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This is the fourth article of our series. Here, we study weighted norm inequalities for the Riesz transform of the Laplace-Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Gaussian upper bounds.

Introduction and main results

On R n , it is well-known that the classical Riesz transforms R j , 1 ≤ j ≤ n, are bounded on L p (R n , dx) for 1 < p < ∞ and are of weak-type (1,1) with respect to dx. As a consequence of the weighted theory for classical Calderón-Zygmund operators, the Riesz transforms are also bounded on L p (R n , w(x)dx) for all w ∈ A p (dx), 1 < p < ∞, and are of weak-type (1,1) with respect to w(x)dx for w ∈ A 1 (dx). Furthermore, it can be shown that the A p condition on the weight is necessary for the weighted L p boundedness of the Riesz transforms (see, for example, [Gra]).

On a manifold, there has been a number of works discussing the validity of the unweighted L p theory depending on the geometry of the manifold. Although some progress has been done in this direction, the general picture is far from clear. A difficulty is that one has to leave the class of Calderón-Zygmund operators. In particular, the Riesz transforms on the manifold may not have Calderón-Zygmund kernels, either because one does not have regularity estimates, or worse because one does not even have size estimates. It turns out also that the range of p for which one obtains L p boundedness may not be (1, ∞). See [ACDH] for a detailed account on all this and Section 2 below.

Here, we wish to develop a weighted theory: we want to obtain weighted L p estimates for a range of p and for Muckenhoupt weights with respect to the volume form. Of course, they must encompass the unweighted estimates so we shall restrict ourselves to situations where the unweighted theory has been developed. Nothing new will be done on the unweighted case (except the commutator result in Section 4).

We assume that the volume form is doubling. In that case, we are able to apply a machinery developed in the first article of our series [AM]. In a sense, the results we obtain could have been included in the latter as an application of the theory there, but we preferred a separate article to focus here on the geometric aspect of manifolds and because it also needed technical estimates or ideas from [ACDH]. As a matter of facts, recent developments in [BZ] allowed us to improve and simplify our result. The reader should have both [ACDH] and [AM] handy from now on.

Let M be a complete non-compact Riemannian manifold with d its geodesic distance. Let ∆ be the positive Laplace-Beltrami operator on M given by ∆f, g = M ∇f • ∇g dµ where ∇ is the Riemannian gradient on M and • is an inner product on T M. The Riesz transform is the tangent space valued operator ∇∆ -1/2 and it is bounded from

L 2 (M, µ) into L 2 (M; T M, µ) by construction.
The manifold M verifies the doubling volume property if the volume form is doubling:

µ(B(x, 2 r)) ≤ C µ(B(x, r)) < ∞, for all x ∈ M and r > 0 where B(x, r) = {y ∈ M : d(x, y) < r}. A Riemannian manifold M equipped with the geodesic distance and a doubling volume form is a space of homogeneous type. Non-compactness of M implies infinite diameter, which together with the doubling volume property yields µ(M) = ∞ (see for instance [Mar]).

One says that the heat kernel p t (x, y) of the semigroup e -t∆ has Gaussian upper bounds if for some constants c, C > 0 and all t > 0, x, y ∈ M,

p t (x, y) ≤ C µ(B(x, √ t)) e -c d 2 (x,y) t .
It is known that under doubling it is a consequence of the same inequality only at y = x [Gri, Theorem 1.1]. We recall the theorem proved in [CD].

Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property and the Gaussian upper bounds. Then

|∇∆ -1/2 f | p ≤ C p f p (R p )
holds for 1 < p < 2 and all f bounded with compact support.

Here, | • | is the norm on T M associated with the inner product. We shall set q + = sup p ∈ (1, ∞) : (R p ) holds . which satisfies q + ≥ 2 under the assumptions of Theorem 1.1. It can be equal to 2 ( [CD]). It is bigger than 2 assuming further the stronger L 2 -Poincaré inequalities ( [AC]). It can be equal to +∞ (see below).

Let us turn to weighted estimates. Properties of Muckenhoupt weights A p and reverse Hölder classes RH s are reviewed in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Section 2]

. If w ∈ A ∞ (µ), one can define r w = inf{p > 1 : w ∈ A p (µ)} ∈ [1, ∞) and s w = sup{s > 1 : w ∈ RH s (µ)} ∈ (1, ∞]. Given 1 ≤ p 0 < q 0 ≤ ∞, we introduce the (possibly empty) set W w (p 0 , q 0 ) = p 0 r w , q 0 (s w ) ′ = p : p 0 < p < q 0 , w ∈ A p p 0 (µ) ∩ RH ( q 0 p ) ′ (µ) .
Here, q ′ = q q-1 is the conjugate exponent to q. And note that RH 1 means no condition on the weight (besides A ∞ ).

Theorem 1.2. Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property and Gaussian upper bounds. Let w ∈ A ∞ (µ).

(i) For p ∈ W w (1, q + ), the Riesz transform is of strong-type (p, p) with respect to w dµ, that is,

|∇∆ -1/2 f | L p (M,w) ≤ C p,w f L p (M,w) (1.1)
for all f bounded with compact support.

(ii) If w ∈ A 1 (µ) ∩ RH (q + ) ′ (µ), then the Riesz transform is of weak-type (1, 1) with respect to w dµ, that is,

|∇∆ -1/2 f | L 1,∞ (M,w) ≤ C 1,w f L 1 (M,w) (1.2)
for all f bounded with compact support.

If q + = ∞ then the Riesz transform is bounded on L p (M, w) for r w < p < ∞, that is, for w ∈ A p (µ), and we obtain the same weighted theory as for the Riesz transform on R n : Corollary 1.3. Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property and Gaussian upper bounds. Assume that the Riesz transform has strong type (p, p) with respect to dµ for all 1 < p < ∞. Then the Riesz transform has strong type (p, p) with respect to w dµ for all w ∈ A p (µ) and 1 < p < ∞ and it is of weak-type (1, 1) with respect to w dµ for all w ∈ A 1 (µ).

In [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Lemma 4.6], examples of weights in A p (µ) ∩ RH q (µ) are given. The computations are done in the Euclidean setting, but most of them can be carried out in spaces of homogeneous type. In particular, given f, g

∈ L 1 (M, µ) (or Dirac masses) 1 ≤ r < ∞ and 1 < s ≤ ∞, we have that w(x) = M µ f (x) -(r-1) + M µ g(x) 1/s ∈ A p (µ) ∩ RH q (µ) (M µ
is the Hardy-Littlewood maximal function) for all p > r and q < s (and p = r if r = 1 and q = s if s = ∞). Thus, r w ≤ r and s w ≥ s.

We next provide some applications, then proof of our main result and eventually we add a short discussion on how to obtain (new) estimates for commutators with bounded mean oscillation functions.

Applications

Unweighted L p bounds for Riesz transforms in different specific situations were reobtained in a unified manner in [ACDH] and the methods used there are precisely those which allowed us to start the weighted theory. Therefore, it is natural to apply this theory in return to those situations. Let us concentrate on five situations (more is done in [ACDH]). Recall the notion of Poincaré inequalities: Let 1 ≤ p < ∞. One says that M satisfies the L p -Poincaré property, we write M satisfies (P p ), if there exists C > 0 such that, for every ball B and every

f with f, ∇f ∈ L p loc (µ), B |f -f B | p dµ ≤ Cr(B) p B |∇f | p dµ. (P p )
Here, r(B) is the radius of B, f B is the mean value of f over B. It has been proved in [START_REF] Saloff-Coste | A note on Poincaré, Sobolev, and Harnack inequalities[END_REF] that the doubling volume property and (P 2 ) is equivalent to lower and upper Gaussian estimates on the heat kernel. Recall that (P p ) implies (P q ) when q > p (see for instance [HK]).

2.1. Example without (P 2 ). Consider two copies of R n minus the unit ball glued smoothly along their unit circles with n ≥ 2. It is shown in [CD] that this manifold has doubling volume form and Gaussian upper bounds. (P 2 ) does not hold: in fact, it satisfies (P p ) if and only if p > n (see [HK] in the case of a double-sided cone in R n , which is the same). If n = 2, (R p ) holds if and only if p ≤ 2 ( [CD]). If n > 2, (R p ) holds if and only if p < n ( [CCH]). In any case, we have q + = n. Hence, W w (1, q + ) = (r w , n/(s w ) ′ ) is (contained in) the range of L p boundedness for a given weight provided this is not empty. In other words, if 1 < p < n and w ∈ A p (µ) ∩ RH (n/p) ′ (µ) then one has strong type (p, p) with respect to w dµ. For p = 1, one has weak-type (1, 1) with respect to

w dµ if w ∈ A 1 (µ) ∩ RH n ′ (µ).
2.2. Manifolds with non-negative Ricci curvature. In this case, the Riesz transform is bounded on (unweighted) L p for 1 < p < ∞ ([Ba1], [START_REF] Bakry | The Riesz transforms associated with second order differential operators[END_REF]). Thus q + = ∞. Such manifolds are known to have doubling volume form (see [START_REF] Chavel | Riemannian geometry: a modern introduction[END_REF]Theorem 3.10]), (P 2 ) and even (P 1 ) [Bus] (see, for instance, [HK] or [START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators, Potential theory and degenerate partial differential operators (Parma)[END_REF] for other references). By Corollary 1.3, we obtain strong-type (p, p) for 1 < p < ∞ and A p (µ) weights and weak-type (1,1) for A 1 (µ) weights.

2.3. Co-compact covering manifolds with polynomial growth deck transformation group. In this case, one has the doubling volume property and (P 2 ) (see [START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators, Potential theory and degenerate partial differential operators (Parma)[END_REF]) * . That the Riesz transform is of unweighted strong type (p, p) for 1 < p ≤ 2 is due to [CD]. For 2 < p < ∞ this is first done in [Dun] and hence q + = ∞. By Corollary 1.3, we obtain strong-type (p, p) for 1 < p < ∞ and A p (µ) weights and weak-type (1,1) for A 1 (µ) weights.

2.4. Conical manifolds with compact basis without boundary. As mentioned in [ACDH], this is not strictly speaking a smooth manifold but it is stochastically complete and this is what is needed to develop the unweighted theory for the Riesz transform: it is shown in [Li] that q + is a finite value related to the bottom of the spectrum on the Laplace operator on the compact basis. Also, one has doubling and (P 2 ) by [Li] and [CL] (and even (P 1 ) by using the methods in [GS]). Hence, W w (1, q + ) = (r w , q + /(s w ) ′ ) is (contained in) the range of L p boundedness for a given weight provided this is not empty. In other words, if 1 < p < q + and w ∈ A p (µ) ∩ RH (q + /p) ′ (µ) then one has strong type (p, p) with respect to w dµ. For p = 1, one has weak-type (1, 1) with respect to w dµ if w ∈ A 1 (µ) ∩ RH (q + ) ′ (µ).

2.5. Lie groups with polynomial volume growth endowed with a sublaplacian. One starts with left-invariant vector fields X j satisfying the Hörmander condition and µ is the left (and right) invariant Haar measure. The sublaplacian is ∆ = -n j=1 X 2 j . One has the doubling volume property and (P 2 ) (and even (P 1 )) (see [Var] or [START_REF] Haj | Sobolev met Poincaré[END_REF]p. 70] for a statement and references). The statement of Theorem 1.2 applies with no change to the Riesz transforms X j ∆ -1/2 . In this case, q + = ∞ * (P 1 ) also holds by a discretization method [START_REF] Coulhon | Variétés riemanniennes isométriques à l'infini[END_REF]Théorème 7.2] and Poincaré inequalities for discrete groups (see [START_REF] Haj | Sobolev met Poincaré[END_REF]p.76]).

from [Ale]. By Corollary 1.3, the weighted theory for these Riesz transforms is the same as the ones in R n for 1 ≤ p < ∞: strong type (p, p) with respect to w dµ holds for w ∈ A p (µ) and 1 < p < ∞, and weak-type (1, 1) with respect to w dµ for w ∈ A 1 (µ).

Proof of the main result

We assume that M satisfies the doubling volume property and Gaussian upper bounds.

We first introduce some notation. Given a ball B we set C j (B) = 4B for j = 1 and C j (B) = 2 j+1 B \ 2 j B for j ≥ 2, where λ B is the ball co-centered with B and radius λr(B). We use the notation

- B hdµ = 1 µ(B) B h dµ, - C j (B) h dµ = 1 µ(2 j+1 B) C j (B)
h dµ.

We write D µ for the doubling order of µ: µ(λB) ≤ C λ Dµ µ(B) for every λ > 1. In the sequel M µ is the Hardy-Littlewood maximal function with respect to the measure µ on M. We state a particular case of [AM, Theorem 3.1] † that is used in the proof of Theorem 1.2, (i).

Theorem 3.1. Fix 1 < q < ∞, a ≥ 1 and v ∈ RH s ′ (µ), 1 < s < q. Then, there exist C and K 0 ≥ 1 with the following property: Assume that F , G and H 1 are non-negative measurable functions on M such that for any ball B there exist non-negative functions G B and H B with F (x) ≤ G B (x) + H B (x) for a.e. x ∈ B and, for all x, x ∈ B,

- B H q B dµ 1 q ≤ a M µ F (x) + H 1 (x), - B G B dµ ≤ G(x). (3.1)
If 1 < r ≤ q/s and F ∈ L 1 (M, µ) (this assumption being only qualitative) we have

M µ F L r (M,v) ≤ C G L r (M,v) + C H 1 L r (M,v) . (3.2)
Proof of Theorem 1.2, (i). The argument borrows some ideas from [BZ] which are adapted to the present situation. Fix w ∈ A ∞ (µ) and p ∈ W w (1, q + ). Then (see, for instance, [AM, Proposition 2.1]) there exist p 0 , q 0 such that 1 < p 0 < p < q 0 < q + and w ∈ A p p 0

(µ) ∩ RH ( q 0 p ) ′ (µ).
By [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Lemma 4.4] we have that

v = w 1-p ′ ∈ A p ′ /q ′ 0 (µ) ∩ RH (p ′ 0 /p ′ ) ′ (µ)
. We write T = ∇∆ -1/2 and observe that the boundedness of T from L p (M, w) to L p (M; T M, w) is equivalent to that of T * from L p ′ (M; T M, v) to L p ′ (M, v) -we notice that T takes scalar valued functions on M to functions valued in the tangent space (sections) and T * the opposite, T M being equipped with the inner product arising in the definition of the Laplace-Beltrami operator-.

Fix f ∈ L ∞ c (M; T M, µ) ‡ , and write h = T * f and F = |h| q ′ 0 . Notice that F ∈ L 1 (M, µ) since T * is bounded from L q ′ 0 (M; T M, µ) to L q ′ 0 (M, µ) as 1 < q 0 < q + and † It is stated in the Euclidean setting, see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Section 5] for the extension to spaces of homogeneous type ‡ Here and subsequently, the subscript c means with compact support.

T is bounded from L q 0 (M, µ) to L q 0 (M; T M, µ). We pick A r = I -(I -e -r 2 ∆ ) m with m large enough. Given a ball B we write r B for its radius. Then,

F ≤ G B + H B ≡ 2 q ′ 0 -1 |(I -A r B ) * h| q ′ 0 + 2 q ′ 0 -1 |A * r B h| q ′ 0 .
We first estimate H B . Set q = p ′ 0 /q ′ 0 and observe that by duality there exists g ∈ L p 0 (B, dµ/µ(B)) with norm 1 such that for all x ∈ B -

B H q B dµ 1 q q ′ 0 µ(B) -1 M |h| |A r B g| dµ ∞ j=1 2 j Dµ - C j (B) |h| q ′ 0 dµ 1 q ′ 0 - C j (B) |A r B g| q 0 dµ 1 q 0 ≤ M µ F (x) 1 q ′ 0 ∞ j=1 2 j Dµ - C j (B) |A r B g| q 0 dµ 1 q 0 .
To estimate the summands we use the Gaussian upper bound on p t (x, y), so that for any fixed integer m there exist c, C > 0 such that for all j ≥ 1, all ball B, all

g ∈ L 1 (M, µ) supported in B and all 1 ≤ k ≤ m, sup C j (B) |e -k r 2 B ∆ g| ≤ C e -c 4 j - B |g| dµ. (3.3) Then expanding A r = I -(I -e -r 2 ∆ ) m we conclude that - B H q B dµ 1 q q ′ 0 M µ F (x) 1 q ′ 0 ∞ j=1 2 j Dµ e -c 4 j - B |g| q 0 dµ 1 q 0 M µ F (x) 1 q ′ 0 . (3.4)
We next estimate G B . Using duality there exists g ∈ L q 0 (B, dµ/µ(B)) with norm 1 such that for all

x ∈ B - B G B dµ 1 q ′ 0 µ(B) -1 M |f | |T (I -A r B )g| dµ ∞ j=1 2 j Dµ - C j (B) |f | q ′ 0 dµ 1 q ′ 0 - C j (B) |T (I -A r B )g| q 0 dµ 1 q 0 ≤ M µ (|f | q ′ 0 )(x) 1 q ′ 0 ∞ j=1 2 j Dµ - C j (B) |T (I -A r B )g| q 0 dµ 1 q 0 .
To estimate the terms in the sum we use the following auxiliary result whose proof is given below.

Lemma 3.2. For all β ∈ [1, q+ ) ∪ [1, 2], one has the following estimate: for all m ≥ 1, there exists C > 0 such that for all j ≥ 2, all ball B, all g ∈ L 1 (M, µ) with support in B, -

C j (B) |∇∆ -1/2 (I -e -r(B) 2 ∆ ) m g| β dµ 1 β ≤ C4 -jm - B |g| dµ. (3.5)
Here, q+ is defined as the supremum of those p ∈ (1, ∞) such that for all t > 0,

|∇e -t ∆ f | p ≤ C t -1/2 f p . (3.6)
By analyticity of the heat semigroup, one always have q+ ≥ q + . Under the doubling volume property and (P 2 ), it is shown in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF]Theorem 1.3] that q + = q+ . We do not know if the equality holds or not under doubling and Gaussian upper bounds. This lemma allows us to conclude right away with the terms where j ≥ 2. When j = 1, we use that T is bounded from L q 0 (M, µ) to L q 0 (M; T M, µ) as 1 < q 0 < q + . Also, applying (3.3) it follows easily that

- 4 B |T (I -A r B )g| q 0 dµ 1 µ(4 B) B |g| q 0 dµ + ∞ j=1 C j (B) |A r B g| q 0 dµ - B |g| q 0 dµ ∞ j=1 2 j Dµ e -c 4 j - B |g| q 0 dµ. (3.7)
Using this and (3.5) (with β = q 0 < q + ≤ q+ ) we conclude the estimate for G B :

- B G B dµ 1 q ′ 0 M µ (|f | q ′ 0 )(x) 1 q ′ 0 ∞ j=1 2 j Dµ 4 -j m - B |g| q 0 dµ 1 q 0 ≤ C M µ (|f | q ′ 0 )(x) 1 q ′ 0 = G(x) 1 q ′ 0 , (3.8) 
provided m > D µ /2. With these estimates in hand we can use Theorem 3.1 with r = p ′ /q ′ 0 , q = p ′ 0 /q ′ 0 and H 1 ≡ 0. Notice that v ∈ RH s ′ (µ) with s = p ′ 0 /p ′ , 1 < s < q < ∞ and r = q/s. Hence, using v ∈ A r (µ) we obtain the desired estimate

T * f q ′ 0 L p ′ (M,v) ≤ M µ F L r (M,v) M µ (|f | q ′ 0 ) L r (M,v) |f | q ′ 0 L p ′ (M,v) . (3.9) 
Proof of Lemma 3.2. First, this estimate is known for β = 2 (see [ACDH]). Also, the inequality for a fixed β 0 implies the same one for all β with 1 ≤ β ≤ β 0 . It suffices to treat the case β > 2, which happens only if q+ > 2.

We use a trick from [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF]Proof of Lemma 3.1]. Fix a ball B, with radius r, and f ∈ L ∞ (M, µ) supported in B. We have

∇∆ -1/2 (I -e -r 2 ∆ ) m f = ∞ 0 g r (t) ∇e -t ∆ f dt where g r : R + → R is a function such that ∞ 0 |g r (t)| e -c 4 j r 2 t dt √ t ≤ C m 4 -j m . (3.10)
By definition of q+ and the argument of [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF]p. 944] we have

M |∇ x p t (x, y)| β e γ d 2 (x,y) t dµ(x) 1/β ≤ C √ t µ(B(y, √ t)) 1-1/β ,
for all t > 0 and y ∈ M, with γ > 0 depending on β. This implies that for all j ≥ 2, y ∈ B and all t > 0,

- C j (B) |∇ x p t (x, y)| β dµ(x) 1/β 1 √ t e -c 4 j r 2 t 1 µ(B(y, √ t)) 1-1/β µ(2 j+1 B) 1/β .
Using the doubling property, µ(2 j+1 B) ∼ µ(B(y, 2 j+1 r)) uniformly in y ∈ B and

µ(B(y, 2 j+1 r)) µ(B(y, √ t)) max 1, 2 j r √ t Dµ .
Hence, with another c > 0,

- C j (B) |∇ x p t (x, y)| β dµ(x) 1/β 1 √ t e -c 4 j r 2 t 1 µ(2 j+1 B) ≤ 1 √ t e -c 4 j r 2 t 1 µ(B)
.

We conclude using Minkowski's integral inequality and (3.10) that the left hand side of (3.5) is bounded by

∞ 0 |g r (t)| B |f (y)| - C j (B) |∇ x p t (x, y)| β dµ(x) 1/β dµ(y) dt ∞ 0 |g r (t)| 1 √ t e -c 4 j r 2 t dt - B |f | dµ 4 -j m - B |f | dµ.
The following result, used to prove Theorem 1.2, (ii), is taken from [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Theorem 8.8 & Remark 8.10] (see also [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Section 8.4] for the extension to spaces of homogeneous type) Theorem 3.3. Let 1 ≤ p 0 < q 0 ≤ ∞ and w ∈ A ∞ (µ). Let T be a sublinear operator defined on L 2 (M, µ) and {A r } r>0 be a family of operators acting from L ∞ c (M, µ) into L 2 (M, µ). Assume the following conditions:

(a) There exists q ∈ W w (p 0 , q 0 ) such that T is bounded from L q (M, w) to L q,∞ (M, w). (b) For all j ≥ 1, there exist a constant α j such that for any ball B with r(B) its radius and for any f ∈ L ∞ c (M, µ) supported in B, -

C j (B) |A r(B) f | q 0 dµ 1 q 0 ≤ α j - B |f | p 0 dµ 1 p 0 .
(3.11) (c) There exists β > (s w ) ′ , i.e. w ∈ RH β ′ (µ), with the following property: for all j ≥ 2, there exist a constant α j such that for any ball B with r(B) its radius and for any f ∈ L ∞ c (M, µ) supported in B and for j ≥ 2,

- C j (B) |T (I -A r(B) )f | β dµ 1 β ≤ α j - B |f | p 0 dµ 1 p 0 . (3.12) (d) j α j 2 Dw j < ∞ for α j in (b) and (c)
, where D w is the doubling constant of w dµ.

If w ∈ A 1 (µ) ∩ RH (q 0 /p 0 ) ′ (µ) then T is of weak-type (p 0 , p 0 ) with respect to w dµ, that is, for all f ∈ L ∞ c (M, µ), T f L p 0 ,∞ (M,w) ≤ C f L p 0 (M,w) .
Proof of Theorem 1.2, (ii). We are going to apply Theorem 3.3 with p 0 = 1 and q 0 = q + . Thus we need to check that the four items hold. Fix w ∈ A 1 (µ) ∩ RH (q + ) ′ (µ). By [AM, Proposition 2.1], there exists 1 < q < q + such that w ∈ A q (µ) ∩ RH (q + /q) ′ (µ). This means that q ∈ W w (1, q + ), therefore by (i), T = |∇∆ -1/2 | is bounded on L q (M, w) and so (a) holds.

We pick A r = I -(I -e -r 2 ∆ ) m with m large enough to be chosen. Notice that expanding A r , (3.3) yields (b) with α j = C e -c 4 j . To see (c) we apply Lemma 3.2 with (s w ) ′ < β -notice that such β exist: we have q + ≤ q+ and w ∈ RH (q + ) ′ (µ) implies (s w ) ′ < q + -. Then, we obtain (c) with α j = C 4 -j m . Finally, we pick m > D w /2 so that (d) holds and therefore Theorem 3.3 gives the weak-type (1, 1) with respect to w dµ.

Commutators

Let us write again T = ∇∆ -1/2 and take b ∈ BMO(M, µ) (the space of bounded mean oscillation functions on M). We define the first order commutator T

1 b g = [b, T ]g = b T g -T (b g), and for k ≥ 2 the k-th order commutator is T k b = [b, T k-1 b
]. Here g, b are scalar valued and T k b g is valued in the tangent space. Theorem 4.1. Under the assumptions of Theorem 1.2, T k b satisfies (1.1) for each k ≥ 1, that is, it is bounded from L p (M, w) into L p (M; T M, w) under the same conditions on w, p.

This theorem applies in particular to the five situations described in Section 2. Note that even the unweighted L p estimates for the commutators are new.

Proof. The proof is similar to that of Theorem 1.2 using again the ideas in [BZ] and we point out the main changes. We only consider the case k = 1: the general case follows by induction and the details are left to the reader (see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Section 6.2] for similar arguments). As in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights[END_REF]Lemma 6.1] it suffices to assume qualitatively b ∈ L ∞ (M, µ) and quantitatively b BMO(M,µ) = 1 and get uniform bounds.

We proceed as before working with T 1 b in place of T . Write F = |(T 1 b ) * f | q ′ 0 with f ∈ L ∞ c (M; T M, µ) and observe that F ∈ L 1 (M, µ) as b ∈ L ∞ (M, µ) and T * is bounded from L q ′ 0 (M; T M, µ) into L q ′ 0 (M, µ) (as 1 < q 0 < q + ) -we observe that this is the only place where we use that b ∈ L ∞ (M, µ)-. 

F = |(T 1 b ) * f | q ′ 0 = |(T * ) 1 b f | q ′ 0 ≤ 2 q ′ 0 -1 | b T * f | q ′ 0 + 2 q ′ 0 -1 |T * ( b f )| q ′ 0 ≤ 2 q ′ 0 -1 | b T * f | q ′ 0 + 4 q ′ 0 -1 |(I -A r B ) * T * ( b f )| q ′ 0 + 4 q ′ 0 -1 |A * r B T * ( b f )| q ′ 0 = G B + H B .
We estimate H B . By duality we pick g as before and obtain F dµ

- B H q B dµ 1 q q ′ 0 = C µ(B) -1 M T * ( b f ) A r B g dµ = C µ(B) -1 M -(T * ) 1 b f + b T * f A r B g
1 q ′ 0 - C j (B)
|A r B g| q 0 dµ 1 q 0 M µ F (x)

1 q ′ 0 .

  Fixing B we write b = b-b B and decompose T 1 b as T 1 b g = -T ( bg) + b T g. Using this equality one sees (T 1 b ) * = -(T * ) 1 b . Then we have

  * ) 1 b f | |A r B g| dµ + µ(B) -1 M | b| |T * f | |A r B g| dµ = I + II.The estimate for I follows as in (3.4) by using (3.3): for all x ∈ B,I ∞ j=1 2 j Dµ -C j (B)
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We pick 1 < q < ∞ and use Hölder's inequality to obtain that for all x ∈ B II ∞ j=1 2 j Dµ -

|A r B g| q 0 s dµ

where we have used (3.3) and John-Nirenberg's inequality. Collecting I and II we conclude the first estimate in (3.1) with

Let us write G B,1 and G B,2 for each of the terms that define G B and we estimate them in turn. Take δ > 1 to be chosen and use John-Nirenberg's inequality: for any x ∈ B we have

To estimate G B,2 we proceed as with G B in the proof of Theorem 1.2. Let g be the corresponding dual function and use again John-Nirenberg's inequality

where in the last estimate we have proceeded as in (3.8) using (3.5) for j ≥ 2 and (3.7) for j = 1. Gathering what has been obtained for G B,1 and G B,2 we conclude the second estimate in (3.1) with

1 δ . We apply Theorem 3.1 as in the proof of Theorem 1.2. In this case, we observe that as v ∈ A r (µ), there exists 1 < δ < r so that v ∈ A r/δ (µ). Then, the desired estimate follows

where we have used that T * is bounded from L p ′ (M; T M, v) into L p ′ (M, v) (see (3.9)).