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WEIGHTED NORM INEQUALITIES, OFF-DIAGONAL ESTIMATES

AND ELLIPTIC OPERATORS.

PART IV: RIESZ TRANSFORMS ON MANIFOLDS AND WEIGHTS

PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

Abstract. This is the fourth article of our series. Here, we apply the results of
[AM1] to study weighted norm inequalities for the Riesz transform of the Laplace-
Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie
groups, under the doubling volume property and Poincaré inequalities.

1. Introduction and main results

On R
n, it is well-known that the classical Riesz transforms Rj , 1 ≤ j ≤ n, are

bounded on Lp(Rn, dx) for 1 < p < ∞ and are of weak-type (1,1) with respect to dx.
As a consequence of the weighted theory for classical Calderón-Zygmund operators, the
Riesz transforms are also bounded on Lp(Rn, w(x)dx) for all w ∈ Ap(dx), 1 < p < ∞,
and are of weak-type (1,1) with respect to w(x)dx for w ∈ A1(dx). Furthermore, it
can be shown that the Ap condition on the weight is necessary for the weighted Lp

boundedness of the Riesz transforms (see, for example, [Gra]).
On a manifold, there has been a number of works discussing the validity of the

unweighted Lp theory depending in the geometry of the manifold. Although some
progress has been done in this direction, the general picture is far from clear. A diffi-
culty is that one has to leave the class of Calderón-Zygmund operators. In particular,
the Riesz transforms on the manifold may not have Calderón-Zygmund kernels, either
because one does not have regularity estimates, or worse because one does not even
have size estimates. It turns out also that the range of p for which one obtains Lp

boundedness may not be (1,∞). See [ACDH] for a detailed account on all this and
Section 2 below.

Here, we wish to develop a weighted theory: we want to obtain weighted Lp es-
timates for a range of p and for Muckenhoupt weights with respect to the volume
form. Of course, they must encompass the unweighted estimates so we shall restrict
ourselves to situations where the unweighted theory has been developed. Nothing new
will be done on the unweighted case (except the commutator result in Section 4). We
assume that the volume form satisfies the doubling condition. In that case, we are
able to apply a machinery developed in the first article of our series [AM1].
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2 PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

Let M be a complete non-compact Riemannian manifold with d its geodesic dis-
tance. Assume that the volume form µ verifies the doubling condition,

µ(B(x, 2 r)) ≤ C µ(B(x, r)) < ∞,

for all x ∈ M and r > 0 where B(x, r) = {y ∈ M : d(x, y) < r}. Then M equipped
with the geodesic distance and the volume form is a space of homogeneous type.
Non-compactness of M implies infinite diameter, which together with the doubling
condition yields µ(M) = ∞ (see for instance [Mar]).

Let 1 ≤ p < ∞. One says that M satisfies the Lp-Poincaré property, we write
M satisfies (Pp), if there exists C > 0 such that, for every ball B and every f with
f,∇f ∈ Lp

loc(µ),
∫

B

|f − fB|p dµ ≤ Cr(B)p

∫

B

|∇f |p dµ. (Pp)

Here, r(B) is the radius of B, fB is the mean value of f over B, ∇f is the Riemannian
gradient of f , |∇f | its length in the tangent space TM . It is known that (Pp) implies
(Pq) when q > p (see for instance [HK]). Thus the set of p’s such that (Pp) holds
is, if not empty, an interval unbounded on the right. A recent deep result from [KZ]
implies that this set is open in [1,∞). We define

q− = inf
{

p ∈ [1,∞) : (Pp) holds
}

.

The Riesz transform is the (vector) operator ∇∆−1/2, where ∆ is the positive
Laplace-Beltrami operator on M .

Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying

the doubling volume property and (P2). Then, there exists ε ∈ (0,∞] such that
∥

∥ |∇∆−1/2f |
∥

∥

p
≤ Cp‖f‖p (Rp)

holds for 1 < p < 2 + ε and all f bounded with compact support.

This result is a combination of [CD] for 1 < p < 2 (in fact, a condition weaker than
(P2) suffices, namely, the on-diagonal upper bound pt(x, x) ≤ Cµ(B(x,

√
t))−1 for all

t > 0 and all x ∈ M) and [AC] for the existence of ε. Its value or its expression in
terms of geometric quantities is not known.

We set

q+ = sup
{

p ∈ (1,∞) : (Rp) holds
}

.

Define q̃+ as the supremum of those p ∈ (1,∞) such that for all t > 0,
∥

∥ |∇e−t ∆f |
∥

∥

p
≤ C t−1/2‖f‖p. (1.1)

By analyticity of the heat semigroup, one always have q̃+ ≥ q+. Under the doubling
condition and (P2), it is shown in [ACDH, Theorem 1.3] that q+ = q̃+ and by Theorem
1.1, q+ > 2.

Let us turn to weighted estimates. Properties of Muckenhoupt weights Ap and
Reverse Hölder classes RHs are reviewed in [AM1, Section 2]. If w ∈ A∞(µ), one can
define rw = inf{p > 1 : w ∈ Ap(µ)} ∈ [1,∞) and sw = sup{s > 1 : w ∈ RHs(µ)} ∈
(1,∞]. Given 1 ≤ p0 < q0 ≤ ∞, we introduce the (possibly empty) set

Ww(p0, q0) =
(

p0 rw,
q0

(sw)′

)

=
{

p : p0 < p < q0, w ∈ A p

p0
(µ) ∩ RH( q0

p )
′(µ)

}

.
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Here, q′ = q
q−1

is the conjugate exponent to q. And note that RH1 means no condition

on the weight (besides A∞).

Theorem 1.2. Let M be a complete non-compact Riemannian manifold satisfying

the doubling volume property and (P2). Let w ∈ A∞(µ).

(i) If Ww(q−, q+) 6= Ø, then, for p ∈ Ww(1, q+), the Riesz transform is of strong-type

(p, p) with respect to w dµ, that is,
∥

∥ |∇∆−1/2f |
∥

∥

Lp(M,w)
≤ Cp,w ‖f‖Lp(M,w) (1.2)

for all f bounded with compact support.

(ii) If w ∈ A1(µ)∩RH(q+/q−)′(µ), then the Riesz transform is of weak-type (1, 1) with

respect to w dµ, that is,
∥

∥ |∇∆−1/2f |
∥

∥

L1,∞(M,w)
≤ C1,w ‖f‖L1(M,w) (1.3)

for all f bounded with compact support.

If q+ = ∞ then Ww(q−,∞) = (rw q−,∞) is never empty and we can apply the
above theorem. Thus, given w ∈ A∞(µ), the Riesz transform is bounded on Lp(M, w)
for rw < p < ∞, that is, for w ∈ Ap(µ), and we obtain the same weighted theory as
for the Riesz transform on R

n:

Corollary 1.3. Let M be a complete non-compact Riemannian manifold satisfying

the doubling volume property and (P2). Assume that the Riesz transform is bounded

on Lp(M) for all 1 < p < ∞. Then the Riesz transform is bounded on Lp(M, w) for

all w ∈ Ap(µ) and 1 < p < ∞ and it is of weak-type (1, 1) with respect to w dµ for all

w ∈ A1(µ).

The proof of Theorem 1.2, part (i), has two steps. In the first one, we prove the
Lp(w) inequality for p ∈ Ww(q−, q+). This is where we use Poincaré inequalities.
There are two reasons for introducing the number q− < 2. First, we have Ww(2, q+) ⊂
Ww(q−, q+), so the condition Ww(q−, q+) 6= Ø allows more weights. Second, if q− = 1,
then the proof of part (ii) is completed in the first step. In a second step we extend
the range to Ww(1, q+) and Poincaré inequalities are not needed. Its proof reveals a
worth mentioning result in the spirit of [CD]:

Theorem 1.4. Assume that M (complete, non-compact) satisfies the doubling volume

property and pt(x, x) ≤ Cµ(B(x,
√

t))−1 for all t > 0 and all x ∈ M . Let w be a weight

with (q̃+)′ < sw. If there is some q ∈ (rw,∞), for which the Riesz transform is of

weak-type (q, q) with respect to wdµ, then it is of strong-type (p, p) with respect to wdµ
for all p ∈ (rw, q). In addition, if w ∈ A1(µ), then the Riesz transform is of weak-type

(1, 1) with respect to wdµ.

When w = 1, then one can take q = 2 and this is the result in [CD]. For other
weights, we do not know how to obtain the existence of q unless assuming further the
Poincaré inequalities (P2).

In [AM1, Lemma 4.6] examples of weights in Ap(µ) ∩ RHq(µ) are given. The
computations are done in the Euclidean setting, but most of them can be carried out
in spaces of homogeneous type. In particular, given f, g ∈ L1(M, µ) (or Dirac masses)
1 ≤ r < ∞ and 1 < s ≤ ∞, we have that w(x) = Mµf(x)−(r−1) + Mµg(x)1/s ∈
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Ap(µ) ∩ RHq(µ) (Mµ is the Hardy-Littlewood maximal function) for all p > r and
q < s (and p = r if r = 1 and q = s if s = ∞). Thus, rw ≤ r and sw ≥ s.

We next provide some applications, then proofs of the above two theorems and
eventually we add a word on estimates for commutators with bounded mean oscillation
functions.

2. Applications

Unweighted Lp bounds for Riesz transforms in different specific situations were
reobtained in a unified manner in [ACDH] and the methods used there are precisely
those which allowed us to start the weighted theory. Therefore, it is natural to apply
this theory in return to Riesz transforms on manifolds. Let us concentrate on four
situations (more is done in [ACDH]).

2.1. Manifolds with non-negative Ricci curvature. In this case, the Riesz trans-
form is bounded on (unweighted) Lp for 1 < p < ∞ ([Ba1],[Ba2]). Thus q+ = ∞.
Such manifolds are known to satisfy the doubling condition (see [Cha, Theorem 3.10]
and (P2) and even (P1) [Bus] (see, for instance, [HK] or [SC2] for other references).
By Corollary 1.3, we obtain strong-type (p, p) for Ap(µ) weights and weak-type (1,1)
for A1(µ) weights.

2.2. Co-compact covering manifolds with polynomial growth deck transfor-

mation group. In this case, one has the doubling condition and (P2) (see [SC2])∗.
That the Riesz transform is of unweighted strong type (p, p) for 1 ≤ p ≤ 2 is due to
[CD]. For 2 < p < ∞ this is first done in [Dun] and hence q+ = ∞. By Corollary 1.3,
we obtain strong-type (p, p) for Ap(µ) weights and weak-type (1,1) for A1(µ) weights.

2.3. Conical manifolds with compact basis without boundary. As mentioned
in [ACDH], this is not strictly speaking a smooth manifold but it is stochastically
complete and this is what is needed to develop the unweighted theory for the Riesz
transform: it is shown in [Li] that q+ is a finite value related to the bottom of the
spectrum on the Laplace operator on the compact basis. Also, one has doubling and
(P2) (see [Li] and [CL]) and even (P1) by using the methods in [GS], so q− = 1.
Hence, Ww(1, q+) = (rw, q+/(sw)′) is (contained in) the range of Lp boundedness
for a given weight provided this is not empty. In other words, if 1 < p < q+ and
w ∈ Ap(µ) ∩ RH(q+/p)′(µ) then one has strong type (p, p) with respect to wdµ. For
p = 1, one has weak-type (1, 1) with respect to wdµ if w ∈ A1(µ) ∩ RH(q+)′(µ)

2.4. Lie groups with polynomial volume growth endowed with a sublapla-

cian. One starts with left-invariant vector fields Xj satisfying the Hörmander con-
dition and µ is the left (and right) invariant Haar measure. The sublaplacian is
∆ = −

∑n
j=1 X2

j . One has the doubling condition and (P1), hence q− = 1 (see [Var]

or [HK, p. 70] for a statement and references). The statement of Theorem 1.2 applies
with no change to the Riesz transforms Xj∆

−1/2. In this case, q+ = ∞ from [Ale]. By
Corollary 1.3, the weighted theory for these Riesz transforms is the same as the ones
in R

n for 1 ≤ p < ∞: Lp(w) boundedness for w ∈ Ap, 1 < p < ∞, and weak-type
(1, 1) with respect to w dµ for w ∈ A1.

∗(P1) also holds by a discretization method [CS, Théorème 7.2] and Poincaré inequalities for
discrete groups (see [HK, p.76]).
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3. Proof of the main results

We advice the reader to have [AM1] and [ACDH] handy.

Proof of Theorem 1.2, (i). The first step consists in obtaining the desired estimate for
p ∈ Ww(q−, q+). Let us fix such a p. Then (see, for instance, [AM1, Proposition 2.1])
there exist p0, q0 such that

q− < p0 < p < q0 < q+ and w ∈ A p

p0
(µ) ∩ RH( q0

p )
′(µ).

The desired estimate follows from [AM1, Theorem 3.7] (extended to spaces of ho-
mogeneous types in [AM1, Section 5]) applied to Tf = |∇∆−1/2f |, S = I and

Ar = I − (I − e−r2 ∆)m with m large enough. We need to show that for any ball
B with radius r = r(B) and all x ∈ B,

(

−
∫

B

|∇∆−1/2(I − er2 ∆)mf |p0 dµ
)

1
p0 ≤ C Mµ

(

|f |p0
)

1
p0 (x), (3.1)

for all f ∈ L∞

c (M) (i.e., f bounded with compact support), and for k ∈ N, 1 ≤ k ≤ m,

(

−
∫

B

|∇e−k r2 ∆f |q0 dµ
)

1
q0 ≤ C Mµ

(

|∇f |p0
)

1
p0 (x), (3.2)

for all f ∈ W 1,p0(M) (the Sobolev space) where Mµ is the Hardy-Littlewood maximal
operator. We used the notation

−
∫

B

hdµ =
1

µ(B)

∫

B

h dµ.

It is shown in [ACDH, Section 3.1] that the conjunction of (1.1) for all 2 < q < q+

(which holds as recalled above), the doubling property, the (trivial) boundedness of
the Riesz transform on L2(M) and (P2) imply (3.1) and (3.2) with exponent 2 in lieu
of p0. As the Riesz transform is already bounded on Lp0(M) and (Pp0) holds since
q− < p0 < q+, we can therefore reproduce mutatis mutandis the same argument with
2 replaced by p0 to obtain (3.1) and (3.2) (the Lp0-Poincaré inequality (Pp0) is used
when proving (3.2)).

In the second step we extend the range to Ww(1, q+). To do so, we apply [AM1,
Theorem 8.7] (extended to spaces of homogeneous type in [AM1, Section 8.4]) to

Tf = |∇∆−1/2f | with Ar = I − (I − e−r2 ∆)m for some large integer m, p0 = 1 and
q0 = q+ (do not confuse with p0 and q0 in the previous argument). It suffices to check
the following list of items:

(a) There exists q ∈ Ww(1, q+) such that ∇∆−1/2 is bounded from Lq(w) to Lq,∞(w).

(b) For all j ≥ 1, there exist constants αj such that for any ball B with r(B) its radius
and for any f ∈ L∞

c (M) supported in B,

(

−
∫

Cj(B)

|Ar(B)f |q+ dµ
)

1
q+ ≤ αj −

∫

B

|f | dµ. (3.3)

(c) There exists β > (sw)′, i.e., w ∈ RHβ′(µ), with the following property: for all
j ≥ 2, there exist constants αj such that for any ball B with r(B) its radius and
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for any f ∈ L∞

c (M) supported in B,
(

−
∫

Cj(B)

|∇∆−1/2(I −Ar(B))f |β dµ
)1/β

≤ αj −
∫

B

|f | dµ. (3.4)

(d)
∑

j αj 2Dw j < ∞ where Dw is the doubling order of w dµ.

Here, Cj(B) = 4B for j = 1 and Cj(B) = 2j+1 B \ 2j B for j ≥ 2, where λ B is the
ball co-centered with B and radius λr(B). Also, we have used the notation

−
∫

Cj (B)

h dµ =
1

µ(2j+1 B)

∫

Cj(B)

h dµ.

The conclusion is that ∇∆−1/2 is bounded on Lp(M, w) for all p ∈ Ww(1, q+) with
p < q. By the first step one can choose any q ∈ Ww(q−, q+) ⊂ Ww(1, q+) hence
∇∆−1/2 is bounded on Lp(M, w) for all p ∈ Ww(1, q+).

Now, we check the items in the list. As just explained, (a) holds by the first step
for q ∈ Ww(q−, q+). To obtain (b), we deduce from the Gaussian upper bound on the
kernel pt(x, y) of e−t ∆ —which holds under doubling and on-diagonal upper bound,
see [ACDH]— that for any fixed integer m there exist c, C > 0 such that for all j ≥ 1,
all ball B, all f ∈ L∞

c (M) supported in B and all 1 ≤ k ≤ m,

sup
Cj(B)

|e−k r(B)2 ∆f | ≤ C e−c 4j −
∫

B

|f | dµ. (3.5)

This easily implies that Ar = I − (I − e−r2 ∆)m satisfies (3.3) with αj = Ce−c 4j

.

The proof of (c) is based on the following result.

Lemma 3.1. Assume that M (complete, non-compact) satisfies the doubling volume

property and the on-diagonal upper bound pt(x, x) ≤ Cµ(B(x,
√

t))−1 for all t > 0 and

all x ∈ M . Then for all β ∈ [1, q̃+) ∪ [1, 2], one has the following estimate: for all

m ≥ 1, there exists C > 0 such that for all j ≥ 2, all ball B, all f ∈ L∞

c (M) with

support in B,

(

−
∫

Cj(B)

|∇∆−1/2(I − e−r(B)2 ∆)mf |β dµ
)

1
β ≤ C4−jm −

∫

B

|f | dµ. (3.6)

To finish the proof of (c), notice that Ww(q−, q+) 6= Ø implies that q+/(sw)′ >
q− rw ≥ 1. In particular, q+ > (sw)′. We also know that q̃+ = q+ > 2. We select β
with max{(sw)′, 2} < β < q̃+. Hence, (3.4) holds with αj = C4−jm

Eventually (d) holds if we choose m > Dw/2. �

Proof of Lemma 3.1. First, this estimate is known for β = 2 (see [ACDH]). Also, the
inequality for a fixed β0 implies the same one for all β with 1 ≤ β ≤ β0. It suffices to
assume β > 2, which happens only if q̃+ > 2.

We use a trick from [ACDH, Proof of Lemma 3.1]. Fix a ball B, with radius r, and
f ∈ L∞(M) supported in B. We have

∇∆−1/2(I − e−r2∆)mf =

∫

∞

0

gr(t)∇e−t ∆f dt
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where gr : R
+ → R is a function such that

∫

∞

0

|gr(t)| e−
c 4j r2

t
dt√
t
≤ Cm 4−j m. (3.7)

By definition of q̃+ and the argument of [ACDH, p. 944] we have

(

∫

M

|∇x pt(x, y)|β eγ
d2(x,y)

t dµ(x)
)1/β

≤ C
√

t
[

µ(B(y,
√

t))
]1−1/β

,

for all t > 0 and y ∈ M , with γ > 0 depending on β. This implies that for all j ≥ 2,
y ∈ B and all t > 0,

(

−
∫

Cj(B)

|∇x pt(x, y)|β dµ(x)
)1/β

.
1√
t
e−

c 4j r2

t
1

µ(B(y,
√

t))1−1/β µ(2j+1 B)1/β
.

Using the doubling condition, µ(2j+1 B) ∼ µ(B(y, 2j+1 r)) uniformly in y ∈ B and

µ(B(y, 2j+1 r))

µ(B(y,
√

t))
. max

{

1,
2j r√

t

}D

where D is the doubling order of µ. Hence, with another c > 0,
(

−
∫

Cj(B)

|∇x pt(x, y)|β dµ(x)
)1/β

.
1√
t
e−

c 4j r2

t
1

µ(2j+1 B)
≤ 1√

t
e−

c 4j r2

t
1

µ(B)
.

We conclude using Minkowski’s integral inequality and (3.7) that the left hand side
of (3.6) is bounded by

∫

∞

0

|gr(t)|
∫

B

|f(y)|
(

−
∫

Cj(B)

|∇x pt(x, y)|β dµ(x)
)1/β

dµ(y) dt

.

∫

∞

0

|gr(t)|
1√
t
e−

c 4j r2

t dt −
∫

B

|f | dµ . 4−j m −
∫

B

|f | dµ.

�

Proof of Theorem 1.2, (ii). Since w ∈ A1(µ) ∩ RH(q+/q−)′(µ), rw = 1 and sw >
(q+/q−)′. Thus q− rw = q− < q+/(sw)′ and Ww(q−, q+) 6= Ø. Therefore, the first
step of the proof of part (i) applies. Next, the four items checked already in the sec-
ond step suffice to conclude the weak-type (1, 1) when w ∈ A1(µ) by [AM1, Remark
8.9]. �

Proof of Theorem 1.4. Invoke [AM1, Remark 8.10] and inspect the way we proved (b)
and (c) above. �

4. Commutators

Let us write T = ∇∆−1/2 and take b ∈ BMO(µ) (the space of bounded mean
oscillation functions). We define the first order commutator T 1

b f = [b, T ]f = b Tf −
T (b f), and for k ≥ 2 the k-th order commutator is T k

b f = [b, T k−1
b ].

Theorem 4.1. Under the assumptions of Theorem 1.2, T k
b satisfies (1.2) for each

k ≥ 1, that is, it is bounded on Lp(M, w) under the same conditions on w, p.
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The proof is almost identical to that of Theorem 1.2 and we point out the main
changes. In the first step we use [AM1, Theorem 3.15]. One proves estimates slightly
stronger than (3.1) and (3.2), where, following the ideas in [ACDH, Section 3.1], the
right hand sides involve, instead of maximal functions, series of dyadic averages with
some coefficients that decay fast enough. For the second step, we use [AM1, Remark
8.11]. Items (b) and (c) remain the same. In (a), by the first step, we have that T and
T ℓ

b , 1 ≤ ℓ ≤ k, are of weak-type (q, q) with respect to wdµ. Finally, the series in (d) is
replaced by

∑

j αj 2Dw jjk and it is easily seen to be finite by taking m large enough

(the same m for all k). Further details are left to the interested reader.

This theorem applies to the four situations described in Section 2. Note that even
the unweighted Lp estimates for the commutators are new.
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homogéneo a las medidas no doblantes, Ph.D. Thesis, Universidad Autónoma de Madrid,
2001.
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José Maŕıa Martell, Instituto de Matemáticas y F́ısica Fundamental, Consejo Su-
perior de Investigaciones Cient́ıficas, C/ Serrano 123, 28006 Madrid, Spain

and
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid,

Spain
E-mail address : chema.martell@uam.es


