·)dt. (4.20)

For the term D3
θH(r0, ·), we note that Δ

j−1
σ D3

θH(r0, ·) = D3
θT(r0, ·). By the Harnack in-

equality, ‖D3
θT(r0, ·)‖∞ is bounded by C‖f‖∞ |θ|2, for a constant C which depends only on

r0. Therefore, since Δ−1
σ is continuous for the L∞ -norm, a similar bound holds also for

D3
θH(r0, ·): its L∞ -norm is smaller than C‖f‖∞ |θ|2 which is smaller than C‖f‖∞ |θ|α.

It remains to deal with the term corresponding to the integral. Arguing as in the

case δ ∈ ]n − 3, n − 2[, we split this integral into the sum of I =
∫− log |θ|

r0
and II =

∫
∞

− log |θ|
.

We have

D
j−1
λ

(
(sinh r)3−n

gs(r)
∂D3

θH

∂r
(r, ·)

)
= (−1)jD3

θf(r, ·). (4.21)

Since ‖D3
θf(r, ·)‖∞ ≤ C‖f‖∞ |θ|3e3r, for a constant C independent of r and θ, we may apply

Corollary 3.2 with l = −3: it comes out that for α ∈ ]0, 2],

∥∥
∥∥

∂D3
θH

∂r
(r, ·)

∥∥
∥∥

∞

≤ C‖f‖∞ |θ|3e(3−α)r, (4.22)

so that

|I| ≤ C‖f‖∞ |θ|3
∫− log |θ|

r0

e(3−α)t dt ≤ C‖f‖∞ |θ|α. (4.23)

Now, if α<2,we already proved during the construction of H that ‖(∂H/∂r)(r, ·)‖∞

≤ C‖f‖∞e−αr; we therefore have also ‖(∂D3
θH/∂r)(r, ·)‖∞ ≤ C‖f‖∞e−αr. This gives

|II| ≤ C‖f‖∞ |θ|α. (4.24)

Adding the estimates above, we deduce that ‖D3
θH‖∞ ≤ C‖f‖∞ |θ|α. This finishes the proof

in the case α < 2.

It remains to consider the case α = 2. There we are in the critical case for applying

Corollary 3.2 with l = 0 and we argue differently. By the Harnack inequality, we have

‖Dθf(r, ·)‖∞ ≤ C‖f‖∞ |θ|er for a constant C independent of f and θ. Applying Corollary 3.2

with l = −1, we deduce that ‖(∂DθH/∂r)(r, ·)‖∞ ≤ C‖f‖∞ |θ|e−r. But, we have

∥∥∥∥
∂D3

θH

∂r
(r, ·)

∥∥∥∥
∞

≤ 4

∥∥∥∥
∂DθH

∂r
(r, ·)

∥∥∥∥
∞

≤ C‖f‖∞ |θ|e−r, (4.25)
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for a constant C which is independent of Rθ and f. It follows that

∣∣∣∣

∫
∞

− log |θ|

∂D3
θH

∂t
(t, ·)dt

∣∣∣∣ ≤ C‖f‖∞ |θ|2. (4.26)

It ends the proof of the case α = 2 and of Proposition 4.1 also. �

5 Proof of Theorem 1.3 when δ ≥ (n − 1)/2

Let f ∈ Eλs . By a theorem of Helgason and Minemura ([7, 9], see also [1]), any λs-eigen-

function can be written as Ps(D), where D is a hyperfunction on S
n−1. Also, T is unique

except when s ∈ −N
∗ [9].

To prove Theorem 1.3 when �s ≥ (n − 1)/2, we show that the distribution T

we constructed in the previous section is equal to D, that is, that one has f = Ps(T).

Theorem 1.3 will then follow from Proposition 4.1. We suppose first that f = Ps(φ), for

a C1-function φ on S
n−1. By Proposition 2.2, f is bounded and we can consider the cor-

responding distribution Ts. We need to show that Ts = D. To simplify the notations, we

denote Ts by T .

Recall that the distribution T is the limit as r → ∞ of the distributions

T(r, ·) = (sinh r)n−1

(
∂f(r, ·)

∂r
gs −

∂gs

∂r
f(r, ·)

)
. (5.1)

With these notations, we have the following result.

Proposition 5.1. Let φ be a C1 function on S
n−1 and f = Ps(φ). Then, one has

lim
r→∞

〈
T(r, ·), Ps(z, ·)〉 = f(z). (5.2)

�

Proof. We begin by studying the kernel function K
(s)
r (ζ, ξ) defined by

K(s)
r (ζ, ξ) = (sinh r)n−1

[
∂Ps

∂r
(rζ, ξ)gs(r) − Ps(rζ, ξ)

∂gs

∂r
(r)
]
. (5.3)

�

Lemma 5.2. The kernel K
(s)
r (ζ, ξ) has the following two properties:

(1) for any ξ ∈ S
n−1, one has

∫

Sn−1 K
(s)
r (ζ, ξ)dσ(ζ) = 1;

(2) for �(s) = δ ≥ (n − 1)/2, and r0 > 0, there is a constant C > 0 such that for all

r ≥ r0, for all ζ, ξ in S
n−1,

∣∣K(s)
r (ζ, ξ)

∣∣ ≤ C
e(n−1−2δ)r

(
e−r + |ζ − ξ|

)2δ
,

∣∣K(s)
r (ζ, ξ)

∣∣ ≤ C
er(n−3−2δ)

|ζ − ξ|2δ+2
. (5.4)

�
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Proof. Property (1) follows from the Green formula applied to the functions Ps(·, ξ) and

gs and from the fact that Ps(o, ξ) = 1 for all ξ ∈ S
n−1.

To prove (2), we assume first that δ > (n − 1)/2. For any r ≥ r0 > 0, we know

from the appendix that |gs(r)| ≤ Ce−δr for a constant C which is uniform as s remains in

a compact of the set {s | �(s) ∈ [(n − 1)/2, n − 1[}. By the Harnack inequality, it follows

that |∂gs(r)/∂r| ≤ Ce−δr, where the constant C is uniform as s remains in a compact set.

This leads first to the inequality

∣∣K(s)
r (ζ, ξ)

∣∣ ≤ C
e(n−1−2δ)r

(
e−r + |ζ − ξ|

)2δ
, (5.5)

where the constant C is independent of r ≥ r0 and of s as long as it stays in a compact

set. In particular, for all ζ �= ξ, K
(s)
r (ζ, ξ) → 0 as r → ∞ when δ > (n − 1)/2. The derivative

with respect to r of K
(s)
r (ζ, ξ) can be computed as we did in the previous section for the

construction of the distribution T . This gives

∂K
(s)
r (ζ, ξ)
∂r

= (sinh r)n−3gs(r)ΔσPs(rζ, ξ). (5.6)

Using the same estimates as above on gs and its derivative, and on ΔσPs (cf. Claim 2.1),

it comes out that

∣∣∣∣
∂K

(s)
r (ζ, ξ)
∂r

∣∣∣∣ ≤ C
er(n−3−2δ)

(
e−r + |ζ − ξ|

)2δ+2
. (5.7)

Integrating with respect to r and using that Kt(ζ, ξ) → 0 as t → ∞, it gives that

∣∣K(s)
r (ζ, ξ)

∣∣ ≤ C
e(n−3−2δ)r

|ζ − ξ|2δ+2
, (5.8)

for a constant C which does not depend on s as long as it stays in a compact set of �s ≥
(n − 1)/2.

Since the kernel K
(s)
r is continuous with respect to s, the last estimate holds also

for any s with �s = (n − 1)/2 (for a constant which depends on r0 and on s): it suffices to

approximate s = (n − 1)/2 + it by sk + it for a sequence sk which tends to (n − 1)/2 from

above. �

Proof of Proposition 5.1. As f = Ps(φ), we have

T(r, ζ) =

∫

Sn−1

K(s)
r (ζ, ξ)φ(ξ)dσ(ξ). (5.9)
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So, it suffices to show that if φ is a C1-function, one has for all ζ, ξ in S
n−1 that

∫

Sn−1

K(s)
r (ζ, ξ)

(
φ(ξ) − φ(ζ)

)
dσ(ξ) −→ 0 (5.10)

as r → ∞. Since φ is smooth,

∣∣
∣∣

∫

Sn−1

K(s)
r (ζ, ξ)

(
φ(ξ) − φ(ζ)

)
dσ(ξ)

∣∣
∣∣ ≤ ‖φ‖C1

∫ ∣
∣K(s)

r (ζ, ξ)
∣
∣|ζ − ξ|dσ(ξ). (5.11)

We split this integral as the sum of the integral over the domains |ζ−ξ| ≤ e−r and |ζ−ξ| ≥
e−r. Using the first estimate in (2) of the preceding lemma on the domain |ζ − ξ| ≤ e−r and

the second on the domain |ζ − ξ| ≥ e−r, one finds

∫

Sn−1

∣
∣K(s)

r (ζ, ξ)
∣
∣|ζ − ξ|dσ(ξ) ≤ Ce−r. (5.12)

This ends the proof of Proposition 5.1. �

It remains to deal with general f. Our aim is to show that Ps(T) = f, where T is the

distribution that was constructed in Section 3. To that purpose, we use the characteri-

zation of eigenfunctions f which are the Poisson-Helgason transforms of a distribution

as those which grow at most exponentially with the hyperbolic distance [15]: there are

constants a and b such that

∣∣f(x)
∣∣ ≤ aed(o,x). (5.13)

In particular if f ∈ Eλs , then f = Ps(D) for a distribution D on Ck(Sn−1).

Now, let ε > 0; choose a smooth positive function φε supported in the ε-

neighborhood of Id ∈ O(n) and with
∫

φε(g)dg = 1. For g ∈ O(n), denote by g∗(f) the func-

tion f◦g−1; for a distribution D, denote also by g∗(D) the distribution which is defined by

duality. Then the function fε =
∫

g∗(f)φε(g)dg belongs to Eλs with L∞ -norm smaller than

‖f‖∞ . One has fε = Ps(Dε), where Dε =
∫

g∗(D)φε(g)dg. Since D is a distribution and

φε is smooth, the distribution Dε is a function at least C1. Applying Proposition 5.1, we

obtain that Dε equals the distribution Tε that we had associated in the previous section

to fε. Therefore, if we assume for instance that n is odd, we may write Dε = Δ
(n−1)/2
σ hε,

where hε ∈ Λ0
δ(Sn−1) has a norm bounded by C‖fε‖∞ ≤ C‖f‖∞ .

By the Ascoli theorem, one can assume (up to taking a subsequence) that the se-

quence (hε) converges to h in Λδ(Sn−1). One has in the distributional sense Dε = Δ
(n−1)/2
σ

hε → Δ
(n−1)/2
σ h as ε → 0. Since fε(z) → f(z), one has, for all z, Ps(Dε)(z) → Ps(D)(z).
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Therefore, f = Ps(Δ(n−1)/2
σ h) = Ps(D). By the unicity part in the Helgason-Minemura the-

orem, D = Δ
(n−1)/2
σ h. This proves that Ps is onto, when restricted to the space Δ

(n−1)/2
σ Λδ

(Sn−1).

It follows now from the Banach closed graph theorem that Ps is an isomorphism

between Δ
(n−1)/2
σ Λ0

δ(Sn−1) ⊕ C dσ and Eλs . This proves Theorem 1.3 for �s ≥ (n − 1)/2,

when n is odd.

The proof when n is even is exactly the same.

This ends the proof of Theorem 1.3 in the case �s ≥ (n − 1)/2.

6 Proof of Theorem 1.3 when �s < (n − 1)/2

The proof of Theorem 1.3 in the case �s < (n − 1)/2 is not direct; we did not succeed in

constructing the distribution T as we did in Section 4 for �s ≥ (n − 1)/2. To deal with

that case, we use the result for �s ≥ (n − 1)/2, which we have just proven. We also use

an important identity which connects the s-power Ps(z, ·) of the Poisson kernel to its (n−

1 − s)-power Pn−1−s(z, ·). This relation is classical, but we explain it again here in order

to make the paper self-contained.

Let z ∈ H
n; let γ be an isometry of H

n such that z = γ−1(0). Then |γ ′(ξ)| = P(z, ξ),

where |γ ′(ξ)| is the conformal factor of the derivative of γ at the point ξ ∈ S
n−1. For two

points ξ, ξ ′ ∈ S
n−1, denote their chordal distance by |ξ ′−ξ| = 2 sin(θ/2) for θ the spherical

distance between ξ and ξ ′. One has the “intermediate value formula” (cf. [13])

∣∣γ(ξ ′) − γ(ξ)
∣∣2 =

∣∣γ ′(ξ ′)
∣∣∣∣γ ′(ξ)

∣∣|ξ ′ − ξ|2. (6.1)

Assume now that s ∈ C is such that �s < (n − 1)/2. Then, one has

∫

Sn−1

∣∣γ ′(ξ ′)
∣∣n−1−s

|ξ ′ − ξ|2s
dσ(ξ ′) =

∫

Sn−1

∣∣γ ′(ξ ′)
∣∣n−1

∣
∣γ ′(ξ ′)

∣
∣s|ξ ′ − ξ|2s

dσ(ξ ′)

=
∣∣γ ′(ξ)

∣∣s
∫

Sn−1

∣
∣γ ′(ξ ′)

∣
∣n−1

∣∣γ(ξ ′) − γ(ξ)
∣∣2s

dσ(ξ ′)

= C(s)
∣∣γ ′(ξ)

∣∣s,

(6.2)

where C(s) =
∫

Sn−1(1/|ξ ′ − ξ|2s)dσ(ξ ′). An easy computation gives that C satisfies s(n −

2 − s)C(s) + 2s(2s + 3 − n)C(s + 1) = 0. It follows that C extends analytically over C to a

meromorphic function. In fact, C(s) = 2n−1−2sπ(n−1)/2(Γ((n−1)/2−s)/Γ(n−1−s)), where

Γ(·) stands for the Gamma function (analytic on C \ (−N)). In particular, the function C

does not vanish in H, and its poles in this strip are simples and of the form (n − 1)/2 + k,

k ∈ N.
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For �s < (n − 1)/2, consider the operator Is which is defined as acting on func-

tions on S
n−1 by

Is(f)(ξ) =

∫

Sn−1

f(ξ ′)
|ξ ′ − ξ|2s

dσ(ξ ′). (6.3)

In this range of values of s, since the kernel 1/|ξ ′ − ξ|2s is integrable, Is is a bounded

operator from L∞ (Sn−1) to itself and it maps also C∞ (Sn−1) to itself. In order to give a

meaning to this operator for other values of s, we show that it satisfies a certain func-

tional equation. For this, we compute first the (spherical) Laplacian of 1/|ξ ′ − ξ|2s with

respect to the variable ξ ′. Recall that the spherical Laplacian of a function u = u(ξ ′) on

S
n−1 which only depends on the distance θ = d(ξ, ξ ′) to a point ξ is

Δσu = u ′′(θ) + (n − 2) cot θu ′(θ). (6.4)

Thus,

Δσ

(
1

|ξ ′ − ξ|2s

)
= s(n − 2 − s)

1

|ξ ′ − ξ|2s
+ 2s(2s + 3 − n)

1

|ξ ′ − ξ|2s+2
. (6.5)

So assuming that 2�s + 2 < n − 1 and f ∈ C2(Sn−1), we find, by integrating with

respect to ξ ′ over S
n−1 and using the Green formula,

Is

(
Δσf

)
= s(n − 2 − s)Is(f) + 2s(n − 3 − 2s)Is+1(f). (6.6)

This functional equation allows to extend analytically s → Is(f) for any C∞ -function f

to a meromorphic function. As for C(s), these poles are at most simple and are located in

{(n − 1)/2 + N}. Therefore, if one defines for a C∞ -function f, Ks(f) = (1/C(s))Is(f), then

s → Ks(f) is holomorphic over the half-plane �s < n − 1. For s + 1 in this half-plane, it

satisfies also the functional equation

Ks

(
Δσf

)
= s(n − 2 − s)

[
Ks(f) + Ks+1(f)

]
. (6.7)

We summarize the properties of the operator Ks that we need in the following

proposition.

Proposition 6.1. There exists a family of operators (Ks) for s ∈ H which depends holo-

morphically on the parameter s ∈ {�s < n − 1}, which extends the family of operators

(Ks) for {s; �s < (n − 1)/2} and which has the following properties.
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(1) Each operator Ks maps continuously C∞ (Sn−1) to itself and commutes with

the spherical Laplacian Δσ. Furthermore, one has, if (s + 1) ∈ H,

Δσ

(
Ks(f)

)
= Ks

(
Δσ(f)

)
= s(n − 2 − s)

[
Ks(f) + Ks+1(f)

]
. (6.8)

(2) The operator Ks connects the (n− 1− s)-power and the s-power of the Poisson

kernel: for all z ∈ H
n, one has

Ks

(
Pn−1−s(z, ·)) = Ps(z, ·). (6.9)

(3) For any s ∈ H, the operators Ks and Kn−1−s are inverse to each other.

(4) Let s ∈ H with �s �= (n − 1)/2. Let β > 0 be such that β + n − 1 − 2�s > 0. Then

Ks maps continuously Λβ(Sn−1) to Λβ+n−1−2�s(Sn−1). �

Proof. For �s < (n−1)/2, the operator Ks commutes with the spherical Laplacian Δσ; this

comes from the Green formula and the fact that Δσ,ξ(1/|ξ ′ − ξ|2s) = Δσ,ξ ′(1/|ξ ′ − ξ|2s). By

analytic continuation, the same holds also for �s ≥ (n − 1)/2. The functional equation

for Ks is a consequence of the equation for Is.

It implies that the operator Ks maps continuously the space of C∞ -functions on

S
n−1 to itself, since it does so for �s ≤ (n − 1)/2.

Statement (2) has already been proven for s with 2�s < n − 1. It extends by ana-

lytic continuation to any value of s ∈ H.

We now prove part (3) of the proposition. First from (2), we get that Ks ◦ Kn−1−s

(Ps(z, ·)) = Ps(z, ·). We noticed already that for s ∈ H, the distribution representing an

s(n − 1 − s)-eigenfunction is unique. This uniqueness property implies in particular that

for any k ≥ 0, the functions Ps(z, ·) generate a dense linear subspace of Ck(Sn−1) as z

describes H
n. It follows that for s ∈ H, the operator Ks ◦ Kn−1−s is the identity.

In order to prove (4), we begin with the following result. �

Lemma 6.2. Let s ∈ H with �s < (n − 1)/2 and let β > 0. Then Is maps continuously

Λβ(Sn−1) to Λβ+n−1−2�s(Sn−1). �

Proof. Choose integers p and q where p > [β] + 1, and where q > n − 1. Let f ∈ Λβ(Sn−1).

For any rotation of S
n−1 of angle θ ∈ [−π, π], one has ‖Dp

θ(f)‖∞ ≤ C‖f‖β|θ|β, for a constant

C which does not depend on f nor on the rotation. Set m = p + q. Since m > β + n − 1 −

2�s, it suffices to check that ‖Dm
θ (Is(f))‖∞ ≤ C‖f‖β|θ|β+n−1−2�s, for a constant C which

has the same properties. We observe that Is commutes with the difference operator Dθ.
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Therefore, one has

Dm
θ

(
Is(f)

)
(ξ) = D

q
θ

(
Is

(
D

p
θ(f)

))
(ξ) =

∫

Sn−1

D
p
θf(ξ ′)Dq

θ

(
1

|ξ ′ − ξ|2s

)
dσ(ξ ′), (6.10)

where in the last integrand, the difference operator D
q
θ acts on the variable ξ. We split

the last integral as the sum of two terms, I and II, where I is the integral over the domain

|ξ ′ − ξ| ≤ 2m|θ| and where II is the integral over |ξ ′ − ξ| ≥ 2m|θ|.

First, we have

|I| ≤ ‖f‖β|θ|β2m

∫

|ξ ′−ξ|≤3m|θ|

1

|ξ ′ − ξ|2�s
dσ(ξ ′). (6.11)

Therefore, since 2�s < n − 1, |I| ≤ C‖f‖β|θ|β+n−1−2s, for a constant C which is

independent of f.

By the Taylor formula, we have for |ξ ′ − ξ| ≥ 2mθ,

∣∣∣∣D
q
θ

(
1

|ξ ′ − ξ|2s

)∣∣∣∣ ≤ C ′|θ|q
1

|ξ ′ − ξ|2�s+q
. (6.12)

Therefore, we obtain

|II| ≤ C|θ|β+q

∫

|ξ ′−ξ|≥2mθ

1

|ξ ′ − ξ|2�s+q
dσ(ξ ′), (6.13)

for a constant C which is independent of f. Since 2�s + q > n − 1, the integral is

O(|θ|n−1−2�s−q). This implies the lemma. �

We apply now Lemma 6.2 to the proof of Proposition 6.1(4). As C(s) has no poles

when �s < (n − 1)/2, the continuity property of Ks follows from the continuity property

of Is. Let s ∈ H with �s > (n − 1)/2. Then, since n ≥ 3, there is an integer k such that

s − k ∈ H, with �(s − k) < (n − 1)/2. From the functional equation satisfied by Ks, and

using that Ks commutes with Δσ, we know that Ks(f) is a linear combination of Ks−1(f)

and of ΔσKs−1(f). By induction, it comes out that Ks(f) is a linear combination of the

functions Δ
j
σ(Ks−k(f)) for j ∈ {0, 1, . . . , k}; this is also a linear combination of the functions

Δ
j
σ(Is−k(f)). Suppose now that f ∈ Λβ(Sn−1), with β+n−1−2�s > 0. Then by Lemma 6.2,

Is−k(f) ∈ Λβ+n−1−2(�s−k)(Sn−1) with norm controlled by the Λβ-norm of f. Since β + n −

1 − 2�s > 0, we deduce that Δk
σ(Is−k(f)) ∈ Λβ+n−1−2�s(Sn−1); the same holds a fortiori

for Δ
j
σ(Is−k(f)) when j = 0, . . . , k − 1. This gives that Ks maps continuously Λβ(Sn−1) to

Λβ+n−1−2�s(Sn−1).

We are now in position to complete the proof of Theorem 1.3 when 2�s < n − 1.

Let f ∈ Eλs with f(o) = 0. By [15], there exists a distribution T so that f(z) = 〈T, Ps(z, ·)〉;
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since f(o) = 0 this function satisfies 〈T, 1l〉 = 0. By Proposition 6.1, we have

f(z) =
〈
T,Ks

(
Pn−1−s(z, ·))〉 =

〈
Ks(T), Pn−1−s(z, ·)〉. (6.14)

Suppose that the dimension n is odd. As �(n − 1 − s) > (n − 1)/2, we know from Section 4

that Ks(T) = Δ
(n−1)/2
σ (H) with H ∈ Λ0

n−1−δ(Sn−1). By Proposition 6.1(3), T = Δ
(n−1)/2
σ

(Kn−1−s(H)). By Proposition 6.1(4) and since δ > 0, Kn−1−s(H) ∈ Λ0
δ(Sn−1). This gives

Theorem 1.3 when 2�s < n−1 and n is odd. The proof when n is even is exactly the same.

7 Radial λ-eigenfunctions

In this section, we review some properties of the radial eigenfunctions of the Laplacian.

We write λ = λs = s(n − 1 − s). A function h : H
n

→ C is radial, if it depends only on the

distance to o : h(x) = φ(d(o, x)). A radial function u is a λ-eigenfunction if and only if

u ′′(r) + (n − 1) coth r · u ′(r) + λu(r) = 0. (7.1)

The change of variable r = (− sinh r)2 shows that u is a radial λ-eigenfunction if

and only if the function f defined by u(r) = f((− sinh r)2) satisfies

z(1 − z)f ′′(z) +

(
n

2
−

n + 1

2
z

)
f ′(z) −

λ

4
f(z) = 0, (7.2)

(cf. [5, page 135]), that is, the hypergeometric equation E(a, b; c):

z(1 − z)f ′′(z) +
(
c − (a + b + 1)z

)
f ′(z) − abf(z) = 0, (7.3)

for the parameters c = n/2, a = (n − 1 − s)/2, and b = s/2 (cf. [4, ?]). One particular

solution of the equation E(a, b; c) is the hypergeometric function

F(a, b; c; z) =

k=∞
∑

k=0

(a)k(b)k

(c)kk!
zk. (7.4)

In the above formula, (a)k is defined by setting (a)0 = 1 and for k ≥ 1, (a)k = a(a +

1). . .(a + k − 1). For any a, b in C, and for any c /∈ −N, this series converges uniformly on

the unit disc. It can be extended to an analytic function on each simply connected open

set which is disjoint from the poles of the equation, in particular on the complement of

the half-line [1,∞[.
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We introduce two particular radial λ-eigenfunctions, the spherical function and

the Green function.

The spherical function. The space of solutions of the equation for radial eigenfunction

is two-dimensional. An inspection of the equation shows that up to scalar multiple, there

is only one radial λs-eigenfunction which is defined on H
n and smooth at the origin o. The

spherical function hs is defined as the solution which equals 1 at o. It can be expressed

in terms of the hypergeometric functions. Indeed, one has

hs(r) = F

(
n − 1 − s

2
,
s

2
;
n

2
; −(sinh r)2

)
, (7.5)

since the right term is a radial λs-eigenfunction which takes the value 1 at the origin o.

As a function of the parameter, s → hs(r) is a holomorphic function.

In order to find the behaviour of hs(r) for large values of r, we use the following

relation which is valid for z in the half-plane �(z) < 1/2 (cf. [4], page 64):

F(α,β; γ; z) = (1 − z)−αF

(
α, γ − β; γ;

z

z − 1

)
. (7.6)

It comes out that

hs(r) = (cosh r)n−1−sF

(
n − 1 − s

2
,
n − s

2
,
n

2
; (tanh r)2

)
. (7.7)

Now, when �γ > �α + �β (cf. [4], page 61), one has

lim
z→1−

F(α,β; γ; z) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

. (7.8)

Therefore, if �(s) ∈ ](n − 1)/2, n − 1[, we have

hs(r) = (cosh r)n−1−s

⎛

⎜⎜
⎝

Γ

(
n

2

)
Γ

(
2s − n + 1

2

)

Γ

(
s + 1

2

)
Γ

(
s

2

) + o(r)

⎞

⎟⎟
⎠ . (7.9)

From its definition, and from the symmetry between α and β in the definition of

the hypergeometric function F(α,β, γ; z), one has hs(r) = hn−1−s(r). This property and

the estimate above gives therefore an estimate for hs(r) for large values of r, once �s �=
(n − 1)/2.

It remains to consider the case when s can be written as (n − 1)/2 − it for t ∈ R.

One can use the following relation, which holds for z ∈ C − R
+, and for α − β /∈ Z (cf. [4],
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page 108):

F(α,β; γ; z) =
Γ(γ)Γ(β − α)
Γ(β)Γ(γ − α)

(−z)−αF
(
α, 1 − γ + α, 1 − β + α; z−1

)

+
Γ(γ)Γ(α − β)
Γ(α)Γ(γ − β)

(−z)−βF
(
b, 1 − γ + β, 1 − α + β; z−1

)
.

(7.10)

We apply it for α = (n−1)/4+ it/2, β = (n−1)/4− it/2, and γ = n/2. It gives that for t �= 0,

h(n−1)/2+it(r) = (sinh r)−((n−1)/2)r

× (c(t)(sinh r)−(it/2)rF
(
α, 1 − γ + α; 1 − β + α; −(sinh r)−2

)

+ c̄(t)(sinh r)(it/2)rF
(
α, 1 − γ + α; 1 − β + α; −(sinh r)−2

))
,

(7.11)

with

c(t) =

Γ

(
n

2

)
Γ(−it)

Γ

(
n − 1

4
−

it

2

)
Γ

(
n + 1

4
−

it

2

) . (7.12)

To finish, we consider the case when t = 0, that is, s = (n−1)/2. We observed already that

the spherical λs-eigenfunction hs can be expressed using the Poisson-Helgason trans-

form: if dσ denotes the normalized spherical measure on S
n−1, one has hs(r) =

∫

Sn−1 Ps(z, ξ)dσ(ξ) if d(o, z) = r. The formula of the spherical measure leads then to

hs(r) = c(cosh r)−s

∫π

0

(1 − tanh r cos θ)−s(sin θ)n−2dθ, (7.13)

for some explicit constant c. For s = (n − 1)/2, an easy calculation gives that this last

integral is O(r).

Proposition 7.1. Let s = δ + it with δ ∈ ]0, n − 1[. The spherical function hs depends

holomorphically on s: for any r, s → hs(r) is holomorphic. It satisfies the symmetry

hs(r) = hn−1−s(r). For �s ≥ (n − 1)/2,

∣∣hs(r)
∣∣ ≤ Cs exp(−δr) if s �= n − 1

2
,

∣
∣h(n−1)/2(r)

∣
∣ ≤ Cr exp

(
−

n − 1

2
r

)
if s =

n − 1

2
.

(7.14)

�

Recall that, from the Harnak estimate, one has a similar estimate for the gradi-

ents of hs: |h ′
s(r)| ≤ C ′

s exp(−δr) and |h ′
(n−1)/2(r)| ≤ C ′r exp(−((n − 1)/2)r).
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The Green function. Other solutions to equation E(a, b; c) can be expressed with hyper-

geometric functions (cf. [4], page 105). In particular, if b − a + 1 is not contained in −N,

then the function

G(a, b; c; z) = (−z)−bF
(
b + 1 − c, b; b + 1 − a; z−1

)
(7.15)

is a solution on C − [0,∞[ (the sth power is defined using the standard branch of the

logarithm).

Let E be the exceptional set {(n − 3)/2 − N}.

For r = d(o, z), the function

z −→ Gs(r) = (sinh r)−sF

(
2 − n + s

2
,
s

2
,
3 − n + 2s

2
; −(sinh r)−2

)
(7.16)

is a λs-eigenfunction.

For r near ∞, it behaves like Gs(r) = (sinh r)−s(1 + O(e−2r)), where the equivalent

O(·) is uniform as s stays in a compact set of C − E.

In order to find the behaviour of Gs(r) for small values of r, we argue as for the

spherical function:

F(α,β; γ; z) = (1 − z)−αF

(
α, γ − β; γ;

z

z − 1

)
, (7.17)

for z in a neighborhood of 0 ∈ C. It comes out that

Gs(r) = (sinh r)−s(coth r)n−s−2F

(
2 − n + s

2
,
3 − n + s

2
,
3 − n + 2s

2
; (cosh r)−2

)
.

(7.18)

Now, using as above, that if �γ > �α + �β and γ /∈ −N,

lim
z→1−

F(α,β; γ; z) =
Γ(γ)Γ(γ − α − β)
Γ(γ − α)Γ(γ − β)

. (7.19)

Since n ≥ 3, this applies to the function Gs if s /∈ E.

One gets, for r near 0,

Gs(r) = (sinh r)2−n(cosh r)n−s−2

⎛

⎜⎜
⎝

Γ

(
3 − n + 2s

2

)
Γ

(
n − 2

2

)

Γ

(
s + 1

2

)
Γ

(
s

2

) + o(r)

⎞

⎟⎟
⎠ . (7.20)
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One has also, after differentiating the formula for Gs(r) and using the relation

F ′(α,β; γ, z) =
αβ

γ
F(α + 1, β + 1, γ + 1; z),

G ′
s(r) = 2(sinh r)−s−3 cosh r

(
2 − n + s

2

)(
s

2

)

3 − n + 2s

2

× F

(
4 − n + s

2
,
s

2
+ 1,

5 − n + 2s

2
; −(sinh r)−2

)

− s(sinh r)−s−1 cosh rF

(
2 − n + s

2
,
s

2
,
3 − n + 2s

2
; −(sinh r)−2

)
.

(7.21)

As before, we find that, if s ∈ C − E, and r is near to 0

G ′
s(r) = (sinh r)1−n

⎛

⎜⎜
⎝

−2Γ

(
n

2

)
Γ

(
3 − n + 2s

2

)

Γ

(
1 + s

2

)
Γ

(
s

2

) + o(r)

⎞

⎟⎟
⎠ . (7.22)

For s ∈ C − E, define a function on H
n by

gs(x) =

Γ

(
1 + s

2

)
Γ

(
s

2

)

−2cn−1Γ

(
n

2

)
Γ

(
3 − n + 2s

2

)Gs

(
d(o, x)

)

=

Γ

(
1 + s

2

)
Γ

(
s

2

)

−2cn−1Γ

(
n

2

)
Γ

(
3 − n + 2s

2

) (sinh r)−s

× F

(
2 − n + s

2
,
s

2
,
3 − n + 2s

2
; −(sinh r)−2

)
,

(7.23)

cn−1 being the volume of the unit sphere in R
n.

This function gs is locally integrable on H
n (since n ≥ 3) and satisfies in the

distributional sense (Δ + λs)gs = δo, where δo is the Dirac mass at the origin o. We

call it the Green function. A priori, it is defined only for the values of s ∈ C but since

(1/Γ(γ))F(α,β, γ, z) is a holomorphic function of its parameters for |z| < 1 (cf. [8, page

245]), it does extend to a holomorphic function of s for s ∈ H.

We summarize the above discussion in thefollowing.
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Proposition 7.2. Let s ∈ H. There exists a function gs : H
n − {o} → C which satisfies

Δgs + λsgs = δo in the distributional sense. The function s → gs(z) is holomorphic. For

s ∈ H − E, one has

lim
x→∞

gs(x)esd(0,x) =

Γ

(
1 + s

2

)
Γ

(
s

2

)

−2cn−1Γ

(
n

2

)
Γ

(
3 − n + 2s

2

) , (7.24)

the convergence being uniform for s in a compact subset of {�s ∈ ]0, n − 1[−E}. �

As for the spherical function, the Harnack estimate gives that the same estimate

holds for the gradient of gs.

We need also to consider the value of the Wronskian of gs and hs, whose expres-

sion is W(r) = h ′
s(r)gs(r) − hs(r)g ′

s(r); therefore W ′(r) = −(n − 1) coth rW(r). Thus, it

follows from our normalizations that (sinh r)n−1W(r) = 1/cn−1.
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[10] T. Ōshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine sym-

metric space, Invent. Math. 57 (1980), no. 1, 1–81.

[11] J.-P. Otal, Sur les fonctions propres du laplacien du disque hyperbolique [About eigenfunc-

tions of the Laplacian on the hyperbolic disc], C. R. Acad. Sci. Paris Sér. I Math. 327 (1998),

no. 2, 161–166.

[12] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-

grals, Princeton Mathematical Series, vol. 43, Princeton University Press, New Jersey, 1993.

[13] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes
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