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Starting from an Hamiltonian description of the photon through the set of Bargmann-Wigner
equations, we derive new semiclassical equations of motion for the photon propagating in static
gravitational field. These equations which are obtained in the representation where we could diag-
onalize the Hamiltonian at the order h̄, present the first order corrections to the geometrical optic
equations. This Hamiltonian shows two new kinds of magneto-torsion couplings which can be also
interpreted in terms of Berry curvatures. But the most important result is that even in the absence
of torsion the photon does not follow the geodesic as a consequence of an anomalous velocity term
responsible for the spin Hall effect of light. Besides the velocity of light is not changed at this order
of the approximation.

PACS numbers:

In the last few years many studies focused on the trans-
port of quantum particles with spin. Indeed, manipulat-
ing spin polarization of electrons is a challenging goal in
semiconductor spintronics. Achieving this goal requires
the understanding of the spin transport mechanism in
systems with spin orbit (SO) interaction. It was found
that in such a system, a Berry phase in momentum space
plays an important role by affecting both particle phase
and its transport properties [1]. It is well known since
the seminal work of Berry [2], that when a quantum
mechanical system has an adiabatic evolution, a wave
function acquires a geometric phase. But it is only re-
cently that the possible influence of the berry phase on
transport properties (in particular on the semiclassical
dynamics) of several physical systems has been investi-
gated. In semiconductor, SO coupling being greatly en-
hanced with respect to the vacuum case, a theory of spin
transport in system with SO interaction is necessary. But
even in the vacuum, new fundamental results concerning
the semiclassical equations of motion of electrons were re-
cently derived. For instance in [3] and [4], considering the
Dirac equation in an external potential, it was shown that
the position operator acquires a spin-orbit contribution
which turns out to be a Berry connection rendering the
coordinates algebraic structure non-commutative. This
drastically modifies the semiclassical equations of motion
and implies a topological spin transport similar to the
intrinsic spin Hall effect in semiconductor [1]. A similar
non-commutative algebra has been also found in the con-
text of electrons in magnetic Bloch bands [5], leading to
an anomalous velocity term.

Despite its very different nature, the photon displays
many similar behaviors with electronic phenomena such
as energy bands in photonic crystal and localization.
These similarities stem from the wave like nature of quan-
tum particles. Because photon is also a spinning particle
it is important to understand if SO interaction may influ-

ence the transport of light in a similar way as electrons
in vacuum or in semiconductors. It has been long known
that there is no position operator with commuting com-
ponents and as a consequence photons are not localizable.
Therefore, one of the main differences between photons
and electrons also disappears as the coordinates of both
particles have actually noncommuting components. It is
precisely this property which is at the origin of the SO
interaction leaving no doubt about its contribution to the
propagation of photons. Therefore these recent studies of
the SO coupling in different systems taught us that one
can treat both kind of particles on an equal footing. It is
thus even more legitimate to wonder whether electronic
phenomena has photonic counterparts.

In addition, the localization of light rays is the essential
ingredient of the construction of the Minkowski space-
time. Also in the context of general relativity, it has
been argued that the Riemannian metric is determined
by the properties of light propagation [6]. A deeper un-
derstanding of the properties of light and in particular of
its SO interaction which is at the origin of the non local-
isability, is thus necessary to build a quantum version of
space-time.

It has already been observed that the SO coupling in-
duces a rotation of the polarization plane of light propa-
gating in a optical fiber with torsion [7]. This effect had
been predicted long ago by Rytov and Vladimirskii [8] [9]
and can be interpreted in terms of Berry phase [2] in mo-
mentum space. Recently, it was shown that the noncom-
mutativity of the coordinates (the Berry phase) affects
the trajectory or ray of light itself when it is propagating
in an isotropic inhomogeneous medium [3, 10]. Besides,
other approaches of spin-orbit contributions to the prop-
agation of light in isotropic inhomogeneous media has
been the focus of several other works [11] and has led
to a generalization of geometric optics called geometric
spinoptics [12].
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In this letter we will investigate how the propagation of
a photon in a static gravitation field is affected by its SO
interaction. Since the gravitation field is not scalar it can
be seen as an anisotropic inhomogeneous medium. Our
photon description is based on an Dirac like Hamitonian
in a gravitational field. The Bargmann-Wigner equations
allows us to build the wave function of a spin one particle
and to build dynamical operators which satisfy unusal
commutation relations in the representation where the
Hamiltonian has been diagonalized at the order h̄. Here
we reveal that this semi-classical Hamiltonian shows two
new kinds of magneto-torsion couplings interpreted in
terms of Berry curvatures. But even in the absence of
torsion we will show that the photon does not follow the
geodesic as a consequence of an anomalous velocity term
but the velocity of light is equal to c at this order of the
approximation. This deviation to the geodesic may be
not negligible close to very strong gravitation field like
black holes or at the first moments of the formation of
the universe. It is found moreover that the helicity is
general not conserved.

We start with the description of the photon dynamics
in the vacuum by considering the two Bargmann-Wigner
equations of a massless spin 1 particle:

γ(i)
µ ∂µΨ(a1a2)(x) = 0 (i = 1, 2) (1)

where Ψ(ab) = Ψ(ba) is the symmetrized Bargmann-

Wigner amplitude and γ(i) is a γ-matrix acting on ai =
1..4 [13]. This symmetrized direct product of two Dirac
spinors assures that the positive energy subspace forms
a 3-d space corresponding to the irreducible representa-
tion of angular momenta 1 deduced from the composi-
tion of two states with angular momentum 1/2. It can
be proved that Eqs.1 are equivalent to the Maxwell equa-
tions. Next, we write an Hamiltonian associated to each
Bargmann-Wigner equations Ĥ(i) = α(i).P which can be
diagonalized by the product of usual Foldy Wouthuysen
(FW) unitary transformations [14], U (i)(P) = (E + cβ ·
α.P)/E

√
2 such that

(

2∏

j=1

U (j)(P))Ĥ(i)(

2∏

j=1

U (j)(P)+) = Eβ(i), (2)

with E = Pc the energy of the photon in the vac-
uum. The wave function is also transformed and becomes
φ(a1a2)(P) = E−1

P (
∏2

j=1 U (j)(P)+)Ψ(a1a2)(P) in the FW
representation. Clearly Ψ(a1a2)(P) vanishes when the in-
dex 1 or 2 coexists with 3 or 4. Whereas the quasi-
momentum is invariant through the action of U (i), i.e.,
p =U (1)U (2)PU (1)+U (2)+ = P, the position operator be-
comes D = ih̄∂p +

∑2
i=1 A(i) with the gauge potential

A(i) = ih̄U (i)(p)∂pU (i)(p)+. By projecting the gauge
potential on the positive energy subspace, we obtain a
non trivial gauge connection allowing us to define a new
position operator r for this particle r = ih̄∂p +(p∧S)/p2

with S = h̄(σ(1) + σ(2))/2. This definition of the posi-
tion operator gives rise, through the commutation re-
lations, to a monopole in momentum space [xi, xj ] =
ih̄θij(p) = −ih̄εijkλpk/p3 where λ = ±h̄ is the helic-
ity and θij(p) is the Berry curvature [3]. We then built
the Hamiltonian of the free photon of positive energies
as H = (E(1) + E(2))/2 = pc with E(i) = pc the positive
eigenvalue of the operator Ĥ(i). Therefore, for free par-
ticles, the dynamical equations of motion in the FW rep-
resentation are trivially given by dr/dt = i

h̄ [r, H ] = pc/p

and dp/dt = i
h̄ [p, H ] = 0 which in particular implies for

the light velocity v = c.

We now extend our previous approach to the case of
a photon propagating in a static gravitation field where
g0α = 0, which implies ds2 = g00(dx0)2−gijdxidxj . Con-
sider again two Bargmann-Wigner equations of motion
with the following associate Hamiltonian of the Dirac
form :

H(i) = α(i).P̃ with i = 1, 2 (3)

and P̃ given by P̃α=g00(R)hi
α(R)(Pi + h̄ε̺βγΓ̺β

i (R)σγ)

with hα
i the vierbein, Γαβ

i the spin connection compo-
nents and εαβγσγ = i

8 (γαγβ − γβγα). It is known ([15])
that for a static gravitational field (which is the case con-
sidered here), the Hamiltonian H(i) is hermitian. For
reason of convenience, we will redefine the vierbeins in
the sequel hα

i → g00h
i
α. We now want to diagonalize

H(i) through a unitary transformation U (i)(P̃). Because
the components of P̃ depend both on the operators P

and R the diagonalization at order h̄ is performed by ad-
dapting the method detailed in ([16]) to block diagonal
Hamiltonians. To do so, after writing H(i) in a sym-
metrical way in P and R, we consider a formal situation
where R is at first considered as a parameter commuting
with P (this is of course a formal consideration). The

Hamiltonian written H
(i)
0 (we add the index 0 when R

is a parameter) can then be exactly diagonalized by the

usual FW matrix U
(i)
0 (P̃) = (E

(i)
0 + cβα(i).P̃)/

√
2(E

(i)

0 )2

with E
(i)
0 =

√
[α(i).P̃]2 =

√
[P̃.α

(i)
][α(i).P̃] owing to the

fact that for each parameter R the matrices hα
i and Γαβ

i

being independent of both the momentum and position
operators, β and α.P̃ anticommute and in the Taylor ex-
pansion of E(i) all terms commute with β and α(i).P̃.
In this context the diagonalized Hamiltonian is equal to

U (i)H
(i)
0 U (i)+ = cβ(i)

√
(α(i).P̃)

2
which reads

E
(i)
0 (P) = cβ(i)[(Pi + h̄εαβγΓαβ

i σγ)gij(Pj + h̄εαβγΓαβ
j σγ)

+ h̄(Pi + h̄εαβγΓαβ
i σγ)εαβγhi

aT̃ aαβσγ ]1/2 (4)

where T̃ aαβ = hα
i Γiaβ −hβ

i Γiaα is a torsion term without
the gradient of the vierbein. Now, to diagonalize H(i) at
the first order in h̄ it is shown in [16] that is enough to
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apply the following FW transformation

U (i)(P̃) =
E(i) + cβα(i).P̃√

2E(i)2
+ X(i) (5)

and then to project the transformed Hamiltonian on the
positive energy states. The energy in Eq.5 is given by
expression Eq.4 and R is no more considered as a param-
eter. All expressions in U (i)(P̃) are implicitly assumed
to be symmetrized in P and R and the corrective term
X(i) must be added to restore the unitarity of U (i)(P̃)
which is destroyed by the symmetrization. It is shown in
[16] that this term is expressed as

X(i) =
i

4h̄

[
A(i)

P l ,A(i)
Rl

]
U (i)(P̃) (6)

where we have defined the position and momentum

(non projected) Berry phases A(i)
R = ih̄U (i)∇P U (i)+ and

A(i)
P = −ih̄U (i)∇RU (i)+. After projection on the positive

energy subspace needed to realize the diagonalization [16]
the resulting position and momentum operators can thus

be written r(i) = ih̄∂p + A(i)
R and p(i) = P + A(i)

P where
the explicit computation gives for the components

A(i)

P k = −h̄c2 εabcP̃aσ
(i)
b (∇Rk

P̃c)

2E(i)2
+ O(h̄2) (7)

A(i)
Rk

= h̄c2 εabchk
c P̃aσ

(i)
b

2E(i)2
+ O(h̄2) (8)

Performing our diagonalization process leads us ulti-
mately, after some computations, to the following expres-
sion for the energy operator

ε̃(i) ≃ ε(i) +
h̄

2ε(i)

(
Pi + h̄εαβγΓαβ

i σγ
)

εαβγhi
aT̃ αβ

a σγ

+
ih̄

4ε(i)

[
∇Rl

(α(i).P̃),∇P l(α(i).P̃)
]

−(∇Rl
ε)A(i)

Rl
− (∇P lε)A(i)

P l (9)

where ε(i) = c
√

(pi + εαβγΓαβ
i σγ)gij(pj + εαβγΓαβ

j σγ).

In this last expression we have neglected contributions of
the curvature of order h̄2. The second and third terms
in Eq. 9 are kinds of gravitational spin-orbit terms and
have the same form as the spin-orbit interaction in the
diagonalization of the Dirac Hamiltonian in the presence
of electromagnetic perturbations [4] (to compare we just
have to do the replacement P̃ → P−eA(R)). These two
terms recombine to give h̄

2ε(i) PkT k
abε

abcσc = h̄B.σ/2εi

where we have introduced a ”magneto-torsion” field
Bc = 1

2PkT k
abε

abc with T k
ab the torsion defined as T k

ab =

hl
b∂lh

k
a − hl

a∂lh
k
b + T̃ k

ab and T̃ k
ab = hk

c T̃ c
ab. By the same

token, we can also recombine the two last terms in Eq. 9

and write (∇Rl
ε)A(i)

Rl
+ (∇P lε)A(i)

P l = −(A(i)
R ×p).B

′

/ε(i)

with another ”magneto-torsion” field which is vier-

bein independent B′

c = 1
2Pk

(
T k

ab − T̃ k
ab

)
εabc =

1
2Pk

(
hl

b∂lh
k
a − hl

a∂lh
k
b

)
εabc. Therefore the Hamiltonian

can be written ε̃(i) = ε(i) + h̄B.σ(i)/2ε− (A(i)
R ×p).B

′

/εi.
We can now build (as in the free photon case) the

Hamiltonian of the photon as the sum of the two Hamil-
tonians for one-half massless spinning particle ε̃ = (ε̃(1)+
ε̃(2))/2. By Taylor expanding the expression of ε(i) we see
that at the leading order in h̄ the sum may be recombined
to give

ε̃ ≃ ε + h̄B.Σ/2ε − (AR×p).B
′

/ε (10)

where ε = c
√

(pi + εαβγΓαβ
i Σγ)gij(pj + εαβγΓαβ

j Σγ)

with Σ = (σ(1) + σ(2))/2 the spin one connection and

AR =
∑2

i=1 A
(i)
R the Berry connection in position. De-

fine also AP =
∑2

i=1 A
(i)
P , the projected position and mo-

mentum are defined through the sum of the two Berry
connections associated to one-half spinning particles and
can therefore be approximated at leading order in h̄ by
the expression

r = ih̄∂p + h̄c2 P × Σ

ε2
(11)

p = P + h̄c2(
P × Σ

ε2
)∇RP̃ (12)

where ε2 = c2Pig
ijPj at the approximation considered.

Eq.10 shows that the spin couples to the gravitational
field through the magneto-torsion field B which there-
fore contains the spin connection. On the other hand,
the interaction involving the orbital part (AR×p) should
only interact with the spatial torsion so that B′ is present
in this case. As a consequence, an hypothetical torsion
of space may be revealed through the presence of these
interactions. From Eqs. 11 and 12 we deduce the new
commutations rules

[
ri, rj

]
= ih̄Θij

rr (13)
[
pi, pj

]
= ih̄Θij

pp (14)
[
pi, rj

]
= −ih̄gij + ih̄Θij

pr (15)

where Θij
αβ = ∂αiAβj − ∂βiAαj + [Aαi,Aβj ]. An explicit

computation shows that

Θij
rr = −h̄

(
ΣaP̃a

)
P̃c

2E4
εabchi

ahj
b

Θij
pp = −h̄

(
ΣaP̃a

)
P̃c

2E4
∇Ri

P̃a∇Rj
P̃bε

abc

Θij
pr = h̄

(
ΣaP̃a

)
P̃c

2E4
∇Ri

P̃ahj
bε

abc (16)

This semi-classical Hamiltonian is one of the main re-
sult of this paper. It contains, in addition to the usual
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term ε, new contributions coming from Berry connec-
tions corresponding to spin-orbit interactions. To de-
duce the equations of motion we need also ΘrΣ =
[ri, Σj ] = ih̄c2(−PjΣi+P.Σδij)/ε2 and ΘrΣ = [pi, Σj ] =

−ih̄c2(−PjΣl+P.Σδlj)h
c
l∇Ri

P̃c/ε2. The resulting equa-
tions of motion are then given by

ṙ = ∇pε̃ + ṗ×Θrr +
i

h̄
∇Σε̃ΘrΣ (17)

ṗ = −∇rε̃ + (ṙ × B′) .Θpr +
i

h̄
∇Σε̃ΘrΣ (18)

where (f .Θ)i = fjΘij . These are our new semiclassical
equations of motion for a photon in a static gravitational
field. The velocity equation contains the by now well
known anomalous contribution ṗ×Θrr which is at the
origin of the spin Hall effect of the photon in an isotropic
inhomogeneous medium of indice n(r) [3, 10, 11, 12].
This medium is characterized by a metric gij = δijn

−1(r)
and our results are thus a generalization to an anisotropic
medium of indice n−1

ij = gij . The momentum equation
shows a new contribution (equal to zero in the absence
of torsion) which being of order h̄ does not influence the
velocity equation. These equations show that due to the
Berry phases which correspond to spin-orbit interactions
a photon cannot follow the geodesic. This is an important
result because the propagation of light is at the origin of
the construction of general relativity. This Hall effect
of light is obviously a small effect (which nevertheless
has been observed in a inhomogeneous media [18]) but
can be greatly enhanced in a very strong gravitational
field like a black hole. In addition one can check that the
velocity of light get a correction of order h̄2 which lies be-
yond our approximation. At the leading order the helic-
ity λ is not changed by the unitary transformation which
diagonalizes the Hamiltonian so that it can be written
λ = h̄p.Σ/p. At the lowest order we get the equation

h̄
d

dt
(
p.Σ

p
) = P̃jΓj .AR (19)

where the vector Γj is defined by Γi,γ = εαβγΓαβ
i (r).

Eq.19 shows that the helicity is not conserved and its
variation is Berry phase dependent.

As a simple application let consider the symmetric
case gij(R) = δijF (R). We start with the follow-
ing Hamiltonian, as defined in [17], H0 = α.P̃ with
P̃ =(PF (R) + PF (R))/2. Specializing our diagonaliza-
tion to this case, leads us to define the FW transforma-
tion U(P̃) = (E + cβα.P̃ )/

√
2E2 + X where now E =

c(FP2F )1/2. The computation of the (projected) Berry
phases at the first order in h̄ gives AR = ih̄P × Σ/2P2

and AP = 0 so that the dynamical variables turn out
to be r = R + h̄P×Σ

2P2 and p = P. As a consequence
of AP = 0 we have X = 0 and the unitary matrix
is simply given by the usual FW transformation. This
leads us to the semiclassical diagonal Hamiltonian ε =

c
√

[α.P̃(r,p)]2 = c(PF (r) + PF (r))/2. We deduce the

following the Berry curvatures from the dynamical vari-
ables commutators : [ri, rj ] = h̄2(Σ.P)P/P 4, [pi, pj ] = 0
and [pi, rj ] = −ih̄gij . As a consequence, we derive the
following equations of motion ṙ = ∇pε̃ + ṗ×Θrr and
ṗ = −∇rε̃ which explain the Magnus effect observed in
[18]. In this case one check that the helicity is conserved
as d

dt(p.Σ/p) = 0 in agreement with ([17]).

In this paper, we have diagonalized at the first order
in h̄ the photon Hamiltonian in a static gravitational
field. This diagonal Hamiltonian displays new interac-
tions between two magneto-torsion fields and respectively
spin and angular momentum. As a consequence the tor-
sion of space, if any, could, be determined through these
couplings. However, even in the absence of torsion, we
found two new semiclassical equations of motion includ-
ing Berry phases contributions for both dynamical vari-
ables and predicting that the photon does not follow the
geodesic due to its spinning nature. The reason is an
anomalous velocity, responsible for the spin Hall effect
of light. This last result is in agreement with the mod-
ern point of view about the spinning particles evolution.
Our results are actually not restricted to the gravitational
field but also apply to systems with anisotropic indices.
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