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Abstract

Our aim in this paper is to determine the lower central and derived
series for the braid groups of the sphere and of the finitely-punctured
sphere. We are motivated in part by the study of the generalised Fadell-
Neuwirth short exact sequence [GGZ, [GGA4|, but the problem is of
interest in its own right.

The braid groups of the 2-sphere S? were studied by Fadell, Van
Buskirk and Gillette during the 1960’s, and are of particular interest
due to the fact that they have torsion elements (which were charac-
terised by Murasugi). We first prove that for all n € N, the lower cen-
tral series of the n-string braid group B, (S?) is constant from the com-
mutator subgroup onwards. We obtain a presentation of I'y(B,(S?)),
from which we observe that I'y(B,(S?)) is a semi-direct product of the
quaternion group of order 8 by a free group of rank 2. As for the derived
series of B, (S?), we show that for all n > 5, it is constant from the
derived subgroup onwards. The group B,(S?) being finite and soluble
for n < 3, the critical case is n = 4 for which the derived subgroup is
the semi-direct product obtained above. By proving a general result
concerning the structure of the derived subgroup of a semi-direct prod-
uct, we are able to determine completely the derived series of By(S?)
which from (B4(S?))® onwards coincides with that of the free group
of rank 2, as well as its successive derived series quotients.

For n > 1, the class of m-string braid groups B,,(S*\ {z1,...,z,})
of the n-punctured sphere includes the usual Artin braid groups B,,
(for n = 1), those of the annulus, which are Artin groups of type B
(for n = 2), and affine Artin groups of type C (for n = 3). Motivated
by the study of almost periodic solutions of algebraic equations with
almost periodic coefficients, Gorin and Lin determined the commutator
subgroup of the Artin braid groups. We extend their results, and show
that the lower central series of B,, is completely determined for all

2000 Mathematics Subject Classification. Primary: 20F36, 20F14. Secondary:
20F05, 55R80, 20E26.

Key words and phrases. surface braid group, sphere braid group, lower central
series, derived series, configuration space, exact sequence, Artin group.
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ABSTRACT v

m € N, and that the derived series is determined for all m # 4. In
the exceptional case m = 4, we determine some higher elements of the
derived series and its quotients.

When n > 2, we prove that the lower central series (respectively
derived series) of B,,(S? \ {z1,...,%,}) is constant from the commu-
tator subgroup onwards for all m > 3 (respectively m > 5). The case
m = 1 is that of the free group of rank n — 1. The case n = 2 is of
particular interest notably when m = 2 also. In this case, the commu-
tator subgroup is a free group of infinite rank. We then go on to show
that By(S*\ {71, 22}) admits various interpretations, as the Baumslag-
Solitar group BS(2, 2), or as a one relator group with non-trivial centre
for example. We conclude from this latter fact that By(S?\ {z1, 72}) is
residually nilpotent, and that from the commutator subgroup onwards,
its lower central series coincides with that of the free product Zy * Z.
Further, its lower central series quotients I';/I';;; are direct sums of
copies of Zsy, the number of summands being determined explicitly. In
the case m > 3 and n = 2, we obtain a presentation of the derived
subgroup, from which we deduce its Abelianisation. Finally, in the
case n = 3, we obtain partial results for the derived series, and we
prove that the lower central series quotients I';/T'; 1 are 2-elementary
finitely-generated groups.



Preface

1. Generalities and definitions

Let n € N. The braid groups of the plane E2, denoted by B, and
known as Artin braid groups, were introduced by E. Artin in 1925 [[AT]],
and further studied in [AZ2, [A3, [CH]. Artin showed that B, admits
the following well-known presentation: B, is generated by elements
01,...,0,_1, subject to the classical Artin relations:

j
0;0;410; = 0,100, forall 1 <i<n—2.

(1)

al-cr-:ajal-if|i—j|ZZandlgi,jgn—l}

A natural generalisation to braid groups of arbitrary topological spaces
was made at the beginning of the 1960’s by Fox (using the notion of
configuration space) [FolN]. In that paper, Fox and Neuwirth proved
some basic results about the braid groups of arbitrary manifolds. In
particular, if M" is a connected manifold of dimension r > 3 then there
is no braid theory (as formulated in this paper). The braid groups of
compact, connected surfaces have been widely studied; (finite) presen-
tations were obtained in [Z1], 2, Bil], Bd. As well as being inter-
esting in their own right, braid groups have played an important role
in many branches of mathematics, for example in topology, geometry,
algebra and dynamical systems, and notably in the study of knots and
links [BZ], of the mapping class groups [Bid, Bi3], and of configura-
tion spaces [[CG, [FH]. The reader may consult [Bid, Han, MK], R]|
for some general references on the theory of braid groups.

Let M be a connected manifold of dimension 2 (or surface), perhaps
with boundary. Further, we shall suppose that M is homeomorphic to
a compact 2-manifold with a finite (possibly zero) number of points
removed from its interior. We recall two (equivalent) definitions of
surface braid groups. The first is that due to Fox. Let F,,(M) denote
the n™* configuration space of M, namely the set of all ordered n-tuples
of distinct points of M:

Fo,(M)={(z1,...,2,) | v, € M and z; # x; if i # j}.

V1



2. THE FADELL-NEUWIRTH SHORT EXACT SEQUENCE vii

Since F,,(M) is a subspace of the n-fold Cartesian product of M with
itself, the topology on M induces a topology on F,,(M). Then we define
the n-string pure (or unpermuted) braid group P,(M) of M to be:

Pu(M) = my (F(M)).

There is a natural action of the symmetric group S, on F, (M) by
permutation of coordinates, and the resulting orbit space F,(M)/S,
shall be denoted by D, (M). The fundamental group m (D, (M)) is
called the n-string (full) braid group of M, and shall be denoted by
B,(M). Notice that the projection F,,(M) — D, (M) is a regular n!-
fold covering map. It is well known that B, is isomorphic to B, (D?)
and P, & P,(D?), where D? is the closed 2-disc.

The second definition of surface braid groups is geometric. Let
P = {p1,...,pn} be a set of n distinct points of M. A geometric
braid of M with basepoint P is a collection 5 = (3,.. ., 3,) of n paths
B: [0,1] — M such that:
(a) for alli=1,...,n, 3;(0) = p; and 3;(1) € P.
(b) for alli,j =1,...,n and i # j, and for all ¢t € [0,1], 5i(¢) # 5;(¢).
Two geometric braids are said to be equivalent if there exists a homo-
topy between them through geometric braids. The usual concatenation
of paths induces a group operation on the set of equivalence classes of
geometric braids. This group is isomorphic to B, (M), and does not
depend on the choice of P. The subgroup of pure braids, satisfying ad-
ditionally (;(1) = p; foralli = 1,.. ., n, is isomorphic to P,(M). There
is a natural surjective homomorphism B, (M) — S,, which to a geo-
metric braid § associates the permutation m defined by 5;(1) = prp).
The kernel is precisely P,(M), and we thus obtain the following short
exact sequence:

1— P,(M)— B,(M)— S, — 1.
2. The Fadell-Neuwirth short exact sequence

Let m,n € N be positive integers such that m > n, and consider
the projection

p: (M) — Fo(M)

(T1y ey Ty ooy Ty) = (T4, o, X))
In [FalN]|, Fadell and Neuwirth studied the map p, and showed that it
is a locally-trivial fibration. The fibre over a point (z1,...,x,) of the

base space is Fy,,_,(M \ {z1,...,x,}) which may be considered to be a
subspace of the total space via the map

i Fon(M\Az1,...,2,}) = F(M)
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defined by

(W1 Ymn)) = (1, Ty Y1, Ymon)-

Then p induces a group homomorphism p.: P, (M) — P,(M), which
representing P, (M) geometrically as a collection of m strings, corre-
sponds to forgetting the last (m — n) strings. We adopt the con-
vention throughout this paper, that unless explicitly stated
otherwise, all homomorphisms P, (M) — P,(M) in the text
will be this one.

The fibration p: F,,(M) — F,(M) gives rise to a long exact se-
quence of homotopy groups of configuration spaces, from which we
obtain the Fadell-Neuwirth pure braid group short exact sequence:

1= P n(M\{a1,...,20)) 2 Pu(M) B P(M) =1, (2)

where i, is the group homomorphism induced by ¢, and n > 3 if M
is the 2-sphere S? [Fd, FVB], n > 2 if M is the real projective plane
RP? [VB], and n > 1 otherwise [[FalN] (in each case, the condition on n
implies that F,,(M) is an Eilenberg-MacLane space). This short exact
sequence plays a central role in the study of surface braid groups. It was
used by [PR] to study mapping class groups, in the work of [GMP] on
Vassiliev invariants for braid groups, as well as to obtain presentations
for surface pure braid groups [Bidl, [Sd, |[GG1l, [GG4].

An interesting question is that of whether the Fadell-Neuwirth short
exact sequence (B]) splits. If the above conditions on n are satisfied

then the existence of a section for p, is equivalent to that of a geo-
metric section for p (cf. [GG3, GG4]). In [AZ], Artin showed that
if M is the plane then () splits for all n € N. This implies that P,
may be expressed as a repeated semi-direct product of free groups,
which enables one to solve the word problem in the pure and full Artin
braid groups. The splitting problem has been studied for other sur-
faces besides the plane. Fadell and Neuwirth gave various sufficient
conditions for the existence of a geometric section for p in the general
case [FaN]. For the sphere, it was known that there exists a section on
the geometric level [EVB]]. If M is the 2-torus then Birman exhibited
an explicit algebraic section for (f]) for m = n+ 1 and n > 2 [Bi]].
However, for compact orientable surfaces without boundary of genus
g > 2, she posed the question of whether the short exact sequence (f)
splits. In [GGT1]|, we provided a complete answer to this question:

THEOREM 1 ([GGI]). If M is a compact orientable surface without

boundary of genus g > 2, the short exact sequence (B) splits if and only
ifn=1.



4. THE BRAID GROUPS OF THE SPHERE ix

3. A generalisation of the Fadell-Neuwirth short exact
sequence

As we mentioned above, the Fadell-Neuwirth short exact sequence
is a very important tool in the study of pure surface braid groups, but
unfortunately it does not generalise directly to the corresponding full
braid groups. However, by considering intermediate coverings between
F,(M) and D, (M), it is possible to extend it to certain subgroups of
B, (M) [GGZ]. A special case of this construction may be formulated
as follows. Let m,n € N, and let D, ,(M) denote the quotient space
of Frin(M) by the action of the subgroup S,, x S, of Sy, 1,. Then we
obtain a fibration D,, (M) — D,,(M), defined by forgetting the last
n coordinates. We set B,,,,(M) = m1(Dm(M)), sometimes termed
a ‘mized’ braid group. As in the pure braid group case, we obtain a
generalisation of the short exact sequence of Fadell and Neuwirth:

1 — By(M\{xy,...,25,}) = Bun(M) 2 B, (M) -1, (3)

where again we take m >3 if M =S%, m >2if M = RP? and m > 1
otherwise. Once more, unless explicitly stated, all homomorphisms
Byn(M) — By, (M) in the text will be this one.

4. The braid groups of the sphere

The braid groups of the sphere and the real projective plane are of
particular interest, notably because they have non-trivial centre (which
is also the case for the Artin braid groups), and torsion elements. The
braid groups of the sphere were studied during the 1960’s [Fa, [FVB,
VB, GVB]: let us recall briefly some of their properties.

If D? C S? is a topological disc, there is a group homomorphism
t: B,(D?*) — B,(S?) induced by the inclusion. If 3 € B,(D?) then we
shall denote its image ¢(3) simply by 3. It is well known that B, (S?) is
generated by o1,...,0,_1 which are subject to the following relations:

aiaj:crjcriif|i—j|ZQandlSi,an—l

00,410, = 0,100, forall 1 <i<n -2, and (4)

Oy Oy g0n 1Oy g 0y = L.
In what follows, the third relation will be referred to as the surface
relation of B, (S?). It follows from this presentation and equation ()
that B, (S?) is a quotient of B,. The first three sphere braid groups
are finite: B;(S?) is trivial, By(S?) is cyclic of order 2, and B3(S?) is
a ZS-metacyclic group (a group whose Sylow subgroups, commutator
subgroup and commutator quotient group are all cyclic) of order 12.
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If n > 3, the so-called ‘full twist” A, braid of B, (S?), defined by
An = (Ul tr O-nfl)n7

generates the centre Z(B,(S?)) of B,(S?), and is a torsion element
of order 2. Using Seifert fibre space theory, Murasugi characterised
the torsion elements of B,(S?): they are all conjugates of powers of
the three elements oy -0, 20,1, 01+ 0p_20>_, and 01+ 0, _30°_,
which are respectively n'®) (n — 1)™ and (n — 2)™ roots of A,, [M].

In [[GG4], we studied the short exact sequence () in the case M =
S? of the sphere:

1 — Bo(S*\{z1,...,20}) = Bun(S) 2 B (S*) — 1,  (5)

and proved the following results:

THEOREM 2 ([GG4)).

(a) The short exact sequence
1— Bn(SQ \ {ZL‘l, ZL‘Q,I‘g}) - Bgm(SQ) &) Bg(SQ) — 1

splits if and only if n = 0,2 mod 3.
(b) Let m > 4. If the homomorphism p.: B n(S*) — Bn(S?) admits
a section then there exist €1,e9 € {0,1} such that:

n=e(m—1)(m—2) —egm(m — 2) mod m(m — 1)(m — 2).

An open question is whether the necessary condition in part () is
also sufficient. If n > 4 then B, (S?) is infinite, and it follows from the
proof of part (H) that B, (S?) contains an isomorphic copy of the finite
group Bs(S?) of order 12 if and only if n # 1 mod 3. We have recently
shown that B, (S?) contains an isomorphic copy of the quaternion group
Qg of order 8 if and only if n is even [GGYH]. The realisation of finite
subgroups in B, (S?) and B,(RP?) seems an interesting problem which
we are pursuing.

5. Braid group series and motivation for their study

If G is a group, then we recall that its lower central series {I';(G) }, o
is defined inductively by I';(G) = G, and I';11(G) = [G,I(G)] for all
1 € N, and its derived series {G(i)}ieNU{O} is defined inductively by
GO = @G, and GV =[GV GE-Y] for all i € N. One may check
easily that I';(G) D T'yy1(G) and GG—Y D G for all i € N, and for
all j € N, j > i, T;(G) (resp. GY) is a normal subgroup of T';(G)
(resp. G™). Notice that T'y(G) = G is the commutator subgroup of
G. The Abelianisation of the group G, denoted by GAP is the quotient
G/T3(G); the Abelianisation of an element g € G is its I's(G)-coset in
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GAP. The group G is said to be perfect if G = G, or equivalently
if GA = {1}. Following P. Hall, for any group-theoretic property P,
a group G is said to be residually P if for any (non-trivial) element
x € G, there exists a group H with the property P and a surjective
homomorphism ¢: G — H such that p(z) # 1. It is well known that
a group G is residually nilpotent (respectively residually soluble) if and
only if N,»; Ti(G) = {1} (respectively ,~, G® = {1}). If g,h € G
then [g, h] = ghg=*h~! will denote their commutator, and we shall use
the symbol g = h to mean that g and h commute.

Our main aim in this monograph is to study the lower central and
derived series of the braid groups of the sphere and the punctured
sphere. This was motivated in part by the study of the problem of
the existence of a section for the short exact sequences (B) and ().
To obtain a positive answer, it suffices of course to exhibit an explicit
section (although this may be easier said than done!). However, and in
spite of the fact that we possess presentations of surface braid groups,
in general it is very difficult to prove directly that such an extension
does not split. One of the main methods that we used to prove the
non-splitting of (f) for n > 2 and of (f) for m > 4 was based on
the following observation: let 1 — K — G —  — 1 be a split
extension of groups, where K is a normal subgroup of G, and let H
be a normal subgroup of G contained in K. Then the extension 1 —
K/H — G/H — @ — 1 is also split. The condition on H is satisfied
for example if H is an element of either the lower central series or
the derived series of K. In [[GGI], considering the extension (B) with
n > 3, we showed that it was sufficient to take H = I'y(K) to prove
the non-splitting of the quotiented extension, and hence that of the full
extension. In this case, the kernel K/I'y(K) is Abelian, which simplifies
somewhat the calculations in G/H. This was also the case in [GGE]
for the extension (f]) with m > 4. However, for the extension (f) with
n = 2, it was necessary to go a stage further in the lower central series,
and take H = I'3(K). From the point of view of the splitting problem,
it is thus helpful to know the lower central and derived series of the
braid groups occurring in these group extensions. But these series are
of course interesting in their own right, and help us to understand
better the structure of surface braid groups.

Let us remark that braid groups of the punctured disc were studied
in [Lam] in relation with the study of knots in handlebodies, and were
used by Bigelow to understand the Lawrence-Krammer representation
in his proof of the linearity of the Artin braid groups [Big]|. Further-
more, during our study of the braid groups of the 2- and 3-punctured
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sphere, we will also come across some of the Artin and affine Artin
groups (also known as generalised braid groups), notably those of types
B and C [Bri, [1J.

The lower central series of groups and their successive quotients
['; /T4 are isomorphism invariants, and have been widely studied using
commutator calculus, in particular for free groups of finite rank [[Hal,
MKS]. Falk and Randell, and independently Kohno investigated the
lower central series of the pure braid group P,, and were able to con-
clude that P, is residually nilpotent [FR1l, [Kd]. Falk and Randell also
studied the lower central series of generalised pure braid groups [[FR2),
FR3.

Using the Reidemeister-Schreier rewriting process, Gorin and Lin
obtained a presentation of the commutator subgroup of B, for n >
3 (see Theorem B@). For n > 5, they were able to infer that
(B,)W = (B,)®, and so (B,)" is perfect. From this it follows that
I'y(B,,) = I's(B,), hence B, is not residually nilpotent. If n = 3 then
they showed that (B3)®) is a free group of rank 2, while if n = 4,
they proved that (B,) is a semi-direct product of two free groups of
rank 2. By considering the action, one may see that (B4)®") 2 (By)®.
The work of Gorin and Lin on these series was motivated by the study
of almost periodic solutions of algebraic equations with almost periodic
coefficients.

6. Statement of the main results

Chapter [I] is devoted to determining the lower central series of the
braid groups of the sphere. In Theorem B, we show that for all n >
2, the lower central series is constant from the commutator subgroup
onwards. As in the case of the disc, the case n = 4 is particularly
interesting: T'y(B4(S?)) is a semi-direct product of the quaternion group
of order 8 by the free group of rank 2. Here is the main theorem of
Chapter [l:

THEOREM 3. For all n > 2, the lower central series of B,(S?)

is constant from the commutator subgroup onwards: T,,(B,(S?)) =
[o(B,(S?)) for all m > 2. The subgroup Ty(B,(S?)) is as follows:

(a) If n = 1,2 then Ty(B,(S?)) = {1}.

(b) If n = 3 then T'y(B,(S?)) = Z3. Thus B3(S*) & Z3 X Zy, the action
being the non-trivial one.

(c) If n = 4 then Ty(B4(S?)) admits a presentation of the following
form:
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generators: g1, g, g3, where in terms of the usual generators of
2 _ 9 -3 _ 3 —4 _ -1
B4<S ); g1 = 010201 °, go = 070201 ~ and gz = 030, .

relations:
gs =1
95, 9i) = 1 fori=1,2
[9379291] =1
1 -1 1
g1 93 91 = 929395

919591 = 919397 ' 9.

Furthermore,

FQ(B4(SQ)> = Qg X FQ(CL, b),
where Qg = (z,y | 2* = y?, zyx~t =y~ 1) is the quaternion group
of order 8, and Fy(a, b) is the free group of rank 2 on two generators
a and b. The action is given by:

pla)(x) =y p(a)(y) = vy
p(b)(z) = yx p(b)(y) = .
(d) In the cases n = 5 and n > 6, a presentation for T'y(B,(S?)) is
given in Chapter [, by Propositions 4 and [p7] respectively.

The lower central series of B,(S?) is thus completely determined.
In particular, if n > 3 then B,(S?) is not residually nilpotent.

In Chapter P, we study the derived series of B,,(S?). As in the case of
the disc, (B, (S?))V) is perfect if n > 5, in other words, the derived series
of B,(S?) is constant from (B, (S?))") onwards. The cases n = 1,2,3
are straightforward, and the groups B, (S?) are finite and soluble. In
the case n = 4, we make use of the semi-direct product decomposition
of (B4(S?))V) obtained in Theorem B. Proposition BJ describes the
structure of the commutator subgroup of a general semi-direct product,
and shall be applied frequently throughout this monograph. This will
enable us to show that from (B4(S?))™ onwards, the derived series
of B4(S?) coincides with that of the free group of rank 2. We also
determine some of the derived series quotients of By(S?):

THEOREM 4. The derived series of B,(S?) is as follows.
(a) If n = 1,2 then (B,(S?))V = {1}.
(b) If n = 3 then (B3(S*))W) = Zs and (Bs(S?))® = {1}.
(c) Suppose that n = 4. Then:
(i) (By(S?))V) = T5(B4(S?)) is given by part (d) of Theorem [;
it 1s isomorphic to the semi-direct product Qg x Fo. Further,
B4(S?)/(B4(S*)Y is isomorphic to Zs.
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(i) (B4(S?)@ is isomorphic to the semi-direct product Qg x FS",
where (Fy)Y is the commutator subgroup of the free group Fy =
Fy(a,b) of rank 2 on two generators a,b. The action of (Fy)®
on Qg is the restriction of the action of Fo(a,b) given in part (d)
of Theorem [J. Further,

(Ba(S7)W/(Ba(S*)® = 22, and By(S)/(Bi(S*))"*) = 2% x Zs,

where the action of the generator & of Zg on 7?2 is given by left
multiplication by the matriz ( % 1).

(iii) (B4(S*))®) is a subgroup of Py(S*) isomorphic to the direct
product Zy x (Fy)® . Further,

(Ba(8?))P/(Ba(S*))?) = (Za x Zz) x (F2)W /(F2)®).
(iv) (B4(S?))™ 22 (Fy)™=Y for all m > 4. Further,
(Ba(8%)®/(Bo(S*)™ = Zy x (F2) )/ (F2)®,
and for m >4,
(Ba(S%))"™/(Ba(S?)) "0 == (Fp) 1 /() ™.

(d) If n > 5 then (B,(S*)® = (B,(S*)W, so (B,(S?)V is perfect.
A presentation of (B,(S?))") is given in Propositions 64 and [67.

In particular, the derived series of B, (S?) is thus completely deter-

mined (up to knowing the derived series of the free group [y of rank 2,
see Remark P7).

Chapter | deals with the lower central and derived series of braid
groups of the punctured sphere B,,(S?\ {z1,...,2,}), n > 1, and is
divided into eight sections, according to the respective values of m and
n. In Proposition BI (Section [ll), we recall a presentation of these
groups obtained in [[GG4]. In Section fl, we consider the case n = 1,
and show that B,,(S?\ {z;}) is isomorphic to B, (D?) (Proposition B4).
In Proposition |, we study the series of B, (D?) in further detail, thus
extending the results of Gorin and Lin:

PROPOSITION 5. Let m > 1. Then:
(a) For all s > 3, T'y(B,(D?)) = Ty(B,,(D?)).
(b) If m = 1,2 then (B,,(D?))® = {1} for all s > 1.
(c) If m = 3 then the derived series of (Bs(D?))Y) is that of the free

group Fg(ul, v) on twg generators u and v, where u = 0,0, and
v = oyuo, = 010907 . Further,

By3(D?) /(B3(D*)® ~ 72 x Z,
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where 7.2 is the free Abelian group generated by the respective Abelian-
isations u and v of u and v, and the action is given by o-u =70 and
0-U=—u+v, where o is a generator of Z.

(d) If m = 4 then
(B4(D*)V) /(B4(D*)® = Z%, and
(Ba(D*)® 2 Fy(a, b) x Ta(Fs(u, v)),

1

where a = o307 and b = vau™" = oy0307 Loy .

Hence the lower central series (respectively derived series) of B,,(D?)
is completely determined for all m > 1 (respectively for all m # 4; for
the case m = 3, this is again up to knowing the derived series of Fs).

In the difficult case of the derived series of By(ID?), we then go on
to describe some of the higher order terms and the successive derived
series quotients:

PROPOSITION 6.
(B2)® [ (BuD?) = 2, x Zo x (TalFa(u, )™

PROPOSITION 7. (By(D?))® = Fs(21,...,25) x (Fa(u,v))?.

The action for this semi-direct product will be described by equa-
tions (B() and (R1). From this, we may obtain the Abelianisation of
(B4(D?))®):

PROPOSITION 8.
((B4(]D)2))(3))Ab _ (B4(]D2))(3) /(B4(D2))(4)
> 73 X Tng X Tng X (Fa(u,v))® /(Fg(u,v))(3),

This result suggests that the derived series of B,(D?) is highly
non trivial. In principle, using the semi-direct product structure of
(B4(D?))® and Proposition B9, it is possible to discover further terms
of the derived series, but in practice, the calculations become very hard.
The main results of Section P are summed up in Table [l

In Section [], we comment briefly on the case m = 1 which is that
of a free group of rank n — 1. From Section {] of Chapter J onwards,
we suppose that n > 2. If m > 3 (resp. m > 5) the lower central
series (resp. the derived series) of B,,(S* \ {z1,...,2z,}) is constant
from the commutator subgroup onwards. Once more, for the derived
series, m = 4 represents a challenging case. Nevertheless, we are able
to determine some of the derived series quotients. The main theorem
of Section [ is as follows:
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PREFACE

values )
of m || SCTies /group result reference
Vm > 1 | lower central [3(G) =T2(G)
Ym > 5 derived G® =G0
- : i [GL] (see
derived GO = (Fy)=V Vi > 1 ™ -
(G F, eorem [34)
m=3 G0 /co 72
G/G®? Vi Y/ Proposition f
PQ(G) FQ X FQ [] (see
GM /G 7?2 Theorem B4)
A G Fy x (Fy)™ Proposition f
e G? /GG Ly X Ly x ((Fq)(M))AP Proposition
G® Fs x (Fy)® Proposition [
GO /GW | 73 x Zng X Zyg x ((F5)@)AP | Proposition

TABLE 1. Summary of results of Section B, Chapter
concerning the lower central and derived series of G =
B,,(D?). For the semi-direct product actions, one should
consult the corresponding reference.

THEOREM 9. Let n > 2. Then:

(a) If m > 3 then

D3(B(S?\ {z1,..

(b) If m > 5 then

(Bm(S*\ {21, ..
(c) If m = 4 then

xn})) = Fo(Bn(SE\ {21, ..

2 })® = (Bu(S®\ {a, 2}

By(S*\ {z1, ..., 2}) /(Ba(S* \ {a1, . .. L1, 1))@ 2 (72 % Z) x 7"
where the semi-direct product structure is that of part (4) of Propo-

sition [, and

(Bu(S?\ {z1, -, 20 )V J(Ba(S\ {x1, . .., 20 }))® = 22,

Alternatively,
B4(SQ \ {ZL‘l, ..

1)/ (By(S*\ {1, ...

where 72 = (By(S*\{x1, ..., 20 })) D /(By(S*\ {1, . .
free Abelian group with basis {u,v}, Z™ = By(S*\ {x, ..

L)) P =272 67,
2 })) @ is the

R S e
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values ) 1t ;
of m series/group resu reference
Vm > 3 || lower central I's =1
VYm >5 derived G® =agW
2 n—1 0

/G (Z* X Z) X Z Theorem

m=4 72 x 7"
G /G 72

TABLE 2. Summary of results of Section i, Chapter
concerning the lower central and derived series of G =

Bn(S*\ {z1,...,2,}), m>3,n>2.

has basis {o, p1,...,pn_1}, and the action is given by
o-uU=" oc-U=-Uu-+"v
pi-u=1u pi- V=10

foralll1<i<n-—1.

So if n > 2, the lower central and derived series of the braid group
B (S*\{z1,...,z,}) are completely determined, with the exception of
a small number of values of m: for the lower central series, they consist
of just m = 2, and for the derived series, m = 2,3 and 4.

The case m > 2 and n = 2 is considered in Sections f], § and [. Ap-
plying the results of Proposition B4, one may see that B,,(S?\ {z1, 72})
is isomorphic to the m-string braid group B,,(A) of the annulus A =
[0,1] x S', and is thus an Artin group of type B,,. In Proposition [[0,
Section [, we prove the following general result concerning the structure
of FQ(Bm<SQ \ {.Tl, 1’2}))3

PROPOSITION 10. Let m > 2. Then:

(a) By (S*\ {z1, 22}) 2 F,, x B,,(D?), where the action ¢ is given by
the Artin representation of B,(D?) as a subgroup of Aut(F,,) (see

equation (£7)).
(b) To(Bp(S?\ {z1,72})) = Ker(p) x Ty (B,,(D?)), where

p: Fr(Azs, ... Aomia) — 7Z

15 the augmentation homomorphism, and the action is that induced
by ¢ (the generators A; ; are described in Proposition [31).

The semi-direct product structure allows us to determine some de-
rived series quotients:
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ProprosITION 11.

(Bs (82\ {wn,221)) ™ /(B3 (8 {wr,22}))® = 2.
PROPOSITION 12.

Bg (SQ \ {l‘l,ZL‘Q}) /(Bg (Sz \ {l‘l,{L‘Q}))(Q) = Z4 X ZQ,

where Z* has a basis {&vo,ﬁo,ﬂ, 5}, Z? has a basis {o,p1}, and the

action is given by:

o-uU="0 c-U=—-u+7v
o 0o = o o Bo=Po— s
p1 - Qo = Qp Pl'gozgo

p1-U=—ayg— U+ o1 T =—fy — 1.

We then give an alternative proof of Proposition [[1], showing along
the way that the commutator subgroup of Bs(S?\ {z;, x5}) is the semi-
direct product of a given infinite rank subgroup of a free group of rank 5
by a free group of rank 2 (see Proposition [2).

In Section fl, we study the lower central series of By(S? \ {z1,72})
(which is one of the outstanding cases not covered by Theorem [).
Using an exact sequence due to Stallings (see equation (§)), we prove
the following;:

COROLLARY 13. Ty(By(S* \ {z1,22})) = T9(Fo(a,b)) x Z, where
the action of Z on T'y(Fy(a, b)) is given by conjugation by b~ 'a.

The group By(S*\ {x1, z2}) is particularly fascinating, not least be-
cause it may be interpreted in many different ways: as the 2-string braid
group By(A) of the annulus (and so as the Artin group of type By), and
as the Baumslag-Solitar group BS(2,2), for example (see Remarks [f9).
It is also a one-relator group with non-trivial (infinite cyclic) centre,
which applying results of Kim and McCarron [KMd, McC4d] implies
that:

PROPOSITION 14. By(S*\ {1, z2}) is residually nilpotent and resid-
ually a finite 2-group.

Further, using the fact that the quotient of By(S*\ {z1,z2}) by its
centre is isomorphic to the free product Z, x Z, we prove that apart
from the first term, the lower central series of these two groups coincide,
and applying results of Gaglione and Labute [G4d, which describe
the lower central series of certain free products of cyclic groups, we are



6. STATEMENT OF THE MAIN RESULTS xix

able to determine completely the lower central series (in terms of that
of Zy x Z), as well as the successive lower central series quotients of
By(S? \ {z1,72}) in an explicit manner:

THEOREM 15. For all i > 2, T;(Bo(S? \ {z1,72})) = T4(Zy % Z),
and:
Li(Ba(S* \{w1, w2})) /Tis1(Bo(S* \{w1, w2})) = Ty(Zo % Z) /T 41 (Zo 1)
= ZQ D---D Z27
R; tt

where

i—2 .
B 1—7\ kog
B2 Z“<k)z‘—j |
=0\ kli—j

k>1

i 1s the Mobius function, and

1 0 —1\"
ak:E (Tr(_l 1) —1).
From this, we may see (Corollary B3) that apart from the first
term, the derived series of Bo(S? \ {z1,72}) is that of m(Fy), where

w: Ko =Z % 7 — Zs x 7 is the homomorphism obtained by taking the
first factor modulo 2.

In Section [, we consider the more general case of the m-string braid
group B,,,(S*\{z1,72})), m > 3, which we know to be isomorphic to the
m-string braid group B,,(A) of the annulus. With this interpretation,
Kent and Peifer gave a nice presentation of this group (Proposition )
from which they were able to conclude that B,,(A) is a semi-direct
product of the affine Artin group A,,—1 by Z (Corollary p1) [KP].
Applying Proposition P9 once more, we obtain in Proposition p§ a pre-
sentation of T'y(B,,,(S*\ {x1,22})) (which as we shall see, is isomorphic
to ['y(Apn_1)), from which we may deduce:

COROLLARY 16. Let m > 3. Then

Z* ifm=3
(Bm (82 \ {[L‘l,l’z}))(l) /(Bm (82 \ {xl,xz}))(z) > 72 ifm=4
Z  if m>5.

The main results of Sections [, i and [] of Chapter || are summed
up in Table B.
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values )
of m series/group result reference
Vm > 2 [y (G) (F) % Ty(B,,(D?)) | Proposition [[J
lower central | I, =T1(ZyxZ), i > 2
lower c.:entral Ui(Zo % Z))Ti11(Zo % Z) Theorem [
quotlents o F Z
9 [i(G)/Tia(G) -~
I'52(G) (Fo)M % Z Corollary
I'2(G) Foo Corollary 7
FQ(?; (/g;(G) I?:o Proposition 4
Iy (G) Foo x Fy Proposition {2
m=3 G /G? /e Proposition []
G/G? 72 % 72 Proposition [[2
m =4 G /G® 7?2 _
— G /GO 7 Corollary

TABLE 3. Summary of results of Sections [, fl and [] of
Chapter [J concerning the lower central and derived series
of G = B,,(S?\ {x1,22}), m > 2. In each case, F, is a
given free group of countable infinite rank.

In Section § of Chapter [, we consider B,,(S?\ {z1, T, 73}), m > 2,
which is also one of the outstanding cases for the derived series not
covered by Theorem B. This group is isomorphic to the affine Artin
group of type C,, for which little seems to be known [[AT]]. Despite the
existence of nice presentations for this group [BG], we were not able to
describe satisfactorily the commutator subgroup even for m = 2. We
obtain however some partial results, notably in Proposition 6 the fact
that the successive lower central series quotients of By(S?\ {21, z2, 73})
are finite direct sums of Z,, which generalises part of Theorem [, as
well as for all i > 1 and m > 2, (B, (S*\ {1, 2, 23}))? is a semi-direct
product of some group K; by (B,,(ID?))® (Proposition [1]).

Finally in Chapter [, we give presentations of the commutator sub-
groups I'5(B,(S?)) of the sphere braid groups for n > 4, and in the
case n = 4, in Proposition i we derive the presentation of T'y(B4(S?))
given in Theorem J(f).
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7. Extension to surfaces of higher genus

Since work on this paper started, one of the authors, in collabo-
ration with P. Bellingeri and S. Gervais has undertaken the study of
the lower central series of braid groups of orientable surfaces, with and
without boundary, of genus ¢ > 1 [BGG]. We remark that some of
the techniques appearing in this monograph were used subsequently
in that paper. It is worth stating the corresponding results of [BGG]
which contrast somewhat with those obtained here for the sphere and
punctured sphere.

THEOREM 17 ([BGG]). Let M be a compact, connected orientable
surface without boundary, of genus g > 1, and let m > 3. Then:

To( By (M)) = 729 & Zs.
To( B (M) = 7, 11y,
m(M)) = Ty(Bn(M)). Moreover, I's(B,,(M)) is perfect for

This implies that braid groups of compact, connected orientable
surfaces without boundary may be distinguished by their lower central
series (indeed by the first two lower central quotients).

THEOREM 18 ([BGQ|)). Let ¢ > 1, ¢ > 1 and m > 3. Let M
be a compact, connected orientable surface of genus g with q¢ boundary
components. Then:

(a) Ty (B (M))/To(Bp(M)) == 229591 & Zy.
(b) Do(Bm(M))/Ts(Bpm(M)) = 2.
(¢) s(Bn(M)) = Ta(Bpm(M

m > 5.

2

\_/

Moreover, U's(B,,(M)) is perfect for

Thus if m > 3 and if M a compact surface (with or without bound-
ary) of genus g > 1, since I'3(B,,(M)) # {1}, B,,(M) is not residually
nilpotent. Moreover, we observe similar phenomena to those seen in
Theorem P for the punctured sphere (stability of the lower central series
for m > 3, perfectness of the I';(B,,(M)) for m > 5). However, they
occur one stage further, not from the commutator subgroup onwards,
but from I's onwards.

Just as for By(S? \ {1, x2}), the 2-string braid groups represent a
very difficult and interesting case. In the case of the 2-torus T?, we
prove that its 2-string braid group is residually nilpotent. Further,
arguing as in the proof of Theorem [[§, we show that apart from the
first term, the lower central series of By(T?) and Zy * Zy x Zy coincide,
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and by applying Gaglione’s results, we may also determine explicitly
all of their successive lower central series quotients. More precisely:

TueOREM 19 ([BGG]).
(a) By(T?) is residually nilpotent.
(b) For alli > 2:
(i) Ts(By(T?)) X T(Zg % Ly % Ls).
(ii) Ts(Bo(T?))/Ti41(B2(T?)) is isomorphic to the direct sum of R;
copies of Zo, where:

1—2

R, =

- N ke
Z i <Z j) T and  kay, = 28 + 2(=1)".
: —~ ko J)i—j
Jj=1 \ kli—j
k>1

As in the case of the 2-string braid group of the n-punctured sphere,
n > 3, it seems to be very difficult even to describe the commutator
subgroup of the 2-string braid groups of orientable surfaces of higher
genus.
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CHAPTER 1

The lower central series of B, (S?)

The main aim of this chapter is to prove Theorem B, which de-
scribes the lower central series of B, (S?). This will be carried out in
Section B. Before doing so, in Section [, we state and prove some
general results concerning the splitting of the short exact sequence ()
(Proposition R0), as well as homological conditions for the stabilisation
of the lower central series of a group (Lemma B3).

1. Generalities

Let n € N. Let B,,(S?) denote the braid group of S* on n strings, let
(B, (S?)) AP = B,,(S?)/T9(B,(S?)) denote the Abelianisation of B, (S?),
and let a: B, (S?) — (B,(S*)) P be the canonical projection. Then we
have the following short exact sequence:

1 ——=T5(By(8?)) —= Bo(S?) — (Bu(S)) A" —= 1. (6)

We first prove the following result which deals with the splitting of
this short exact sequence.

PRrROPOSITION 20. Let n € N.

(@) (Bu(8%) % = Bo(82)/Ta(Bo(8%)) = T 1.

(b) The short exact sequence () splits if and only if n is odd, where
the action on T'y(B,(S?)) by a generator of Zow—1y is given by con-
Jugation by oy ... 0 20> .

(c) If n is even then B,(S?) is not isomorphic to the semi-direct product
of a subgroup K by Zog,—1).

PROOF.

(a) This follows easily from the presentation (f) of the group B, (S?).
The generators o; of B,,(S?) are all identified by « to a single gen-
erator o = a(o;) of Zogp-1).

(b) In order to construct a section, we consider the elements of B, (S?)
of order 2(n — 1). According to Murasugi’s classification of the
torsion elements of B, (S?) [Mu], these elements are precisely the

conjugates of the elements of the form (oy -0, 202 ;)", where r

1
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and 2(n — 1) are coprime. Such an element projects to 0™ whose
order is 2(n — 1)/ ged(rn, 2(n — 1)). Since

ged(rn, 2(n — 1)) = ged(n, 2(n — 1)) = ged(n, 2),

the result follows from equation (f) and part (H).
(c) Let n € N be even. We first prove the following lemma:

LEMMA 21. Let G be a group whose Abelianisation G4 is Hop-
fian i.e. GA® is not isomorphic to any of its proper quotients. Sup-
pose that there exists a group H isomorphic to G, a normal sub-
group K of G, and a split short exact sequence 1 — K — G —
H — 1. Then G 2 Ty(G) x G2

PROOF OF LEMMA PT]. Let a: G — G*P denote Abelianisation,
let £: G — H denote the homomorphism in the given short exact
sequence, and let s: H — G be a section for £. Since H = G/K is
Abelian, it follows from standard properties of the commutator sub-
group that I'y(G) C K. Hence we have the following commutative

diagram:
1 —=D5(G) —— G —==Gab 1
.
1 K ¢ G- __H——1,

S

This extends to a commutative diagram of short exact sequences by
taking p: GAP — H defined by p(y) = () for all y € GAP, where
x € G is any element satisfying a(x) = y. This homomorphism
is well defined, and is surjective since & and « are. But GAP = H
is Hopfian by hypothesis, which implies that p is an isomorphism.
Hence o = p~L o ¢, and s 0 p is a section for «, which proves the
lemma. U

By taking G = B,(S*) and K = Zy(,_1) in the statement of
Lemma 21), if B,,(S?) were a semi-direct product of K with H then

this would contradict part (|). This completes the proof of Propo-
sition P0. U

REMARK 22. If n is even, let us consider the natural projection
p: Zom—1) — ZLn—1. Then we have a short exact sequence:

*

1 ——=T5(B.(S?) —= B, (S?) = Z(n-1) — 1.

where o* = poa, and T'5(B,,(S?)) is the kernel of o*. Tt is not difficult to
see that this short exact sequence splits: a section is given by sending
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the generator of Z,_1) to (01 ...0,-202_1)* , where 2" is the greatest
power of 2 dividing n.

Let G be a group which acts on a group H. Following [HMR],
p. 67], we may define the commutator subgroup with respect to this
action by

To(H) = ((gxh)kh k™ | g€ G, h,k € H), (7)

where g x h denotes the action of g on h. We say that the action is
perfect if '¢(H) = H. Note that if H is a normal subgroup of G then
H D Tq(H) =[G, H] 2 [H, H] for the action of conjugation of G' on
H. In particular, if G = H then I'¢(H) = I'y(G) for the action of
conjugation of GG on itself. If this action is perfect then the group G is
perfect.

LEMMA 23. Let G be a group, and let GA° be its Abelianisation. Let
§: Hy(G,Z) — Ho(G,Z) be the homomorphism induced by Abeliani-
sation. Then
I5(G)/T3(G) = Coker(5) = Hy (G*, H, (I2(G),Z)) .
In particular:
(a) T'y(G) = T'3(G) if and only if § is surjective.
(b) If Hy(GA?, Z) s trivial then T',(G) = Ty(G) for all n > 2.
(c) If either the action (by conjugation) of G on I's(G) or the action (by
conjugation) of GA® on Hy (Ty(G),Z) is perfect then T, (G) = I'y(G)
for alln > 2.

Proor. Recall that if 1 = K — G — @ — 1 is an extension of
groups then we have a 6-term exact sequence

Hy(G) — Hx(Q) — K/[G, K] = Hy(G) — Hi(Q) — 1 (8)
due to Stallings [Brd, McCl, Bi]. Applying this to the short exact

sequence:
1 —Ty(G) — G — G* — 1, (9)
we obtain:
Hy(G,Z) % Hy(GAP,Z) — To(G)/Ts5(G) — Hy(G,Z) — G — 1.

But H(G,Z) — G*P is an isomorphism, so this becomes

Hy(G,Z) > Hy(GAP,Z) — Ty(G)/T5(G) — 1.

Hence I'y(G)/T'3(G) = Coker (§) which yields the first isomorphism.
To obtain the second, we consider the Lyndon-Hochschild-Serre spec-

tral sequence [Brd, McCl] applied to the short exact sequence (B),
for which the relevant terms are E(22 0 = Hy(GAP,Z) and E(20 ) =
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Hoy (G, Hy (T2(G),Z)). Since Hi(G) = Hi(G*"), the differential
dy: E(22,0) — E(QOJ) is surjective, with kernel EE’;O). From the general
definition of the filtration of Hy(G) given by the spectral sequence,
we have a surjection Hs(G) — E(), and hence the following exact
sequence:
HQ(G) — an) — E(2270) — E(2071) — 1.

Hence Im (§) = Ef7, and

Coker (6) = Efy )/ Im () = Ef, y) = Hy (G*, Hy (T2(G), Z))
as required. From the first isomorphism, one may check that part ()
is satisfied. Part (H) then follows easily.

To prove part ([), if the action by conjugation of G on I'y(G) is
perfect then I'¢(I'2(G)) = [G,'2(G)] = I's(G) = I's(G) and the result
is clear. Now let us consider the action of G on H;(T'y(G)) = (T2(G))AP
given by conjugation, defined by g - h = ghg=', where g,h € G, and ~
denotes Abelianisation in I'y(G). If g € T'y(G) then the induced action
on (I'y(G))AP is trivial, so the original action factors through GAP, and

we obtain an action of GA" on (I'y(G))AP given by g - h = ghg! (g
denotes the Abelianisation of g in G). Suppose that this action is
perfect, so that I ab((T2(G))A") = (I'2(G))*". Now

Loab((D2(G))Y) =[G, T2(G)]/[F2(G), T2(G)] = I5(G) /[L2(G), Ta(G)],
and since I'3(G) C T'y(G), it follows that I's(G) = I'y(G), which implies
the result. O

REMARK 24. The hypothesis of part (H) of the lemma holds for
example if G2 is cyclic. Recall that if GAP is finitely-generated then
this condition is also necessary: if H is a finitely-generated Abelian
group satisfying Hy(H,7Z) = {0} then H is cyclic.

2. The lower central series of B, (S?)

Now we come to the main result of this chapter.

THEOREM [J. For all n > 2, the lower central series of B,(S?)

is constant from the commutator subgroup onwards: T,,(B,(S?)) =
[o(B,(S?)) for all m > 2. The subgroup Ty(B,(S?)) is as follows:

(a) If n = 1,2 then Ty(B,(S?)) = {1}.

(b) If n = 3 then T'y(B,(S?)) = Z3. Thus B3(S*) = Z3 X Zy, the action
being the non-trivial one.

(c) If n = 4 then T9(B4(S?)) admits a presentation of the following
form:
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generators: g1, o, g3, where in terms of the usual generators of
2 _ 2 -3 _ 3 -4 _ 1
B4<S ); g1 = 070201 °, g2 = 070201~ and g3 = 030, .
relations:

g5 =1 (10)

93, 91] =1 (11)
[93,92) = 1 (12)
[9379291] =1 (13)
919501 = 929395 (14)
9195 91 = 19397 ' gs. (15)

Furthermore,

FQ(B4(SZ)) = Qg X FQ((I, b),
where Qg = (z,y | 22 = y?, zyx~! =y~ 1) is the quaternion group
of order 8, and Fy(a, b) is the free group of rank 2 on two generators
a and b. The action is given by:

pla)(z) =y o(a)(y) = zy
p(b)(z) = yx o(b)(y) = .

(d) In the cases n = 5 and n > 6, a presentation for T'y(B,(S?)) is

given in Chapter [, by Propositions o4 and [p7] respectively.
PROOF. The first part of the theorem, T',,(B,(S?)) = I'y(B,(S?))

for m > 2, follows from Lemma P3(H) and Remark P4,

Now let us consider the rest of the theorem.

(a) If n = 1,2 then B, (S?) 2 Z,, and the result follows easily.
(b) Let n = 3. Then Bs(S?) is a ZS-metacyclic group (a group whose

Sylow subgroups, commutator subgroup and commutator quotient
group are all cyclic) of order 12 [FVB|]. It follows from Proposi-
tion RPO(H) that (B3(S?)) 4P = Z,, and hence T'y(B3(S?)) =2 Zs.

From Proposition RJ(H), the short exact sequence (f) splits, so
B3(S?) = Zs x Zy4, and the action of the generator & of (Bs(S?)) AP
on the generator p of Zs is given by & - p = p~! i.e. the non-trivial
action.

(c) Let n = 4. To obtain the given presentation of I'y(B4(S?)), one ap-

plies the Reidemeister-Schreier rewriting process to the short exact
sequence (fl). The calculations are deferred to Proposition fJ, see
Section f] of Chapter fi.

Using this presentation, let us prove the second part of ([) of
Theorem P, that T'y(B4(S?)) = Qg x Fy(a,b). This will be achieved
by the following two propositions.
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PROPOSITION 25. The normal subgroup of T'y(B4(S?)) generated
by gs is isomorphic to a quotient of the quaternion group Qs.

PROOF. Let N be the normal subgroup of T'y(B4(S?)) generated
by g3, and let H be the subgroup of I'y(B4(S?)) generated by g3
and g1g3g; *. Clearly H C N. To prove the converse, it suffices to
show that if we conjugate g5 and g1g3g7 " by gi' and ¢3!, we obtain
elements of H. This is a consequence of the following equalities:

920395 = 91 '95 ‘g1 by equation ([4)
= q1939; - - g3 by equation ([TF)
919397° =95 - 195 g1 by equation ([3)
92919391 92 ' = gs by equation ([3)
92 9392 = 19397 by equation ([J)
92919391 92 = 9391 95 9195 g2 by equation ([3)
= g3 0595 g2 by equation ().
Hence H = N is normal in Iy(B4(S?)). Now g2 = (91939, *)? by
equation ([0), and (g1g39; *93)> = (95 95 ' g1)* = 95> = g2 by equa-
tions ([[§) and ([[0). By equations ([() and (1) it thus follows that
919391 ", 93] = g3, and hence gig39; " - gag195 '97 ' = g5 = g5 So

g19397 - and g3 satisfy a set of defining relations of Qg, and thus H
is a quotient of Qg. O

PropPOSITION 26. With H as defined as in the proof of Propo-
sition B, H = Qg, and Ty(B4(S?)) = Qg x Fy(a,b), the action
being given by w(a)(z) = ava™ =y, p(a)(y) = aya™' = wxy,
o(b)(z) = bxb™t = yx and p(b)(y) = byb~! = .

PROOF. Let Qg be generated by x and y, subject to the relations
2?2 = y? and zyz~! = y~!. We remark that if 2 € Qg and w €
Fy(a,b) then wzw™ = p(w)(2), and [z, w] = z-p(w)(271). Consider
the map

¥: {91, 92,93} — Qs x Fa(a,b)

defined as follows: 1(¢g1) = a, ¥(g2) = b and ¥(g3) = z. It is
straightforward to check that the images under 1 of relations (L()—
(I3) hold in Qg x Fa(a,b). As for relation ([4), the right-hand
side yields bab™! = @(b)(z) = yx from the definition of the ac-
tion, while the left-hand side yields a 'z la = p(a™1)(z™!). Now
ola)(zy™) = =71 so pla™)(z7!) = zy~! = yz in Q. So re-
lation ([[4) is preserved under . Finally, consider relation (7).
From the previous relation, the left-hand side yields yx. As for the
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right-hand side, we obtain ¢(a)(x) - x = yx also. So 9 extends
to a homomorphism, which we also call ¢, from [y(B4(S?)) into
Qg xFy(a, b). Since ¥(g1gsg; ') = v, this homomorphism is certainly
surjective. Further, since the normal subgroup H of Proposition
is generated by g3 and g1g3g; ', it follows that H is mapped surjec-
tively onto Qg. But H is a quotient of Qg, and since Qg is finite, H
is isomorphic to Qg. This proves the first part of the proposition.
The induced map from the quotient T'y(B,(S?)) by H (which is the
normal subgroup generated by g3) into the quotient of Qg x Fy(a, b)
by Qg is a surjective homomorphism from a free group on two gen-
erators into a free group on two generators, so is an isomorphism
by the Hopfian property of free groups of finite rank. This com-
pletes the proof of the proposition, as well as that of part (fj) of
Theorem B O

(d) Now suppose that n > 5. The presentations are given in Chapter [,
Propositions 4 and |7 respectively. This completes the proof of
Theorem P O



CHAPTER 2

The derived series of B, (S?)

In this chapter, we study the derived series of B,,(S?). The aim is to
prove the following result, which shows that for all n # 3,4, (B, (S?))V
is perfect. The difficult case is n = 4, but using the semi-direct product
structure of (B,(S?))") obtained in Theorem [J, we shall be able to prove
that the derived series of B,(S?) coincides from a certain point with
that of the free group of rank 2. Before doing so, we state and prove

Proposition P9 which describes the commutator subgroup of a general
semi-direct product.

THEOREM M. The derived series of B,(S?) is as follows.
(a) If n = 1,2 then (B,(S?))M = {1}.
(b) If n = 3 then (B3(S?))W) = Zy and (Bs(S?))® = {1}.
(c) Suppose that n = 4. Then:

(i) (By(S?))V) = T5(B4(S?)) is given by part ([d) of Theorem [3;
it 1s isomorphic to the semi-direct product Qg x Fo. Further,
By(S?)/(B4(S*))W is isomorphic to Zs.

(i1) (B4(S?))@ is isomorphic to the semi-direct product Qg x (Fy)™)
where (Fy)Y) is the commutator subgroup of the free group Fa(a, b)
of rank 2 on two generators a,b. The action of (Fy)™ on Qg is

the restriction of the action of Fy(a,b) given in part (d) of The-
orem . Further,

(Ba(S7)W/(Bo(S*)® = 22, and By(S)/(Bi(S))"*) = 2% x L,

where the action of the generator & of Zg on Z? is given by left
multiplication by the matriz ( % 1).

(iii) (B4(S*))®) is a subgroup of Py(S?) isomorphic to the direct
product Zy x (F3)® . Further,

(Ba(8?))?/(Ba(S%))®) = (Za x Zz) x (F2)W /(F2)®).
(iv) (B4(S?))™ 22 (Fy)™=V for all m > 4. Further,
(Ba(S?))®/(Ba(S$%)) = Zy x (F2)® /(F2)®,
and for m > 4,
(Ba(S%))"™/(Ba(S?)) "0 == (Fp) 1 /(Fy) ™.

8
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(d) If n > 5 then (B,(S*)® = (B,(S*)M, so (B,(S?*)M is perfect.
A presentation of (B, (S*))W is given in Propositions [ and [67.

REMARK 27. In part () of Theorem [] and also in what follows, we
shall often refer to the derived series of F5(a, b) as well as its quotients.
We were not able to track down an explicit reference for them, but one
may observe that for i > 1, (Fa(a, b)) is a free group of infinite rank,
and hence (Fy(a, b)) /(Fa(a, b))+ is a free Abelian group of infinite
rank. A basis of (Fy(a, b)) = I'y(Fy(a, b)) may be obtained as follows:
considering the short exact sequence () with G' = Fy(a,b), (Fz(a, b))®
may be identified with the fundamental group of the Cayley graph of
Fy(a,b). Let T be a maximal tree in this graph. For each g € Fy(a,b),
let w, be the word corresponding to the path in T between e and g.
Then a basis is given by the set of elements of the form wg[a, bjw, ",
where g runs over Fy(a,b). For example, the set {a”0%[a,b]b~ %"},
is a basis of (Fy(a,b))). Since Fy(a,b) is residually nilpotent and
(F2(a, b)Y C I'y(Fa(a,b)), it follows that ()~ (F2(a,b))? = {1}
and Fy(a,b) is residually soluble. -

We obtain easily the following corollary of Theorem [:

COROLLARY 28. Let n € N. Then B,(S?) is residually soluble if
and only if n < 4.

PROOF OF COROLLARY R8§. Recall that a group G is residually
soluble if and only if (5, G® = {1}. If n = 1,2, 3, this is obvious,
and if n = 4, the residual solubility of B4(S?) follows from that of
Fy(a,b). For n > 5, the result also follows easily, since (B,(S?))® is
non trivial. O

Before proving Theorem [, let us state and prove the following
proposition which describes the commutator subgroup of a semi-direct
product. This result will be used frequently throughout the rest of this
paper.

PROPOSITION 29. Let G, H be groups, and let p: G — Aut(H) be
an action of G on H. Let H be the subgroup of H generated by the
elements of the form o(g)(h)-h™, where g € G,h € H, and let L be the
subgroup of H generated by I'y(H) and H. Then @ induces an action
(also denoted by @) of I's(G) on L, and L x,'5(G) =T'9(H %, G). In
particular, I'y(H 1, G) is the subgroup generated by I's(H ), I'o(G) and
H.

REMARK 30. We claim that L is none other than the commuta-
tor subgroup I'¢(H) defined by equation ([]) with respect to the given
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action. To see this, recall that I'¢(H) is the subgroup of H gener-
ated by the elements of the form ¢(g)(h) - kh™tk™!, where g € G and
h,k € H. Taking g = e (respectively k = e), it follows that ['¢(H) 2
T'5(H) (respectively I'g(H) 2 H), and hence L C T'g(H). Conversely,
o(g)(h)-kh=k= = p(g)(h)h =t -hkh 'k~ € L,soTq(H) C L, and the
claim is proved. Note further that if A’ € H then there exists h” € H
such that ¢(g)(h") =1, so

W (@(g)(h) - h=%) W= = o(g)(R"R)(R"R) ™ - (p(g) (R")R" )~

It follows that A and L are normal in H. In particular, I'g(H) is
normal in H.

PROOF OF PROPOSITION R9. From now on, we shall identify each
subgroup H; of H (respectively each subgroup G; of G) with the cor-
responding subgroup {(h,1) | h € H;} (respectively {(1,9) | g € G1})
of H %, G without further comment. The group operation in H x, G
shall be written as:

(h,g) % (W, g') = (h.o(g)(R), gg’), where (h,g),(F',¢") € H %, G.

The subgroup L is normal in H by Remark B0. Let us show that ¢
induces an action (also denoted by ¢) of G on L. Let g € G. Since

o(g)([h1, ha]) = [©(g)(h1),0(g)(h2)] € To(H) for all hy, hy € H, and

0(9)((g)(MRY) = o(gg) (MR (p(g) (M)~ € H

for all h € H and ¢’ € G, it follows that ¢(g)(L) C L. Clearly ¢(g)
is injective. The surjectivity of ¢(g) (restricted to L) may be deduced
from the following observations:

(a) ifi = 1,2 and h; € H then there exists h; € H such that ¢(g)(h;) =
hi, and hence ¢(g)([h1, ha]) = [hy, ha).
(b) If ¢ € G and h,h' € H then

o(9) (elg ') (MR~ b (e(g~ ) (W) h™Y) = @(g")(h)h~".

Thus ¢ induces an action (also denoted by ¢) of I'5(G) on L, and
L x,T'5(G) is a subgroup of H X, G.

Clearly any element of I'y(H) (respectively I'o(G)) may be written
as an element of I';(H x, G). Further, if g € G and h € H then

[(1,9). (h, 1)] = (¢(g)(h), 1) * (h™", 1) = (p(g)(h)h™, 1),

and thus every element of i may be written as an element of I'y(H X,
G). This proves that L x, I's(G) C 'y (H %, G).
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To see the converse, notice that the commutator of two elements
(h1,91), (ha, g2) € H x, G may be written as:

[(h1, g1), (ha, g2)] = (ha-(g1)(h2). ©(g19297 1) (hi ).
(91, 92))(h3 ), g1, 92]).-

The second factor belongs clearly to I's(G). The first factor is of the
form:

[, hal. hahahy ™ (9(g1) (ha)hg ') haliy thy ™.
haly (9(g19297 ) (hi )ha) By hg b ha (0([g1, 92)) (Bg ') o) By

which is a product of elements of L. Hence I'y(H %, G) C L x, '3 (G),
and the proposition follows. O

We now prove the main result of this chapter.

PROOF OF THEOREM M. Cases (BH) and (H) follow directly from
Theorem PJ.

Now consider case (H), i.e. n > 5. Let H C (B,(S?))") be a normal
subgroup of B,(S?) such that A = (B,(S*)W/H is Abelian (notice
that this condition is satisfied if H = (B, (S?))?). Let

7 Bn(S?*) — B,(S*)/H
BB
denote the canonical projection. So the Abelianisation homomorphism
a: B,(S?) — (B.(S?)) 4P of Chapter [ factors through B, (S?)/H i.e.

there exists a (surjective) homomorphism &: B, (S?)/H — (B,(S?)) 4P
satisfying o = @ o m. So we have the following short exact sequence:

1 —> A ——> B,(S?)/H —2> (B, (S?)) A> — 1.

Now o7, ...,0,_1 generate B,(S?)/H, but since a(0;) = a(oy) for 1 <
i <n—1, it follows that a(;) = a(a7), and so there exists t; € A such
that & = t,07.

We now apply 7 to each of the relations of equation () of B, (S?).
First suppose that 3 <i <n — 1. Since g; commutes with o, we have
that

01 - 1,01 = t;01 - 01,

and hence ¢; commutes with 7.
Now let 4 <7 <n — 1. Since o; commutes with oy, we obtain
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Since A is Abelian, it follows from the previous paragraph that t5 com-
mutes with 7. Applying this to the image of the relation oi0901 =
090109, under 7w, we see that t, = t%, and hence t, = 1.

Next, if © > 2 then the relation 0,0;110; = 0;110;0,11 implies that
ti =tiy1,andsoty =...=1t,1 =1 Henceoy =03 = ... =0,_1.
Thus B, (S?)/H is cyclic, generated by 7, and finite of order not greater
than 2(n — 1), because the surface relation oy .. .crn_gaz_lcrn_g L..01 =
1 projects to 72"V = 1. Since @ is surjective and (B, (S?)) AP =
Za(n-1), we conclude that & is an isomorphism, so B, (S?)/H = Liy(n—1)5
and A = (B, (S?))V/H is trivial. In particular

(Ba(S%))®) = [(Ba(S*)W, (Ba(8*)M] = (Ba(s*))",

in other words, (B,(S?))®" is perfect.

Now consider case ({), so n = 4. Recall that part (]]) was proved
in Theorem [ and Proposition 0. To obtain (B4(S?))®, it suffices to
observe that for the action of Fy(a,b) on Qg, the subgroup E); defined
in Proposition P9 is Qg (which is the case, since by Theorem B({),
o(b)(x)r™' =y and ¢(a)(y)y~! = z). So (B4(S?))? is generated by Qg
and (Fy) | (B4(S?))® = Qg x (F5)™, and the action is the restriction
of that of Fy(a, b) on Qg, which proves the first part of (d) ().

To determine (B4(S?))®), we first have to describe the subgroup
Qg for the action of (F2)™M on Qg. By Theorem J(H), if B = [a,b] €
(Fy(a,b))™ then the automorphism o(B) satisifies p(B)(z) = 2% - 2 for
z € {z,y} (recall that x2 = y?). Since (Fa(a, b)) is the subgroup of
Fy(a, b) normally generated by B, and the centre (z?) of Qg is invariant
under Aut(Qg), it follows that Qs = (22). So (B4(S?))® is isomorphic
to the semi-direct product of Zy by (F3)®. But the action is trivial,
and so the product is direct. This proves the first part of (H)(fi).

For m > 4, the subgroup (By(S?))™) is clear from the description
of (B4(S?))®, and hence we obtain the first part of ({) ().

We now analyse various quotients of the form B, (S?)/(B4(S?))™
and (B,(S?))™=V /(B4(S?))™ for several values of m. For the quo-
tient By (S?)/(B4(S?))™, we shall consider the case m = 2 (the case
m = 1 is given by Proposition RQ(H)). For (B4(S?))V /(B,(S?))™),
we consider the cases m > 2 (the case m = 1 was considered in Propo-
sition RQ(H)). If m > 4, the problem reduces to the corresponding
problem for the free group on two generators.

We adopt the notation used above in the case n > 5, and again
we suppose that H C (B,(S?))®" is a normal subgroup of B, (S?) such
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that A = (B,(S?))V/H is Abelian. So we have a short exact sequence:

1 — A—— By(S?)/H —= (By(S?)) ** — 1.
Z

Now 7,02, 03 generate B4(S?)/H. As above, for i = 2,3 we set 7; =
t;o1, where t; € A, and we apply 7 to the relations of B4(S?). The
fact that o; commutes with o3 implies that ¢3 commutes with ;. The
relation 010901 = 090109 implies that:

O1ta01 ' =ty - 01 oy . (16)
Now consider the relation oy0309 = 0309035. We have that:
lo01 - 1307 - 1901 = t307 - 1207 - 1307,
and so
ta07 ty = 13011907,
since A is Abelian and ¢3 commutes with 7. Thus:
taT1 ty = t3ta0 Lo
from equation ([[(), and so t3 = 1. We conclude that B,(S*)/H is
generated by o7 and ty07.

Finally, we consider the image of the surface relation under 7. Using
equation ([[G), note first that:

—3;3 —-3 — (=1 — ——1\=—-1 —y—1—1 —2;, —=2
01 tQCTl = 0'1(t2 . 0'1t20'1 )0’1 = 0'1t2 01 c 01 t20'1
—y—1—1 11—y ——1 -1
= O'th o1 'tQ 01t20'1 = tQ y (17)

since A is normal and Abelian. Thus 01020?2,0201 = 1 implies that:

—_— — =2 i —y ——1 — (=34 ——3\——1 —=6
1:0'1't20'1'0'1 't201'01 :O'lt20'1 '0'1(0'1 t20'1 )0'1 c 01

= Tityor Tty o L = o0

from equation ([[7).

Recall that T'y(B,(S?)) is the normal subgroup of B,(S?) generated
by the commutators of the generators of B,(S?). Hence A is the normal
subgroup of B4(S?)/H generated by [67, t07] = Giteo1 - t5 . Since A
is Abelian and t; € A, the action of conjugation on A by t5 is trivial.
From equation ([[7), the action of 31> on ¢, yields ¢, '. Further,

=0ty POty o =1t

Fi(Trtaon 'ty o
from equation ([I@), and since

2

—2(—y ——1—1\— ——1—1
01 (01t20'1 t2 )0'1 :O'th o1 -,

it follows that A is the Abelian group generated by ortyo7 't; ', ty and
Oitoor L, and thus by t, and o1tyo7 L.
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Let ¢ = a(o;) denote the generator of (B,(S?))AP. Let M =
(_01 1), notice that M is of order 6. We now let (B,(S?)) 4P = Zg
act on Z? as follows:

() =v (%)= (5x)

and so we may form the associated semi-direct product Z? x Zgs. We
now consider the following homomorphism:

Y By(S*) — 77 x Zg

()9
- (()7)

We then check that v is well defined: clearly ¥ (o103) = ¥(03071). To
see that "Lp(O’lO'QO'l) = w(O-QO'lo-Q) (and that 1/1(0'30'20'3) = "Lp(O'QO'gO'Q)),

e en=((9)2) () ()2
() () () )

Similarly,

as required. Since ¥(oy) = <<8) ,5), Y(ogoyt) = <<(1)> ,1) and
Y(loy !, o0]) = ((?) ,1), we see that 1 is surjective.
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Now let H = (B4(S?))®, and let 6: Z? x Zg — Zg denote the pro-
jection onto the second factor. Since Zg is Abelian, it follows that
5(2p(x)) is trivial for all z € (B4(S2))(1 , so (z) belongs to the Z>-
factor. Hence H = [(By(S?))W, (Ba(S?))M] C Ker (¢), and thus 1
factors through A = B,(S?)/H, inducing a (surjective) homomorphism
v B4(S?*)/H — 7Z* x Zg. From the following commutative diagram of
short exact sequences,

1 —= A = Ty(By(S?))/H —= By(S?)/H —2= (B,(S?)) > — 1

4 | H

1 72 72 3 Ty — 1,

the surjectivity of @ implies that of QZ ‘ qsA— Z2. But A is an Abelian
group generated by {to,5ts0 '}, so 13 ‘ 1 Is an isomorphism, and by the
5-Lemma, ’(Z is too. Hence:

(34(82))(1)/(34(82))(2) = Z2 and B4(S2)/(B4(S2))(2) = ZQ X ZG-
In fact the first of these two equations may be obtained directly since
we know that (By(S?))M) = Qg x Fy, and (B4(S?))®@ is isomorphic
to the subgroup Qg x (F3)M of Qg x Fy, so (B4(S?))M /(B4(S?))® =
Fo/(Fo)) = 72, Slmﬂaﬂy (B4(S))®/(By(S ))(3 = (Zz X L) X
(F2)D/(E2), (By(S2)®/(By(SH)@ = Z, x (F2) /(F)®), and for
m > 4,

(Ba(S%)™ [ (Ba(S?))\™ D 22 (Fo) ™V /() ™).

This proves the remaining parts of (f), and thus completes the proof
of Theorem [. O



CHAPTER 3

The lower central and derived series of
Bm(S2 \{z1,...,2,})

In this chapter, the aim is to determine the lower central and de-
rived series of the m-string braid group of the n-punctured sphere
Bn(S* \ {z1,...,2,}), n > 1 according to the values of m and n.
In Section [, we begin by giving a presentation of this group. In Sec-
tion P, we deal with the case n = 1 which corresponds to the Artin
braid groups, and extend the results of Gorin and Lin. The case m =1
which is that of the fundamental group of the n-punctured sphere is
dealt with in Section J. From Section [] onwards, we suppose that
n > 2. In Section [, we prove Theorem f, which if m > 3 (respectively
m > 5) shows that the lower central series (respectively the derived
series) of B, (S?\ {x1,...,7,}) is constant from the commutator sub-
group onwards. In Sections [}, i and [, we study the case n = 2 which
corresponds to that of the braid groups of the annulus (which are iso-
morphic to the Artin groups of type B). The main results of these three
sections are Proposition [0}, Corollary [J, Proposition [[4, Theorem [J
and Corollary [[f. In Section §, we study B,,(S* \ {z1, zs, 73}), m > 2,
which is isomorphic to the affine Artin group of type 5m, and we prove
Propositions 0 and F1.

1. A presentation of B,,(S*\ {z1,...,2,}), n > 1

Let q e N. If 1 S 7 <j S q, let Ai,j =0j-1"" 'O'Z'+1O'Z-20'l-_+11 s 'O'J-_,ll €
P,(S*) which geometrically corresponds to a twist of the j™ string
about the 7" string, with all other strings remaining vertical. It is well
known that the A; ; generate P,(S?).

The following presentation of B,,(S* \ {z1,...,z,}) was derived
in [GG4] using standard results concerning presentations of group ex-
tensions [J] (see also [Laml, [M4d] for other presentations).

ProrosITION 31 ([GG4]). Let m > 1 and n > 1. The following
constitutes a presentation of the group B, (S*\ {x1,...,z,}):

generators: A; ;, where 1 <i <nandn+1<j <n+m, and oy,
1<k<m-—1.

16
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relations: for 1 <i,k<n,n+1<j<l<n+mbutj<n+mifl
1s absent, and 1 <r,s <m —1,
AijARA] = Ay if k<
Ai,jANA;jl = AjfllAi,lAj,l
A;lei,lAm = ANAJ-JAZ-JA;}A;;
Ai,jAk,lA;jl = A;llA;llAJ-JAZ-JAMA;;AjfllAi,lAj,l ifi <k
A;}Ak,lAi,j = ANAJ-JA;;AjfllAMAj,lAi,lA;llA;ll ifi <k
Alm+m,..Anm+mamfl”.Oégfa2u.gmfl::1
0,05 = 050, if |[r —s| > 2
OrO0r410y = Op41040p41
o, Aijo, = Aijifr#j—n—1j—n
oj_nAivjcrj_fn =Ajnifn+l<j<n+m-—1

In the above relations, if n +1 < j <1 < n+m then A, (which
does not appear in the list of generators) should be rewritten as:

_ 2 -1 -1
Aji=01n-1.. O nt10) O pg1 - Oy q- ]

REMARKS 32.

(a) Geometrically, we think of the n punctures labelled as points from
1 to n, and the basepoints of the m strings as points labelled from
n+ 1 to n +m. The generator A;; corresponds geometrically to a
twist of the (j — n)™ string about the i*" puncture, with all other
strings remaining vertical.

(b) This presentation was derived in [GG4] for m > 1 and n > 3 (see
Proposition 9 of that paper). But it is also correct for n = 1,2.
Indeed, to obtain the result, a presentation of P, (S*\ {z1,...,%n})
was derived (Proposition 7 of [[GG4]) using the fact that there is a
split short exact sequence

1 — P (S*\{z1,. .., Tn, Tny1}) — Po(S*\ {21,...,2,}) —
Pl(S2 \ {ZL‘l,. . ,l‘n}) — ]_,

which is the case for all n > 1 (as mo(S? \ {z1,...,2,}) = {1}). To
prove Proposition 9 of [GG4], we then apply standard techniques
to the short exact sequence

1 — Pu(S*\{z1,...,2,}) = Bn(S*\ {21, ..., 20}) — Sp — 1.

From this presentation, we may obtain easily the Abelianisation of

B (S*\ {x1, ..., 20}):
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ProproOSITION 33 ([[GG4], Proposition 11). The Abelianisation of
Bn(S*\ {x1,...,2,}) is a free Abelian group of rank n. O

2. The case n = 1: lower central and derived series of Artin’s
braid groups B,,(D?)

As we shall see below, the case n = 1 corresponds to that of Artin’s
braid groups. In Theorem Bd, we recall Gorin and Lin’s results, which
we extend in Proposition ], notably obtaining descriptions of some
of the derived series elements and quotients of B,,(D?) for m = 3,4.
We begin by proving the following proposition which will allow us to
identify certain types of braid groups.

PROPOSITION 34.

(a) Let zg € Int(D?) and m > 2. Then P,(D*) = P, _1(D?*\ {20}).

(b) Let m € N, let xg € S?, and let Y C S*\ {zo} be a finite set. Then
the inclusion S? \ {0} C D? induces an isomorphism

By, (SZ \ (Y U {370})) = Bm(D2 \ Y)-

(c) Let zg € Int(D?) and m > 1. Then By, 1(D?) = B,,,(D?\ {z20}).
(d) Let m € N and (x1,...,2,,) € F,(Int(D?)). Then

B (D?) = 1 (D \ {x1, ..., 2 }) 3 By (D?).

REMARKS 35.

(a) Part (B]) of Proposition B4 is a manifestation of the Artin combing
operation [[AZ, Bi3, Hanl: any geometric pure braid of the disc is
equivalent to a pure braid whose first string is vertical.

(b) Taking Y = & in part (f]), and noting that homeomorphic spaces
have isomorphic braid groups leads to the well-known isomorphism
By = By, (S \ {0}) = B (D?).

(¢) Part (H), and parts () and (d) describe respectively the pure braid
groups and full braid groups of the annulus. Since the latter are
isomorphic to the Artin groups of type B [C1|, we recover part (2)
of Proposition 2.1 of [CrH.

(d) In part (B), the action is given by the well-known Artin represen-
tation of the Artin braid group as a subgroup of Aut(F,,) [Adl, Bi2,
Hax], and may be described as follows: let oy, ..., 0,1 denote the
standard generators of B,,(D?), and let Ay, ..., A,, denote those of
T (D*\ {x1,...,2m}, Tmi1). Then:

Aip1 ifj=1
O'Z'AjO';l = A;LllAzAH-l lfj =1+1
A

j otherwise.
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This was used by Chow [Chl, Hai] to obtain a presentation of
Artin’s pure braid group, and may be applied to the study of the
Nielsen equivalence problem for fixed points of surface homeomor-

phisms [|Gul.
PROOF OF PROPOSITION B4].

(a) Consider the following Fadell-Neuwirth short exact sequence for
the disc:

1 —— P, _1(D?\ {20}) —= P,(D?) — P;(D?) — 1.

Since P;(ID?) is trivial, it follows that the kernel is equal to P,,(D?),
and the result follows.

(b)) Let m € N and (x1,...,7,) € F,(S*\ (Y U{zo})). Set X =
{z1,...,xn} and Y/ = Y U {xo}. The inclusion S$? \ {zy} C D?
induces an isomorphism of the free groups m (S? \ (X UY U {zo}))
and m (D?*\ (X UY)). Consider the following commutative diagram
of short exact sequences:

1 —m(S2\ (X UY")) = P (§?\ ¥7) — Pu(§2\ V') —1

. l l

1—m(D*\ (XUY)) — Pp1(D*\Y) — Pp(D*\Y) — L.

Applying induction on m and the 5-Lemma, it follows that P,,(S*\
Y') = P,,.1(D*\Y). By commutativity of the following diagram of
short exact sequences

1 — Pp(S?\ Y') = B,,(S2\ V') —= S§,, — =1

.| | :

1 ——= Pp(D?\Y) — B,,(D*\ V) —= S,, — 1,

and the 5-Lemma, we see that B,,(S* \ V') & B,,(D?\ Y), which

proves part ().
(c) From the generalised Fadell-Neuwirth short exact sequence, we
have that:

1 — B,(D*\ {2}) — Bpn1(D?) — B;(D?) — 1.

The result then follows easily.
(d) Consider the following generalised Fadell-Neuwirth short exact se-
quence:

Px

1 —m(D?\ {x1,...,2m}) —> Bn1(D?) — B,,(D?) — 1.
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Since p, admits a section given by the obvious inclusion B,,(D?) —
B,,.1(D?), the result again follows easily. O

So by Remark BY(H), B,.(S? \ {71}) and B,,(D?) may be identified
with Artin’s braid group B,,. The series of such groups were previ-
ously studied by Gorin and Lin [[GI]. For all m > 1, they determined
presentations for T'y(B,,(D?)), from which they were able to deduce
that:

THEOREM 36 ([GL)).

(a) The commutator subgroups T's(B,,(D?)) are finitely presented.

(b) T2(B3(D?)) is a free group Fo(u,v) on two generators u and v.

(c) To(B4(D?)) is a semi-direct product of the free group Fy(a,b) by
Fy(u,v), the action (denoted by @) being given by:

o(u)(a) = uau_ll = bﬁ1 o(u)(b) = ubu_ll = b2a1_1()3 . } (18)
pw)(a) =vav™" =a"b p(v)(b) =vbv™ = (a”"b)°a"b.

(d) For all m > 5, the derived subgroup (B,,(D?))V) is perfect, i.e.
(Bn(D?*)®) = (B, (D*)Y) for all s > 2.

We now go on to extend their results.

PROPOSITION f|. Let m > 1. Then:

(a) For all s > 3, T4(B,,(D?)) = T'y(B,,(D?)).

(b) If m = 1,2 then (B,,(D?))® = {1} for all s > 1.

(c) If m = 3 then the derived series of (Bs(D?))Y) is that of the free
group Fy(u,v) on two generators u and v, where u = oy0;" and
V= aluafl = 01020f2. Further,

Bs(D?)/(Bs(D?)® = 72 x Z,

where 72 is the free Abelian group generated by the respective Abelian-
isations w and v of u and v, and the action is given by o-u =70 and
0-U = —u+70v, where o is a generator of Z.

(d) If m = 4 then

(Bu(D*) M /(B4(D?))® = 27, and
(Ba(D*)® = Fy(a, b) » Ta(Fa(u, v)),

1

where a = o307 " and b = uau™" = gy030; *oy L.

PROOF OF PROPOSITION f.

(a) The result follows from Lemma B3, since (B,,(ID?))A? = Z, and
Hy(Z) = {1}.

(b) Clear.
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(c¢) The first part is a direct consequence of Theorem BG(H). For the
second part, the short exact sequence

1 — (B3(D*)Y — By(D*) - Z — 1

splits, where (B3(D?))M) 22 Fy(u,v) and Z 22 (o) = (Bs(ID?))AP, and
a section is given by sending o onto o7. So

By(D?) = (By(D?) W x Z,

where the action is given by o -u = oy - crgofl coj'=vando-v=
01010907 207 ' = 0105 010207 > = u”'v. Then ((B3(D?))M)AP =
(B3(D?)M) /(B3(D?))?) = 7Z? is a free Abelian group with basis
{u, v}, and so it follows that

By(D?)/(B5(D?))"® = (B3(D*)W/(Bs(D?))*) x Z = Z* % Z,

with action given by o -u =7 and 0 - v = —u + v as required.

(d) From Theorem BA(H), we know that (B4(D?))") is a semi-direct
product of the free group Fs(a,b) by Fa(u,v), where a,b, v and v
are as defined in the statement of the proposition, and the action is
given by equation ([[§). Under Abelianisation of (B4(D?))"), we see
that a and b are sent to the trivial element, and there are no other
relations between u and v other than the fact that they commute.

So
(Bo(D*)W/(Ba(D*)® = 22,

To see that (B4(]D)2))(2) >~ Fy(a, b) Xy (Fy(u, v)), we apply Propo-
sition P9. Since (vau')a™! = ba~! and (ubu=1)b~! = b%a~!, it fol-
lows that a,b € L, where L is the subgroup generated by I'y(Fy(a, b))
and the normal subgroup [Fs(u,v),Fy(a,b)] of Fa(a,b) generated

by all elements of the form (ghg=')h™!, where g € Fy(u,v) and
h € Fy(a,b). So L =Fy(a,b), and the result follows. O

Hence the lower central series of B,,(ID?) is determined for all m €
N, in particular, if m > 3 then B,,(D?) is not residually nilpotent;
and the derived series of B,,(D?) is determined for all m # 4. In this
case, it remains to determine the higher derived subgroups and their
quotients. For the next step, by Proposition 29,

(Ba(D*)® = [(Ba(D?))®, (B4(D?))P] = K xt (Fa(u,v))?,

where K is the subgroup of Fa(a,b) generated by I's(Fa(a, b)) and the
normal subgroup of Fy(a,b) generated by the elements of the form
©(g)(h)h~', where g € (Fa(u,v))® and h € Fy(a, b).

Let N be the normal subgroup of Fy(a,b) generated by |[a,b], a?
and b?. It may be interpreted as the kernel of the homomorphism
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: Fy(a,b) — Zy X Zs which to a word w = w(a,b) associates the ex-
ponent sums modulo 2 of w relative to a and b respectively.

In order to determine K we need to investigate the action of [u, v]
and its conjugates on Fy(a,b). One can check that p(u=')(a) = ab™a?,
o(u™H)(b) = a, p(v™1)(a) = ab~ta® and p(v1)(b) = ab~ta*, then that:

)
o([u,v))(a)a™! = ab~*(ab~)*a™?
Ya)a ' = (ab?(ab ?)*)?ab 2a*
)bt =ab *(ab )b !
b)b~t = ab?(ab™ )b .
Clearly K contains [a, b]. Further, a calculation shows that the element
(e([u, vD)(@)a™") " (e([u, v]) (b)o~) b

belongs to I'y(Fy(a,b)), and so to K. Hence b* belongs to K too.
Considering the element

((fu, o) (@)a™) (o ([u, o) ()67,
we infer similarly that a> € K. Now K is normal in Fy(a,b) and
contains [a,b], a*> and b?, so it contains N. We claim that N = K.
Since 1 factors through Abelianisation, we see that I'y(Fy(a,b)) C N.
Let w € Fy(u,v). If n € {a,b} then

U(pw)(n*)) = p(wn*w™) = 2¢(p(w)(n)) = (0,0).

(19)

Also,
Y(p(w)(la, b)) = Y([waw™, wbw™']) = (0,0).

This implies that ¢ (w)(N) € N, so ¢(w) induces an endomorphism
o(w) of Zy x Zs satisfying ¥ o p(w) = @(w) o 9. The surjectivity
of ¢ and ¢p(w) imply that ¢(w) is an automorphism. Furthermore,
w(wy) o p(wy) = p(wiwsy) for all wy,ws € Fo(u,v). Using the above
relations for o([u,v]), we see that ¢([u,v]) = Id. Hence for all w €
Lo (Fy(u,v)), p(w) =1d, so ¥(p(w)(h)h™t) = (0,0) for all h € Fy(a,b).
This implies that K C N, which proves the claim.

Finally, we Abelianise (By(D?))® = Fy(a,b) x (Fy(u,v))®. To
the commutativity relations between a,b,u and v, one needs to add
the relators the Abelianisation of the relators ¢(w)(h)h™1 where w €
(Fa(u,v))M) and h € Fy(a,b), and in particular of relations (), from
which we obtain a? = b*> = 1. But these are the only extra relations:
since p(w)(h)h™! € Ker (¢), it follows from that form of N that the

Abelianised relations are products of powers of a? and b*>. We thus
obtain:
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uzu~t = (uau)? = 2z )

uzou~ ' = (ubu1)? = b*a"*ab*a"[a, b]b*
= 2221_1252322_12[122
uzsu~ ' = (uabu)? = b* a0 o  abta a, B)V? (20)

1

2. -1.2 -1_-1

uzqu~t = b2a2ab?a a2 = 2221_1252122_1

uzsu~ b = b ta bl abta ! = 2Eag AR )

TABLE 4. The action of u on the basis 2z, ..., 25 of N

PROPOSITION [.
(B0?)® [ (BuAD?)® 2 (25 x Zo) x (Da(Fow, ). O

Using the Reidemeister-Schreier rewriting process [MKS], we may
obtain a presentation of N. Let X = {a,b} be a generating set of
Fy(a,b) and U = {1,a,ab,aba™} be a Schreier transversal. If g €
Fy(a,b), let g € U denote its coset representative. A basis of IV is given
by the set of elements of the form ux(uz)™' where v € U and z € X
(we remove all occurrences of the trivial element). A simple calculation
shows that N is a free group of rank 5 with basis whose elements
are given by a?, aba?b~ta!, bab~ta~!, ab’a! and b*. This may be
transformed into the following basis: 21 = a?, 29 = b?, 23 = (ab)?,
z4 = ba*b™! and z5 = ab*a~!. The action of Fy(u,v) on N is given by
equations (Q) and (1)), see Tables ] and ] (we have used the relations
[a,b] = ababb™la=2b7! = 23252, ", and (ba™!)? = 2025 '25).  Hence:

PROPOSITION [. (B4(D?))® = F5(zy, ..., 25) x (Fa(u,v))®, where
the action is that induced by the action of Fo(u,v) on Fs(xy,..., x5)
given by equations (20) and (21). O

From this, we may determine the Abelianisation ((By(ID?))®)AP of
(Ba(D?)®:

PROPOSITION B.
((B4(]D2))(3))Ab _ (B4(]D2))(3) /(B4(D2))(4)
~ 73 X Tg X Zng X (Fz(u,v))@) /(qu,v))(:&)_

ProoOF. The action of Fy(u,v) on F5(z1,...,25) is by conjugation
which leaves I'y(F5(zy,...,25)) invariant. It thus induces an action
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vzt =(vav™)? = (a'b)? = a *(ab)’b %ba " *b'H* )
:zflzgzglzgle
vzv ! =a"?(ab)?b*ba"2b" b?a " (ab)?b " 2ba " 2b b?-
(b~ ta )2 ab?a 0 (b a ) 2ab’a  ba 2D
:21_12322_12;12221_ 2322_124_12223_1252223_12524_122
=(vzv ) ey z5z2z3 Leszy o
vabv™)? = (a7 'b)*a"*ba " ba" ba " ba " ba b (21)
vz )22 (2025 z5) zi 2
)"z

—1\2

22’021 ZQU -1

vz )2 2g tas (v v )
a 'b)*a"%ba"'ba ba " ba

=(vzv )22 (2025 L 2s)?

=(
=(
=(
vzt =(a7'h) e 1b a tab*a'b*(a"'0) "
(
(
(

Vs

TABLE 5. The action of v on the basis z1,...,25 of N

of Fyo(u,v) on F5(zy,...,25)2 = Z° = Z°[Z,, ..., Zs], where for i =
1,...,5, Z; is the image of z; under Abelianisation. For w € Fy(u,v),
let M, denote the matrix of this action with respect to the basis
(Zy,...,7Z5) of Z°, and let

Ay =Im (M, —I5).

By equations (B() and (B1]),

0-1000 112 20
11 202 _ -
U=M,=|0o1 001 |, U't=M,=[100-10],
0-1-10 0 102 21
01 21 2 1010 0
and
~1-2-3 0 -3 225 23
0 2 3 1 2 7 Sy R
V=M,=|100-10], V=M-~=[0100-1
~1-3-3 0 —2 2 2 4 2 3
02 2 1 2 55100 0
Then

NO

wo

[Sr
=t

3,3, 5.2 3 -3 -3 —7 —4 -3
B [ 3-3-T-3- 1 [ 3 3 3 2
C= My = 09 C™ =My = 00100 ).

Z314 7 J3 53 3 2 5 3 3

Let L be the subgroup of Z° generated by the A,,, where w €
(Fa(u,v))®. The action of Fy(u,v) on Z° restricts to an action of
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(Fa(u,v))? on Z°. Since L is generated by the relators M, (Z) — Z,
where Z € Z° and w € (Fy(u,v))?), it follows that

((B4(D?))P)AY = 77 /[ x (Fa(u,v))? / (Fo(u,v))® . (22)

Let ¢ = [u,v] and a = u[u,v]u™". Consider first the special case w =
la,c], and set 3 = Ay . We claim that:

(1) 753 2 73 x Zyg X Zyg, and

(1)) L =1%.

From this, it is obvious that Z°/L = 73 x Zs x Z1s, and so the result

follows from equation (P3).
To prove claim (), one may check that

—701 —612 —1314 —702 —612
1548 1351 2898 1548 1350
M[a dq = 0 0 .
702 —612 71314 701A7612
1548 1350 2898 1548 1351

So ¥ is the free Abelian group of rank 2 freely generated by A; =
—702 —612
( 15;:;;) and Ay = (%ﬁi) , and Z5/Y has a finite presentation

1548 1350

0% -7 - 7°/8 —0,

where T' is the Z-module homomorphism represented by the matrix

—702 —612

A= <15§£ 1?;5()) relative to the bases (A1, Ay) and (Z4,...,Z5). Ap-
~\ 1548 1350 . ‘

plying elementary row and column operations to A, and taking P =

125000 . 01y .
0 0100 fand Q= (7 %), we see that PAQ = 8 0" |, which
0 -1001

gives the invariant factors of the Smith normal form of A [Mﬂ A new
basis W1, ..., W of Z° is obtained by taking W; = S0, (P~1);,;Zi, s0
Wy = =521+ 112, —52,+ 1175, Wy = —Z1+225— Zy+275, W3 = Zs,
Wy = Z4 and W5 = Zs, and from the form of PAQ, it follows that in
75 /%, 18W, = 18W, = 0, and that W5, W, and W are free generators.
Thus Z5/% = 73 x Zys X Zg, which proves claim (f]).

We now set about proving claim (fi). Since [a,c] € (Fa(u,v))?, it
is clear that > C L. For the converse, it suffices to check that for all
w € (Fa(u,v))?, Ay = Im (M, — I5) C (A, Ay).

First note that v and v induce automorphisms of >2; indeed, one may
check that relative to the basis (A, Az), the matrix of u is (1150 oo ),
and that of v is (2§922, 19931,). So M, (X) = X for all w € Fy(u,v).

Further, since for all w € Fy(u,v), M, is an automorphism of Z°
which leaves ¥ invariant, if y € Fy(u,v) satisfies A, = Im (M, — I5) C
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Y then it follows that
Apyw—1 = Im (Myyy—1 — I5) = Im (M, (M, — I5) M)
=Im (M,(M, —I5)) C M,(X) = X.

So for our purposes, it will suffice to consider elements of (Fy(u,v))®

modulo conjugation by elements of Fy(u,v). Moreover, if wy,wy €
Fy(u,v) satisfy Im (M, — I5) C X for i = 1,2, then Im (M, — I5) C
Y. This follows from the fact that for all € Z>5,

(Mw1w2 - [5)(1’) = Mwl (Mw2 - [5)(1’) + (Mwl - [5)<I),

and the invariance of > under M,,.

We now give a generating set for (Fa(u,v))?. A generating set
of (Fy(u,v))™ is given by the set of conjugates wct'w ™!, where w €
Fy(u,v) (cf. Remark B7), and so (Fy(u, v))® is generated, up to conju-
gacy, by the set of commutators of the wetlw ™. So up to conjugacy,
(Fa(u,v))? is generated by the set of elements of the form [c°1, tc*2t 1],
where ¢1,&5 € {1,—1}. By conjugating by ¢ 'tc®2t~! if necessary, we
may suppose that e; = 1. By the remarks of the previous paragraph,
it thus suffices to show that Im (M, — I5) C (A;, As) for elements y of
the form [c, tc®2t™1], where e, € {1,—1}. In order to do this, we shall
now calculate M, — I5 explicitly.

LEMMA 37. For allt € Fy(u,v), My.t1,-1 is of the form:

3Im 3n 3m+3n—1 3m—1 3n
—-3p -3m -3m—3p—1 —-3p —-3m-—1
A= 0 0 1 0 0 ,
Im—1 3n 3m+3n—1 3m 3n
—-3p —-3m—1 -3m—3p—1 —-3p —3m
where m,n,p € Z and np = m?.

REMARK 38. One may check easily that the inverse of this matrix

—3m —3n —3m—-3n—1 —3m—1 —-3n
A_l ( 3p 3m  3m+43p—1 3p 3m1>

18:

0 0 1 0 0
—-3m—1 —3n —-3m—-3n—-1 —-3m —3n
3p  3m—1 3m+3p—1 3p 3m
So if A satisfies the conditions of Lemma B7 then it is inversible, and
A~ also satisfies the conditions. Notice that A may be obtained simply

from A~! via the symmetry (m,n,p) — (—m, —n, —p).

PRrROOF OF LEMMA B7. We proceed by induction on the length £(¢)
of the word ¢. If () = 0 then ¢ is the trivial element, and clearly
C = M, and C~! = M_,-1 have the given structure. So suppose that
t has word length ¢(t) > 0, and that M;.+1,-1 has the given structure.
By Remark B§, it suffices to prove the result for M;,-1. Setting A =
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M,;—1, a long but straightforward calculation shows that the respective
conjugates of M,,—1 by M,, M,-1, M, and M,-1 are:

9p—3m 3p 12p—1-3m 9p—1-3m 3p
18m—27p—3n 3m—9p 21m—36p—1—3n 18m—27p—3n 3m—1-9p
0 1 0 0
9p—1—3m 3p 12p—1—3m 9p—3m 3p ’
18m—27p—3n 3m—1—9p 21m—36p—1—3n 18m—27p—3n 3m—9p

In—3m —18m+3p+27n —1436n—21m+3p In—3m—1 —18m+3p+27n
—3n 3m—9n —1-12n+3m —3n —1-9n+3m
0 0 1 0 0 ,
In—3m—1 —18m+3p+27n —1436n—21m+3p 9n—3m —18m+3p+27n
—3n —1-9n+3m —1-12n+3m —3n 3m—9n
1 —30m+-75p+3n —57Tm~+135p+6n—1 y1—1 —30m+75p+3n
—48p+24m—3n —71 —1-108p+51m—6n —48p+24m—3n —1-m
0 0 1 0 0
y1—1 —30m~+75p+3n —57m+135p+6n—1 Y1 —30m+75p+3n
—48p+24m—3n —1-7 —1-108p+51m—6n —48p+24m—3n —71

where v = —27m + 60p + 3n, and

Y2 —120m~+75p+48n —147m~+90p—1+60n —1+v2 —120m~+75p+48n
—3p+6m—3n -2 —1-18p+33m—15n —3p+6m—3n —1—72
0 0 1 0 0
—1+v2 —120m~+75p+48n —147m~+90p—1+60n Y2 —120m~+75p+48n ’
—3p+6m—3n —1—72 —1-18p+33m—15n —3p+6m—3n —72

where 75 = —27m + 15p + 12n. One may then check that each of these
matrices has the form of the statement of the lemma. O

We first consider the case e; = 1, so y = [c, tct71]. With the matrix
M,.;—1 = A given by Lemma B7, a long but straightforward calculation
shows once more that M. -1) — I5 is of the form

a1 a2 altaz ap a2
B1 B2 P1+B2 B1 Bo
o0 0 00 |,

a1 a2 altaz ap a2

B1 B2 B1+P2 B1 B2
where

a1 =1278m? + 216m — 1836pm — 126p — 540nm
— 90n + 648p? + 450pn

oy =1728nm — 756pn — 540n* — 1080m>
+ 648pm — 72n + 180m — 108p

By = — 1512m?* — 252m + 2160pm + 144p
+ 648nm + 108n — 756p — 540pn

By = — 2052nm + 882pn + 648n? + 1278m?
— 756pm — 216m -+ 126p + 90n.

So Im (M[thtfl} — I5) is generated by the first two columns Cy, Cy of
Mic -1 — Is. It is necessary to show that each belongs to (A;, Az), in
other words, that for ¢+ = 1,2, there exist 7, u; € Z such that 7;A; +
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piAs = Cj; these equations are equivalent to 7; ( 17902 ) + p; (1952) =
(%), and admit solutions (a priori rational) of the form

7\ 1 (1350 612 (o
pi) 324 \—1548 —702) \ 3 )"
Substituting for «;, 3;, we obtain

1 = — 2469m? — 424m + 3570pm + 253p + 1026nm + 171n
— 1272p* — 855pn

1 =2830m? 4 486m — 4092pm — 290p — 1176nm — 196n
+ 1458p* + 980pn

Ty = — 3324nm + 1484pn + 1026n? + 2086m?* — 1272pm + 130n
— 342m + 212p

115 =3810nm — 1701pn — 117602 — 2391m?2 + 1458pm — 149n
+ 392m — 243p,

and these solutions are clearly integers. Hence C,Cy € (Ay, Ay) as
required.

To deal with the case e = —1, it suffices to invoke the observation
of Remark BY concerning the symmetry between A and A=!. The above
analysis holds, and we obtain the same solutions as above, but replacing
everywhere m,n and p by —m, —n and —p respectively. This proves
claim (), and completes the proof of Proposition . O

We would now like to go a stage further, and determine (B4(ID?))®
and/or its Abelianisation. By applying Proposition B9 to Proposition [q,
(B4(D?))® is isomorphic to M x (Fa(u,v))®, where M is the sub-
group of F5(z;) = Fs(z1,...,25) generated by I'y (F5(z;)) and the nor-
mal subgroup generated by the elements of the form (g)(h)h~t, where
g € (Fy(u,v))® and h € Fs(z;). However, the complexity of finding a
basis of (Fo(u,v))® and calculating the action on Fj(z;) makes it ex-
tremely difficult to obtain a description of M. In order to get some idea
of the situation, we shall turn our attention to studying the semi-direct
product F5(z;) X Fa(u, v). In any case, the calculations that follow shall
be used later in Section [j in order to study T'y(Bs(S? \ {z1,x2})).

From relations (0) and (BI]), we have an action of Fs(u,v) on
F5(z1, ..., 25), and thus a semi-direct product Fs(z1,. .., z5) X Fo(u,v).
Let

e: Fs(z1,...,25) ¥ Fo(u,v) — (Fs(z1,. .., 25) ¥ Fau,v))*?  (23)
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be Abelianisation. From relations (B() and (B1]), it follows that
(Ff)(zh ) Z5) X F2<U‘7 U))Ab =Z® Z27

where £(u) = (0,1,0), e(v) = (0,0,1), e(z;) = (1,0,0) if i = 1,2,3 and
e(z) = (—1,0,0) if i = 4, 5.

Let (Zy,...,75), (Wy,...,Ws5) be the bases of Z5 given in the proof
of Proposition f. Let

E: Fy(z, ..., 25) ¥ (Fo(u,0))® — (Fs(21,- .., 25) % Fa(u, v)?)AP
be the restriction of ¢ to Fs(z1,...,25) x (Fa(u,v))?. We identify
this latter group with Zig x Zig x Z* x (Fy(u,v))® /(Fy(u,v))® via
Proposition B Since Z; = 2W; — 11Wy — Wy, Zo = Wy — 5Wy — W
and W; = Z; for i = 3,4,5, as an element of Z;g x Z3 X Z3, we have
&(z1) = (2, 11,0, -1,0), &(22) = (1, =5,0,0, —1), €(23) = (0,0,1,0,0),
£(z4) = (0,0,0,1,0) and £(z5) = (0,0,0,0,1). We thus obtain the

following commutative diagram of short exact sequences:

1 —= (By(D?)® —= G —— ((B4(D?))@)A> —1

R

Ker (¢) H : 7 72 1

1

where we set
G =TFs(z1,...,25) % (Fo(u,v))? and H = F5(z1, ..., z5) X Fa(u,v).
The first two vertical arrows are inclusions. Identifying ((B4(D?))®)AP
with Zyg x Zig x Z3 x (Fy(u,v))® /(Fy(u,v))® as above, the induced
homomorphism ¢ of the Abelianisations sends (Fy(u,v))® /(Fy(u, v))®)
and the Y-cosets of W7 and W5 onto the trivial element, and
§(Ws) = —E(Wy) = =€(W5) = (1,0,0).

Let us determine Ker (g). Since ¢ is Abelianisation, it follows from

Proposition B9 that
Ker (¢) = Iy (F5(2;) x Fa(u,v)) = L x Ty (Fa(u,v)),

where L is the subgroup of Fj(z;) generated by I'; (F5(z;)) and the
normal subgroup generated by the elements of the form ¢(g)(h)h™1,

where g € Fy(u,v) and h € F;5(2;). Let p: F5(z;) — Z be the restriction
of € to the first factor, in other words,

1 ifi=1,23
) = ) 4y 25
plz) {—1 ifi—4,5 (25)

PROPOSITION 39. L = Ker(p).
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2° 272 2t 1 2 22

1 1 1 21 1 1 1
22 2imyn 2tz |2 || et nizery? Pz
z] 3232% z 2 2321 Z Y25 | 23 Z321 12y z232] 2 22z232] 3
Z 32421l Z1 2242? Z1 124,2% 24 || za2q 2124 z%z4zf !
2t 27222 27222 | 2 || 225 Ziasay

TABLE 6. Determination of a basis of Ker (p)

Proor. We first apply the Reidemeister-Schreier rewriting process
in order to obtain a basis of Ker(p). Taking X = {z1,...,25} as a
basis of Fs(z;), and U = {z}},; as a Schreier transversal, one may
check that a basis of Ker (p) is given by

{Zl_zzjzi_l}iez,je{zs} U {Zl_zzjzﬁl}iezdegj} :
These calculations are presented in Table [j.

We may now show that Ker (p) C L. Indeed, since L is normal
in F5(2), and all basis elements of Ker (p) are conjugates of zy2; ",
2321 ' 2421 and 2521 by powers of 2y, it suffices to show that these four
elements belong to L. This can be done by studying equation (0).

First, 202, = (u)(21)2; !, s0 2027 € L. Next,
o(u)(z)2y !t = 22yt - 25232y 2yt € L,
SO 2523275 25" € L, and ¢(u)(z5)25 ' = 2225 25 € L. Thus
o(u)(z3)zs !t = 2525 'y - 252325 Pyt - g L €L,
SO 2973 1 = 227 (2327 1) 7! € L, and hence z32; ' € L. Since
ou)(zs)zs ! = 2o - 2025 - 25z - 2y H(z02y Do - 2yt €L,

and L is normal in Fj(z;), it follows that 2521 € L. Finally, since
25232y 12, 1 € L, and

Zszazy Lapt = 22y - 2] Nzazy Dy - 2y (zee ) e - (2az) 7

we have z42; € L. This proves that Ker (p) C L.

We now prove that L C Ker (p). Clearly I's(F5(2;)) C Ker (p), and
since Ker (p) is normal in F5(z;), it suffices to prove that all elements
of the form ¢(g)(h)h™!, where g € Fy(u,v) and h € Fs(z;), belong
to Ker (p), which we do by double induction. Let ¢ denote the length
function defined on elements of free groups. If £(g) = 0 or £(h) = 0 then
the result is clearly true. If £(g) = ¢(h) = 1 then one may check directly
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using equations (20) and (B1) that ¢(g)(h)h~! € Ker (p) for g € {u,v}.
Suppose that g € {u~!,v7}. In order to show that ¢(g)(h)h~! belongs
to Ker (p), it suffices to show that its inverse h(¢(g)(h))~! belongs to
it. Since ¢(g~1) is an automorphism, there exists h; € F5(z;) such that
©(g7Y)(hy) = h. Thus

h((g)(h) ™" =g~ () (e(g) 0 w9~ ) (h) ™" = (g™ ") (ha)hy ",
and the result follows from the case g € {u,v}.

First suppose that ¢(g) = 1, and that the result is true for all h
of length less than or equal to n > 1. Let h' € F5(z;) be such that
(b)) =n+1. Set h' = hz, where h, z € F5(z;), {(h) =n and ((z) = 1.
Then

Plg) (W™ = w(g)(Wh™" - hw(9) (=)= )R
By induction, both terms on the right-hand side belong to Ker (p), and
using the fact that Ker (p) is normal in F5(z;), we see that the result
holds for all g of length one, and all h.

Now suppose that the result is true for all g of length less than or
equal to n > 1, and all h. Let ¢’ € Fo(u,v) be such that ¢(¢') =n + 1.
Set ¢ = gy, where g,y € Fy(u,v), £(9) = n and £(y) = 1. Then

e(g") (M)A = w(9)(e(y)(h)(e(y) ()" (y)(h)h~t.

Since ¢(y)(h) € F5(z;), the result follows by induction. This completes
the proof of the inclusion L C Ker (p), and thus that of the proposition.

U

3. The lower central and derived series of B;(S?\ {z1,...,7,})
Let m = 1 and n > 1. The group Bi(S* \ {z1,...,2,}) is the
fundamental group of S*\ {z1,...,z,}, and so is a free group on n — 1

generators. So its lower central and derived series are those of free
groups of finite rank. Further details about the lower central series of

such groups may be found in [Hal, MKS].

4. The lower central and derived series of B,,(S*\ {z1,...,7,})
for m >3 and n > 2

In this section, we prove Theorem [, which tells us that if n > 2 then
for most values of m, the lower central and derived series of B,,(S? \
{z1,...,x,}) are constant from the commutator subgroup onwards.

THEOREM B. Let n > 2. Then:

(a) If m > 3 then

To(Bo(S2\ {21, ..., 20 })) = Do(Bun(S?\ {1, ... 2 })).
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(b) If m > 5 then
(B (S?\ {21, ..., 2, 1) = (Bp(S*\ {1, ..., 2, })W.
(c) If m =4 then
Bi(S*\{@1, ., 2,}) [ (Ba(S*\ {z1, ..., 2, }))P =2 (22 % Z) x 2"

where the semi-direct product structure is that of part (id) of Propo-
sition [, and

(Ba(S\ {a1, .., 20 })V /(Ba(S?\ {1, .., 2, })) P =2 72,
Alternatively,
By(S*\ {1, 20 }) ) (Bo(S*\ {a1, .., 2, }))P 2 722 % 27,

where Z2 = (By(S*\{z1, ..., 2,})) /(Ba(S*\{z1, ..., 2,}))® is the
free Abelian group with basis {u,v}, Z" = By(S?\ {x1,...,1,})*°

has basis o, p1, ..., pn_1, and the action is given by
o-uU=7 o-UV=-u+7v
pi-U=1u pi- V=70

foralll<i<n-—1.

REMARKS 40.

(a) For the lower central series of B,,(S*\ {z1,...,2,}), the only case
not covered by Theorem [ is m = 2 and n > 2; it will be discussed
in Sections f] and [3.

(b) For the derived series of B,,(S?\ {x1,...,7,}), the outstanding
cases are n > 2 and m = 2, m = 3 and m = 4 (see Sections [, {, []
and J).

PROOF OF THEOREM [J. The idea of much of the proof is similar

to that of Theorem . Let m,n > 2. Set By, ., = By (S*\ {21, ..., 2,}).
Then we have a short exact sequence

1— F2<Bm,n> - Bm,n g (Bm,n>Ab — L.

From Proposition B3, (B,,.,)A" is a free Abelian group of rank n, gener-
ated by p1, ..., pn, o, and subject to a single relation p; - - - p,o2™1) =
1. Taking the generators of B, , given by Proposition B}, all of the
o; are identified to o by «, and for each 1 < i < n, all of the A, ,
n+1<j <n+m, are identified to p;.

Let H C I'y(B,n.,) be a normal subgroup of By, ,,, and let

7 By — Bmn/H
B—p
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denote the canonical projection. Then « factors through B,,,/H, and
we have a short exact sequence of the form:

1 —— K — Bm,n/H —a> (Bm,n)Ab - 17

where « = @omand K =T1'5(B,,,,)/H.
In what follows, we shall impose one of the following two hypothe-
ses:

(i) K is Abelian.
(i1) K is central in B, ,/H.

REMARKS 41.

(a) It H =T3(B,,,) then condition () is satisfied.
(b) If H = (B,,,)® then condition (]) is satisfied.
(c¢) Clearly condition () implies condition ().

From Proposition BI, we conclude that &7, ...,7,-1 and the A, ;,
1 <i<n,n+1<j<n+m,generate B,,,/H. Since « identifies the
o to o, we see that @ identifies the 7 to 0. So for 2 < k < m — 1,
there exists ¢, € K such that o, = ¢,07.

Suppose first that condition (i) is satisfied. Then t; commutes
with 7. For 1 <[ < m — 2, we deduce from applying 7 to Artin’s
relations 0,0, 10, = 0,51 0, 0,41 that to = 1 and ¢, = ¢, if | > 2. Thus
01 =+-+=0,_1. This argument holds for all m > 2.

Now suppose instead that condition (f]) is satisfied. Let m > 5. If
3 < k <m —1, then since o, commutes with o, we have that

01 - lg01 = 1071 - 071, (26)
and hence t;, commutes with 7. Now let 4 < < m — 1 (such an [
exists). Since o; commutes with o, we obtain

1101 - 201 = to07 - tj07.

But K is Abelian, and thus it follows that ¢, commutes with 7. Ap-
plying this to the image under 7 of the relation oi0007 = 020109, We
see that ty = 2, and hence t, = 1. Finally, if I > 2 then the relation

0101:10; = 0141010141 implies that ¢, = t;,1, and so to = -+ = t,,,_1.
Hence oy =69 =---=0,,_1.

Let us now consider the A;;. In what follows, we suppose that
m > 3 and 97 = 03 = -+ = G,,_1 (which as we have just observed,

is the case if either condition (fj) holds, or if condition (f) holds and
additionally m > 5). By Proposition B, aj,nAi,jajiln = A; j+1 where

n+l1<j<n+m-—1,andifr # j—n—1,j—n then 0, 4; j0,' = A, ;.
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Since foralln+1 < j < n+m,
1 1

Ai,j — Uj—n—l e 0'1 . Ai7n+10'1_ . O-jfn717

we see by projecting into B,,,/H, and using the condition m > 3 that

_ j—n—14 ———(—n—1) __ o —
Ai,j = Om—1 Az‘,n+1 Om—1 ( ) = Az‘,n+1 = Oy,

where o; = A, ,,41. Taking 7 = n+ 2, it follows that a@; commutes with
o1. Applying this to the first relation of the presentation of B,, ,, given
in Proposition BI], it follows that the a; commute pairwise. Projecting
the remaining relations for B,,, into B,,,/H give nothing new, ex-
cept for the surface relation which yields ag - - - @, 572" = 1. Hence
By.n/H is an Abelian group generated by @7, . .., @, and o7, in which
the relation @ - - - &, 0721 = 1 is satisfied. Since @ is surjective, we
conclude by the Hopfian property of free Abelian groups of finite rank
that @ is an isomorphism, so By, ,/H = Z", and H = ['y(B,, ).

Taking m > 3 and H = I's(B,,,), condition (i) is satisfied, and we
conclude from the above arguments that I's(B,,,) = I'2(By,n). This
proves part (f]) of the proposition.

Taking m > 5 and H = (B,,,)?, condition () is satisfied, and we
conclude similarly that (B,,)® = Ta(Bnn) = (Bmn)Y, which proves
part ([) of the proposition.

Now let us prove part (d) of the proposition. Let m = 4 and
n > 2, and making use of the previous notation, set H = (B,,)?.
Then condition (§) holds, and indeed (By,)"/H is Abelian. As in
the case m > 5 (cf. equation (26)), we see that t3 commutes with o7.
From the remaining two Artin relations, we see that Tityo7 = t2071 2ty
and t301ty01t3 = tyo1t3o1ts. But t3 commutes with both ¢, and oy,
hence the second equation reduces to t301t207 = 907 2ty. From the first
equation, we see that t3 = 1, in other words, o; and o3 are identified
under m to & say, and there is just one Artin relation of the form

0050 = 050 03. Further, fori =1,...,n,
— —1 _ — —1
Ai,n+2 =0 Ai,n—l—l 01 =03 Az‘,n+1 g3 = Ai,n+1,
N — 1 N — N —
Ai,n+3 = 02 Ai,n+2 09 ~ = 09 Az‘,n+1 09 = Ai,n+1, and

— —1 _ = =1 _
Ai,n+4 =03 Ai,n+3 03 =03 Ai,nJrl g3 = A; n+1-

So for each ¢ = 1,...,n, the A, ; are identified by 7 to a single element
@; which commutes with both @ and &3. So By,,/(Bs,)® is generated
by 7,05, a1, ...,0,_1, subject to the relations

20 = 09002, 0,00 =10y, 0;,=0,; foralll<ij<n-1

o
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So there exist homomorphisms
fﬁ B4,n — Bg(]D)2) X anl
given by

where (Ay,..., A, 1) is a basis of Z""!, and

7 B3(D?) x Z"' — By, /(Byy)®

defined by

’7\'(1(0'1) =0

m(0g) =72
and satisfying m = 7 o f. Since f is surjective, to prove the first
part of (f]), by Proposition f({d), it suffices to show that Ker (7)) =
(B5(D?))®).

First let us show that (Bs(D?))® C Ker (7). Let y € (Bs(D?))®.
In particular, y may be written as a word w(oq,02). Considering this
word to be an element x of By, since y € (B3(D?))®, we have that
x € (By,)? and f(x) =y. Since 7(x) = e, it follows that y € Ker (7).

Conversely, let y € Ker (7). Since f is surjective, there exists x €
By, such that f(z) =y, and so x € (By,)?. But since (By,)" is
the normal subgroup of By, generated by the commutators [0y, o],
[0k, Ai j] and [A;;, Av ], where 1 < k,1 < 3,1 <4,/ <nand 1 <
7,7 < 4, f is surjective and Z" ! is a direct factor of Bs(D?) x Z"1,
it follows that f ((Ba,)") = (B3(D?)®, and thus f ((By,)?) =
(B3(D?))®). In particular, y € (B3(D?))®. We thus conclude that
B3(D?)/(B3(D?)® x "' = B, ,,/(By,)?, which proves the first part
of ().

We now move on to the second part of (H). Consider the homo-
morphism B3(D?) — By, given by o; — ;. Since g ((Bs(D?))") C
(Byn)® for all i € N, there is an induced homomorphism

gt B3(D?)/(B5(D*))® — Byn/(Bin)®,
which sends the coset of o; onto 7;, as well as its restriction

g1 (Bs(D*)D/(B3(D?)® — (Byy) W/ (Ban)®.
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Similarly, since B4(S*\{z1}) = B4(ID?) by Proposition B4, the surjective
homomorphism By(S*\ {z1,...,2,}) — Bs(S?\ {x1}) given by closing
up the n — 1 punctures z», ..., x, induces a surjective homomorphism

h: Byn/(Bin)® — By(D?)/(B4(D?)),
which sends @; onto the coset of o;, as well as its restriction
hi: (Byn)W/(Byy)® — By(D*)W /(Ba(D?))®.

Hence we obtain the following commutative diagram:

(B3(D?)®/(B3(D?)® — B3(D?)/(B5(D*))® — (Bs(D?))"*"

"] | |

(Byn) W /(Byn)® Byn/(Byn)? (Byn)AP

") d !

(Ba(D*)D/(B4(D*)® — B4(D?)/(B4(D?)) — (B4(D*))*".

Note that the rows are all short exact sequences.

Now consider the first column. From [GI] and Proposition [,
we know that (Bs(D?))" /(B(D?))® and (By(D?))" /(B4(D?))? are
both free Abelian groups of rank 2, generated by their respective cosets
of u = o907y Vand v = 010207 2, By definition of g and h, it follows that
hi o g is an isomorphism, sending the (Bs(ID?))®)-coset of u (respec-
tively v) onto the (B4(ID?))®-coset of u (respectively v). Thus to prove
that (By,)M /(Byn)® =2 72, it suffices to show that g; is surjective. To
see this, let © € (By,)Y/(Byn)?. Since x € By, /(By,)?, it follows
from above that

r=w(o,0z) or™ o

where m; € Z for 1 < i < n—1 and w(7,73) is a word in & and
75. Projecting into (By,)P, since @ and &; map onto o, and @;
maps onto p;, and furthermore, o, p1,...p,_1 generate freely (B47n)Ab,
we see by exactness that the m; are all zero, in other words, = =
w(7,5z). Now take z = w(oy,00) € Bs(D?)/(Bs(D?)?, so that
g(z) = x. Projecting z into (B3(ID?))AP yields zero by commutativity
of the diagram (the homomorphism (B3(D?))** — (B,,)*" is injec-
tive), hence z € (Bs(D?))W/(B3(D?))?), and thus g; is surjective. So
(Ba(S?\{w1,..., 2, 1))V /(By(S*\ {1, ..., 2,}))? = Z2 which proves
the second part of part ().
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Finally, we prove the last part of part (J). Consider the short exact
sequence

1— (B4,n)(1)/(B4,n)(2) - B4,n/(B4,n)(2) i) (B4,n)Ab — 1.

Recall that (Bjy,,)"" is a free Abelian group with basis {a, p1,. .., pn_1},
and that up to isomorphism, we may identify Bs(D?)/(Bs(D?))® xzZ"~1
with By,/(Byn)?, where the Z" !-factor has a basis {ag,..., @, 1}
for which a(@;) = p;. It follows that @ admits a section given by o — @
and p; — @3, and hence

B4,n/(B4,n)(2) = (B4,n)(1)/(B4,n)(2) X (B4,n)Ab-

Taking the basis {1, 0} of (By,)Y /(By,)® = Z?%, the action is given by
piru=0o;u0; *=uand p; -V =a;0q; ' = since a; commutes with
o and 75, and o -w and o - U are obtained as in the proof of the second
part of Proposition f(d). This completes the proof of Theorem . [

5. The commutator subgroup of B,,(S*\ {x1,22}), m > 2

Let m > 2. As we saw in Theorem P, the lower central series
of Bp(S*\ {z1,...,2,})), n > 2, is constant from the commutator
subgroup onwards if m > 3. In this section, we study the case n = 2
in more detail. The special case m = n = 2 will also be analysed later
in Section [, and the case m > 3 and n = 2 will also be discussed in
Section [f.

From Remarks BY, we know that B,,(S*\ {z1,%2})) is the m-string
braid group of the annulus, and so is isomorphic to the Artin group
of type B,,. Presentations of these groups were obtained in [Lamni,
M4d], as well as in [KP|| (we will come back to this presentation in
Proposition pf). Annulus braid groups were also studied in [[Cy, [PR].

Let m > 2. From Proposition B4, it follows from part (H) that
B (S*\ {z1,22}) & B,,(D*\ {z2}), and from part (d) that

Bm(D2 \ Azt {xs, - Tt T2 }) = Bm,l(D2)-
Hence B,,(S? \ {z1,22}) & B,,1(D?). But from part (@),

BmJGD)Q) = 7T1(]1)2 \ {23, 24, ..., Timya} , @2) X Bm<D2>
= Fm<A2,37 s 7A2,m+2) A Bm(D2)7

where B,,(ID?) is taken to be generated by o3, ..., 0,11, and the action
@ of the 0;, 3 <i <m+1, on the Ay ;, 3 < j < m+ 2 is that given by
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the Artin representation:

Agji1 ifj=1
CTZ'1427]'CT;1 = AQ_,}A2,j71A2,j lfj =7i+1 (27)
Ay otherwise.

From this, we may deduce that:

Agjq if j=i+1
0; ' Agjoi = S AgjAs i Ay if =i (28)
A otherwise.

PROPOSITION [[0. Let m > 2. Then:

(a) By(S*\ {z1,22}) = F,, x B,,(D?), where the action o is as given
in equation ([27).

() Ta(B(S\ {21, 72})) = Ker(p)  Ta(B(D?), where

p: Fo(Aas, ... Aomyo) — Z

1s the augmentation homomorphism, and the action is that induced
by .

Proor. Part (f) was proved above, and in any case is a restatement
of the results of Proposition B4. So let us prove part (). Set F,, =
F,.(Ass, ..., Asmie), and let L be the subgroup of F,, generated by
I'y(F,,) and the normal subgroup generated by the elements of the form
©(g)(h) - A, where g € B,,(D?) and h € F,,. By Proposition P9, it
suffices to prove that L = Ker (p).

First we show that L C Ker (p). Since p factors through Abeliani-
sation, we have clearly that ['y(F,,) C Ker (p). Further, since Ker (p)
is normal in F,,, it suffices to prove that o(g)(h) - h™t € Ker(p),
where g € B,,(D?) and h € F,,. This is equivalent to showing that
p(h) = p(p(g)(h)) = p(ghg™') and may be achieved by double induc-
tion as follows. If ¢ and h are both of length 1, in other words if they
are generators or inverses of generators of their respective groups then
the result holds using equations (7) and (B§). Secondly, if g is of
length 1 then the result follows for all h by applying induction on the
word length of h (relative to the given basis of F,,,) and the fact that

ghihag™" = ghig™" - ghag™

for all hq, hy € F,,. Finally the result holds for all g and all A by apply-

ing induction on the word length of g (relative to the given generators
of B,,(D?)) and the relation

91920(g192) " = g1k g7 ",
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where g1, g9, € B,,(D?) and W' = gyhgy ' € F,,. This proves that L C
Ker (p).

To see that Ker(p) C L, we determine a basis of Ker (p) with
the help of the Reidemeister-Schreier rewriting process. Taking X =
{Az3,...,Ag,nia} as a basis of F,, and U = {A%ﬁ}iez to be a Schreier
transversal, we see that a basis of Ker(p) is given by the elements

of the form {Aé 3 A9 jAz_gH)} , or in other words, the
’ ’ ’ i€Z, je{4,...,m+2}

conjugates of the As;A; 3 by A§73. Since L is normal in F,,, it suffices
to prove that the Aj;A; 3 belong to L. This is the case, since for all
3<j<m+l,
(p(O'j)(Agvj)AQ_Jl = A27j+1A2_7} € L, and
A27j+1A2_’i1} = A27j+1A2_7J1- . A27jA2_,}71 s A274A2_7§ € L.

Thus Ker (p) C L, which completes the proof of part () of the propo-
sition. U

We now investigate further the case m = 3. By Theorem P8,
['y(Bs(D?)) is a free group Fy(u,v) of rank 2, where u = o405 "' and
v = 030405 °. For i € Z, we set

. (it1 . .
o = A§,3A274A27§2 ) = A§,3040A27é and

B = Ay Aas Ayl = Ay foAss.
Using relations (£7) and (§), one may check that

-1 —1 —1 —1 4—1
uA2,3u = A273A275A273 UA273’U = A274A275A274A275A274
-1 -1 -1
UAQAU = A273 UA274’U = A274A275A2,4

UA2,5’LL_1 = AQ_E]A274A275 UA275’U_1 = Ai},AQ_,};AQ,?,AZAAZ,S,
then that
U()éouil :UA2,4A277§U71 = (A2,3A275A2j§)71 = ﬁfl
uﬁouil :UA2,5A277§U71 = (Ai:lsAQ’Lr))il(AiéA274)<A275A£é)'
(Ao3A95A53) " = Boja 1 BB

_ %
=r; - A273,

(29)

Ay su?
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where r; = Ay Ab s A, (1) ¢ Ker (p), and finally that

vagu :UA274A2_,3’U_ = (A2,4A2_7é)(A273A2,5A2_§)- )
(A2 3A25A53) (A3 3A24A53) 1 (A 3425453
(A24453) 7" = aofifhay ' B ag !

VBt =vA, sA5 év’l = (A273A275) (A273A2,4A2,3)’1
(A53424)(A25A453)(A23A24453) (A3 3A05453)-
(A35424453) (Ao 3A25453)  (AzaA53) 7"
= - 105 204 15001 Bacry. 511 0

7 —1 )
UA2,3U zsiA2,3,

(30)

J
where s; = Ay As5AL A5 AASS € Ker (p). Up to expressing the
r; and s; in terms of the a; and (;, we thus obtain a complete set of
relations for Ker (p) x Fy(u, v):

uou™t =Bt
-1 -1 1, -1

ufiu = rif 01 BilBi T (31)
. 111

VOG;U = S; azﬁz+1/81+2az+2 i+1% S5

1 1 -1 1 1.1
Vv = s; i— 10 o O 1/81a2+1/81+2al+2 i+1% S

for all 7 € Z. _
Setting a; (resp. ;) to be the Abelianisation of «; (resp. 3;), and
Abelianising equations (@) we obtain:

ﬁl+1
az - az+3 (32)
@+ Qiz1 + a2 =0
for all i € Z. By Proposition [0(), (B3(S*\ {z1,22}))"/ (Bs(S* \
{x1,25}))® is Abelian, generated by the a; and EZ-, i € Z, and the
Abelianisations of v and v, subject to these relations, and so is a free

Abelian group with basis ag, a7 and the Abelianisations of u and v.
Hence:

PROPOSITION [[T].

(B (S2\ {a1, 22}))" / (B (2\ {z1,22}))® =72 0
With the help of Proposition [[1], we may obtain the following:
PROPOSITION [[2.

By (S?\ {21, 72}) /(B3 (S2\ {o1,22}))? 274 % 22,



5. THE COMMUTATOR SUBGROUP OF B, (S2\ {z1,22}), m > 2 41

where Z* has a basis {ag,ﬁo,ﬂ, 5}, Z? has a basis {o,p1}, and the
action is given by:

o-uU="70 o-U=—-u+70v
0-526:&) U'gozgo—aa
p1- Qo = Qg /71'50250

pL U= —Gg—u+7 p1-0=—F — Q.

Proor. Consider the following short exact sequence:
1 — <B372)(1)/<B372)(2) — B3,2/(Bg,2>(2) i B3Ab — 1,

where Bz o = B3(S?\ {21, 72}). From Proposition [, (Bs2)Y/(Bs2)®
is a free Abelian group of rank 4 with basis ay, Eo, u and v, where oy =
Ag Ay 3 Bo = Ag5Ay 3 and U, v are the respective Abelianisations of
U= 0403_1 and v = 030403_2. Further, (ng)Ab is a free Abelian group
of rank 2, with basis o, p, where 4(73) = @(73) = 0, and a(A,,) = p
for j =1,2,3. Then o — o3 and p; — m defines a section for a. Let
us now determine the associated action. We have already seen that
oc-u=v,andoc-v=u"'v,s00-u=71,and 0-0 = —u + v. Further,
from equation (27), we have o - ag = 030903 = A;jAZg = a_}, and
o fo = 30005 = AysA5; = foag ', so by equation (BI), o - ap = Bo
and o - 50 = 50 — . As for the action of p;, we have p; - ag = ayg, S0
p1-Qg = g, and py- [y = A175~A275A5’§~Ai%. But A, 5 = 02105;20;114;7%,
hence

-1 _—2 -1 2 4-1
pr-Bo =04 03705 Az504035044, 3,

= A 3As4A25A53A55 = aifaay
and thus p; ~ﬁ~0 = 50. Also,

-1 _—-2 -1 ,-1 2
p1-u =0y 03 03 Ajsuly 5040304
-1 4-1 -1 -1 _-3 2

But

103:3040??04 = 05104 . 0304052 =u v,

1

Oy
v, and p; - u = —agp — u + v. Finally,
1

SO p1 - U = ozlﬁl_lozo_la_lu*

~1 141 11 - 1
pL-v = A1,503A175 “p1-u- Ay 50 A1’5 =03 -] oy a_ju

141 41 41 1, -1
:A2,3A2,4A275A2,4A2,3A2,4A273A2,4U u v

= a8 fagta s v,

'U'O-3

and so p1 - U = —@] — u, which proves the proposition. O
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We now give an alternative proof of Proposition [[T. Although it is
long, we believe the method to be of interest. We will also make use of
some results proved in Section [ to prove (Proposition [2) that (Bs3(S*\
{x1,25}))Y is a semi-direct product of an infinite-rank subgroup of
Fg}(Zl, cey 25) by FQ(U,’U).

Given B3(S?\ {z1,72}), from the generalised Fadell-Neuwirth short
exact sequence (equation (f])), we obtain

1 — Bs(S*\ {z1, 22}) = Bs1(S* \ {z1}) — Bi(S*\ {a1}) — 1.

Clearly ¢ is an isomorphism, and composing by the inclusion Bs ;(S? \
{x1}) < B4(S*\ {z1}), we obtain an injective homomorphism

fr Bs(S?\ {1, 22}) — Ba(S*\ {a1}).

Further, we have the following commutative diagram of short exact
sequences:

1 — P3(S?\ {21, 20}) — B3(S?\ {21, 20}) —= S5 —= 1

“"}p3<s2\{x1,xz}>lw “’l l (33)

1 Py(D?) By(D?) ——— Sy — 1,

where 7 is the homomorphism which to a braid associates its permuta-
tion, and ¢ is the composition of f and the isomorphism B, (S?\{z;}) &
By4(D?) given by Proposition B4(H). The right-hand vertical homomor-
phism is the natural inclusion of S5 in S;. So ¢ is also injective, and
p(o;) = oy for © = 1,2. The fact that the left-hand homomorphism
gp} Py(S2\ (21,2}) is an isomorphism follows from Proposition B4(p). From
this, we obtain the following commutative diagram:

(B3(S2 \ {1, xz}))(l) —— A

/| |

(Biy(D?))) ———— Ay,

A, being the alternating subgroup of S,,. By abuse of notation, we
use the same symbols for the restriction homomorphisms. If H =
(B4(D?))M N 771 (A3) then o(Bs(S?\ {1, 22}))Y € H by commuta-

tivity of the diagram. Since 7 (Ba (D)D) is surjective onto Ay, it follows

that [(B4(D?))" : H] = 4 (indeed, if g: G| — G is a surjective group
homomorphism, and Hy is a subgroup of Gy then H, = g '(H,) is
a subgroup of Gy, and G1/H, — Gy/Hy, *H; — g(x1)H> defines a
bijection, so [G; : Hi| =[Gy : Hy)).
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Recall from Theorem BG(H) that (By(D?))M) =2 Fy(a,b) x Fy(u,v),
where a = 030, b = 03030, 0y, u = 090", v = 01090, 2, and
the action is given by equation ([[§). The corresponding elements u =
o907 Y, v = 109072 of B3(S?\ {1, 72}) (we use the same symbols to
denote these elements) in fact belong to (Bs(S?\ {1, z2}))", generate
a free group of rank 2 (by injectivity of ¢), and we have

Fa(u,v) € ((B3(S\ {a1,22}))V) C H. (34)

Further, writing the elements of (B4(D?))) in the form Fy(a,b) x
Fo(u,v), if (w,z) € H then for all 2’ € Fy(u,v), 2712’ € H by equa-
tion (B4), so (w, 2)(e,2712") = (w,2') € H, and thus {w} x Fy(u,v) C
H. Hence H is of the form H; x Fy(u,v), where H; is an index 4
subgroup of Fy(a,b). Together with the identity, the elements 7(a) =
(12)(34), w(b) = (13)(24) and w(ab) = (14)(23) form a set of coset
representatives for Ay/As, so e,a,b and ab form a set of coset rep-
resentatives for Fo(a,b)/H;. If w = w(a,b) € Fy(a,b) then w(w) =
w(m(a), m(b)), and since 7(a) and 7(b) generate a group isomorphic to
Lo X Zg, we see that w(w) € Aj if and only if the exponent sums in w of
a and b are both even. In other words, H; = Ker (Fo(a,b) — Zs X Zs),
where a — (1,0) and b — (0, 1), is nothing other than the free subgroup
N of Fy(a,b) of rank 5 described on page B] of Section B, possessing
a basis 21 = a?, 2z = V?, 23 = (ab)?, z4 = ba*b™! and zz = ab’al.
Thus H = F5(21,. .., 25) X Fy(u,v), where the action is given by equa-
tions (RJ) and (R1]).

Hence we have a commutative diagram of the form:

Z

(4

. ==
\ / (35)

™

Ay (Ba(D?)V = By(D?) — By(D*)*

N——
>7

Y

where Bso = B3(S? \ {x1,22}), and
$: By(S?\ {w1,22})"" — By(D*)A"
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is the homomorphism induced on the Abelianisations. Since By(ID?)AP
is infinite cyclic, generated by an element &, say, Bs(S? \ {x1, z2})*P is
a free Abelian group of rank 2 with basis comprised of ¢ and A, we
have that ¢(c) = 7, and @(A) = 7%, So Ker (p) = Z is the subgroup
generated by (—2, 1) relative to the basis (o, A). Let

Vi Z — By(S?\ {21, 29})AP

be defined by ¥ (k) = k(—2,1). Then the final column of the diagram
is exact.

Now the idea is the following: given x € H, we may associate an
element of Z using diagram (BH). We shall show that this is a homo-
morphism, €’ say, which satisfies ¢'(z;) = 1 if i = 1,2,3, ¢/(z) = —1
if i = 4,5, and ¢'(u) = £/(v) = 0. From this, in particular, we obtain
e/ = noe, where e: F5(z2q,...,25) X Fy(u,v) — Z @ Z? is the homo-
morphism defined by equation (R3), and n: Z @® Z* — Z is defined by
77((17 0, 0)) =1 and 77«07 1, O)) = 77«07 0, 1)) =0.

To define &', we first choose the following correspondence between
B3(S*\ {z1,72}) and B,4(D?): the three strings correspond of Bs(S? \
{x1,75}) to the first three strings of B4(D?); the puncture x; to the
fourth (vertical) string; and the puncture x5 to the boundary of D?. In
this representation, if 1 <¢ < 3 and 1 < j < 2 then C; ;13 will denote
the element of B3(S? \ {1, z2}) represented by a loop based at point
i which encircles the j*® puncture. Suppose that z € By(D?) is such
that 7(2) € S3. Then we claim that there exists y, € Bs(S? \ {z1,72})
such that ¢(y.) = z; by injectivity of ¢, such a y, is unique. To
prove the claim, notice there exists y' € Bs(S? \ {x1,22}) such that
m(z) = 7(y') = mo p(y') by commutativity of diagram (BJ). Hence
()" € Ker (). But since the first vertical arrow of that diagram is
bijective, there exists y” € P3(S*\{x1, z2}) such that p(y") = o(y') 2.
Hence z = ¢(y.), where y, = y'y”, and the claim is proved.

So let x € H. Since H C (B4(D?))M, z is sent to 0 in B, (D?)AP.
By the claim, there exists a unique y, € B3(S*\ {x1,25}) such that
©(yz) = x, so by commutativity of diagram (BJ), v, € Ker (p), where
U, denotes the Abelianisation of y,. Thus y, = k(—2,1) relative to
the basis (0, A), where k € Z, and so x +— k defines a map &' from
H to Z, well defined since v, is unique, and a homomorphism because
¢ is. Further, ¢ o &/(x) = y,. Let us now calculate ¢’ on the given
generating set {z1,- - , z5,u,v} of H. Now y,, = v and y, = v, and since
Fo(u,v) C @(Bs(S? \ {z1,22}))" by (B4), it follows that 7, = v, = 0,

and so €'(u) = ¢'(v) = 0. Now consider

r; = a®> = (o307 ") = 030y 2.
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From the given correspondence between Bs(S? \ {x1,75}) and B,(D?),
z1 may be written as Csgoq 2 and so under Abelianisation is sent to
(—2,1). Hence €'(z1) = 1. Since 2, is conjugation of z; by o2, we obtain
similarly that '(z2) = 1. As for z3,

23 = (ab)? = (o307 " - 090307 Loy H)?

= 01_102030201_102_101_103020301_102_1

1 1

_ -1 -1 _2 -1 _-1_ -1 -1 -1 _—

so €'(z3) =1,
2y = ba’b™! = 090307 Loy o 203000005 toy

= 020302_201_102_103020103_102_1

1 2 1.2 2 2 _—1

-2 -1 2 -1 -1 -1 _ - - -2 -

-1 -1 2 -1 _—1

so €'(z4) = —1, and

-1 1

_ —1 -2 2 -1 -1

_ -1 -2 -1 _—-1_2

2

25 = ab’a

=2 _—-1_-2 2 =2 _—1-1 2

so €'(z5) = —1, and thus ¢ = no ¢ as claimed.

Let y € (B3(S?\ {x1,22}))Y, and let 2 = p(y). We know that
r € H, and y, = y. But §y = 0, hence &'(z) = 0, and o((B3(S? \
{21, 25}))M)) C Ker (¢'). Conversely, let z € Ker (¢/). Then ¢(y,) = =,
and 7, = Yoe'(x) =0, 50 y, € (B3(S*\ {z1,22})). Hence x €
p((B3(S? \ {1, 22}))"), and so Ker (&) = o((Bs(S* \ {z1, 22}))V).
But ¢ is injective, and thus Ker (¢') = (B3(S? \ {z1,22}))V. To de-
termine Ker (¢'), we use the following short exact sequence and the
Reidemeister-Schreier rewriting process:

1 — (B(S*\ {21, 221))V & Fy(2n, ..., 25) % Fo(u,v) S Z — 1.

The calculations are similar to those given in Section [] for the kernel
of the homomorphism p defined by equation (23); the difference is that
here Fy(u,v) C Ker (¢'). For all j € Z, set

z{zizf(ﬁl) ifi=23
Qi = i —(G- e
7 Az Y ifi=4,5.

These elements form a basis of Ker (p) (see Table § on page B0). To

obtain a generating set of Ker (&), we need to add the elements r; =
zjuz,”? and s; = z{vz;’, where j € Z. The relators of Ker (¢') are of
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the form z/Rz;?, where j € Z and R runs over the set of relators given
by equations (B0) and (RT). Fori=1,...,5, let us set t; = uz;u~! and
w; = vzv~ L. First let ¢ = 1. Then for all j € Z, we have the relator:

J —1p-1_-J _ -1 (g4—1,—(+1) -1
nuziu ozt =y (it 2 ).

from which it follows that
riv = ({az )7y, (36)
This allows us to delete all of the r;, i € Z \ {0}, from the list of
generators. By induction, we obtain:
o {(2{1t121j)_1(2{2t121j+1)_1 e (tiz ) e i >0
i =

- , o 37
(A ) 0 O e <0 D

In a similar way, we may delete all of the s; except sy = v from the list
of generators, and we obtain:

B e B e e (LT I e

T EHwr VI E T i ) e i <0,

Notice that in equations (B7) and (BY), each of the bracketed terms
belongs to Ker (p), and hence so do rju™" and s;u~!. So they may be
expressed in terms of the «; ;. Now let ¢« = 2,3 and j € Z. Then we
have a relator

(swizy

j —1-1 —j _ —1 _j+l,—1_—j
Uzt 2T =0T 02 L 2,

which yields a relation of the form rjal-J'r’;l = Ztit7z7 by equa-
tion (Bf). Using equation (B7), we see that the elements uz] 22, )1
may be expressed solely in terms of the o ;. Indeed,

uoju”t = (rju ) T e tt 2 (rju . (39)
Similarly, ' '

vay vt = (s;u7 ) w2 (s;07h). (40)
Finally, let ¢ = 4,5 and j € Z. Then we obtain analogously:

uq; jut = (Tju_l)_lz{titlzl_j(Tju_l). (41)

Similarly,

va; vt = (5,070 wan 27 (s;07Y). (42)

This gives a complete set of relations for Ker (¢/). We conclude that:

PROPOSITION 42. (B3(S? \ {z1,22}))M = L x Fy(u,v), where L
is the subgroup of Fs(z1,...,25) of infinite rank freely generated by

{@ijtien je(asas) the action being given by equations ©), ¢a), ¢1),
and ([3), taking into account equations (B7) and (33). O
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From this, we may now determine (B3(S?\ {1, 72}))® /(Bs(S? \
{x1,25}))? by Abelianising the presentation of (B3(S?\ {z1,25}))V
given by Proposition 2, and thus reprove Proposition [[1]. First notice
that for all 2 < ¢ < 5 and all j,k € Z, zfozi,jsz = ok Hfw e
(Bs(S*\ {1, 22}))Y, let @ € (B3(S*\ {21, 22})) M /(B3(S*\ {21, 22}))

denote its Abelianisation. A simple calculation shows that:

—

loty” = Qo+ Q50+ Q31 — Qg 1 — Qu

tst;! = oy — a3y + Qs + oty !

3t1” = Qg1 — Qg1+ a5y + oty
—_ —

71 —_— —_ —_— —_— — —_— —_—

WoWy ™ = —Qy1+ Qg1 — Q31+ Q51+ Q50— Qa0+ Qo
—_ —

-1 _ — -1
W3wW; = Qo1 + Wy .

Abelianising equations (B9) and (f(Q) for i = 2 then i = 3 yields:

Q55 — Qq5 = Q251 — Q3,51

—_ N— —_ —
Q3 — Qg = Qg i1 — Q35411+ Q5511

— —— —_ — —_ —
0 =05 —Quj+ @511 — Qg jp1+ 0241 — Q3541

Qg jp1 + 025 = Q3 (43)

for all j € Z. Substituting equation ([[J) into the three other equations,
we obtain:

Q5 — Q1 = —0a, (44)
Q341 = Q5541 (45)
Qgji1 = Q5 = Qaji1. (46)

Similarly, if ¢ = 4,5,

tyt1 =ia 0 + Q59

Isty =+ o1 — Q31 + Q51+ Q50 + Qo 1

—~—

WaWy =Q30 — Q41 + Qo1 — Q31 + Q51
WsW1 =3 _1 — Qa0 + Qg — Qg1 + 2001 — Q31 + Q51+

Q50+ Q39— Qg _o — Qg 1.
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Abelianising equations ([]) and (f3) for ¢ = 4 then i = 5 and
applying the previous equations yields:

Qa; = Qa; + a;; which is equivalent to (f4)

0= 02,1 + a2 + 02511 (47)
ar; = Qg + 0 (48)

0=, 1+ as, + ag,11 which is the same as (7).

By equations (1), ((]), () and (fH) we obtain the solution

Qg3 = Qg0 = —A33k+1 — —O53k+1
Q9 3k+1 = g1 = —O3 342 = —Q5 3k+2
Qo ke = —(Qg0 + Q21) = —Q33K = —Q5 3k

Q3 = 2010 + Qg1

Qy3pr1 = —Qo0 + Qg1

Q342 = —Qa9 — 20091

for all k € Z, which satisfies the two remaining equations (f4)) and (E3).
We conclude that (Bs(S?\ {z1,22})) Y /(Bs(S? \ {x1,22}))@ is a free
Abelian group with basis {as,az1,u, v}, and this reproves Proposi-
tion (1.

We will come back to the special case m = n = 2 in the following
section.

6. The lower central and derived series of By(S?\ {z1,75})

From Section fJ and Theorem [, the only outstanding case for the
lower central series of the punctured sphere is the 2-string braid group.
As we shall see in this section, it is particularly challenging. We con-
centrate here on the case of the two-punctured sphere. The group
By(S*\ {z1,72}) has many fascinating properties, and as a result, we
are able to describe its lower central and derived series in terms of
those of the free product Z, * Z. In particular, we prove Corollary [L3,
Proposition [[4 and Theorem [[J. As we indicated in the Preface, the
techniques used in this section have since been applied in to
study the 2-string braid group of the torus, and similar results were
obtained (cf. Theorem [[9).

We start by determining T'y(P5(S? \ {z1,72})). The map Fp(S?\
{x1,23}) — F1(S*\ {z1,72}) is a fibration, and the fibre over a point
x3 of the base is of the form F|(S*\ {z1, %9, 23}). As in equation (g),
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this gives rise to a short exact sequence of the form:

1— 7'('1(82 \ {l‘l,l‘z,l'g} ,l‘4) — PQ(SQ \ {l‘l,ZL‘Q} s {l‘3,$4}) ﬁ)
TSP\ {zy, 20}, 23) — 1.

We use the following notation for the generators ~;;, 1 < 7,5 < 2 of
Po(S*\ {x1, 22}, {x3, 24}): the two punctures correspond to the points
x1, T2; and the two basepoints correspond to x3,x4. The generator v; ;
is equal to the generator A, j o of Proposition BI], and corresponds to
a loop based at x;;o which encircles z; in the positive direction.

Let o be the standard Artin generator of By(S? \ {z1,22}) which
geometrically exchanges the points x3 and z4. Then a (non-minimal)
generating set of Py(S?\ {1, x2}) is given by the union of the v; ; and
o2, and a generating set of By(S? \ {x1,r2}) is given by the union of
the 7, ; and o.

The kernel 71 (S? \ {x1, 72,23}, 24) of p, is the free group Fy(a,d)
of rank 2 on @ and b, where a = 7,2 and b = 722. The image of p,
is an infinite cyclic group; the homomorphism which sends (one of) its
generators to the element ¢ = v, of Po(S*\ {x1, 22}) defines a section
for p,. Hence

Py(S*\ {z1,22}) & Fay(a,b) %, Z, (49)

where we identify the second factor Z with (c). The action ¢ on the
kernel is given as follows (this may be checked using the presentation

of P (S* \ {x1,...,2,}) given in [GG4]):

o(c)(a) =cact =a
o(c)(b) = cbe™! = aba™ ",
which in fact is just conjugation by a.
As well as containing ['y(Fy(a,b)), by Proposition B9, To(P(S? \
{z1,75})) will also contain elements of the form [¢/,w], where w €

Fy(a,b) and j € Z. But from the form of the action ¢, [¢/, w] = [a’, w].
Hence

Da(Po(S*\ {1, 22})) = Ta(F2(a, b)), (50)
and thus the derived series (with the exception of the first term) of
Po(S%\ {1, 22}) is that of Fy(a,b).

By Proposition Bl Bo(S? \ {1, z2}) is generated by the v, ;, 1 <
1,7 < 2, and o, subject to the four relations:
Vi27220° =1
Y1172,10° = 1 (51)

O")/i,lO'il = %:,2 for i = 1, 2.
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Thus:

-1 _-2
C="721="7,10

b=1p0=0%,0 " (52)

_ _ -1
a=",2=0%,10 .

In particular, Bo(S? \ {z1,22}) is generated by o and 7 ;.
In what follows, we shall sometimes write simply P, o for Py(S? \
{z1,72}), and Bay for Bo(S? \ {1, 22}).

PROPOSITION 43.

(a) The commutator subgroup [Psa, Pas] of Pay is a normal subgroup
Of [P2727 3272] .

(b) The commutator subgroup [Py2, Bas] of Pao and Bas is a normal
subgroup of Pao and Bas.

(¢) The quotient group [P272,BQ72]/[P272,P272] is isomorphic to Z, and
is generated by the coset of the element [o,b] = b~ tc.

PROOF.

(a) This is clear since Pay < By .

(b) The fact that [P, Ba ] is a subgroup of P 5 follows from projec-
tion into the symmetric group S;. Since Ph9 < Bya, we see that
[P272, 3272] < 3272, and so [P272, 3272] < P272.

(c) Using equation (), we see easily that 0~2 = ab, and thus:

[0,a] = 0?0 2c o ?a =c taba ™t = bct =b(bte) T h!
[0,b] = 0?0 b =bla lca=b""¢ (53)
lo,c] = ovyiio oy = b~ e) o

We know that [P, 2, Ba 2] is the normal closure in By 5 of the set of
elements of the form [py, po] and their inverses, where p; € {a,b, c}
is a generator of P55, and ps € {0, a,b,c} is a generator of By,. If
p2 € {a,b,c} then [py1, p2] € [Pasa, Pas]. So we just need to consider

the cosets of the conjugates of elements of the form [p;, o]. Consider
the following relation:

plpr,olp™ = [p.lp1, ol] [p1, o). (54)
If p € Py, then since [p1, 0] € Pyo by (H), it follows that

-1

plpi,olp™ = [p1,0] modulo [Py, Pyl
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So suppose that p € Bys \ Pao. Then w = pot ¢ P, By
equation (pJ), we see that

oloyalot =obclo Tt =bteh- b =b o, a7t
[o,b]c ' =0btco ! =b e b-b=b""[0,b] b, and

1l =oglo,aloc™t = b o, 0.

Q

olo, clo
In other words, for all p; € {a,b, c}, we have
0[07 pl]ail = b*l[o.’ pl]ilb'

Hence

[0, lp1,0]] = wolo, prlo™ w™ oy, 0]

=wb o, p1] ow ™ [p1, 0]t = [wb ™, [0, p1] ] [ p1, 0] -
Thus by equation (), we obtain

1

[wb717 [07 /01]71} [plu 0-:| -
= [pl, 0']71 modulo [P2727 P272]7 since [O', /)1] € P272.

plpr,alp™!

By equation (B3),
[0,a] = [0,¢] = [0,b] " modulo [Py, P2,

and since [Bag, Pao] = [Py2, Bas|, we conclude that the quotient
(P29, Ba o] / [Py2, Pap| is infinite cyclic, and generated by the coset
of the element [0, b] = b~!c (using equations () and (F0), one may
check that b='c & [Py, Pas)). O

REMARK 44. Let us give an alternative proof of Proposition [
using Stallings’ exact sequence (). Since [Pao, Pao, [Pz, Bao] I Pao
and [P272, P272] Q [P272, 3272], we see that

[Ps2, 32,2]/[]32,2, Py,) < P2,2/[P2,2, Py ).
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We thus have the following diagram:

1 — [Py, 32,2]/[]32,2, Py o] — P2,2/[P2,2, Py o] — P2,2/[P2,2, Byol —1

Bz,z/[Bz,z, Bz,z]

S2

1.

The vertical short exact sequence is that of Stallings applied to the
usual exact sequence 1 — Py — Bso — Sy — 1. By Proposi-
tion B3, 32,2/[8272, Bss] is a free Abelian group of rank 2, with basis
{o,7.1} (notationally, here we do not distinguish an element of Bs s
and its Abelianisation). The kernel P272/[P2,2, By 5] of the projection
3272/[3272, By 5] — Sy certainly contains the free subgroup of rank 2
with basis {02,711}, and in fact is equal to this subgroup (for otherwise
it would contain an element of the form opy‘f’l, where p,q € Z and p
is odd, and thus would contain o, which is clearly not in the kernel).
Since Py /[Ps2, Pap) is isomorphic to Z* (by equation ([[d)), we see
that the kernel [Py 2, Ba o] / [P2,9, P> 5] of the horizontal exact sequence
is isomorphic to Z. Further, Ps 5 / [P22, Pss] is freely generated by a,b
and c. From the relation 07,1071 = 7492, we see that b = [0,¢] - ¢, and
so b and ¢ project to the same element in P / [Py2, Bas]. Hence (the
coset of) bc™! is a non-trivial element of [Py 2, Ba o] / [Pa2, Ps o], which
yields the result.

We thus obtain a short exact sequence of the form:
l— [P2,2, P2,2] - [P2,2732,2] —Z—1,

for which the homomorphism s: Z — [Py, Ba ] defined by s(1) = b~ 'c
defines a splitting. Since [P, 2, Py is the normal closure in P, 5 of the
set of elements of the form [p1, po] and their inverses, where pi, py €
{a, b, c}, and the action in Fy(a,b) of conjugation by c is just conjuga-
tion by a, we see that [Pa 2, P 2] is the normal closure in Fy(a, b) of the
element [a, b, and that:

b tOwde) ™ = (b ra)w(b )™ for all w € Fy(a,b).



6. THE LOWER CENTRAL AND DERIVED SERIES OF By(S?\ {w1,22}) 53
Hence the action of b~'c on [Py, Pys] is that of conjugation by b~ 'a,
and so by the above short exact sequence,

[Pa2, Byg] = [Pog, Paa] Xy Z
= ['9(Fo(a,b)) @y Z by equation (B0),
where the action 1) of Z on I'y(IFy(a, b)) is given by conjugation by b~ 1a.

PROPOSITION 45. [Ps, Bas] = [Ba2, Bapl.

From this, it follows immediately that:

COROLLARY [[3. To(Ba(S?*\ {z1,22})) = T2 (Fa(a, b)) xy Z. O

ProOOF OoF PROPOSITION [I5. Consider the following commutative
diagram of short exact sequences (obtained by taking the first two
vertical sequences, and the second and third horizontal sequences, and
then completing to the whole diagram):

1
[Baa, By o] — [Ba2, BQ,Z]/[PQ,Za By —1

1 Py By 2L 1
1— P2,2/[P2,2, By ] — B2,2/[Bz,27 By ) Loy 1.
1 1 1

As in Remark [i4, the third row is Stallings’ exact sequence (§) applied
to the second row. By exactness of the third vertical sequence, it follows
that [3272, 3272] = [P272, 3272]. |:|

We may obtain an alternative description of T'y(By(S? \ {z1, z2}))
as a free group of infinite rank. To see this, notice from part (H)
of Proposition B4 that B,,(S? \ {z1,72}) = B,,(D? \ {z»}), and from
part ({) that
B(D?\ {2}, {x1, 23, . ., Ty }) = Bm,1<D2>'
Hence By(S*\ {z1,22}) = Bs1(D?). But from part (d),
BQJ(]D)Q) = 7T1(]D)2 \ {ZL‘g, ZL‘4} ,l‘g) X BQ(DQ)

= Fo(v2,1,722) Xy (0), (55)
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where the action, obtained from equations (B1]), (59) and (B3), is given
by:

©(0)(V2,1) = 7222
p(0)(722) = ’72,21’72,172,2-} 9
So if w = w(y21,72.2) € Fa(y2.1,722) then
p(o)(w) = 72f21w(7272, Y2,1)Y2,25 (57)

in other words, the action consists of exchanging v and 7, 2, then con-
jugating by 7y, 5. Let N denote the normal closure in Fy(7y,1,72.2) of the
elements of the form ¢(o7)(w)-w™!, where j € Z and w € Fa(v2.1,72.2),
and let L be the subgroup of Fy(7y2,1,72,2) generated by I's(Fa(v2.1,72:2))
and N. Then it follows from Proposition Pg and equation (EJ) that
a(721(D?)) = L.

PROPOSITION 46.

(a) L is the kernel of the homomorphism v : Fa(y21,72.2) — Z, where
¥ 18 augmentation.
(b) L is a free group of infinite rank with basis {z;}

ez, Where z; =

75,172,272T§i+1) for all i € Z.
Since L =2 F2(32,1(D2)) ~ B, (S?*\ {1, z2}), we obtain immediately:

COROLLARY 47. Ty(By(S? \ {x1,22})) is a free group of infinite
rank with basis {z;},.,, where z; = 73,172727;}”1) for all i € Z. O

PROOF OF PROPOSITION [i§. First observe that ¢ factors through
the Abelianisation of FQ(’YQJ,’YZQ), and so FQ(FQ(’YQJ,’}/ZQ)) - Ker (’l/})
Secondly, from equation (), o commutes with cb = 731722, and it
follows from equation (B7) that

o"w(y2,1,22)0 " =

{(’72,172,2)m/2w(72,17 Yo.2) (V2,172,2)™ 2 if m is even

(72,17272)7(m71)/272_éw(72,2, 72,1)7272(72,17272)(7”*1)/2 if m is odd.

So for all j € Z, ¥(p(c?)(w)w™) = 1([0?,w]) = 0. Since the same
is true for products and conjugates in Fo(y2,1,722), we see that N C
Ker (¢), and thus L C Ker (). Now let us show that Ker (¢)) C L.
To see this, we first apply the Reidemeister-Schreier rewriting pro-
cess in order to obtain a basis of Ker (¢)) (which is a free group since
it is a subgroup of Fo(y21,722)). Taking {7y21,722} as the basis of
Fa(v2,1,72,2) and {7571}i€Z as a Schreier transversal, the process yields
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i —(i+1) . .
Y517Y2,2Y21 as a basis. But for all i € Z,
k) k) ZGZ

i —(i+1 i 1, —i i —1, —i
Varvovzs T = e van = 1h10(0)(121) V51 Yok
which belongs to L by definition. This proves that Ker (¢)) = L, and
that L is a free group of infinite rank with the given basis as required.

U

REMARK 48. Since I'y(Fa(7v2,1,72,2)) is the normal closure of the
commutator [ys,1, Yo.2] in Fa(v2.1,722), and

2,1 722) = (V21 - 22721 - Vo) (22721)

= (2,1 - (0) (2,1 )721 - ¥21) (0(0) (v2,0)721)

it follows that I's(F2(7y2,1,722)) is contained in N, and so L = N =
Ker ().

REMARKS 49. In fact, the group By(S?\ {z1,x2}) is of particular
interest since it may be interpreted in several different ways.

(a) As well as being isomorphic to By;(ID?), it is also isomorphic to
the 2-string braid group of the annulus.

(b) One may reduce the presentation given by equation (BI]) to the
following:

Bo(S®\ {1, 22}) = (0,702 | (0722)° = (7220)?), (58)
which is nothing other than the Artin group of type By [Ci, [].
(c) The above presentation shows that By(S?\ {x1,z5}) is a one-relator
group. Interpreting it as the 2-string braid group of the annulus,
it follows from that it has infinite cyclic centre generated by
the full twist of B3(D?), which written in terms of our generators,
is of the form (0722)?. Further, the relation may be written as
[0, (0722)%] = 1. In particular, By(S* \ {x1,22}) is a one-relator
group with non-trivial centre.

(d) Setting D = 07,9, from above, we obtain the presentation

(0,D | [0, D% =1). (59)

So By(S? \ {z1,7s}) is isomorphic to the Baumslag-Solitar group
BS(2,2) [BY.

(e) Following [FG], using the presentation (p9), consider the homo-
morphism of By(S? \ {z1,z2}) onto Z[D] = (D) given by taking
the exponent sum of D. It follows from the Reidemeister-Schreier
rewriting process that the kernel is a free group Fyo(o, DoD™1) of
rank two, and thus that

By (S*\ {x1,25}) = Fo(0, DoD ™) x Z[D],
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where the action is given by D-(¢) = DoD™! and D-(DoD™1) = 0.
In other words, the action exchanges the two basis elements of the
kernel (and not just up to conjugation as in equation (F7)), and so
is an involution. From this, it follows that By(S? \ {x1,z2}) is an
HNN-extension of the free group Fy(o, DoD™!) with stable letter
D.

(f) Still following [FG]| and using the presentation (B9), consider the
homomorphism of By(S?\ {1, z2}) onto Z[o] = (o) given by taking
the exponent sum of . Applying the Reidemeister-Schreier rewrit-
ing process, one sees that that the kernel is generated by an infinite
number of generators z; = 0;Do; 1 i € Z, subject to the relations
7 =x2=D?forall i € Z.

Applying [KMd, McCad| to Remarks J(d) above, we see immedi-
ately that:

PROPOSITION [[4. By(S*\{x1,x2}) is residually nilpotent and resid-
ually a finite 2-group. O

Using the algorithm given in [[CFL)], one may determine the quo-
tient groups of the lower central series of By(S*\ {z1,72}). But these
quotients may also be obtained explicitly using the results of [[Gd, [Lab]:

THEOREM [[5. For all i > 2, T;(By(S?* \ {z1,22})) = Ti(Zy * Z),
and:

Li(Ba(S* \ {21, 22})) /Tiia(Ba(S* \ {1, 22})) = Ti(Zo % Z) /T4 (2o % ZL)
X 70® D Lo,
—_——

R; times

where

i—2
R =
J=0 | kli—j
k>1

W 1s the Mobius function, and

1 0 —1\"
ak:E<Tr(_1 1) —1).

REMARKS 50.
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1+ 1 /{ZOék
(a) One may check that R;,1 = R; + MZH ! ( ’ ) T and that
k>1

k k
(0 1) (1=VB) | (1415
L T 5 5 :
k
(b) By induction, one obtains <_01 _11) = <°§ff; f_jkﬁ)’ where

(fr)k>o0 is the classical Fibonacci sequence defined by fo =0, f; = 1,
and frio = fre1 + fr for all £ > 0.

(c) A simple calculation shows that Ry = 1, R3 =2, Ry =3, Rs =5
and Rg = 7.

The following lemma and corollary will be used in the proof of

Theorem [[3.

LEMMA 51. Let G be a finitely-generated group.

(a) Suppose that there existsi > 2 such that I';(G)/Ti+1(G) is a torsion
group. Then for all j > i, I';(G)/T'j41(G) is a torsion group.

(b) Suppose that there exists i > 2 and n € N such that 2™ = 1 for
all x € T4(GQ)/Ti11(G). Then for all 7 > i, y* =1 for all y €
L5(G) /T (G).

PrOOF OoF LEMMA F1. Let X be a finite set of generators of G.
From [MKS], we recall that for all i > 2, I';(G)/T;41(G) is a finitely-
generated Abelian group, generated by the cosets of the simple i-fold
commutators of elements of X. We prove part () by induction on j:
suppose that I';(G)/I';11(G) is a torsion group for some j > 2. Now
let y € I'j11(G)/Tj12(G). Then there exist simple j-fold commutators
T1,...,25 € I'j(G), 21,...,2¢ € G and €q,...,e; € {£1} such that y
is equal to the I'j1o(G)-coset of [y, z1]°! - - - [y, 2¢]°*. By hypothesis,
there exist my,...,my € N such that 2} € I';11(G) for i = 1,... k.
Set m = lem(my, ..., my). Then modulo I';»(G),

y" = ([x, 2] - [, 2] ™)™ = [, 2] [ 2] =1,

since each of the commutators [z]", 2;]% belongs to I'; 1 o(G). This proves
part (H). Part (f) follows similarly, taking m; = --- = my, = n in the
above proof. O

COROLLARY 52. The lower central series quotients of Zo *x 7. are
1somorphic to the direct sum of a finite number of copies of Zs.

PROOF OF COROLLARY 3. Let z,y generate Z, and Z respec-
tively. Then I'y(Zs * Z)/T'3(Zs * Z) is a cyclic group generated by
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the coset of [x,y]. But modulo I'3(Zy*Z), [z,y]> = [z%,y] = 1, and the
result follows from Lemma 1 and using the fact that the lower central
series quotients of Z, x Z are finitely-generated Abelian groups. U

PROOF OF THEOREM [15. Consider the presentation (59) of the
group By(S?\ {z1,22}). Let Zy xZ = (D,T | D’ = 1). Since the
centre of By(S? \ {x1,22}) is generated by D?, we obtain the following
central extension:

1 — (D2 — By(S2\ {z1,22}) 5 Zoy +Z — 1,
where (D) = D and ¢(0) = 7. Since 1 is surjective, for i > 2, it
induces a surjection ¢;: [';(Bo(S? \ {z1,22})) — Ti(Zy * Z). Using the

fact that (By(S?\ {x1,22}))*? = (D, o) = Z2, this gives rise to the
following commutative diagram of short exact sequences:

1 —> Do (Ba(S?\ {z1, 22})) —= Ba(S?\ {21, 22}) 22> Z B 7 —> 1

. :

PQ(ZZ * Z) ZQ * 7

1

ZQ@Z—>1,

where Ab denotes Abelianisation. Now 1)y is injective, since if z €
Ker (15) then z € Ker (¢), so there exists k € Z such that x = D2
But since z € Ty(By(S?* \ {1, 22})), its Abelianisation is trivial, so
k = 0. Hence 15 is an isomorphism. But for ¢ > 2, since 1, is the
restriction of 1y to Ty 1 (Bo(S*\ {x1,22})) onto T'i11(Zy * Z), it follows
that ¢); is an isomorphism for all 7 > 2, and that

Di(Ba(S* \ {1, 22})) /Tis1 (Ba(S* \ {1, 22})) = Ti(Zo+ Z) /T2 (Zo % Z).

This proves the first part of the theorem.

We now calculate the successive lower central series quotients I';(Zg*
7)/Ti41(Zo*Z). This may be done by applying the results of [[G4d, [Lab]];
we follow those of [Gd|. From Corollary 3, for each i > 2, I';(Zs *
Z2))Ti11(Zy % Z) is the direct sum of a finite number, denoted by R;
in G4, of copies of Zs.

To determine R;, one may first check that in Theorem 2.2 of [[G4],
Us(xz) = 0 and R° = 0 for all k > 2 (RY° represents the rank of the
free abelian factor of I'y(Zy % Z) /Ty 11(Zy x Z)). Secondly, referring to

the notation of Section 3 of that paper, we see that y = z, 2 = 1%,
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2

U(r) = 1=, and
d z(r —2)
— (In(1 -U =
dz (In( (z))) (r—1)(x2+2x—1)
ot 1
-1 x—A x—A
where A\ = %\/5 are the roots of 2 +x — 1. So from equation (3.22)

of [G4], we observe that for k > 2,

ak:l(Ter—l),

k
where M = (_01 _11>, and Tr M* = (—=1)F (\¥ + A®). The second
part of the theorem then follows from Theorem 3.4 of [G4]. O

We may thus describe the derived series of By(S?\ {1, 2}) in terms
of that of the free group of rank 2:

COROLLARY 53. For allt € N,
(Ba(S?\ {wr, 22})Y 2 7((Z * 2)1),
where w: 7 x 7. — Zgy * 7 is the homomorphism obtained by taking the
first factor modulo 2.
ProoOF. Let Gy,Gy be two groups. If m: G; — Gs is a surjec-
tive homomorphism, then the restriction |, : (G1)") — (G2)W,

and by induction on i, so is the restriction 7, a : (G1)™ — (Gy)D.
Taking G; = Z x Z and Gy = Zs * 7, it follows that

(Zy % Z)D = w((Z % Z)D).
But ' '
(Ba(S*\ {1, 22})) = (25 + 2)")
by Theorem [[§ which proves the corollary. O
We now determine explicitly Ts(Bo(S? \ {1, z2})).

PROPOSITION 54. Let py: To(Bo(S* \ {x1,22})) — Zy be the homo-
morphism defined by pa(z,) = 1 for all n € Z, where {z,}, o, is the
basis given by Corollary 4. Then Ts(Bo(S? \ {1, 22})) = Ker(ps). In
particular, T'3(Bo(S* \ {z1,72})) is a free group of infinite rank with a

basis given by {znzal}nez\{o} U{z4},.ez, and
Lo(By(S*\ {w1, 22})) /Ta(Ba(S* \ {21, 22})) = Zo.

REMARK 55. Since Ry = 1, this agrees with the result of Theo-
rem [[J in the case i = 2.



60 3. LOWER CENTRAL AND DERIVED SERIES OF B,,(S?\ {z1,...,2n})

PRrROOF. We start by calculating the action under conjugation of
the generators Yo.1,722 and o of By(S* \ {x1,22}) on the generators
2, of Ta(Bo(S? \ {1, 32})). Clearly v2,12,751 = znt1 and 222,755 =
202412y - Further, it follows from equation (F7) that

-1 _ _n—1 —-n
O2n0 =729 72,1722

which rewriting in terms of the z; yields:

02,0 = 1 1

-1 -1 1.1

1 20217 An—2%y 1202 %y ifn>0
_ 1 .

20 () =l 21 if n <O0.

Let us apply the Reidemeister-Schreier rewriting process to the basis
{20} ez Of Ta(Ba(S?*\ {z1, 22})), taking the Schreier transversal {1, z}

for py. This yields a basis {Z"Z()_l}nez\{o} U {202m }mez of Ker (p2), or

equivalently a basis {Z"zal}nez\{o} U{z%},.cz. Since

P (anrj—ll)(zn—lz;_lz) T (2’120_1) for all n > 0
" (Zn+1zﬁl)71(2n+225+11)71 - (2271)"" for alln <0,

and 2112, ' = [a, 2] € T3(By(S? \ {1, 22})) for all i € Z, we see that
202y € Tg(By(S? \ {x1,25})) for all n # 0. Finally, if m € Z then
Zmzo = (2mzo )28, But [o,21] = 25 '2 Y, s0 22 = (2125 1) o, 20) 7! €
[3(Bo(S? \ {1, z2})). Thus Ker (py) C T3(Bo(S? \ {1, 22})).

To prove the converse, observe first that T's(Bo(S?\ {1, z2})) is the
normal closure in By(S*\{x1, z2}) of the commutators [y2.1, 2,], [12.2, 2n)
and [0, z,], where n € Z. Tt follows easily from the above expressions
that these elements belong to Ker (py). Further, conjugation by each
of 721, 72,2 and ¢ induce automorphisms of I'y(By(S? \ {z1, x2})), each
of which leaves Ker (ps) invariant, and so induces an automorphism of
Zso, which is in fact the identity in all three cases. Hence for all n € Z,
all conjugates of [Y2.1, 24), [V2.2, 2] and [0, 2,,] by elements of By(S?*\
{x1,15}) belong to Ker (ps), and so T'3(By(S? \ {x1,12})) C Ker (py).
We conclude that T's(Bo(S? \ {z1,72})) C Ker(py), and Ty(By(S? \
{z1,22}))/T3(B2(S* \ {1, 22})) = Zo. u

7. The commutator subgroup of B,,(S*\ {z1,z2}), m > 3

As we already observed in Remarks B, B,,(S* \ {x1,z2}) may be
identified with the m-string braid group of the annulus. The case
m = 2 having already been studied in Section [}, let us now suppose
that m > 3. In this case, we know from Theorem [ that the lower
central series is constant from the commutator subgroup onwards. The
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following presentation of B,,(S? \ {1, z2}) was obtained by Kent and
Peifer:

PRrROPOSITION 56 ([KB]). If m > 3 then B,,(S*\ {x1,72}) admits
a presentation of the following form:

generators: 0g,01,...,0,_1 and T.
relations:

o0, =00, if li—jl#1,m—1and0<i,j <m—1 (60)

2

T o = 0441 for0<i<m—1. (62)

The indices should be taken modulo m.

The m points should be thought of as being arranged around the
centre of the annulus. The generator oy corresponds to a positive half-
twist between the m™ and 1% point, while 7 is represented geometri-
cally by a rigid rotation of the annulus about the centre by an angle
27 /n. It follows from this presentation that:

COROLLARY 57 ([KH]). If m > 3 then B, (S*\{x1,22}) is isomor-
phic to the semi-direct product of the affine Artin group Zm_l (gener-
ated by 0g, 01, . ..,0m_1, and subject to relations ([6Q) and (1)) by the
infinite cyclic group generated by T, the action being that of conjugation
given by relation (63).

Then we have the following result:

PROPOSITION 58.

(a) If m > 3 then Ty(B,,(S* \ {z1,72})) is generated by the elements
r

P = crfcrgal_(kﬂ), k= afcroal_(kﬂ), for allk € Z, and q; = 007"

for3 <i<m-—1.
(b) If m = 3, then Ty(B3(S? \ {x1,22})) is defined by the following
relations:

Prs1Pp oy =1 (63)
Tk+17“k_+127’;;1 =1 (64)
PRDk+1T k2P o o P = L, (65)

where k € 7.
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(c) If m > 4 then To(B,(S* \ {x1,22})) is defined by the following
relations:

PesiPiioPs = 1 (66)

Tk+17’];i27,];1 =1 (67)

PrsPriads Priads =1 (68)
PrGiDji q; - =1 forall4d <i<m-—1 (69)
ql-qjqi_lqj_lzlforall3§i<j—1gm—2 (70)
¢iGi+19 = Gi+19iGi+1 for 3 <1 <m —2 (71)
PRDRAT 1 D = 1 (72)

rkqir;ilqi_l =1forall3<i<m-—2 (73)
Tka71Tk+2q;Llf17’/;i1%£1 =1, (74)

where k € Z.

We may thus deduce the first derived series quotient of the group
Lo(Bm (S*\ {71, 22})):

COROLLARY [[§. Let m > 3. Then

Z* ifm=3
(B (8 \ {21, 221))Y [ (B (82\ {rr, 2})) ™ 2422 ifm =4
Z  ifm>5.

PROOF OF PROPOSITION p§. We start by applying Proposition P9
to the result of Corollary p1, namely that

B (S*\ {21, 22}) = Aoy % (7).

If w= ozl ---o:i’“ € Zm_l, it follows from the action, given by equa-

tion (63), that for all [ € Z,

—1 l -1 &y iy, —€ip, —€iy
T wT - w f— 0i1+l “ .. O-Z'k+l . ik “ e Uil ,

where the indices should be taken modulo m. Hence ot w Tt e
['5(A,,—1), and it follows from Proposition P9 that

Ty(B(S”\ {w1, 22})) 2 Ta(Ap1).

A presentation of I'y;(A,,_1) may be obtained by observing that
(/Tm_l)Ab > Z, and by applying the Reidemeister-Schreier rewrit-
ing process to the generating set {og,01,...,0,_1} of Ay and the
Schreier transversal {af } ez Lhe generators and relations not contain-
ing o define a group isomorphic to B,,(ID?), and using [[GI]], we obtain
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all of the generators and relations of Proposition pf not containing ry.

= . . —(k+1
The generator oy of A,,_1 gives rise to generators r;, = crfaocrl (k1) o

[2(A,,—1), where k € Z. The relation (BI) with j = 0 and i = 1 yields
relations of the form Tk+1rl;12r,;1 =1, k€Z in Fg(ﬁm_l). If m=3
then we obtain relations (BH) in ['y(A,) from relation (B1) with j = 0
and i = 2, and so we deduce the presentation given in part (H). If
m > 4, taking j = 0 in relations (B() with i = 2 (resp. 3 <i < m — 2)
yields relations (73) (resp. (73)) in [y(A,,_1). Finally we obtain rela-
tions () in Ty(A,,_1) by taking j = 0 and i = m — 1 in relation (F1]),
and this gives the presentation of part (f). O

PROOF OF COROLLARY [IG. It suffices to Abelianise the presen-
tations of Proposition pg, in other words, we add the commutation
relations of all of the generators to the given presentations. First let
m = 3. Equation (BJ) becomes trivial using equations (63) and (£4).
Further, it follows from equations (fJ) (resp. (B4)) that all of the py
(resp. ) may be expressed uniquely in terms of py and p; (resp. 1o and
1), and hence (B3(S?\ {z1,72}))"P is a free Abelian group of rank 4
with basis {po, p1, 70,71}

Let m = 4. By equation (f6), it follows from equation (6§) that g3
Abelianises to the trivial element, and then equation (B7q) implies that
equation ([(4) becomes trivial. By equation ([[3), pxr = ry for all k € Z.
As above, all of the py (resp. 1) may be expressed uniquely in terms
of po and p; (resp. ro and r1), and thus (By(S?\ {z1,z2}))"P is a free
Abelian group of rank 4 with basis {po, p1}.

Finally, if m > 5, by equation ([[T) we obtain additionally that all of
the ¢; Abelianise to the trivial element. By equation (E9) (resp. ([[3)),
e = Pr1 (resp. 1, = r11). Thus (B, (S?\ {x1,22}))"P is a infinite
cyclic group generated by py. O

8. The series of B,,(S*\ {x1, z2, 73})

The situation seems to be more difficult in the case of the braid
group of the 3-punctured sphere. As we remark below, if m > 2
B (S* \ {x1, 22, 23}) is isomorphic to the affine Artin group of type
Chy, for which little seems to be known [[ATl, [ChH|]. We have not even
been able to describe the commutator subgroup. We may however
obtain some partial results, notably in Proposition the fact that
the successive lower central series quotients of By(S?\ {1, 2o, v3}) are
direct sums of Z,, which generalises part of Theorem [[3.

We begin by considering the case m = 2.
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ProposITION 59 ([BG]). The following constitutes a presentation
of the group By(S*\ {x1, z2, 23}):
generators: o, p1 and ps.

relations:
(op1)? = (mo)? (75)
(0p2)? = (p20)? (76)
pP1p2 = P2pP1-

Geometrically, By(S? \ {x1, 2, 23}) may be considered as the 2-
string braid group of the twice-punctured disc, which in turn may be
considered as a subgroup of By(D?) whose first and fourth strings are
vertical. Then with the usual notation, p; = A9, po = A3, and o is
the positive half-twist of the second and third strings.

Let Gy be the group generated by o and p; subject to the rela-
tion (), and let Gy be the group generated by o and p, subject
to the relation ([[d). It follows from the above proposition and Re-
mark E9(H) that Bo(S?\ {1, z2, x3}) may be considered as the amalga-
mated product G * ) G2 of two copies of the Baumslag-Solitar group
BS(2,2), subject to the additional relation [p;, po] = 1. We wonder if
it would be possible to obtain determine the commutator subgroup via
this amalgamated product.

The following gives a generalisation to By(S? \ {x1, z2, z3}) of part
of Theorem [[3.

PrROPOSITION 60. For all © > 2, the lower central series quotient
[i(Bo(S? \ {21, 22, 23})) /Tis1(Ba(S*\ {21, 22, 23})) is isomorphic to
the direct sum of a finite number of copies of Zs.

PROOF. As in the proof of Lemma [1], since By(S? \ {1, 2o, 73})
is finitely generated, it follows that the lower central quotient I';( B (S?\
{21, 29, 23})) /Tiy1(Ba(S?\ {z1, 72, 23})) is a finitely-generated Abelian
group. By part (H) of Lemma [J], it suffices to prove the result in the
case ¢ = 2, which we do using the presentation of Proposition f3. We
know that Ty(Bo(S? \ {x1, 22, 73})) /T3(Ba(S? \ {z1, 72, 23})) is gener-
ated by the TI's-cosets of the commutators of the form [z,y], where
x,y € {0, p1, p2}, and thus of the commutators [, p;| for i = 1,2. But
[0, p;] = [p;'o~']7! by relations ([5) and ([7§). So modulo I's, [o, pi]
is congruent to [o, p;] 7!, in other words, [0, p;]? is trivial modulo I's,
which proves the result. O

As was pointed out in [ATl, BG], Bo(S*\ {21, z2, x3}) is isomorphic
to the affine Artin braid group Cy. More generally, for m > 2, B,,(S*\
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{1, 22, 23}) is isomorphic to C,, and by [BG] has a presentation of the
form:

generators: py, p, and 0;, 1 <7 <m — 1.
relations:
oio;=0j0; if [i —j| >2and 1 <i,5 <m—1
0;0;+10; = 0410011 for all 1 < 1 <m— 2
P1 = Pm
pr=o;forall2<i:<m-—1
pm=o;forall 1l <i:<m—2

(Cflﬂl)2 = (P101)2

(Um—lpM)2 = (pmam—l)z-

The following result yields information about the derived series quo-
tients of B,,(S? \ {z1, T, 13}).

PROPOSITION 61. Let m > 2. Then B,,(S*\ {z1, z2, x3}) is a semi-
direct product of a group Ko by B,,(D?). In particular, for all i > 1
(B (S?\ {1, 72, 23}))9 is a semi-direct of a group K; by (B, (D?))®.

PROOF. Consider the homomorphism of B,,(S* \ {z1, 22, x3}) to
B,,,(D?) which sends p; and p,, onto the trivial element. From the above
presentation, it is clearly surjective, and it admits an obvious section.
So if Ky denotes the kernel then B,,(S? \ {z1, z2, 73}) = Ky x B,,,(D?).
The second part is obtained by induction on 4, using Proposition 9. [



CHAPTER 4

Presentations for I'y(B,(S?)), n >4

In this chapter, we give various presentations of I'y(B,(S?)), n > 4.
In Section [, we begin by giving a general presentation obtained using
the Reidemeister-Schreier rewriting process. In Section [, we consider
the case n = 4, and derive the presentation given in Theorem B({).
In Section ], we restate the presentation given by Proposition [ for
the case n = 5, and for n > 6, we refine the presentation to obtain
Proposition 1.

1. A general presentation of I'y(B,(S?)) for n > 4

PROPOSITION 62. Let n > 4. The following constitutes a presenta-
tion of the group T'y(B,(S?)):

generators:
w = 0%"_2
_ —1 _ -2 _ 2n-3 —(2n—-2)
U = 0901 , Uy = 010901 ,...,Usp—2 = 01 0904
—1 —1
1)1 — 0301 g oo ,'Un_g — O'nila'l .

66
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relations:
vv; =v0; if i —j| >2and 1 <i,j <n-—3 (77)
ViU 10; = V100541 Jor all 1 <i<n—4 (78)
w = (79)
wivjuho;t =1 forj>2andi=1,...,2n -3 (80)
Unp—pvjwuy w oyt =1 for2<j<n-—3 (81)
U o0y Uy =1 fori=1,...,2n—4 (82)
Ugp_svywugw oy gl ot =1 (83)
Usgp—ov1wUgvy uy fw ™ ot =1 (84)
Uppruisu; P =1 foralli=1,...,2n—4 (85)
Uz _owuy "W tuy 5 =1 (86)
wuyuy w g, =1 (87)
Ug (V1 -+ Vp g2 gUp_g - V) ) Ugp_sw = 1 (88)
ug(vy - - -vn_4vfb_3vn_4 01 )Ugp_ow = 1 (89)
Ui (V) - Upg V2 Uy wWu_3 =1 fori=4,...,2n—2  (90)
U (V1 Up_ g2 gUp_g - - U1 )Ugp_gw = 1. (91)
In what follows, we shall denote by equation (m;) the equation (m)

of the above system for the parameter value 1.

PROOF. Taking the standard presentation (f]) of B, (S?*), and the
set {1, 01,02, ..., 0%"‘3} as a Schreier tranversal, we apply the Reide-
meister-Schreier rewriting process to the following short exact sequence:

1 ——=T9(Bn(S?)) — B, (S?) — (B, ($?)) A —1.

As generators of I'y(B,(S?)), we obtain w = "2, O{Oial—(jﬂ) and
03"73@, where 2 <7 <n—1and 0 < j < 2n—4. We replace the latter
by Jf"*‘g’ai cwTl = 03”7301-0';(2"72). Now turning to the relations, if

i > 3 then for j = 0,...,2n —4, the relator o,0;0; 'o; " of B,(S?) gives
rise to relators

: L L (42 a1 1
oloyoior o toy? = ol oo, UF2) | gt o ta,’
of T'y(B,(S?)), so
g1 —(+2) _ g _—(+) _ -1 _

If j = 2n — 3 then we have a relator of the form

2n—3 -1 -1 _—(2n-3) _ 2n-2 -1 _2n—2 —(2n-2) 1 _—(2n-3)
Jl 0'10'i0'1 O-Z' 01 —01 'O-io-l '01 01 Ui 01 3
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and thus v;_, commutes with w, which gives relation ([9). If 1 <
i,7 < n—3and |[i — j| > 2 then the relator cri+2crj+2crijr12crj_£2 gives
rise to the single relator vivjvi’lvj’l, while if 1 < i < n — 4, the relator
0i+20i+30i+20;130;120;13 yields the single relator v;v;11v; = v 110041,
thus we obtain equations (7) and (7g).

Now for i = 1,...,Usp_2, let u; = o toyo;?. From the relator
0{_102010201_102_101_101_(j_1), we obtain the relators ujuj+2uj_j1 it j =
1,...,2n — 4, Uy, _swuyw tuy,) 5 if j = 2n — 3, and g, _swugu; fw if
j = 2n — 2, which gives respectively equations (BY), (Bf) and (B7).

If 2 <4 < n— 3 then the relator a{flaHQaga;}za;laf(]fl) yields
relators viuj“v;lu;l if j = 1,...,2n — 3 and vwuyw v, tuy! , if

Jj =2n — 2, and so we recover equations (B() and (BI)).
1_—-1_—(-1)

- T = )
From the relator o7 ‘309030, toz o, to we obtain the rela-
1 03020309 03 09 0y )
-1, -1, —1:¢. _ -1, -1, -1, —1
tOrs U1 U 11VIU; U] Uy itj =1,...,2n—4, vjUgp_2v1WU] W™ V] Uy, _3

if j = 2n — 3, and vywuviuy ' w oy gl if § = 2n — 2, which gives

equations (B2), (B3) and (B4).

Finally,
2 _ —2 2 -3
0102+ 0p—20, 10pn—2°*°0201 = 010207 +010301 *-*
n—3 —(n—2) n—2 —(n—-1) n—1 —n
R 01 O'n_QCTl * 0-1 O'n_lO'l * 01 On_lgl *
n —(n+1)  _2n—4 —(2n—3) _2n—2

and conjugating by a{_l, we obtain relators

2 e
Uo(V1 *+ Uy qUf _qUp g+ -V )Ugp_sw  if j =1
2 e
Uz(V1 -+ VgVl _qUp_g - U1 )Ugpow  if j =2
2 . .
Ujp1 (V1 -+ - VgV _qUp_g - -V )wuj_g if j=3,...,2n —3

wuy (Vg - Vg2 gUn g ) Ugp g i =20 — 2.
This yields the remaining equations (B), (B9), (P0) and (P1]). O

We now simplify somewhat the presentation of I'y(B,,(S?)) given by
Proposition p3. From equations (BQ) and (B3), for i« = 1,2 we obtain
the following equations:

uv; = vjug forall j>2 BUh)

U = vjuf1u2 forall 7> 2. (BT.)
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This allows us to eliminate equation (BI]) as follows. For all j > 2, we
have:

vjwulw_lvjl = wvjul_lvjlw_l by equation ([79)
= wvjuwj_lu;lw_l by equation (B{,)
= wuyuy 'w™" by equation (80;)
= Ugy—o by equation (B7),
and this is equivalent to equation (BT]), which we thus delete from the
list of relations.

Suppose that for some 2 < ¢ < 2n — 4, we have equations (B0, 1)
and (BJ;). We now show that they imply (B0, +1). For all j > 2, we
have:

UiV 505 = u uvgu hu by equation (B)
= u;yvjuv;' by equation (BU;)
=1 by equation (B0, 1),

which yields equation (BU;+1). So we may successively delete equa-
tions (BUan—3), (BOkn—4), .., (BUs) from the list of relations.

We now show that we may delete all but one of the surface rela-
tions (B§)—(P1]). First suppose that we have equation (BY). Now
Ugp_2WU3 = Ugy,_3wUiuz by equation (BF)
= Ug,—3wuy by equation (BH).
This implies equation (BY) which we delete from the list of relations.
Now suppose that we have equation (B0} ; 1) for some 5 < i < 2n—2.
Let us write A = vy - - -vn_4vgf3vn_4 --+v;. Then wu;_ou; 11 = A™1. So
wu;_3u; = wu;_su; 1 by equation (BH;)
=A"' by above.

This yields equation (P{;), and so we may delete successively equa-

tions (PU4), ..., (Bl —3).
Now suppose that we have (P1]), so Aug,—sqwu; = 1. Then

AWty _slion—o = Awls, swuiw™' by equations (BY) and (BA)
= w(Aug,_swui)w™ by equation ([9)
=1 by above.

This implies equation (B0, —2) which we delete from the list of rela-
tions.
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Finally, suppose that we have equation (B§). Then

1 .
Augy,_qwuy = Aug,_zus, swuy by equation (B8, — 4)

= Aug,_swus by equation (B7)
=1 by above.

This yields equation (P1) which we delete from the list. It thus follows
that we may delete all but one of the surface relations; let us keep
equation (RY).

Summing up, we may thus delete relations (B1]), (BO;) for i =
3,...,2n — 3 and (§9)-(01) from the presentation of I'y(B,(S?)) given
by Proposition (2.

2. The derived subgroup of B(S?)

The aim of this section is to use Proposition [J to derive the pre-
sentation of T'y(B4(S?)) given in Theorem B(d), from which we were
able to see that ['y(B4(S?)) = Fy x Q.

We first remark that in this case, the relations ([[7), (7§), (BQ)
and (B1)) do not exist. Further, from relations (B), we may obtain the
following;:

Uy = u;»,u;l U = uguglugl

-1 -1, —1
Us = Ug Ug Ug = Uy Ug Uyg,

which we take to be definitions of uq, us, us and ug, so we delete equa-

tion (BY) from the list of relations. From equation (Bg), we see that
w = UZ1U3U;2U4U§1.

We conclude that T's(B4(S?)) is generated by us, uy and v;.

Let us return momentarily to the situation of the previous section.
Before deleting all but one of the surface relations, we shall derive some
other useful relations.

Consider the surface relations (B§)—(P). From relations equa-
tion (BY) and (P0s) (resp. (B1) and (Pdy)), it follows that us (resp.
uy) commutes with v?. But these two equations are equivalent to the
relations

uz = v}, and (92)

Ug ~— U%. (93>
Further, equations (PT) and (PJ) imply equation (00,), and equa-

tions (BY), (0F) and (P3) imply equation (B0s), so we replace equa-
tions (D04) and (B0s) by equations (99) and (DJ).
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As in Section [, we can then delete equations (PUs) and (B1) from
the list of relations, which becomes: ([[9), (B3), (83), (B4), (Bf) and
(B7). We now analyse these relations in further detail.

From equation ([9) and the definition of w, we see that v; =
uy 'usugus ', Up to conjugacy, equation (B2;) may be written as follows:

1 = ugvy tug fusugug oy usug g oy

= u3vf1u§1u4uz1u3u4ug1v1—1u3uglu§1m = u3vf1u§1u4v1—1u;11}1,

and hence we may replace equation (B%;) by:

uzviuy T = ugvy tuy vy (94)
Up to conjugacy, equation (B2) may be written:

uz 'vius = uy v ugny (95)
By equations (P4) and (DZ), the left-hand side of equation (§23) may

be written:

1 2 1 2 1
)

u3v1u§1u4v1—1ufvl— = UgVjUs V]~ =

so relation (BJ;) is automatically satisfied, and we thus delete it from
the list.
. -1 -1 . .
Using the fact that v; = wuy ‘usuguz ', equation (B,) may be writ-
ten:
_ 1, -1, -1, 1, 1 _ -1, o1 -1 -1 -1 1
1 = U4U1U4 Uz UV Uy U3V = UgU1U3 U3U, Uz U4V Uy UV
-1, -1, . —1 —1
and from this, we obtain equation (93), using the fact that v? commutes
with uy. So we delete equation (89,) from the list.
We now consider equation ([9). Using equations (94) and (P3), we
obtain:
_ -1 —1 1, -1, -1 _ -1 1, -1, -1, 1
—1 -1, -1, —1 1 -1 —2 1
which up to conjugacy, and using the fact that v? commutes with wus
yields:
—2 1, 1 -1 4 _
Uz vy uzvy uszvy - vy = 1. (96)
We replace equation ([(9) by this relation.

From equations (P3) and (D), the left-hand side of equations (Bf)
and (B7) collapse, and so we delete them from the list.
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After immediate cancellations, equation (B4)) becomes:
_ -1 -1 -1, -1, -1
1 = uy ug wgviuy uszv; ugv;
-1, -1 -1, 1 -1 -1, -2
= Uy Uz UgU1U, UV V1U3V| U4V1U,4 U4Vq
—1, —1 —1 1, -1, -2

which up to conjugacy and inversion yields equation (Bg). So we delete
equation (B4) from the list.

After immediate cancellations, the left-hand side of equation (B3)
becomes:

u§1u4v1u;lugufugluwfluf = u3u4vf1 = u§1u4vluzlvf1u3vf1
= uz tugvyug tugvy T =1,
using the fact that v; = uj usuquz’, and applying equations (P4)
and (P3). So we delete equation (B3) from the list.
We are thus left with relations (), (03), (p4), (0F) and (Pq). We

now multiply together equations (P4) and (D). The product of the
left-hand sides, by equation (Pg), is given by:

U3U1U§201U3 = V1,

while by equations (03), (03), (B4), (P3) and (BG), the product of the
right-hand sides is given by:

ugvy g torug fojuger !t = gy tug tojug oy tuge
= vy viugvr ug g oy gy
= ’1}1_11)1_1U41)1U21U511)1_1U31)1
= vflugvflug%l_lugvl = vl_g.

From these two equations, we conclude that:

vi =1, (97)
and so equation (Pg) becomes:
uz 2o tugvy fugoy !t = 1. (98)

The list of relations now becomes: (P3), (03), (1), (B]), (P4) and

(F). We may rewrite the corresponding presentation as follows:

PROPOSITION 63. The following constitutes a presentation of the
group T'y(By(S?)):

generators: g1, gs, g3, where in terms of the usual generators of B4(S?),

_ _ 2 -3 _ _ 3 —4 _ _ -1
g1 = U3 = 07020 ", go = Uy = 07020, and g3 = vy = 0307 .
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relations:
g3 =1
992, =41
2 —
gz — g2
g3 = G201
959195 19095 1 = 1
91°95 9195 ‘9195 ' = 1.

PRrROOF. Rewriting ug,us and v; in terms of the g;, we obtain di-
rectly the first three and the last of the given relations. As for the
fourth and fifth relations, we obtain respectively:

1 -1 -1 _ —1, -1, —1, —1
93929193 91 G2 = U1UalUz Uy Uz Uy

-1 1, =1, —1, —1\ —1

= ug(uy VU] VU5 U] Uy Uy

2 1 -1 1 4y 1 1
= ugqus(uz “vy uzvy uzvy vy usz Uy =1

by equations (P3), (P7) and (Pg§), and

-1, -1 _—1 1 -1 1 -1 1
g2 91 g3 g19295 = Uy Uz Uy U3U4V;

-1 —1, -1, -1, -1, -1 -1

= V1Uy (U4'U1 Uy V1V Uz Uy ug)u4vl

1 1 1

o 1, —1, 1, ~1 2y —1 1 _
= viuy ug(viug U] Uz vy U3 Uy ugvy s =1

by equations (P4]), (07) and (9§). Thus the presentation we derived
with generators us,us and v; implies the system given by Proposi-
tion 3. Conversely, given this system, we have

-1 -1,—1 -1 -1, -1
which is equation (P4), and
-1 _ -1, -1 2 _ -1 2 __ -1 3_,—1 -1
Uz VU3 = Uz UV UZV| = U3V1U3 V1V = Uy V1U4V] = Uy VU4V -,

which is equation (D). Hence the system given by Proposition B3 is
equivalent to our presentation with generators us, uy and vy, and so in
particular is a presentation of T'y(B4(S?)). O

3. The derived subgroup of B;(S?)

For the case n = 5, we obtain the following presentation directly
from Proposition (2

PROPOSITION 64. The following constitutes a presentation of the
group Ty(B5(S?)):
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generators:
w = o®
U = azafl, Ug = 01020f2, LU = azazafg
v = 03of1,vg = 040f1.
relations:

V1UV2V1 = V2V1Vg
w=wv; fort=1,2
UV = VaU2
UoVy = vgul_luz
v Uiy u oy =1 fori=1,...,6
urvywugw oy ug oyt =1

ug wugvy Tutw oyt =1

-1 -1 .
Ui U oty =1 fori=1,...,6

ugwuy 'w st =1

wuyuy 'w tugt =1

us (v1v3v) Jurw = 1. O

4. The derived subgroup of B,(S?) for n > 6

We now suppose that n > 6. Then the generator vz exists.

Suppose that equation (B3;) holds for some 1 < i < 2n — 5. Let
us take j > 3. We eliminate equation (BZ; ;1) as follows: applying
successively equations (B(J) and ([77), we obtain:

quvlquvflu;rlzvfl = v]luivjvlv;luHijvflv;lu;rllvjvfl
= v;1(uivlui+2vflu;+llvfl)vj
= 1 by equation (BZ;).
It thus follows that we may delete successively equations (B2, —4), .. .,
(B2) from the list of relations.
Suppose that equation (B3)) holds. Applying the idea of the previous
paragraph, we eliminate equation (B4):

u2n,gvlwugvfluflw’1vfl :vj’lugn,gvjvlwvj’lulvjvflw’lvj’l-
—1 -1
Ugp,_9VjUy

-1 -1, -1, -1 1
=0, (Ugn—3V1WULV] W Uy, o¥7 JU; = 1.
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Let us suppose that equation (BJ;) holds. Then so does equa-
tion (B2, _4). We eliminate equation (B3) as follows.

1 1 -1

1 -1 -1 - 1

-1 -1
b UQn_4’Uj1)1’Uj Uon—20V;V, ’Uj

-1 -1
Ugp—3V;5V;

—1 -1, -1 -1
=0; " (Ugn—aV1Ugn _2V] Ug, 307 JU; = 1.

PROPOSITION 65. Let n > 6. The following constitutes a presenta-
tion of the group Ty(B,(S?)):

generators:
w = O_%n—Q
UL = 090 ", Uy = 010507 2, Ugp_g = af"_?’chal_(Qn_z)
v = 0301_1, ey Up_3 = an_lcrl_l.
relations:

ViV = U;0; Zf |’L - j| Z 2 (99)
VUiV = Vi1 ViVigq for all 1 <i < j<mn—4 (100)
w = (101)
uv; = vjus, where j > 2 (102)
Ugv; = vjuy ug, where j > 2 (103)
urviuy ugvy tuy oyt =1 (104)
Uipupu; b =1 foralli=1,...,2n — 4 (105)
Uy wuy ' w tuyt s =1 (106)
wuguy w gty =1 (107)
U (V1 ++ Uy V2 3Up g+ V1 U 3w = 1. (108)
U

This presentation may be refined further. Set
A=wv;-- -vn_4v,2h3vn_4 <o-vp and y = u§1u1u2uf1.
Applying equations ([[0) and ([07) to equation ([0§), we have:
1

1 = ug Aoy _sw = u2Au2n_2wu1_1 = uzAwuluz_luf ,

SO

w=A"y.



76 4. PRESENTATIONS FOR T'2(B,(S?)), n >4

Since A commutes with w by equation ([[01]), we see that A commutes
with y. Equations ([0) and ([[07) are then equivalent to:

Ugn-3 = Aluy 'y T A (109)
Uz o = A uy lugy A (110)

Let ¢ > 2. One may check using relations (Bg) and ([L00) that A
commutes with v;. Relation ([[01]) is then equivalent to v; commutes
with y. But this is implied by equations ([02) and ([[03). Indeed, from
these two relations we see that viugvi_l = qu; and viulvi_l = ulugl, and
then one may check directly that v; commutes with uy 'uyuguy’. This
implies that we may delete equations ([L01};) for 2 <i < n — 3.

From equation ([[03), we may calculate ug, . . . tg, 4, Ugy—3 and ug, o
in terms of u; and uy. Since all but the last two of these elements do
not appear anywhere in the rest of the presentation, we may delete
relations ([0F;) for i = 1,...,2n — 4, provided that we keep (as defini-
tions) the expressions for ug, 3 and g, o in terms of u; and uy. Let
us calculate the general term u; in terms of u; and us.

For 7 € N, we define v; as follows:

(ulugl if i = 0 mod 6

Uy if i =1mod 6

) ug if 1 =2mod 6
v u;'uy  if i = 3 mod 6
uj?t if i =4 mod 6

uy'  if i = 5 mod 6.

\

LEMMA 66. Let i € N, and let k > 0 and 0 < [ < 5 be such that
1 =06k+1+1. Then:

ykviyik Zfl = 07 15 2
Ui = _ _ .
yPuy fugvuy tuay™F if 1= 3,4, 5.

PRrROOF. The proof is by induction on ¢, one considers the six pos-
sible cases depending on the value of ¢ mod 6. O

We can then determine equations ([09) and (TI7) in the three pos-
sible cases. We let £k > 0 and 0 < [ < 5 be such that 2n — 2 =
6k + 1+ 1.

(a) 2n —2=0mod 6 (I =5):
ykuz—ly—k — A—1u2—1A

yPuy fuyy T = A g tuy A
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Hence:
U1, Ug \:\Ayk
(b)2n—2=2mod6 (I =1):

ykulyfk — AfluglyflA
yrusy ™ = A7y uy AL
(c) 2n —2=4mod 6 (I = 3):

ykul—ly—k — A_lul_lu2A
yrugy ™" = A7 g fu fug A
PROPOSITION 67. Let n > 6. The following constitutes a presenta-
tion of the group T'y(B,(S?)):
generators:

-1 -2

v = 0301_1, cyUp_3 = an_lcrl_l.
relations:
vv; = v if |i — j| > 2
Vi1V = V101 forall1 <i<j<n-—4
y=u
vju2vj’1 =y, wherej > 2
vjulvj_l = u1u2_1, where 7 > 2
urvruy tuguy tug oyt =1,
plus the two corresponding relations from (d), (@) and (&) of the
previous paragraph, where
Y= U2_1U1U2U1_1 and A = vy -- -vn_4vfb_3vn_4 -, O
REMARK 68. From this presentation, one could also delete, for
example, the generator us.
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