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WEIGHTED NORM INEQUALITIES, OFF-DIAGONAL ESTIMATES

AND ELLIPTIC OPERATORS

PART I: GENERAL OPERATOR THEORY AND WEIGHTS

PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

Abstract. This is the first part of a series of four articles. In this work, we are
interested in weighted norm estimates. We put the emphasis on two results of dif-
ferent nature: one is based on a good-λ inequality with two-parameters and the
other uses Calderón-Zygmund decomposition. These results apply well to singu-
lar “non-integral” operators and their commutators with bounded mean oscillation
functions. Singular means that they are of order 0, “non-integral” that they do not
have an integral representation by a kernel with size estimates, even rough, so that
they may not be bounded on all Lp spaces for 1 < p < ∞. Pointwise estimates are
then replaced by appropriate localized Lp − Lq estimates. We obtain weighted Lp

estimates for a range of p that is different from (1,∞) and isolate the right class of
weights. In particular, we prove an extrapolation theorem “à la Rubio de Francia”
for such a class and thus vector-valued estimates.
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General introduction

This is a general introduction for this article and the series [AM2, AM3, AM4].
Calderón-Zygmund operators have been thoroughly studied since the 50’s. They

are singular integral operators associated with a kernel satisfying certain size and
smoothness conditions. One first shows that the operator in question is bounded on
Lp0 for some p0: typically, for p0 = 2 with spectral theory, Fourier transform or even
the powerful T (1), T (b) theorems. Once this is achieved, using the properties of the
kernel, one gets a weak-type (1,1) estimate hence strong type (p, p) for 1 < p < p0 by
means of the Calderón-Zygmund decomposition and for p > p0, one uses duality or
boundedness from L∞ to BMO and interpolation. Still another way for p > p0 relies
on good-λ estimates via the Fefferman-Stein sharp maximal function. It is interest-
ing to note that both Calderón-Zygmund decomposition and good-λ arguments use
independent smoothness conditions on the kernel, allowing generalizations in various
ways.

The removal of regularity assumptions on the kernel is important, for instance
towards applications to operators on non-smooth domains. Let us mention [DMc]
where a weak-type (1,1) criterion is obtained under upper bound assumption on the
kernel but no regularity in the classical Hölder sense or in the sense of the Hörmander
condition [Hör].

We mention also that Calderón-Zygmund operators satisfy also commutator esti-
mates with bounded mean oscillation functions and it is therefore natural to try to
extend them (see also the work of [DY] in this direction following the methods in
[DMc]).

A natural question is in what sense one should use the kernel of the operators.
It has become common practice but is it a necessary limitation or a technical one.
Indeed, one encounters Calderón-Zygmund like operators without any (reasonable)
information on their kernels which we call, following the implicit terminology intro-
duced in [BK1], singular “non-integral” operators in the sense that they are still of
order 0 but they do not have an integral representation by a kernel with size and/or
smoothness estimates. The goal is to obtain some range of exponents p for which Lp

boundedness holds, and because this range may not be (1,∞), one should abandon
any use of kernels.
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The first step was done in [BK1] where a criterion for weak-type (p, p) for some
p < p0 is presented. In fact, this criterion is in the air in [Fef] but, still, [BK1] brings
some novelty such as the removal of the mean value property already observed in
[DMc] when p = 1. See also [BK2] and [HM] for Lp bounds p < 2 of the Riesz
transforms of elliptic operators starting from the L2 bound proved in [AHLMcT].

The second step was taken in [ACDH], inspired by the good-λ estimates in the
Ph.D. thesis of one of us [Ma1, Ma2], where a criterion for strong type (p, p) for some
p > p0 is proved and applied to Riesz transforms for the Laplace-Beltrami operators
on some Riemannian manifolds. A criterion in the same spirit for a limited range of p’s
also appears implicitly in [CP] towards perturbation theory for linear and non-linear
elliptic equations and more explicitly in [Sh1, Sh2] (actually, we shall observe here
that the criterion in [Sh2] is a corollary of the one in [ACDH]).

These two criteria are exposed in [Au1], to which the reader is referred, in the
Euclidean setting and applied to other operators.

Our purpose is to investigate the weighted norm counterparts of this new theory for
Muckenhoupt weights and to apply this in the subsequent papers. Again, the weighted
norm theory is well known for Calderón-Zygmund operators and we seek for criteria
applying to larger classes of operators without kernel bounds hence with limited range
of exponents. We mention [Ma1] where some weighted estimates for a functional
calculi are proved but again assuming appropriate kernel upper bounds. Our study
will also clarify some points in the unweighted case: in particular, we present a simple
machinery to prove (new) commutator estimates (both unweighted and weighted) in
this generality.

This paper is concerned with the general operator theory and weights in the setting
of spaces of homogeneous type. We study weighted boundedness criteria for operators
and theirs commutators with bounded mean oscillation functions. Available machin-
ery give us also vector-valued estimates. See the specific introductions of Parts 1 and
2 in this paper.

Part II, [AM2], is of independent interest as it develops a theory of off-diagonal
estimates in the context of spaces of homogeneous type. In particular, the case of the
semigroups generated by elliptic operators is thoroughly studied. This is instrumental
in the application of the general theory in [AM3].

In Part III, [AM3], we consider operators arising from second order elliptic oper-
ators L: operators of the type ϕ(L) from holomorphic functional calculus, the Riesz
transforms, square functions, . . . . We obtain sharp or nearly sharp ranges of weighted
boundedness of such operators, of their commutators with bounded mean oscillation
functions, and also vector-valued inequalities.

In Part IV, [AM4], we apply our general theory to the Riesz transform on some
Riemannian manifolds or Lie groups as in [ACDH] and their commutators.

Part 1. Good-λ methods

1. Introduction

Good-λ inequalities, brought to Harmonic Analysis in [BG], provide a powerful tool
to prove boundedness results for operators or at least comparisons of two operators.
A typical good-λ inequality for two non-negative functions F and G is as follows: for
every 0 < δ < 1 there exists γ = γ(δ) and for every w ∈ A∞, there exists 0 < ǫw ≤ 1
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and Cw > 0 such that for any λ > 0

w{x : F (x) > 2 λ, G(x) ≤ γ λ} ≤ Cw δǫw w{x : F (x) > λ}. (1.1)

The usual approach for proving such an estimate consists in first deriving a local
version of it with respect to the underlying doubling measure, and then passing to the
weighted measure using that w ∈ A∞.

Weighted good-λ estimates encode a lot of information about F and G, since they
give a comparison of the w-measure of the level sets of both functions. As a conse-
quence of (1.1) one gets, for instance, that for every 0 < p < ∞ and all w ∈ A∞ then
‖F‖Lp(w) is controlled by ‖G‖Lp(w). The same inequality holds with Lp,∞ in place of
Lp or with some other function spaces. Thus, the size of F is controlled by that of G.

In applications, one tries to control a specific operator T to be studied by a maximal
one M whose properties are known by setting F = Tf and G = Mf . For example, a
Calderón-Zygmund operator by the Hardy-Littlewood maximal operator [Coi], [CF]; a
fractional integral by a fractional maximal operator [MW]; a Littlewood-Paley square
function by a non-tangential maximal operator [CWW], [Dah], [DJK], [GW], [Wil];
the maximal operator by the sharp maximal operator [FS].

When T is a Calderón-Zygmund operator with smooth kernel, in particular it is
already bounded on (unweighted) L2, it was shown in [Coi], [CF] that (1.1) holds
with F = Tf and G = Mf with M being the Hardy-Littlewood maximal function.
Thus, T is “controlled” by M in Lp(w) for all 0 < p < ∞ and w ∈ A∞ and therefore
T is bounded on Lp(w) if M is bounded on Lp(w), which by Muckenhoupt’s theorem
means w ∈ Ap. In particular, the range of unweighted Lp boundedness of T , that
is the set of p for which T is strong-type (p, p), is (1,∞), a fact that was known by
Calderón-Zygmund methods (see Part 2 of this paper).

Replacing Mf by M(|f |p0)1/p0 for some p0 > 1 changes the range of unweighted Lp

boundedness to (p0,∞). See for instance [MPT], and the references therein, where
this occurs for Calderón-Zygmund operators with less regular kernels. In this case,
weighted Lp(w) boundedness holds if w ∈ Ap/p0

.
So far, there is a lower limitation on p but no upper limitation in the sense that p

goes all the way to ∞. This has to be so by a special and very simple case of Rubio
de Francia’s extrapolation theorem (see [Rub], [Gar]) which says that any sublinear
operator T that is bounded on Lp1(w) for some 0 < p1 < ∞ and all w ∈ A1, is
bounded on Lp for all p1 ≤ p < ∞.

Obviously, the above good-λ inequality does not apply to operators whose Lp bound-
edness is expected for p0 < p < q0 with a finite exponent q0. An example is the Riesz
transform for the Laplace-Beltrami operator on some Riemannian manifolds studied
in [ACDH, AC]. There, a two-parameter good-λ estimate incorporating an upper
limitation in p is used for proving Lp boundedness with a limited range of p > 2. See
also [Au1], [CP], [Sh1, Sh2]. These two-parameter good-λ estimates are of the form

∣∣{x : MF (x) > K λ, G(x) ≤ γ λ}
∣∣ ≤ C

(
1

Kq0
+

γ

K

) ∣∣{x : MF (x) > λ}
∣∣, (1.2)

for all λ > 0, K ≥ K0 and 0 < γ < 1. Note the explicit dependance on K, γ which
are the two parameters and the appearance of the exponent q0 ∈ (0,∞] in the right
hand side. From this, it follows that MF is controlled by G in Lp for all 0 < p < q0.
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The aim of this part is to state conditions to obtain a weighted analog of (1.2) and
to derive some consequences for the study of operators. As we see below (Section 3.1),
this forces us to specify the power ǫw in (1.1), hence to specify the reverse Hölder class
for w. Indeed, taking w ∈ RHs′ then ǫw = 1/s and we obtain the control of MF by
G in Lp(w) for all 0 < p < q0/s (note that this implies that w ∈ RH(q0/p)′).

This allows us to formulate simple unweighted conditions for the Lp(w) bounded-
ness of (singular “non-integral”) operators a priori bounded on (unweighted) Lp for
p0 < p < q0 for weights in the class Wp(p0, q0) = Ap/p0

∩ RH(q0/p)′ (Section 3.4). A
slight improvement furnishes, almost for free, boundedness of their commutators with
bounded mean oscillation functions for the same weights (Section 3.5). This class
of weights (studied in Section 4.1) is the largest possible within A∞ as we prove an
extrapolation result for it. Namely, if T is bounded on some Lp(w) for some fixed p
and for all w ∈ Wp

(
p0, q0

)
, then the same happens for every q ∈ (p0, q0) and the corre-

sponding class of weights. Using ideas on extrapolation from [CMP] and [CGMP], we
obtain vector-valued inequalities automatically again for limited ranges of p (Section
4.2). For simplicity of the exposition, we work in the Euclidean space equipped with
the Lebesgue measure. See Section 5 for extensions to spaces of homogeneous type.

2. Muckenhoupt weights

We review some needed background on Muckenhoupt weights. We use the notation

−

∫

E

h =
1

|E|

∫

E

h(x) dx

and we often forget the Lebesgue measure and the variable of the integrand in writing
integrals, unless this is needed to avoid confusions.

A weight w is a non-negative locally integrable function. We say that w ∈ Ap,
1 < p < ∞, if there exists a constant C such that for every ball B ⊂ Rn (balls could
be switched to cubes) (

−

∫

B

w
)(

−

∫

B

w1−p′
)p−1

≤ C.

For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball B ⊂ Rn

−

∫

B

w ≤ C w(x), for a.e. x ∈ B,

or, equivalently, Mw ≤ C w a.e. where M denotes the uncentered maximal operator
over balls (or cubes) in Rn. The reverse Hölder classes are defined in the following
way: w ∈ RHq, 1 < q < ∞, if there is a constant C such that for every ball B ⊂ Rn

(
−

∫

B

wq
) 1

q
≤ C −

∫

B

w.

The endpoint q = ∞ is given by the condition: w ∈ RH∞ whenever, for any ball B,

w(x) ≤ C −

∫

B

w, for a.e. x ∈ B.

Notice that we have excluded the case q = 1 since the class RH1 consists of all the
weights, and that is the way RH1 is understood in what follows.

We sum up some of the properties of these classes in the following result.

Proposition 2.1.
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(i) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q < ∞.

(ii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.

(iii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq.

(iv) If w ∈ RHq, 1 < q < ∞, then there exists q < p < ∞ such that w ∈ RHp.

(v) A∞ =
⋃

1≤p<∞

Ap =
⋃

1<q≤∞

RHq.

(vi) If 1 < p < ∞, w ∈ Ap if and only if w1−p′ ∈ Ap′.

(vii) If 1 ≤ q ≤ ∞ and 1 ≤ s < ∞, then w ∈ Aq∩RHs if and only if ws ∈ As (q−1)+1.

Properties (i)-(vi) are standard, see for instance [GR] or [Duo]. For (vii) see [JN].

3. Two parameter good-λ estimates

Unless specified otherwise, M denotes the uncentered maximal operator over cubes
(or balls) in Rn.

3.1. Main result.

Theorem 3.1. Fix 1 < q ≤ ∞, a ≥ 1 and w ∈ RHs′, 1 ≤ s < ∞. Then, there exist
C = C(q, n, a, w, s) and K0 = K0(n, a) ≥ 1 with the following property: Assume that
F , G, H1 and H2 are non-negative measurable functions on Rn such that for any cube
Q there exist non-negative functions GQ and HQ with F (x) ≤ GQ(x)+HQ(x) for a.e.
x ∈ Q and

(
−

∫

Q

Hq
Q

) 1
q
≤ a

(
MF (x) + MH1(x) + H2(x̄)

)
, ∀x, x̄ ∈ Q; (3.1)

and

−

∫

Q

GQ ≤ G(x), ∀x ∈ Q. (3.2)

Then for all λ > 0, K ≥ K0 and 0 < γ < 1

w
{
MF > K λ, G + H2 ≤ γ λ

}
≤ C

(
aq

Kq
+

γ

K

) 1
s

w
{
MF + MH1 > λ

}
. (3.3)

As a consequence, for all 0 < p < q
s
, we have

‖MF‖Lp(w) ≤ C
(
‖G‖Lp(w) + ‖MH1‖Lp(w) + ‖H2‖Lp(w)

)
, (3.4)

provided ‖MF‖Lp(w) < ∞, and

‖MF‖Lp,∞(w) ≤ C
(
‖G‖Lp,∞(w) + ‖MH1‖Lp,∞(w) + ‖H2‖Lp,∞(w)

)
, (3.5)

provided ‖MF‖Lp,∞(w) < ∞. Furthermore, if p ≥ 1 then (3.4) and (3.5) hold, provided
F ∈ L1 (whether or not MF ∈ Lp(w)).

The proof of this result is in Section 6.1.

Remark 3.2. We do mean that the estimates (3.1) and (3.2) are valid at any points
x, x̄ ∈ Q, not just almost everywhere.
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Remark 3.3. The case q = ∞ is the standard one: the Lq-average appearing in the
hypothesis is understood as an essential supremum and K−q = 0. Thus, the Lp(w)
and Lp,∞(w) estimates will hold for any 0 < p < ∞, no matter the value of s, that is,
for any w ∈ A∞.

Remark 3.4. If (3.1) holds for any q > 1, then (3.4) holds for all 0 < p < ∞ and for
all w ∈ A∞. To see this, we fix 0 < p < ∞ and w ∈ A∞. Then w ∈ RHs′ for some
1 ≤ s < ∞ and it suffices to take q large enough so that p < q/s.

Remark 3.5. In applications, error terms appear in localization arguments either in
the form MH1(x) or H2(x̄) (with x̄ independent of x) or both. The unweighted case
[ACDH, Theorem 2.4] is of this type.

Remark 3.6. If s > 1 and q < ∞, then one also obtains the end-point p = q/s.
To do it, we only need to observe that w ∈ RHs′0

for some 1 < s0 < s (see (v) in
Proposition 2.1) and so we can apply Theorem 3.1 with p = q/s < q/s0.

We present some applications of Theorem 3.1 recovering some previously known
estimates.

3.2. Fefferman-Stein Inequality. The classical Fefferman-Stein inequality relating
M and M# follows at once from Theorem 3.1. We take F = |f | ∈ L1

loc, H1 = H2 = 0.
For each cube Q we denote by fQ the average of f on Q,

F = |f | ≤ |fQ| + |f − fQ| ≡ HQ + GQ.

Taking q = ∞, we trivially have ‖HQ‖L∞(Q) = |fQ| ≤ Mf(x) = MF (x) for each
x ∈ Q. Also, by definition of M#

−

∫

Q

GQ = −

∫

Q

|f − fQ| ≤ M#f(x) ≡ G(x), ∀x ∈ Q.

Thus, (3.3) holds (with q = ∞) and consequently, for every 0 < p < ∞ and every
w ∈ A∞ we have

‖Mf‖Lp(w) ≤ C ‖M#f‖Lp(w), (3.6)

whenever Mf ∈ Lp(w). This is what is proved in [FS].

3.3. Generalized sharp maximal functions. In [Ma1], a generalization of M# is
introduced in the setting of spaces of homogeneous type. In the Euclidean setting,
we define M#

D as follows. Let {Dt}t>0 be a family of operators (for instance, an
approximation of the identity but it could be more general) such that each Dt is an
integral operator with kernel dt(x, y) for which

|dt(x, y)| ≤ C t−
n
m h

(
|x − y|m t−1

)

where m is some positive fixed constant and h is positive, bounded, decreasing and
decaying to 0 fast enough. Then we define a new sharp maximal function associated
to {Dt}t>0 as

M#
D f(x) = sup

Q∋x
−

∫

Q

|f − DtQf |

where tQ = ℓ(Q)m and ℓ(Q) is the sidelength of Q.
Examples are given by the semigroups associated with a second order elliptic op-

erators {e−t L}t>0 whose heat kernels have Gaussian (or some other) decay (see [AT,
Ma1, DMc, AE], . . . )



8 PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

With Theorem 3.1 we can reprove the good-λ inequality of [Ma1] for M#
D and M .

As before take F = |f | ∈ Lp for some p ≥ 1, H1 = H2 = 0. For each cube Q we write

F = |f | ≤ |DtQf | + |f − DtQf | ≡ HQ + GQ.

Taking q = ∞, we have ‖HQ‖L∞(Q) ≤ C Mf(x) = C MF (x) for each x ∈ Q by the

properties assumed on Dt. Moreover, by definition of M#
D ,

−

∫

Q

GQ = −

∫

Q

|f − DtQf | ≤ M#
D f(x) ≡ G(x), ∀x ∈ Q.

Thus, one obtains (3.3) (with q = ∞) and hence, for every 0 < p < ∞ and every
w ∈ A∞ we have

‖Mf‖Lp(w) ≤ C ‖M#
D f‖Lp(w),

whenever Mf ∈ Lp(w). This is the result proved in [Ma1].

3.4. Applications to Singular “Non-Integral” Operators. We present here dif-
ferent applications of Theorem 3.1 toward weighted norm inequalities for operators,
avoiding all use of kernel representation, hence the terminology “non-integral”.

In what follows, we say that an operator T acts from A into B (with A, B being
some given sets) if T is a map defined on A and valued in B. An operator T acting
from A to B, both vector spaces of measurable functions, is sublinear if

|T (f + g)| ≤ |Tf | + |Tg| and |T (λf)| = |λ| |Tf |

for all f, g ∈ A and λ ∈ R or C. Let us mention that for the theorems of this section,
the second condition is not needed.

Theorem 3.7. Let 1 ≤ p0 < q0 ≤ ∞. Let E and D be vector spaces such that D ⊂ E .
Let T , S be operators such that S acts from D into the set of measurable functions
and T is sublinear acting from E into Lp0. Let {Ar}r>0 be a family of operators acting
from D into E . Assume that

(
−

∫

B

|T (I −Ar(B))f |
p0

) 1
p0 ≤ C M

(
|Sf |p0

) 1
p0 (x), (3.7)

and (
−

∫

B

|TAr(B)f |
q0

) 1
q0 ≤ C M

(
|Tf |p0

) 1
p0 (x), (3.8)

for all f ∈ D, all ball B where r(B) denotes its radius and all x ∈ B. Let p0 < p < q0

(or p = q0 when q0 < ∞) and w ∈ A p
p0

∩ RH( q0
p )

′. There is a constant C such that

‖Tf‖Lp(w) ≤ C ‖Sf‖Lp(w) (3.9)

for all f ∈ D. Furthermore, for all p0 < r < q0, there is a constant C such that
∥∥∥
(∑

j

|Tfj|
r
) 1

r
∥∥∥

Lp(w)
≤ C

∥∥∥
(∑

j

|Sfj|
r
) 1

r
∥∥∥

Lp(w)
(3.10)

for all fj ∈ D.

We would like to emphasize that (3.7) and (3.8) are unweighted assumptions. This
is a triple extension of [ACDH, Theorem 3.1]: we introduce a second operator S,
obtain weighted inequalities and also vector-valued estimates.
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Remark 3.8. The most common situation is S = I, E = Lp0 with D being a class of
“nice” functions such as Lp0 , Lp0 ∩ L2, L∞

c , C∞
0 , . . . . In that case, (3.9) is interesting

only when the right hand side is finite, hence we may also impose f ∈ Lp(w). This
implies the boundedness of T from D ∩ Lp(w) into Lp(w) for the Lp(w) norm. See
[AM3] for a situation where S 6= I.

Remark 3.9. In this result, the case q0 = ∞ is understood in the sense that the
Lq0-average in (3.8) is indeed an essential supremum. Besides, the condition for the
weight turns out to be w ∈ Ap/p0 for p > p0. Similarly, if (3.8) is satisfied for all
q0 < ∞ then (3.9) holds for all p0 < p < ∞ and for all w ∈ Ap/p0

.

Remark 3.10. A slightly more general statement consists in replacing the family
{Ar} by {AB} indexed by balls. We use this below.

Proof of Theorem 3.7. The vector-valued inequalities (3.10) follow automatically by
extrapolation, see Theorem 4.9 below.

We prove (3.9), first in the case q0 < ∞ and p0 < p ≤ q0. Let f ∈ D and so
F = |Tf |p0 ∈ L1. Fix a cube Q (we switch to cubes for the proof). As T is sublinear,
we have

F ≤ GQ + HQ ≡ 2p0−1 |T (I −Ar(Q))f |
p0 + 2p0−1 |TAr(Q)f |

p0.

Then (3.7) and (3.8) yield the corresponding conditions (3.1) and (3.2) with q = q0/p0,
H1 = H2 ≡ 0, a = 2p0−1 Cp0 and G = 2p0−1 Cp0 M

(
|Sf |p0

)
. As w ∈ RH(q0/p)′ ,

Theorem 3.1 and Remark 3.6 (since q0 < ∞ implies q < ∞) with p/p0 > 1 in place of
p and s = q0/p yield

‖Tf‖p0

Lp(w) ≤ ‖MF‖
L

p
p0 (w)

≤ C ‖G‖
L

p
p0 (w)

= C
∥∥M

(
|Sf |p0

)∥∥
L

p
p0 (w)

≤ C ‖Sf‖p0

Lp(w),

where in the last estimate we have used that w ∈ Ap/p0
.

In the case q0 = ∞ and p < ∞, Theorem 3.1 applies as before when w ∈ Ap/p0 by
Remark 3.3. �

Remark 3.11. Under the assumptions of Theorem 3.7, we can also prove an end-
point weak-type estimate. Namely, if w ∈ A1 ∩ RH(

q0
p0

)′ , then there is a constant C

such that
‖Tf‖Lp0,∞(w) ≤ C ‖Sf‖Lp0(w), (3.11)

for all f ∈ D. The proof follows the same ideas but one has to use the weak-type
estimate (3.5) in place of (3.4). The details are left to the reader.

Let us recall that we have assumed that for f ∈ D then F = |Tf |p0 ∈ L1. This
hypothesis is not granted directly for T in some applications (for instance, it is not
true for p0 = 1 and T being the Hilbert transform or the Riesz transforms) but for
suitable approximations Tε that are bounded on Lp0(w) (with some bound that is
allowed to depend on ε). In such a case, one obtains the weak-type estimate for Tε

with a uniform control on the constant and the weak-type estimate for T follows by a
limiting procedure. (This happens for the Hilbert transform: the kernel is truncated
in such a way that it is in L1, so the approximations Tε are bounded on L1.) Let
us mention that for Calderón-Zygmund operators the usual approach is different:
the weighted weak-type (1, 1) estimate for A1 weights follows by using the Calderón-
Zygmund decomposition (see [GR, Chapter IV]), see also [BK1] for a weak-type (p0, p0)
with p0 > 1, and Theorems 8.1, 8.7 below.
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Remark 3.12. Theorem 3.1 implies a variant of Theorem 3.7 valid for all 0 < p0 <
q0 ≤ ∞. We do not know, however, whether such a result is useful in applications
when p0 < 1. The precise statement and the minor modifications in the proof are left
to the reader.

The following extension of Theorem 3.7 is also useful. For simplicity we assume
that S = I.

Theorem 3.13. Let 1 ≤ p0 < q0 ≤ ∞. Let D, E , T and {Ar}r>0 be as in Theorem
3.7. Assume that (3.7) holds with S = I and, in place of (3.8), that

(
−

∫

B

|TAr(B)f |
q0

) 1
q0 ≤ C

(
M

(
|Tf |p0

) 1
p0 (x) + M

(
|S1f |

p0
) 1

p0 (x) + |S2f(x̄)|
)
, (3.12)

holds for all f ∈ D and all x, x̄ ∈ B where S1, S2 are two given operators. Let
p0 < p < q0 and w ∈ A p

p0
∩ RH( q0

p )
′. If S1 and S2 are bounded on Lp(w), then

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w)

for all f ∈ D ∩ Lp(w).

Observe that Remarks 3.9 and 3.10 apply to this result. Also, the operator T
satisfies the vector-valued inequalities (3.10).

Proof. The proof is almost identical to the one of Theorem 3.7. Let f ∈ D ∩ Lp(w)
and set F = |Tf |p0 ∈ L1, H1 = |S1f |

p0 and H2 = |S2f |
p0. Theorem 3.1 gives us

‖Tf‖p0

Lp(w) ≤ ‖MF‖
L

p
p0 (w)

≤ C
(
‖G‖

L
p

p0 (w)
+ ‖MH1‖

L
p

p0 (w)
+ ‖H2‖

L
p

p0 (w)

)

= C
(∥∥M

(
|Sf |p0

)∥∥
L

p
p0 (w)

+
∥∥M

(
|S1f |

p0
)∥∥

L
p

p0 (w)
+

∥∥|S2f |
p0

∥∥
L

p
p0 (w)

)

≤ C ‖f‖p0

Lp(w),

where we have used that M is bounded on L
p

p0 (w) (since w ∈ Ap/p0
) and that, by

hypothesis, S1, S2 are bounded on Lp(w). �

The last result of this section is an extension of [Sh2, Theorem 3.1].

Theorem 3.14. Let 1 ≤ p0 < q0 ≤ ∞. Suppose that T is a bounded sublinear operator
on Lp0. Assume that there exist constants α2 > α1 > 1, C > 0 such that

(
−

∫

B

|Tf |q0

) 1
q0 ≤ C

{(
−

∫

α1 B

|Tf |p0

) 1
p0 + M

(
|f |p0

) 1
p0 (x)

}
, (3.13)

for all balls B, x ∈ B and all f ∈ L∞ with compact support in Rn \ α2 B. Let
p0 < p < q0 and w ∈ A p

p0
∩ RH( q0

p )
′. Then, there is a constant C such that

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w)

for all f ∈ L∞ with compact support.

Proof. For any ball B, let ABf = (1 − χα2 B) f . We fix f ∈ L∞
c , a ball B and x ∈ B.

Using the Lp0-boundedness of T , we have
(
−

∫

α1 B

|T (I −AB)f |p0

) 1
p0 ≤ C

(
−

∫

α2 B

|f |p0

) 1
p0 ≤ C M

(
|f |p0

) 1
p0 (x). (3.14)
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In particular (3.7) holds since α1 > 1. Next, by (3.13) and since |ABf | ≤ |f | we have

(
−

∫

B

|TABf |q0

) 1
q0 ≤ C

{(
−

∫

α1 B

|TABf |p0

) 1
p0 + M

(
|f |p0

) 1
p0 (x)

}
.

By (3.14) and the sublinearity of T , we obtain

(
−

∫

B

|TABf |q0

) 1
q0 ≤ C M

(
|Tf |p0

) 1
p0 (x) + C M

(
|f |p0

) 1
p0 (x),

which is (3.12) with S1 = I and S2 = 0. We conclude on applying Theorem 3.13 with
D = L∞

c and E = Lp0. �

3.5. Commutators with BMO functions: part I. A slight strengthening of the
hypotheses in Theorem 3.7 furnishes weighted Lp estimates for commutators with
BMO functions.

Let b ∈ BMO (BMO is for bounded mean oscillation), that is,

‖b‖BMO = sup
B

−

∫

B

|b(x) − bB | dx < ∞,

where the supremum is taken over all balls and bB stands for the average of b on
B. Let T be a sublinear bounded operator on some Lp0 . Boundedness is assumed to
avoid technical issues with the definition of the commutators. It could be relaxed, for
instance, by imposing that T acts from E = ∩pL

p
c into Lp0. Sublinearity is defined in

Section 3.4.
For any k ∈ N we define the k-th order commutator

T k
b f(x) = T

(
(b(x) − b)k f

)
(x), f ∈ L∞

c , x ∈ Rn.

Note that T 0
b = T . Commutators are usually considered for linear operators T in which

case they can be alternatively defined by recurrence: the first order commutator is

T 1
b f(x) = [b, T ]f(x) = b(x) Tf(x) − T (b f)(x)

and for k ≥ 2, the k-th order commutator is given by T k
b = [b, T k−1

b ].
We claim that since T is bounded in Lp0 then T k

b f is well defined in Lq
loc for any

0 < q < p0 and for any f ∈ L∞
c : take a cube Q containing the support of f and

observe that by sublinearity for a.e. x ∈ Rn

|T k
b f(x)| ≤

k∑

m=0

Cm,k |b(x) − bQ|
k−m

∣∣T
(
(b − bQ)m f

)
(x)

∣∣.

John-Nirenberg’s inequality implies
∫

Q

|b(y) − bQ|
m p0 |f(y)|p0 dy ≤ C‖f‖L∞ ‖b‖m p0

BMO |Q| < +∞.

Hence, T
(
(b − bQ)m f

)
∈ Lp0 and the claim follows.

We are going to see that Theorem 3.1 can be applied to T 1
b where the function

H2 involves T = T 0
b . The same will be done for T k

b and in this case H2 involves the
preceding commutators T, T 1

b , . . . , T k−1
b . Thus an induction argument (details are in

Section 6.2) will lead us to the following estimates:
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Theorem 3.15. Let 1 ≤ p0 < q0 ≤ ∞ and k ∈ N. Suppose that T is a sublinear
operator bounded on Lp0, and that {Ar}r>0 is a family of operators acting from L∞

c

into Lp0. Assume that
(
−

∫

B

|T (I −Ar(B))f |
p0

) 1
p0 ≤ C

∞∑

j=1

αj

(
−

∫

2j+1 B

|f |p0

) 1
p0 , (3.15)

and (
−

∫

B

|TAr(B)f |
q0

) 1
q0 ≤

∞∑

j=1

αj

(
−

∫

2j+1 B

|Tf |p0

) 1
p0 , (3.16)

for all f ∈ L∞
c and all ball B where r(B) denotes its radius. Let p0 < p < q0 and

w ∈ A p
p0

∩ RH( q0
p )

′. If
∑

j αj jk < ∞ then there is a constant C such that for all

f ∈ L∞
c and all b ∈ BMO,

‖T k
b f‖Lp(w) ≤ C ‖b‖k

BMO ‖f‖Lp(w), (3.17)

for all f ∈ L∞
c .

Remark 3.16. Under the assumptions above, we have
∑

j αj < ∞ and so (3.15)

and (3.16) imply respectively (3.7) and (3.8). Consequently, Theorem 3.7 applies to
T = T 0

b and yields its Lp(w)-boundedness.

Observe that Remarks 3.9 and 3.10 apply to this result. Also, the operator T k
b

satisfies the vector-valued inequalities (3.10). The assumptions (3.15) and (3.16) can
be relaxed in the spirit of Theorem 3.13 by allowing error terms in the right hand
sides: details and proof are left to the interested reader.

Remark 3.17. As in [PT] one can linearize the k-th order commutator and consider
the following multilinear commutators

T~bf(x) = T
(( k∏

j=1

(bj(x) − bj)
)

f
)
(x).

where ~b = {b1, . . . , bk} is a family of BMO functions. Notice that if b1 = · · · = bk = b
we have that T~b = T k

b . The proof of Theorem 3.15 can be adapted to T~b and thus get
the corresponding weighted estimates for it (see Remark 6.2). The precise statement
is left to the reader.

4. The sets Ww(p0, q0) and Extrapolation

4.1. The sets Ww(p0, q0). The conclusion of Theorem 3.7 with S = I and D = Lp0

(and also of Theorems 3.13 and 3.15) can be rewritten as follows: given w ∈ A∞, we
introduce the set

Ww(p0, q0) =
{
p : p0 < p < q0, w ∈ A p

p0
∩ RH( q0

p )
′

}
,

and we have shown that T is bounded on Lp(w) whenever p ∈ Ww(p0, q0). Let us give
some properties of this set.

Lemma 4.1. Let w ∈ A∞ and 1 ≤ p0 < q0 ≤ ∞. Then Ww(p0, q0) =
(
p0 rw, q0

(sw)′

)

where
rw = inf{r ≥ 1 : w ∈ Ar}, sw = sup{s > 1 : w ∈ RHs}.
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If q0 = ∞, this result has to be understood in the following way: the set Ww(p0, q0)
is defined by the only assumption w ∈ Ap/p0 and the conclusion is Ww = (p0 rw,∞).

Remark 4.2. Observe that if 1 ≤ p1 ≤ p0 ≤ q0 ≤ q1 ≤ ∞ then

Ww(p0, q0) ⊂ Ww(p1, q1) ⊂ Ww(1,∞) = (rw,∞) = {1 < p < ∞ : w ∈ Ap}.

Remark 4.3. The set Ww(p0, q0) can be empty: indeed, for every 1 ≤ p0 < q0 < ∞,
one can find w ∈ A∞ such that Ww(p0, q0) = Ø. A very simple example in R consists
in taking w(x) = |x|α for α = q0/p0 − 1. Note that w ∈ Ap, p > 1, if and only if
α < p − 1 that is p > α + 1 and so rw = α + 1. On the other hand, w ∈ RH∞ and so
sw = ∞. Therefore, Ww(p0, q0) = (p0 (1 + α), q0) = (q0, q0) = Ø.

Proof of Lemma 4.1. We do the case q0 < ∞, leaving the other one to the reader.
If p > p0 rw then p/p0 > rw and so w ∈ Ap/p0

. If, additionally, p < q0/(sw)′ then

(q0/p)′ < sw and so w ∈ RH(q0/p)′ . Therefore we have shown that
(
p0 rw, q0/(sw)′

)
⊂

Ww(p0, q0).
To prove the converse, we observe that, by (iii) in Proposition 2.1, if w ∈ Arw then

rw = 1: if w ∈ Arw for rw > 1, we have w ∈ Ar for some 1 < r < rw which contradicts
the definition of rw. In the same way, but this time by (iv) in Proposition 2.1, if
w ∈ RHsw then sw = ∞.

Let p ∈ Ww(p0, q0). Since w ∈ Ap/p0 then rw ≤ p/p0. Besides, rw 6= p/p0 since
p/p0 > 1 and so p > p0 rw. On the other hand, w ∈ RH(q0/p)′ yields that sw ≥ (q0/p)′.
Besides, sw 6= (q0/p)′ since q0/p > 1. This gives p < q0/(sw)′ as desired. �

The duality for these classes goes as follows:

Lemma 4.4. Given p0 < p < q0, we have

w ∈ A p
p0

∩ RH( q0
p )

′ ⇐⇒ w1−p′ ∈ A p′

(q0)′
∩ RH(

(p0)′

p′

)′.

In other words, p ∈ Ww(p0, q0) if and only if p′ ∈ Ww1−p′

(
(q0)

′, (p0)
′
)
.

Proof. Set q =
(

q0

p

)′
( p

p0
− 1) + 1. Using (vi) and (vii) in Proposition 2.1 we have

w ∈ A p
p0

∩ RH( q0
p )

′ ⇐⇒ w( q0
p )

′

∈ A( q0
p )

′
( p

p0
−1)+1

= Aq ⇐⇒ w( q0
p )

′
(1−q′) ∈ Aq′

and

w1−p′ ∈ A p′

(q0)′
∩ RH(

(p0)′

p′

)′ ⇐⇒ w
(1−p′)

(
(p0)′

p′

)′

∈ A(
(p0)′

p′

)′ (
p′

(q0)′
−1

)
+1

.

Direct computations show
(

q0

p

)′

(1 − q′) = (1 − p′)

(
(p0)

′

p′

)′

and q′ =

(
(p0)

′

p′

)′ ( p′

(q0)′
− 1

)
+ 1.

�

Remark 4.5. Fix 1 < p < ∞. Observe that if w is any given weight so that w,
w1−p′ ∈ L1

loc, then a given linear operator T is bounded on Lp(w) if and only if its
adjoint (with respect to dx) T ∗ is bounded on Lp′(w1−p′). Therefore,

T : Lp(w) −→ Lp(w), for all w ∈ A p
p0

∩ RH( q0
p )

′
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if and only if

T ∗ : Lp′(w) −→ Lp′(w), for all w ∈ A p′

(q0)′
∩ RH(

(p0)′

p′

)′ .

We finish this section by giving families of weights on which rw and sw can be easily
computed.

Lemma 4.6. Let f, g ∈ L1(Rn) be nontrivial functions, r ≥ 1 and 1 < s ≤ ∞. Then:

(i) Let w = (Mf)−(r−1) then rw = r and sw = ∞, that is, w ∈ Ap ∩ RH∞ for all
p > r (and p = r if r = 1).

(ii) Let w = (Mf)1/s then rw = 1 and sw = s, that is, w ∈ A1 ∩ RHq for all q < s
(and q = s if s = ∞).

(iii) If w = (Mf)−(r−1) + (Mg)1/s then w ∈ Ap ∩ RHq for all p > r and q < s (and
p = r if r = 1 and q = s if s = ∞). Thus, rw ≤ r and sw ≥ s.

Proof. The cases r = 1 or s = ∞ are trivial. Given a nontrivial function f ∈ L1(Rn)
and α ∈ R we write vα = (Mf)α. If α = 0 then vα = 1 ∈ A1 ∩ RH∞. If 0 < α < 1
then vα ∈ A1 (see for instance [GR]). If α < 0 then we see that vα ∈ RH∞: for a.e.
x ∈ B

Mf(x)α =
(
Mf(x)

1
2 )2 α .

(
−

∫

B

(Mf)1/2
)2 α

≤ −

∫

B

(Mf)α,

where we have used that (Mf)1/2 ∈ A1 and also Jensen’s inequality for the convex
function t 7→ t2 α. Finally, it is easy to show that vα /∈ A∞ for α ≥ 1. Indeed, assume

that vα = (Mf)α ∈ Ap for some 1 ≤ p < ∞. Then, v1 = v
1/α
α = Mf ∈ Ap as

α ≥ 1. By (vi) in Proposition 2.1 we have that v1−p′

1 ∈ Ap′ and thus M is bounded on

Lp′(v1−p′

1 ). Applying this estimate to f ∈ Lp′(v1−p′

1 ) (as f ∈ L1(Rn)) we obtain that
Mf ∈ L1(Rn) which only happens when f ≡ 0. This leads us to a contradiction since
we have assumed that f is nontrivial.

We turn to showing (i). As w = v−(r−1), then w ∈ RH∞. Next, given p > r the
number α = (r − 1)/(p − 1) satisfies 0 < α < 1 and thus vα ∈ A1. Notice that
w = 1 · v1−p

α ∈ Ap (here we are using the “easy” part of the factorization of weights:

if w1, w2 ∈ A1 then w1 w1−p
2 ∈ Ap). This shows that w ∈ Ap for all p > r and then

rw ≤ r. To conclude we observe that rw = r as w /∈ Ar: otherwise we would have
w1−r′ = Mf ∈ Ar′ which cannot be the case as seen above.

We now consider (ii). Notice that w = v1/s with 1 < s < ∞ and thus w ∈ A1.
Given 1 < q < s, we see that w ∈ RHq. Note that wq = vq/s ∈ A1 as q/s < 1. Then,
by (vii) in Proposition 2.1 it follows that w ∈ RHq ∩ A1. Next, w /∈ RHs. If it were,
then w ∈ RHs+ε for some ε > 0 and in particular ws = Mf ∈ A∞ which is not true.
Hence, sw = s.

Note that (iii) follows from (i) and (ii) as w = w1 + w2 where w1 = (Mf)−(r−1) ∈
Ap ∩ RH∞ and w2 = (Mf)1/s ∈ A1 ∩ RHq and p > r, s < sw. �

Remark 4.7. There are examples of functions f , g for which in (iii) we have rw < r
and/or sw > s. For instance, if f = g = χB0

with B0 = B(0, 1) then we have
Mf(x) ≈ (1 + |x|)−n and thus

w(x) ≈ (1 + |x|)n (r−1) ≈ Mf(x)−(r−1).
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Then, rw = r and sw = ∞ (no matter the value of s). Similar examples can be given
in the other direction.

Remark 4.8. The limit case in the latter result consists of taking f a Dirac mass at
some given point x0, say x0 = 0 for simplicity. In this case Mf(x) = c|x|−n is a power
weight. In (i), (ii) and (iii) we respectively have w1(x) = c|x|n (r−1), w2(x) = c|x|−n/s.

Notice that w1 /∈ Ar, as w1−r′

1 /∈ L1
loc(R

n). Also, ws /∈ RHs as ws /∈ L1
loc(R

n).

4.2. Extrapolation. Rubio de Francia’s extrapolation theorem is a very powerful
tool in Harmonic Analysis, see [Rub] and [Gar]: if some given operator T is bounded
on Lp0(w) for every w ∈ Ap0 and some 1 ≤ p0 < ∞, then it is bounded on Lp(w)
for all 1 < p < ∞ and all w ∈ Ap. So, the weighted norm inequality for one single
exponent propagates to the whole range (1,∞). Notice that in our case the natural
range of exponents is no longer (1,∞) but (p0, q0) ⊂ (1,∞).

Here we extend Rubio de Francia’s result, showing that there is an extrapolation
theorem adapted to the interval (p0, q0) which involves the classes of weights A p

p0
∩

RH( q0
p )

′. To state such result we first make some reductions. As it was observed

in [CMP] (see also [CGMP]), one does not need to work with specific operator(s)
since nothing about the operators themselves is used (like linearity or sublinearity)
and they play no role. In other words, extrapolation is something about weights and
pairs of functions. This point of view is very useful, for instance, when one tries to
prove vector-valued inequalities since, as we see below, they follow at once from the
corresponding scalar estimates.

So, sticking to the notation in [CMP], F denotes a family of ordered pairs of non-
negative, measurable functions (f, g). In what follows, anytime we state an estimate

‖f‖Lp(w) ≤ C‖g‖Lp(w), (f, g) ∈ F ,

we mean that it holds for all (f, g) ∈ F for which the left-hand side is finite. The
same is assumed when Lp,∞ is written in place of Lp in the left hand side.

We can state our extrapolation result.

Theorem 4.9. Let 0 < p0 < q0 ≤ ∞. Suppose that there exists p with p0 ≤ p ≤ q0,
and p < ∞ if q0 = ∞, such that for (f, g) ∈ F ,

‖f‖Lp(w) ≤ C‖g‖Lp(w), for all w ∈ A p
p0

∩ RH( q0
p )

′ . (4.1)

Then, for all p0 < q < q0 and (f, g) ∈ F we have

‖f‖Lq(w) ≤ C ‖g‖Lq(w), for all w ∈ A q
p0

∩ RH( q0
q )

′ . (4.2)

Moreover, for all p0 < q, r < q0 and {(fj, gj)} ⊂ F we have
∥∥∥
(∑

j

(fj)
r
)1/r∥∥∥

Lq(w)
≤ C

∥∥∥
(∑

j

(gj)
r
)1/r∥∥∥

Lq(w)
, for all w ∈ A q

p0
∩ RH( q0

q )
′ . (4.3)

The proof of this result is in Section 6.3. As an immediate consequence we can also
extrapolate from weak-type estimates:

Corollary 4.10. Let 0 < p0 < q0 ≤ ∞. Suppose that there exists p with p0 ≤ p ≤ q0,
and p < ∞ if q0 = ∞, such that for (f, g) ∈ F ,

‖f‖Lp,∞(w) ≤ C ‖g‖Lp(w) for all w ∈ A p
p0

∩ RH( q0
p )

′ . (4.4)
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Then, for all p0 < q < q0 and (f, g) ∈ F we have

‖f‖Lq,∞(w) ≤ C ‖g‖Lq(w) for all w ∈ A q
p0

∩ RH( q0
q )

′ . (4.5)

Proof. We follow the simple method used in [GM], for which the point of view of
pairs of functions is particularly useful. Given (f, g) ∈ F and any λ > 0 we define a
new pair of functions (fλ, g) where fλ = λ χEλ(f) and Eλ(f) = {f > λ}. Thus (4.4)
implies

‖fλ‖Lp(w) = λ w(Eλ(f))
1
p ≤ sup

λ
λ w(Eλ(f))

1
p = ‖f‖Lp,∞(w) ≤ C ‖g‖Lp(w)

for all w ∈ A p
p0
∩RH( q0

p )
′ . Applying Theorem 4.9, the family F̃ of pairs (fλ, g) satisfy

(4.2) with C independent of λ, and taking the supremum on λ > 0 we obtain (4.5). �

Remark 4.11. Define the following sets, given an operator T defined at least on
C∞

0 (Rn):
W(T ) =

{
(p, w) ∈ (1,∞) × A∞ : ‖Tf‖Lp(w) . ‖f‖Lp(w)

}
;

for 1 < p < ∞, Wp(T ) = {w ∈ A∞ : (p, w) ∈ W(T )}; and for w ∈ A∞, Ww(T ) =
{p ∈ (1,∞) : (p, w) ∈ W(T )}.

Next define for 1 ≤ p0 < q0 ≤ ∞

W
(
p0, q0

)
=

{
(p, w) ∈ (p0, q0) × A∞ : w ∈ A p

p0
∩ RH( q0

p )
′

}
;

for p0 < p < q0, Wp
(
p0, q0

)
= {w ∈ A∞ : (p, w) ∈ W

(
p0, q0

)
} and for w ∈ A∞,

Ww

(
p0, q0

)
= {p ∈ (p0, q0) : (p, w) ∈ W

(
p0, q0

)
}. Recall that the smallest p0 (resp.

the largest q0), the largest the class W
(
p0, q0

)
.

For example, if T is a Calderón-Zygmund operator, then W(T ) contains the largest
of all classes, namely W(1,∞) and this is optimal. Theorem 3.7 (with S = I and D =
Lp0) provides us with a sufficient condition on T to obtain that W

(
p0, q0

)
⊂ W(T ).

Our extrapolation result shows that, given T and p, if some Wp(p0, q0) is contained
in Wp(T ) then for all q ∈ (p0, q0), W

q(p0, q0) is contained in Wq(T ). In other words,
Wp(p0, q0) ⊂ Wp(T ) for one p implies W(p0, q0) ⊂ W(T ). The class of weights
Wp(p0, q0) is thus the natural one for weighted Lp boundedness within the range
p0 < p < q0. However, the inclusion could be strict for a particular operator T as we
will see in [AM4].

5. Extension to spaces of homogeneous type

In [AM3], we apply our results in Rn equipped with the doubling measure dµ(x) =
w(x) dx with w ∈ A∞ (in this case w(Rn) = ∞). In [AM4], we change Rn to a
manifold or a Lie group. Hence, one needs to discuss the extension of our results to
spaces of homogeneous type.

Let (X , d, µ) be a space of homogeneous type, that is, a set X endowed with a
distance d (and even a quasi-distance) and a non-negative Borel measure µ on X such
that the doubling condition

µ(B(x, 2 r)) ≤ C0 µ(B(x, r)) < ∞, (5.1)

holds for all x ∈ X and r > 0, where B(x, r) = {y ∈ X : d(x, y) < r}.
The results from Harmonic Analysis that we have used in Euclidean spaces re-

main true in this context (see for example [CW], [Chr], [Ste]). For instance, Vitali’s
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covering lemma, weak-type (1, 1) hence strong-type (p, p) for 1 < p ≤ ∞ of the Hardy-
Littlewood maximal function, Whitney’s covering lemma . . . The theory of Mucken-
houpt weights runs parallel to the classical case and one may prove all the statements
in Proposition 2.1 with the appropriate changes (see [ST, Chapter I]).

Hence, Theorems 3.1, 3.7, 3.13, 3.14, 3.15, 4.9 all have their counterpart in spaces
of homogeneous type with almost identical proofs whenever µ(X ) = ∞.

When µ(X ) < ∞ (for example, X is a bounded Lipschitz domain in Rn) some ad-
justments are needed. In Theorem 3.1, assuming that F ∈ L1 then the two parameter
good-λ estimate (3.3) holds for λ > λ0 = C0 µ(X )−1 (‖F‖L1 +‖H1‖L1). This condition
guarantees that µ(Eλ) < µ(X ) and so Eλ ( X . The Whitney covering argument can
be performed and the proof presented above works in the same way. Thus, when
proving the analog of (3.4), one has to split the integral in two parts: λ ≥ λ0 and
λ ≤ λ0. For the first one, we use (3.3). The piece λ ≤ λ0 is estimated by observing
that w{MF > λ} ≤ w(X ) < ∞ (since µ(X ) < ∞ if and only if X is bounded, see for
instance [Ma2]). Thus, it can be proved that

‖MF‖Lp(w) ≤ C
(
‖G‖Lp(w) + ‖MH1‖Lp(w) + ‖H2‖Lp(w) + ‖F‖L1(µ) + ‖MH1‖L1(µ)

)
.

The same occurs with the estimates in Lp,∞(w).
The latter inequality allows one to obtain Theorem 3.7 assuming further that T

is bounded on Lp0 (this happens all the time in applications, see [AM3]). The only
change is for the term ‖F‖L1 where F = |Tf |p0 (notice that H1 = H2 = 0 in this
case):

‖F‖L1(µ) = ‖Tf‖p0

Lp0(µ) . ‖f‖p0

Lp0(µ) ≤ ‖f‖p0

Lp(w)

∫

X

w1−(p/p0)′dµ . ‖f‖p0

Lp(w).

For the last inequality, we observe that since w ∈ A(p/p0), then w1−(p/p0)′ ∈ A(p/p0)′

and so it is a doubling measure which implies as noted before that w1−(p/p0)′(X ) < ∞
as X is bounded. Similar modifications can be carried out with Theorems 3.13 and
3.14. Precise statements and details of proofs are left to the interested reader.

6. Proofs of the main results

We prove Theorem 3.1, Theorem 3.15, Theorem 4.9.

6.1. Proof of Theorem 3.1. The proof follows the ideas in [Au1]. It suffices to

consider the case H2 = G: indeed, set G̃ = G + H2. Then (3.1) holds with G̃ in place

of H2 and also (3.2) holds with G̃ in place of G.
So from now on we assume that H2 = G. Set Eλ = {MF + MH1 > λ} which is

assumed to have finite measure (otherwise there is nothing to prove). As M is the
uncentered maximal function (over cubes instead of balls), Eλ is an open set. Hence,
Whitney’s decomposition gives us a family of pairwise disjoint cubes {Qj}j so that
Eλ = ∪jQj and with the property that 4 Qj meets Ec

λ, that is, there exists xj ∈ 4 Qj

such that

MF (xj) + MH1(xj) ≤ λ.

Set Bλ = {MF > K λ, 2 G ≤ γ λ}. Since K ≥ 1 we have that Bλ ⊂ Eλ. Therefore
Bλ ⊂ ∪jBλ ∩ Qj. For each j we assume that Bλ ∩Qj 6= Ø (otherwise we discard this
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cube) and so there is x̄j ∈ Qj so that G(x̄j) ≤ γ λ/2. Since MF (xj) ≤ λ, there is C0

depending only on dimension such that for every K ≥ C0 we have

|Bλ ∩ Qj | ≤
∣∣{MF > K λ} ∩ Qj

∣∣ ≤
∣∣{M(F χ8 Qj

) > (K/C0) λ}
∣∣

≤
∣∣{M(G8 Qj

χ8 Qj
) > (K/2 C0) λ}

∣∣ +
∣∣{M(H8 Qj

χ8 Qj
) > (K/2 C0) λ}

∣∣,

where we have used F χ8 Qj
≤ G8 Qj

χ8 Qj
+H8Qj

χ8 Qj
a.e. and χ8 Qj

is the indicator

function of 8 Qj. Let cp be the weak-type (p, p) bound of the maximal function. By
(3.2) and x̄j ∈ Qj ⊂ 8 Qj, we obtain

∣∣{M(G8 Qj
χ8 Qj

) > (K/2 C0) λ}
∣∣ ≤ 2 C0 c1

K λ

∫

8 Qj

G8 Qj
≤

2 C0 c1

K λ
|8 Qj|G(x̄j)

≤
8n C0 c1

K
|Qj| γ.

Next, assume first that q < ∞. By (3.1) and xj , x̄j ∈ 8 Qj, we obtain

∣∣{M(H8 Qj
χ8 Qj

) > (K/2 C0) λ}
∣∣ ≤

(
2 C0 cq

K λ

)q ∫

8 Qj

Hq
8 Qj

≤

(
2 C0 cq

K λ

)q

|8 Qj| a
q
(
MF (xj) + MH1(xj) + G(x̄j)

)q
≤

(4 C0 cq a)q 8n

Kq
|Qj|.

These two estimates yield

|Bλ ∩ Qj | ≤ C

(
aq

Kq
+

γ

K

)
|Qj|.

At this point, we use that w ∈ RHs′. If s′ < ∞, for any cube Q and any measurable
set E ⊂ Q we have

w(E)

w(Q)
≤

|Q|

w(Q)

(
−

∫

Q

ws′
) 1

s′

(
|E|

|Q|

) 1
s

≤ Cw

(
|E|

|Q|

) 1
s

.

Note that the same conclusion holds in the case s′ = ∞. Applying this to Bλ∩Qj ⊂ Qj

we have

w(Bλ ∩ Qj) ≤ Cw C

(
aq

Kq
+

γ

K

) 1
s

w(Qj).

Hence, using that the Whitney cubes are disjoint we have

w(Bλ) ≤
∑

j

w(Bλ ∩ Qj) ≤ C

(
aq

Kq
+

γ

K

) 1
s ∑

j

w(Qj) = C

(
aq

Kq
+

γ

K

) 1
s

w(Eλ)

which is (3.3).
When q = ∞, then by (3.1)

‖M(H8 Qj
χ8 Qj

)‖L∞ ≤ ‖H8 Qj
χ8 Qj

)‖L∞ ≤ a
(
MF (xj) + MH1(xj) + G(x̄j)

)
≤ 2 a λ.

Thus choosing K ≥ 4 a C0 it follows that {M(H8 Qj
χ8 Qj

) > (K/2 C0) λ} = Ø. Pro-

ceeding as before, we get the desired estimate (with K−q = 0).
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Next we show (3.4) when it is assumed that MF ∈ Lp(w). Integrating the two-
parameter good-λ inequality (3.3) against p λp−1 dλ on (0,∞), for 0 < p < ∞,

‖MF‖p
Lp(w) ≤ C Kp

(
aq

Kq
+

γ

K

) 1
s (

‖MF‖p
Lp(w) + ‖MH1‖

p
Lp(w)

)
+

2p Kp

γp
‖G‖p

Lp(w).

Thus, as ‖MF‖Lp(w) < ∞, for 0 < p < q
s

we can choose K large enough and then
γ small enough so that the constant in front of the first term in the right-hand side
is smaller than 1

2
, leading us to (3.4). In the same way, but this time assuming that

MF ∈ Lp,∞(w), one shows the corresponding estimate in Lp,∞(w) .
Observe that in the case q = ∞, K is already chosen and we only have to take some

small γ. Thus, the corresponding estimates holds for 0 < p < ∞ no matter the value
of s.

Now, we consider the case p ≥ 1 and F ∈ L1. We assume that the right-hand
side of (3.4) is finite, otherwise there is nothing to prove. It suffices to consider the
case w ∈ L∞: indeed we can take wN = min{w, N} with N > 0. As w ∈ RHs′

then wN ∈ RHs′ with constant that is uniformly controlled in N . Notice that if we
show (3.4) with wN and with constants that do not depend on N , by taking limits as
N → ∞, we conclude the desired estimate with w.

So we assume that w ∈ L∞. Let f be the non-negative function defined by f(λ) =

pλp w{MF > λ}, λ > 0. Notice that for any 0 < λ0 < λ1 < ∞,
∫ λ1

λ0
f(λ) dλ

λ
exists and

is finite. By (3.3) we have

∫ λ1

λ0

f(λ)
dλ

λ
=

∫ λ1
K

λ0
K

f(K λ)
dλ

λ

≤ C Kp 2p

(
aq

Kq
+

γ

K

) 1
s (∫ λ1

2 K

λ0
2 K

f(λ)
dλ

λ
+ ‖MH1‖

p
Lp(w)

)
+

2p Kp

γp
‖G‖p

Lp(w)

≤
1

2

∫ λ1
K

λ0
2 K

f(λ)
dλ

λ
+ R

where in the last inequality we have picked K large enough and then γ small enough
so that the constant in front of the first term in the right-hand side is smaller than
1/2. Also we have written R for the remainder terms, that is, R = C

(
‖MH1‖

p
Lp(w) +

‖G‖p
Lp(w)

)
< ∞. We take λ0 = K−n and λ1 = Km with n, m ≥ 1 and so

∫ Km−1

K−n

f(λ)
dλ

λ
≤

∫ Km

K−n

f(λ)
dλ

λ
≤

1

2

∫ Km−1

K−n−1

2

f(λ)
dλ

λ
+ R

≤
1

2

∫ Km−1

K−n

f(λ)
dλ

λ
+

1

2

∫ K−n

K−n−1

2

f(λ)
dλ

λ
+ R.

Hence,
∫ Km−1

K−n

f(λ)
dλ

λ
≤

∫ K−n

K−n−1

2

f(λ)
dλ

λ
+ 2 R.
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Since M is of weak-type (1, 1), w ∈ L∞ and K ≥ 1 we have
∫ K−n

K−n−1

2

f(λ)
dλ

λ
≤ C ‖w‖L∞ ‖F‖L1

{
log 2 K if p = 1,

1 if p > 1,

bound which does not depend on n. We conclude that

‖MF‖p
Lp(w) =

∫ ∞

0

f(λ)
dλ

λ
= lim

n,m→∞

∫ Km−1

K−n

f(λ)
dλ

λ
< ∞,

so that MF ∈ Lp(w). Therefore, (3.4) holds with constants that do not depend on
‖w‖L∞. A very similar argument applies for the weak-type estimate. Details are left
to the reader. �

6.2. Proof of Theorem 3.15. Before starting the proof, let us introduce some no-
tation (see [BS] for more details). Let φ be a Young function: φ : [0,∞) −→ [0,∞) is
continuous, convex, increasing and satisfies φ(0+) = 0, φ(∞) = ∞. Given a cube Q
we define the localized Luxemburg’s norm

‖f‖φ,Q = inf

{
λ > 0 : −

∫

Q

φ

(
|f |

λ

)
≤ 1

}
,

and then the maximal operator

Mφf(x) = sup
Q∋x

‖f‖φ,Q.

In the definition of ‖ · ‖φ,Q, if the probability measure dx/|Q| is replaced by dx and
Q by Rn, then one has the Luxemburg’s norm ‖ · ‖φ which allows one to define the
Orlicz space Lφ.

Some specific examples needed here are φ(t) ≈ etr for t ≥ 1 which gives the classical
space expLr and φ(t) = t (1 + log+ t)α with α > 0 that gives the space L (log L)α. In
this latter case, it is well known that for k ≥ 1, we have ML(log L)k−1f ≈ Mkf where

Mk is the k-iteration of M .
John-Nirenberg’s inequality implies that for any function b ∈ BMO and any cube

Q we have ‖b − bQ‖expL,Q . ‖b‖BMO. This yields the following estimates: First, for
each cube Q and x ∈ Q

−

∫

Q

|b − bQ|
k p0 |f |p0 ≤ ‖b − bQ‖

k p0

expL,Q

∥∥|f |p0
∥∥

L (log L)k p0 ,Q

. ‖b‖k p0

BMO ML (log L)k p0

(
|f |p0)(x) . ‖b‖k p0

BMO M [k p0]+2
(
|f |p0)(x), (6.1)

where [s] is the integer part of s (if k p0 ∈ N, then one can take M [k p0]+1). Second,
for each j ≥ 1 and each Q,

‖b − b2 Q‖expL,2j Q ≤ ‖b − b2j Q‖expL,2j Q + |b2j Q − b2 Q| . ‖b‖BMO +

j−1∑

l=1

|b2l+1 Q − b2l Q|

. ‖b‖BMO +

j−1∑

l=1

−

∫

2l+1 Q

|b − b2l+1 Q| . j ‖b‖BMO. (6.2)

The following auxiliary result allows us to assume further that b ∈ L∞. The proof
is postponed until the end of this section.
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Lemma 6.1. Let 1 ≤ p0 < p < ∞, k ∈ N and w ∈ A∞. Let T be a sublinear operator
bounded on Lp0.

(i) If b ∈ BMO ∩ L∞ and f ∈ L∞
c , then T k

b f ∈ Lp0.

(ii) Assume that for any b ∈ BMO ∩ L∞ and for any f ∈ L∞
c we have that

‖T k
b f‖Lp(w) ≤ C0 ‖b‖

k
BMO ‖f‖Lp(w), (6.3)

where C0 does not depend on b and f . Then for all b ∈ BMO, (6.3) holds with
constant 2k C0 instead of C0.

Part (ii) in this latter result ensures that it suffices to consider the case b ∈ L∞

(provided the constants obtained do not depend on b). So from now on we assume that
b ∈ L∞ and obtain (6.3) with C0 independent of b and f . Note that by homogeneity
we can also assume that ‖b‖BMO = 1.

We proceed by induction. As mentioned in Remark 3.16, the case k = 0 follows
from Theorem 3.7. We write the case k = 1 in full detail and indicate how to pass
from k − 1 to k as the argument is essentially the same. Let us fix p0 < p < q0 and
w ∈ A p

p0
∩RH( q0

p )
′. We assume that q0 < ∞, for q0 = ∞ the main ideas are the same

and details are left to the interested reader.

Case k = 1: We combine the ideas in the proof of Theorem 3.7 with techniques for
commutators, see [Per]. Let f ∈ L∞

c and set F = |T 1
b f |p0. Note that F ∈ L1 by (i)

in Lemma 6.1 (this is the only place in this step where we use that b ∈ L∞). Given a
cube Q, we set fQ,b = (b4 Q − b) f and decompose T 1

b as follows:

|T 1
b f(x)| = |T

(
(b(x) − b) f

)
(x)| ≤ |b(x) − b4 Q| |Tf(x)| + |T

(
(b4 Q − b) f

)
(x)|

≤ |b(x) − b4 Q| |Tf(x)| + |T (I −Ar(Q))fQ,b(x)| + |TAr(Q)fQ,b(x)|.

With the notation of Theorem 3.1, we observe that F ≤ GQ + HQ where

GQ = 4p0−1
(
GQ,1 + GQ,2

)
= 4p0−1

(
|b − b4 Q|

p0 |Tf |p0 + |T (I −Ar(Q))fQ,b|
p0

)

and HQ = 2p0−1 |TAr(Q)fQ,b|
p0.

We first estimate the average of GQ on Q. Fix any x ∈ Q. By (6.1) with k = 1,

−

∫

Q

GQ,1 = −

∫

Q

|b − b4 Q|
p0 |Tf |p0 . ‖b‖p0

BMO M [p0]+2
(
|Tf |p0)(x).

Using (3.15), (6.1) and (6.2),

(
−

∫

Q

GQ,2

) 1
p0 =

(
−

∫

Q

|T (I −Ar(Q))fQ,b|
p0

) 1
p0

.

∞∑

j=1

αj

(
−

∫

2j+1 Q

|fQ,b|
p0

) 1
p0

≤
∞∑

j=1

αj ‖b − b4 Q‖expL,2j+1 Q M [p0]+2
(
|f |p0)

1
p0 (x)

. ‖b‖BMO M [p0]+2
(
|f |p0)(x)

1
p0

∞∑

j=1

αj j . M [p0]+2
(
|f |p0)

1
p0 (x),
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since
∑

j αj j < ∞. Hence, for any x ∈ Q

−

∫

Q

GQ ≤ C
(
M [p0]+2

(
|Tf |p0)(x) + M [p0]+2

(
|f |p0)(x)

)
≡ G(x).

We next estimate the average of Hq
Q on Q with q = q0/p0. Using (3.16) and

proceeding as before

(
−

∫

Q

Hq
Q

) 1
q0 = 2(p0−1)/p0

(
−

∫

Q

|TAr(Q)fQ,b|
q0

) 1
q0 .

∞∑

j=1

αj

(
−

∫

2j+1 Q

|TfQ,b|
p0

) 1
p0

≤

∞∑

j=1

αj

(
−

∫

2j+1 Q

|T 1
b f |p0

) 1
p0 +

∑

j≥1

αj

(
−

∫

2j+1 Q

|b − b4 Q|
p0|Tf |p0

) 1
p0

. (MF )
1

p0 (x) +

∞∑

j=1

αj ‖b − b4 Q‖expL,2j+1 Q M [p0]+2
(
|Tf |p0)

1
p0 (x̄)

. (MF )
1

p0 (x) + M [p0]+2
(
|Tf |p0)

1
p0 (x̄)

∞∑

j=1

αj j

. (MF )
1

p0 (x) + M [p0]+2
(
|Tf |p0)

1
p0 (x̄),

for any x, x̄ ∈ Q, where we have used that
∑

j αj j < ∞. Thus we have obtained

(
−

∫

Q

Hq
Q

) 1
q
≤ C

(
MF (x) + M [p0]+2

(
|Tf |p0)(x̄)

)
≡ C

(
MF (x) + H2(x̄)

)
.

As mentioned before F ∈ L1. Since w ∈ RH(q0/p)′ , applying Theorem 3.1 and
Remark 3.6 (since q0 < ∞ implies q < ∞) with p/p0 in place of p and s = q0/p, we
obtain

‖T 1
b f‖p0

Lp(w) ≤ ‖MF‖
L

p
p0 (w)

. ‖G‖
L

p
p0 (w)

+ ‖H2‖
L

p
p0 (w)

.
∥∥M [p0]+2

(
|f |p0

)∥∥
L

p
p0 (w)

+
∥∥M [p0]+2

(
|Tf |p0

)∥∥
L

p
p0 (w)

. ‖f‖p0

Lp(w) + ‖Tf‖p0

Lp(w) . ‖f‖p0

Lp(w),

where we have used the boundedness of M (hence, M2, M3, . . . ) on L
p

p0 (w) as w ∈
Ap/p0

with p0 < p, and also Remark 3.16. Let us emphasize that none of the constants
depend on b or f .

Case k: We now sketch the induction argument. Assume that we have already proved
the cases m = 0, . . . , k − 1. Let f ∈ L∞

c . Given a cube Q, write fQ,b = (b4 Q − b)k f
and decompose T k

b as follows:

|T k
b f(x)| = |T

(
(b(x) − b)k f

)
(x)|

≤
k−1∑

m=0

Ck,m|b(x) − b4 Q|
k−m|Tm

b f(x)| + |T
(
(b4 Q − b)kf

)
(x)|

.

k−1∑

m=0

|b(x) − b4 Q|
k−m|Tm

b f(x)| + |T (I −Ar(Q))fQ,b(x)| + |TAr(Q)fQ,b(x)|.
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Following the notation of Theorem 3.1, we set F = |T k
b f |p0 ∈ L1 by (i) in Lemma 6.1.

Observe that F ≤ GQ + HQ where

GQ = 4p0−1 C
(( k−1∑

m=0

|b − b4 Q|
k−m|Tm

b f |
)p0

+ |T (I −Ar(Q))fQ,b|
p0

)

and HQ = 2p0−1 |TAr(Q)fQ,b|
p0. Proceeding as before we obtain for any x ∈ Q

−

∫

Q

GQ ≤ C
( k−1∑

m=0

M [(k−m) p0]+2
(
|Tm

b f |p0)(x) + M [k p0]+2
(
|f |p0

)
(x)

)
≡ G(x),

and for q = q0/p0

(
−

∫

Q

Hq
Q

) 1
q

≤ C
(
MF (x) +

k−1∑

m=0

M [(k−m) p0]+2
(
|Tm

b f |p0
)
(x̄)

)
≡ C

(
MF (x) + H2(x̄)

)
.

Therefore, as F ∈ L1, Theorem 3.1 gives us as before

‖T k
b f‖p0

Lp(w) ≤ ‖MF‖
L

p
p0 (w)

. ‖G‖
L

p
p0 (w)

+ ‖H2‖
L

p
p0 (w)

.
∥∥M [k p0]+2

(
|f |p0

)∥∥
L

p
p0 (w)

+

k−1∑

m=0

∥∥M [(k−m) p0]+2
(
|Tm

b f |p0
)∥∥

L
p

p0 (w)

. ‖f‖p0

Lp(w) +

k−1∑

m=0

‖Tm
b f‖p0

Lp(w) . ‖f‖p0

Lp(w),

where we have used the boundedness on L
p

p0 (w) of the iterations of M (as w ∈ Ap/p0

and p > p0) and the induction hypothesis on Tm
b , m = 0, . . . , k − 1. Let us point out

again that none of the constants involved in the proof depend on b and f .

Proof of Lemma 6.1. Some of the ideas of the following argument are taken from [Per]
where this is proved for Calderón-Zygmund operators. Note that there, one has size
and smoothness estimates for the kernels and here such conditions are not assumed.

Fix f ∈ L∞
c . Note that (i) follows easily observing that

|T k
b f(x)| .

k∑

m=0

|b(x)|m−k |T (bm f)(x)| ≤ ‖b‖L∞

k∑

m=0

|T (bm f)(x)| ∈ Lp0,

since b ∈ L∞, f ∈ L∞
c imply that bm f ∈ L∞

c ⊂ Lp0 and, by assumption, T (bm f) ∈ Lp0 .
To obtain (ii), we fix b ∈ BMO and f ∈ L∞

c . Let Q0 be a cube such that supp f ⊂

Q0. We may assume that bQ0 = 0 since otherwise we can work with b̃ = b − bQ0 and

observe that T k
b = T k

b̃
and ‖b‖BMO = ‖b̃‖BMO. Note that for all m = 0, . . . , k, we have

that |bm f | and
∣∣T (bm f)

∣∣ are finite almost everywhere since they belong to Lp0 .
Let N > 0 and define bN as follows: bN (x) = b(x) when −N ≤ b(x) ≤ N , bN (x) = N

when b(x) > N and b(x) = −N when b(x) < −N . Then, it is immediate to see that
|bN(x) − bN (y)| ≤ |b(x) − b(y)| for all x, y. Thus, ‖bN‖BMO ≤ 2 ‖b‖BMO. As bN ∈ L∞

we can use (6.3) and

‖T k
bN

f‖Lp(w) ≤ C0 ‖bN‖
k
BMO ‖f‖Lp(w) ≤ C0 2k ‖b‖k

BMO ‖f‖Lp(w) < ∞.
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To conclude, by Fatou’s lemma, it suffices to show that |TbNj
f(x)| −→ |T k

b f(x)| for

a.e. x ∈ Rn and for some subsequence {Nj}j such that Nj → ∞.
As |bN | ≤ |b| ∈ Lp(Q0) for any 1 ≤ p < ∞, the dominated convergence theorem

yields that (bN )m f −→ bm f in Lp0 as N → ∞ for all m = 0, . . . , k. Therefore, as T
is bounded on Lp0 it follows that T

(
(bN )m f − bm f

)
−→ 0 in Lp0. Thus, there exists

a subsequence Nj → ∞ such that T
(
(bNj

)m f − bm f
)
(x) −→ 0 for a.e. x ∈ Rn and

for all m = 1, . . . , k. In this way we obtain
∣∣|T k

bNj
f(x)| − |T k

b f(x)|
∣∣ .

∣∣T
([

(bNj
(x) − bNj

)k − (b(x) − b)k
]
f
)
(x)

∣∣

.

k∑

m=0

|bNj
(x)|k−m

∣∣T
(
(bNj

)m f − bm f
)
(x)

∣∣ +
∣∣bNj

(x)k−m − b(x)k−m
∣∣ ∣∣T (bm f)(x)

∣∣

and as desired we get that |TbNj
f(x)| −→ |T k

b f(x)| for a.e. x ∈ Rn. �

Remark 6.2. The proof just finished can be adapted to the situation of multilinear
commutators with no much effort. We just sketch some of the ideas leaving the de-

tails to the interested reader. Let us introduce some notation. Given ~b = (b1, . . . , bk)
we write b̄ = b1 · · · bk. Let Ck

j , 1 ≤ j ≤ k, be the family of all finite subsets
σ = {σ(1), . . . , σ(j)} ⊂ {1, . . . , k} of j different elements. In this case, we write
~bσ = (bσ(1), . . . , bσ(j)) and b̄σ = bσ(1) · · · bσ(j). We also set Ck

0 = Ø in which case we
understand that T~bσ

= T and b̄σ = 1. If σ ∈ Ck
j we set σ′ = {1, . . . , k} \ σ (note that

for j = 0 we have σ′ = {1, . . . , k}). We need the following multilinear version of (6.1)
(see [PT]): given k ≥ 1, for any x ∈ Q we have

−

∫

Q

|f1 · · · fk h|p0 ≤ ‖f1‖
p0

expL · · · ‖fk‖
p0

expL,Q

∥∥|h|p0
∥∥

L (log L)k p0

≤ ‖f1‖
p0

expL,Q · · · ‖fk‖
p0

expL,Q M [k p0]+2
(
|h|p0)(x). (6.4)

With this in hand and as done with the regular commutators in Lemma 6.1 the
matter can be reduced to the case b1, . . . , bk ∈ L∞. Once we have that, we combine
the ideas from [PT, p. 684] with the proof above. We write F = |T~bf(x)|p0 ∈ L1 and
observe that F ≤ GQ + HQ where

GQ = 2p0−1 C
( k∑

m=1

∑

σ∈Ck
m

(b − λ)σ |T~bσ′
f(x)| + |T (I −Ar(Q))fQ,~b(x)|

)p0

,

HQ = 2p0−1 |TAr(Q)fQ,~b(x)|p0 , and fQ,~b =
∏k

j=1(bj − (bj)2 Q) f . Next, one estimates

GQ, HQ using the same ideas (with (6.4) in place of (6.1)):

−

∫

Q

GQ . C
( k∑

m=1

∑

σ∈Ck
m

M [k p0]+2
(
|T~bσ′

f |p0
)
(x) + M [k p0]+2

(
|f |p0)(x)

)
= G(x),

and
(
−

∫

Q

Hq
Q

) 1
q

. MF (x) +

k∑

m=1

∑

σ∈Ck
m

M [k p0]+2
(
|T~bσ′

f |p0
)
(x) ≡ C

(
MF (x) + H2(x)

)
.

¿From here the proof proceed as in the case above, noticing that the length of ~bσ′ is
k − m ≤ k − 1 and so the induction hypothesis applies.
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6.3. Proof of Theorem 4.9. Assume that the case p0 = 1 is proved. Then we show
that the general case follows automatically. Set p̃ = p/p0, q̃0 = q0/p0 and consider the

new family F̃ consisting of the pairs (f̃ , g̃) = (f p0, gq0). Observe that 1 ≤ p̃ ≤ q̃0 and

that p̃ < ∞ if q̃0 = ∞ (that is, q0 = ∞). Besides, (4.1) gives that for all (f̃ , g̃) ∈ F̃
∫

Rn

f̃ p̃ w ≤ C

∫

Rn

g̃ p̃ w, for all w ∈ Ap̃ ∩ RH(q̃0/p̃)′

provided the left hand side is finite. Therefore, the same holds for all 1 < q̃ < q̃0 and
(4.2) follows with q = q̃ p0.

Assume now that p0 = 1. Observe that the case q0 = ∞ is nothing but Rubio de
Francia’s extrapolation theorem. So we also impose q0 < ∞. The proof of (4.2) is
done on distinguishing the two cases q < p and q > p. We use the following notation

φ(q) =

(
q0

q

)′

(q − 1) + 1.

Note that (vii) in Proposition 2.1 says that if q0/q > 1 then w ∈ Aq ∩ RH( q0
q )

′ if

and only if w( q0
q )

′

∈ Aφ(q). We need the following auxiliary result based on Rubio de
Francia’s algorithm.

Lemma 6.3. Let 1 < q < q0 and w such that w ∈ Aq ∩ RH( q0
q )

′.

(a) If 1 ≤ p < q and 0 ≤ h ∈ L(q/p)′(w), then there exists H ∈ L(q/p)′(w) such that

(a.1) 0 ≤ h ≤ H.

(a.2) ‖H‖L(q/p)′(w) ≤ 2φ(q)′/(q/p)′ ‖h‖L(q/p)′ (w).

(a.3) H w ∈ Ap ∩ RH( q0
p )

′ with constants independent of h.

(b) If q < p ≤ q0 and 0 ≤ h ∈ Lq(w), then there exists H ∈ Lq(w) such that

(b.1) 0 ≤ h ≤ H.

(b.2) ‖H‖Lq(w) ≤ 2φ(q)/q ‖h‖Lq(w).

(b.3) H−p/(p/q)′ w ∈ Ap ∩ RH( q0
p )

′ with constants independent of h.

Admit this result for the moment and continue the proof.

Case 1 ≤ p < q: Let (f, g) ∈ F be such that f, g ∈ Lq(w). Fix w such that
w(q0/q)′ ∈ Aφ(q). Then,

‖f‖p
Lq(w) = ‖f p‖Lq/p(w) = sup

∫

Rn

f p h w

where the supremum is taken over all 0 ≤ h ∈ L(q/p)′(w) with ‖h‖L(q/p)′ (w) = 1. Take

such a function h and let H be the corresponding function given by (a) in Lemma
6.3. Then by (a.1), (4.1) and (a.3), we have

∫

Rn

f p h w ≤

∫

Rn

f p H w ≤ C

∫

Rn

gp H w
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provided the middle term is finite. This is indeed the case as by Hölder’s inequality
with q/p > 1 and by (a.2)

∫

Rn

f p H w ≤ ‖f‖p
Lq(w) ‖H‖L(q/p)′(w) ≤ 2φ(q)′/(q/p)′ ‖f‖p

Lq(w) < ∞.

Note that the same can be done with g and so
∫

Rn

gp H w ≤ 2φ(q)′/(q/p)′ ‖g‖p
Lq(w).

This readily leads to the desired estimate.

Case q < p ≤ q0: Let (f, g) ∈ F be non-trivial functions such that f, g ∈ Lq(w). Fix
w such that w ∈ Aq ∩ RH( q0

q )
′ . We define

h =
f

‖f‖Lq(w)

+
g

‖g‖Lq(w)

.

Note that h ∈ Lq(w) and ‖h‖Lq(w) ≤ 2. Let H be the non-negative function given by
Lemma 6.3 part (b). Then, using Hölder’s inequality with p/q > 1 we have

‖f‖Lq(w) =
( ∫

Rn

f q H−q/(p/q)′ Hq/(p/q)′ w
)1/q

≤
( ∫

Rn

f p H−p/(p/q)′ w
)1/p ( ∫

Rn

Hq w
) 1

q (p/q)′

≤ C
( ∫

Rn

f p H−p/(p/q)′ w
)1/p

, (6.5)

since (b.2) implies

‖H‖Lq(w) ≤ 2φ(q)/q ‖h‖Lq(w) ≤ 21+φ(q)/q.

Next, by (b.1) we have f/‖f‖Lq(w) ≤ h ≤ H . Hence, using (b.2) we conclude that

( ∫

Rn

f p H−p/(p/q)′ w
)1/p

≤ ‖f‖Lq(w)

( ∫

Rn

Hp−p/(p/q)′ w
)1/p

= ‖f‖Lq(w) ‖H‖
q/p
Lq(w)

≤ 2(q/p)(1+φ(q)/q) ‖f‖Lq(w) < ∞.

This and (b.3) allow us to employ (4.1). Hence, (6.5) yields

‖f‖Lq(w) ≤ C
( ∫

Rn

gp H−p/(p/q)′ w
)1/p

≤ C ‖g‖Lq(w) ‖H‖
q/p
Lq(w) ≤ C ‖g‖Lq(w),

where we have used that g satisfies g/‖g‖Lq(w) ≤ H due to (b.1).
To complete the proof it remains to show (4.3). As in [CMP] this follows almost

automatically from (4.2) by changing the family F . Indeed, fix p0 < r < q0 and given
{(fj, gj)}j ⊂ F we define

Fr =
( ∑

j

f r
j

)1/r

, Gr =
(∑

j

gr
j

)1/r

.

We consider a new family Fr consisting of all the pairs (Fr, Gr). Observe that if
(Fr, Gr) ∈ Fr, using (4.2) with q = r, we have
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‖Fr‖
r
Lr(w) =

∑

j

∫

Rn

f r
j w ≤ C

∑

j

∫

Rn

gr
j w = C ‖Gr‖

r
Lr(w),

for all w ∈ Ar/p0
∩RH(q0/r)′ . This means that the family Fr satisfies (4.1) with p = r.

Thus, as we have just obtained, it satisfies (4.2) for all p0 < q < q0 which turns out
to be (4.3). �

Proof of Lemma 6.3. We first observe that

w(q0/q)′ ∈ Aφ(q) ⇐⇒ w1−q′ = w(q0/q)′(1−φ(q)′) ∈ Aφ(q)′ .

Given any weight 0 < u < ∞ a.e. we define the operator

Suf =
M(f u)

u
.

This operator will be used to perform different versions of Rubio de Francia’s algo-
rithm. We start with (a): let 1 ≤ p < q and h ∈ L(q/p)′(w). We set u = wq′/φ(q)′ .
Then, as w1−q′ ∈ Aφ(q)′ we have

‖Suf‖
φ(q)′

Lφ(q)′(w)
=

∫

Rn

M(f u)φ(q)′ u−φ(q)′ w =

∫

Rn

M(f u)φ(q)′ w1−q′

≤ C

∫

Rn

|f u|φ(q)′ w1−q′ = C ‖f‖
φ(q)′

Lφ(q)′(w)
.

Let us write ‖Su‖ for the norm of Su as a bounded operator on Lφ(q)′(w). We define
the following version of Rubio de Francia’s algorithm: for 0 ≤ f ∈ Lφ(q)′(w)

Rf =

∞∑

k=0

Sk
uf

2k ‖Su‖k
,

where Sk
u is the k-iteration of the operator Su for k ≥ 1 and S0

u is the identity operator.
Given 0 ≤ h ∈ L(q/p)′(w) we define

H = R
(
h(q/p)′/φ(q)′

)φ(q)′/(q/p)′
.

Note that

0 ≤ f ≤ Rf, ‖Rf‖Lφ(q)′(w) ≤ 2 ‖f‖Lφ(q)′(w),

and so H satisfies (a.1) and (a.2). Note that we also have

Su(Rf) ≤ 2 ‖Su‖Rf ⇐⇒ M(uRf) ≤ C uRf ⇐⇒ uRf ∈ A1

and therefore H(q/p)′/φ(q)′ u ∈ A1 with constant independent of h. Then for all cube
Q ⊂ Rn (the averages are with respect to Lebesgue measure)

−

∫

Q

H(q/p)′/φ(q)′ u ≤ C H(q/p)′/φ(q)′(x) u(x), a.e. x ∈ Q. (6.6)

We show (a.3), that is, (H w)(q0/p)′ ∈ Aφ(p). If p = 1 then (6.6) turns out to be

−

∫

Q

(
H w

)q′0 ≤ C
(
H(x) w(x)

)q′0, a.e. x ∈ Q,



28 PASCAL AUSCHER AND JOSÉ MARÍA MARTELL

that is, (H w)q′0 ∈ Aφ(1) = A1 as desired. If p > 1, using (6.6) we have

I = −

∫

Q

(H w)(q0/p)′ (1−φ(p)′) = −

∫

Q

(H w)1−p′

.
(
−

∫

Q

H(q/p)′/φ(q)′ u
)−

(p′−1) φ(q)′

(q/p)′
(
−

∫

Q

u
(p′−1)φ(q)′

(q/p)′ w1−p′
)

=
(
−

∫

Q

H
q0 (q−1)

(q0−1) (q−p) u
)−

(q0−1) (q−p)
q0 (q−1) (p−1)

(
−

∫

Q

w1−q′
)

= I1 · I2.

Since 1 < p < q < q0 we have that

s =
q0 (q − 1)

(q0 − 1) (q − p)

1

(q0/p)′
=

(q − 1) (q0 − p)

(q0 − 1) (q − p)
> 1, s′ =

(q − 1) (q0 − p)

(p − 1) (q0 − q)
.

Then by Hölder’s inequality we obtain

II = −

∫

Q

(
H w

)(q0/p)′
≤

(
−

∫

Q

H(q0/p)′ s u
)1/s (

−

∫

Q

w(q0/p)′ s′ u1−s′
)1/s′

=
(
−

∫

Q

H
q0 (q−1)

(q0−1) (q−p) u
)1/s (

−

∫

Q

w(q0/q)′
)1/s′

= II1 · II2.

We gather I1 and II1:

I
φ(p)−1
1 · II1 =

(
−

∫

Q

H
q0 (q−1)

(q0−1) (q−p) u
) 1

s
−(φ(p)−1)

(q0−1) (q−p)
q0 (q−1) (p−1)

= 1

since the outer exponent is equal to 0. On the other hand, for I2 and II2 we observe
that

I
φ(p)−1
2 · II2 =

(
−

∫

Q

w1−q′
)φ(p)−1 (

−

∫

Q

w(q0/q)′
)1/s′

=

[(
−

∫

Q

w(q0/q)′ (1−φ(q)′)
)(φ(p)−1) s′(

−

∫

Q

w(q0/q)′
)]1/s′

=

[(
−

∫

Q

w(q0/q)′
)(

−

∫

Q

w(q0/q)′ (1−φ(q)′)
)φ(q)−1

]1/s′

≤ C,

since w(q0/q)′ ∈ Aφ(q). As a consequence of these latter estimates we can conclude that

(H w)(q0/p)′ ∈ Aφ(p):
(
−

∫

Q

(
H w

)(q0/p)′
)(

−

∫

Q

(H w)(q0/p)′ (1−φ(p)′)
)φ(p)−1

= Iφ(p)−1 · II

≤ C (I
φ(p)−1
1 · II1) (I

φ(p)−1
2 · II2) ≤ C.

We now prove (b). Let h ∈ Lq(w) and u = w(1−(q0/q)′)/φ(q). Since w(q0/q)′ ∈ Aφ(q) we
have

‖Suf‖
φ(q)

Lφ(q)(w)
=

∫

Rn

M(f u)φ(q) u−φ(q) w =

∫

Rn

M(f u)φ(q) w(q0/q)′

≤ C

∫

Rn

|f u|φ(q) w(q0/q)′ = C ‖f‖
φ(q)

Lφ(q)(w)
.
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Let us write ‖Su‖ for the norm of Su as a bounded operator on Lφ(q)(w). Rubio de
Francia’s algorithm to be used now is given by

Rf =
∞∑

k=0

Sk
uf

2k ‖Su‖k
,

for 0 ≤ f ∈ Lφ(q)(w). Given 0 ≤ h ∈ Lq(w) we define

H = R
(
hq/φ(q)

)φ(q)/q
.

Note that

0 ≤ f ≤ Rf, ‖Rf‖Lφ(q)(w) ≤ 2 ‖f‖Lφ(q)(w),

and so H satisfies (b.1) and (b.2). As in the other case

Su(Rf) ≤ 2 ‖Su‖Rf ⇐⇒ M(uRf) ≤ C uRf ⇐⇒ uRf ∈ A1

and so Hq/φ(q) u ∈ A1 with constant independent of h. Thus for all cubes Q ⊂ Rn

−

∫

Q

Hq/φ(q) u ≤ C Hq/φ(q)(x) u(x), a.e. x ∈ Q. (6.7)

We prove (b.3). We do first the case p = q0 and we have to see that H−(q0−q) w ∈
Aq0 ∩ RH∞. Note that (6.7) can be rewritten as

−

∫

Q

(
Hq0−q w−1)q′0−1 ≤ C

(
Hq0−q(x) w−1(x))q′0−1, a.e. x ∈ Q.

Then, for almost every x ∈ Q we have

H−(q0−q)(x) w(x) .
(
−

∫

Q

(
Hq0−q w−1)q′0−1

)− 1
q′
0
−1

≤ −

∫

Q

H−(q0−q) w

where in the last estimate we have used Jensen’s inequality with the convex function
t 7→ t−1/(q′0−1). This shows that H−(q0−q) w ∈ RH∞. On the other hand, we also have

(
−

∫

Q

H−(q0−q) w
)

.
(
−

∫

Q

(
H−(q0−q) w

)1−q′0
)−(q0−1)

which automatically implies that H−(q0−q) w ∈ Aq0. This completes the case p = q0.

If p < q0, (b.3) is equivalent to
(
H−p/(p/q)′ w

)(q0/p)′
∈ Aφ(p). By (6.7) we observe

that

I = −

∫

Q

(
H−p/(p/q)′ w

)(q0/p)′
.

(
−

∫

Q

Hq/φ(q) u
)−

p (q0/p)′ φ(q)

(p/q)′ q
(
−

∫

Q

u
p (q0/p)′ φ(q)

(p/q)′ q w(q0/p)′
)

=
(
−

∫

Q

Hq/φ(q) u
)−

p (q0/p)′ φ(q)

(p/q)′ q
(
−

∫

Q

w(q0/q)′
)

= I1 · I2.

Since 1 < q < p < q0 we have that

s =
q (p − 1)

φ(q) (p − q)
=

(q0 − q) (p − 1)

(q0 − 1) (p − q)
> 1, s′ =

(q0 − q) (p − 1)

(q0 − p) (q − 1)
.

By Hölder’s inequality we obtain

II = −

∫

Q

(
H−p/(p/q)′ w

)(q0/p)′ (1−φ(p)′)
= −

∫

Q

(
H−p/(p/q)′ w

)1−p′
= −

∫

Q

H
p−q
p−1 w1−p′
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≤
(
−

∫

Q

H
p−q
p−1

s u
)1/s (

−

∫

Q

w(1−p′) s′ u1−s′
)1/s′

=
(
−

∫

Q

Hq/φ(q) u
)1/s (

−

∫

Q

w1−q′
)1/s′

= II1 · II2.

For I1 and II1 we have

I1 · II
φ(p)−1
1 =

(
−

∫

Q

Hq/φ(q) u
)−

p (q0/p)′ φ(q)

(p/q)′ q
+ φ(p)−1

s

= 1

since the outer exponent vanishes. On the other hand, since w(q0/q)′ ∈ Aφ(q),

I2 · II
φ(p)−1
2 =

(
−

∫

Q

w(q0/q)′
)(

−

∫

Q

w1−q′
)φ(p)−1

s′

=
(
−

∫

Q

w(q0/q)′
)(

−

∫

Q

w(q0/q)′(1−φ(q)′)
)φ(q)−1

≤ C.

Collecting the last two estimates we conclude that
(
H−p/(p/q)′ w

)(q0/p)′
∈ Aφ(p):

(
−

∫

Q

(
H

− p
(p/q)′ w

)(q0/p)′
)(

−

∫

Q

(
H

− p
(p/q)′ w

)(q0/p)′ (1−φ(p)′)
)φ(p)−1

= I · IIφ(p)−1

≤ C (I1 · II
φ(p)−1
1 ) (I2 · II

φ(p)−1
2 ) ≤ C.

�

Part 2. Calderón-Zygmund methods

7. Introduction

This section develops a circle of ideas based on the Calderón-Zygmund decompo-
sition. This decomposition was invented in the celebrated article [CZ] to prove that
certain singular integrals of convolution type are of weak-type (1, 1). Recall that this
decomposition is non-linear and breaks up L1 functions into good and bad parts. The
good part is bounded, while the bad part is a sum of localized and oscillating func-
tions. The oscillation is in the sense of a vanishing mean. This turned out to be a
very versatile tool.

The application towards singular integrals was refined in [Hör] with a minimal
regularity condition on the kernel matching the oscillation of the bad parts. Then,
this was generalized to what is now called Calderón-Zygmund operators, see, e.g,
[Mey]. We note that a key ingredient in these arguments is the a priori strong or
weak-type (p0, p0) of the operator for some p0 > 1.

Kernel regularity in some sense is needed for such arguments. After the results
obtained in [Heb] and [DR] in a functional calculus setting, a general weak-type (1,1)
criterion is formulated in [DMc]. It still exploits the Calderón-Zygmund decomposi-
tion but does not use the oscillation of the bad part. The regularity is expressed in
the integrability properties of the kernel of T (Id−Ar) where Ar , r > 0, is some ap-
proximation to the identity. In the classical case, Ar would be an ordinary mollifying
operator with a smooth bump function.

[BK1] develops this idea further for singular “non-integral” operators and estab-
lishes a weak-type (p, p) criterion, still assuming of course a priori weak-type (p0, p0)
boundedness for some p0 > p. This result is presented in [Au1] with a simpler and
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stronger statement. This is typically an unweighted result but as it works in spaces
of homogeneous type, it applies with underlying doubling measure w(x) dx, w ∈ A∞.

In a sense, we have not much to add to this story. However we present it once
again as its argument is needed for further development (Section 8.1). First, a slight
strengthening of the hypotheses yields for free boundedness results for commutators
of the operator with bounded mean oscillation functions (Section 8.2). Second, we
observe that similar unweighted estimates plus an a priori weighted weak-type (p0, p0)
estimate of T implies weighted weak-type (p, p) estimate for a range of p’s with p < p0

depending on the class of weights (Section 8.3).
We also present in Section 9 a result of independent interest but needed in [AM3]

concerning a Calderón-Zygmund decomposition for a function in Rn with gradient
controlled in some Lp(w) space for some p ≥ 1 and doubling weight w supporting
a Poincaré inequality. Such a decomposition is used is [Au2] in the Euclidean set-
ting and a similar decomposition appear earlier in [CM] and [BS] for the purpose of
real interpolation for Sobolev spaces. See also [AC] for an extension to Riemannian
manifolds.

8. Extended Calderón-Zygmund theory

Except for Section 8.4, we work in Rn endowed with a Borel doubling measure µ
(and we remind the reader that in applications dµ(x) = w(x) dx with w ∈ A∞).

8.1. Blunck and Kunstmann’s theorem. We use the following notation: if B
is a ball with radius r(B) and λ > 0, λ B denotes the concentric ball with radius
r(λ B) = λ r(B), Cj(B) = 2j+1 B \ 2j B when j ≥ 2, C1(B) = 4B, and

−

∫

Cj (B)

h dµ =
1

µ(2j+1B)

∫

Cj(B)

h dµ. (8.1)

We say that the doubling measure µ has doubling order D > 0 if µ(λ B) ≤ Cµ λD µ(B)
for every ball B and every λ > 0.

The following result appears in a paper by Blunck and Kunstmann [BK1] in a
slightly more complicated way with extra hypotheses. This version is due to one of
us [Au1].

Theorem 8.1. Let µ be a doubling Borel measure on Rn with doubling order D and
1 ≤ p0 < q0 ≤ ∞. Suppose that T is a sublinear operator of weak-type (q0, q0). Let
D be a subspace of Lq0(µ) ∩ Lp0(µ) stable under truncation by indicator functions of
measurable sets. Let {Ar}r>0 be a family of operators acting from D into Lq0(µ).
Assume that for j ≥ 2,

(
−

∫

Cj (B)

|T (I −Ar(B))f | dµ
)
≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 (8.2)

and for j ≥ 1
(
−

∫

Cj(B)

|Ar(B)f |
q0 dµ

) 1
q0 ≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 , (8.3)

for all ball B with r(B) its radius and for all f ∈ D supported in B. If
∑

j αj 2D j < ∞

then T is of weak-type (p0, p0) and hence T is of strong-type (p, p) for all p0 < p < q0.
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More precisely, there exists a constant C such that for all f ∈ D,

‖Tf‖Lp(µ) ≤ C ‖f‖Lp(µ).

8.2. Commutators with BMO functions: part II. A slightly strengthening of
the hypotheses above yields an analog result for the commutators with bounded mean
oscillation functions. In this case, since the underlying measure is µ, we work with
functions b ∈ BMO(µ) (the definition is as the classical one replacing dx by µ). As µ
is a doubling measure, John-Nirenberg’s inequality holds in BMO(µ). The definition
of the commutator is the same as in Section 3.5 but in this case we assume that T is
of weak-type (q0, q0) in place of being bounded on Lp0 . This still guarantees that the
commutator is well defined.

Theorem 8.2. Let µ be a doubling Borel measure on Rn with doubling order D,
1 ≤ p0 < q0 ≤ ∞, b ∈ BMO(µ) and k ∈ N, k ≥ 1. Suppose that T is a sublinear
operator and that T and Tm

b for m = 1, . . . , k are of weak-type (q0, q0). Let {Ar}r>0 be
a family of operators acting from L∞

c (µ) into Lq0(µ). Assume that for any ball B with
r(B) its radius and for all f ∈ L∞

c supported in B, (8.3) holds, and (8.2) is replaced
by the stronger assumption

(
−

∫

Cj(B)

|T (I −Ar(B))f |
r dµ

) 1
r
≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 (8.4)

for some r > 1 and all j ≥ 2. If
∑

j αj 2D j jk < ∞ then for all p0 < p < q0, there

exists a constant C (independent of b) such that for all f ∈ L∞
c (µ),

‖T k
b f‖Lp(µ) ≤ C ‖b‖k

BMO(µ) ‖f‖Lp(µ).

Remark 8.3. Under the assumptions above, we have
∑

j αj 2D j < ∞ and conse-

quently, Theorem 8.1 implies that T = T 0
b is of weak-type (p0, p0) and hence bounded

on Lp(µ) for all p0 < p < q0.

Remark 8.4. In applications we will use this result with underlying measure dµ(x) =
w(x) dx with w ∈ A∞ and so the weight is hidden in the measure. Let us mention
that if w ∈ A∞, and so dw is a doubling measure, then the reverse Hölder property
yields that BMO(w) = BMO with equivalent norms.

Remark 8.5. Our argument requires that the commutators are already weak-type
(q0, q0), which could make this result useless. However, this hypothesis can be obtained
from Theorem 3.15, see [AM3] for examples of this.

Remark 8.6. As in Remark 3.17, we can also consider multilinear commutators

associated with a vector of symbols ~b = (b1, . . . , bk) with entries in BMO(µ). In this
case, we can formulate an analog of Theorem 8.2 proving that T~b is bounded on Lp(µ)
(see Remark 10.2 below). The precise statement is left to the reader.

8.3. Weighted estimates. We present the following weighted version of Theorem
8.1 which is used in [AM4].

Theorem 8.7. Let µ be a doubling Borel measure on Rn, w ∈ A∞ with doubling
order Dw. Let D1 ⊂ D2 be subspaces of Lq0(w) and suppose that they are stable under
truncation by indicator functions of measurable sets. Let T be a sublinear operator
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defined on D2. Let {Ar}r>0 be a family of operators acting from D1 into D2. Let
1 ≤ p0 < q0 ≤ ∞. Assume the following conditions

(a) There exists q ∈ Ww(p0, q0) such that T is bounded from Lq(w) to Lq,∞(w).

(b) For all j ≥ 1, there exist constants αj such that for any ball B with r(B) its
radius and for any f ∈ D1 supported in B,

(
−

∫

Cj(B)

|Ar(B)f |
q0 dµ

) 1
q0 ≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 . (8.5)

(c) There exists β > (sw)′, i.e. w ∈ RHβ′, with the following property: for all j ≥ 2,
there exist constants αj such that for any ball B with r(B) its radius and for
any f ∈ D1 supported in B and for j ≥ 2,

(
−

∫

Cj (B)

|T (I −Ar(B))f |
β dµ

)1/β

≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 . (8.6)

(d)
∑

j αj 2Dw j < ∞ for αj in (b) and (c).

Then T is of strong-type (p, p) with respect to w for all p ∈ Ww(p0, q0) with p < q.
More precisely, for such a p, there exists a constant C such that for all f ∈ D1,

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w).

Proof. Fix a ball B, f supported in B and let g = |T (I −Ar(B))f | and h = |Ar(B)f |.
Let p ∈ Ww(p0, q0) with p < q. Since w ∈ RH(q0/q)′ and w ∈ Ap/p0, (8.5) yields

(
−

∫

Cj(B)

hq dw
) 1

q
.

(
−

∫

Cj(B)

hq0 dµ
) 1

q0 ≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 . αj

(
−

∫

B

|f |p dw
) 1

p
.

Then as w ∈ RHβ′ and w ∈ Ap/p0
, (8.6) implies

−

∫

Cj (B)

g dw .
(
−

∫

Cj(B)

gβ dµ
)1/β

≤ αj

(
−

∫

B

|f |p0 dµ
) 1

p0 . αj

(
−

∫

B

|f |p dw
) 1

p
.

Thus we are back to the hypothesis of Theorem 8.1 for the doubling measure w dµ and
with exponents p < q. This implies that T has weak-type (p, p) with respect to w dµ.
As p is arbitrary in an open interval, this implies also strong-type by Marcinkiewicz
interpolation theorem. �

Remark 8.8. Note that (8.5) and (8.6) are unweighted assumptions. Since we assume
weighted weak-type (q, q) for T , this seems useless in applications. In fact, it is a good
companion of Theorem 3.7. See the application to Riesz transforms on manifolds in
[AM4].

Remark 8.9. An examination of the argument shows that if in addition w ∈ A1 then
weighted weak-type holds at p = p0.

Remark 8.10. A simple and special case is the following. If (b), (c) and (d) hold for
p0 = 1 and q0 = ∞, then it suffices that (a) holds for some q with q > rw and the
conclusion holds for all p ∈ (rw, q).

Remark 8.11. We can obtain a version of Theorem 8.7 for commutators with BMO
functions: let k ≥ 1, b ∈ BMO and w ∈ A∞. In (a) we further assume that Tm

b ,
for m = 1, . . . , k, are bounded from Lq(w) to Lq,∞(w); the series in (d) becomes
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∑
j αj 2Dw j jk < ∞; (b), (c) remain the same. In such a case, we show that T k

b is

bounded on Lp(w) for p < q, p ∈ Ww(p0, q0).
The proof is almost identical and we only give the main ideas. The computations

for h do not change. To estimate g, in the left-hand side, we need to start with an
Lr(w)-norm in place of the L1(w)-norm. We pick r > 1 so that (sw)′ < β/r < β (note
that (sw)′ < β). This guarantees that w ∈ RH(β/r)′ and from the Lr(w)-norm we pass
to the Lβ(µ)-norm, after this the desired estimate follows in the same manner. Thus,
we can apply Theorem 8.2 to obtain that T k

b is bounded on Lp̃(w) for all p < p̃ < q.
As p is arbitrary in an open interval, we conclude that T k

b is bounded on Lp(w) for all
p < q such that p ∈ Ww(p0, q0).

8.4. Extension to spaces of homogeneous type. The preceding results in this
part have been obtained in Rn equipped with a doubling measure µ. In [AM3] we will
use them with µ being either the Lebesgue measure or dµ(x) = w(x) dx with w ∈ A∞

and in [AM4], Rn will be replaced by a manifold or a Lie group. It is not difficult to
see that all the proofs can be adapted to the case of general spaces of homogeneous
type (X , d, µ) (see [CW], [Chr], [Ste]). Precise statements and details are left to the
reader.

Let us just make a point about the definition (8.1). It would have looked more
natural to use the “true” mean of h over Cj(B) where we divide by µ(Cj(B)) in place
of µ(2j+1 B). Our choice is justified partly by the fact that we do not know whether
2 B \ B and 2 B have comparable mass for all balls, and partly since (fortunately)
µ(2j+1 B) is the quantity that appears in computations. Let us note a fairly weak
sufficient condition on X insuring this comparability (which is surely known but we
could not find an explicit statement in the literature)

Lemma 8.12. Assume that there exists ε ∈ (0, 1) such that for any ball B ⊂ X ,
(2 − ε) B \ B 6= Ø. Then, µ(2 B \ B) ≈ µ(2 B) for any ball B, where the implicit
constants are independent of B.

It would be nice to be able to take ε = 0 in the above statement. The argument
below shows that µ(2 B\B) ≥ Cµ(2 B) but with C depending on B. So our statement
is the next best thing.

We prove the lemma. It suffices to show that µ(2 B) ≥ ν µ(B) for some ν > 1.
Choose 1 < c < 3

3−ε
. Let B be a ball, xB its center and r its radius. By hypothesis,

there exists x ∈ B(xB, (2 − ε) c r) \ B(xB, c r). Set B′ = B(x, (c − 1) r) and note

that B′ ⊂ 2 B \ B. Thus µ(2B) ≥ µ(B) + µ(B′). Now B ⊂ κ B′ with κ = (3−ε)c
c−1

,

hence µ(B) ≤ µ(κ B′) ≤ CκDµ(B′) where D is the doubling order of µ. Therefore,
µ(2 B) ≥ (1 + (CκD)−1) µ(B) as desired.

Remark that if we had assumed that all annuli are non-empty then we would obtain
for all λ > 1, µ(λ B) ≥ cµ λd µ(B) for some cµ ≥ 1 and d > 0 depending on µ. Let us
finally observe that Theorems 8.1, 8.2 and 8.7 hold with a-adic annuli for some fixed
a > 1 instead of dyadic ones. The needed changes in the statements and proofs are
left to the reader.
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9. On a special Calderón-Zygmund decomposition

The standard Calderón-Zygmund decomposition of functions allows one to decom-
pose a function into a sum of a good bounded function and bad but localized functions.
This decomposition depends on the level sets of the maximal function of f . This is
used to prove boundedness results such as Theorem 8.1.

If one wants to prove estimates like ‖Tf‖p .
∑n

j=1 ‖∂jf‖p then one observes that
the level sets under control are those of the maximal function of each partial ∂jf . But
unless one can explicitly express Tf in terms of the functions ∂jf , the decomposition
applied to each ∂jf does not allow to split f as before.

The idea of the following lemma, which is applied in [AM3], is to split f according
to some information on its gradient. This was done in [Au1] for Lebesgue measure in
Rn. We extend it to a class of doubling measures.

Proposition 9.1. Let n ≥ 1 and 1 ≤ p < ∞. Let w ∈ L1
loc(R

n), w > 0 a.e., be
such that dµ = w dx is a Borel doubling measure (here we do not need that w is a
Muckenhoupt weight). Assume that the measure µ supports an Lp Poincaré inequality,
that is,

(
−

∫

B

|f − mBf |p dµ
) 1

p
≤ C r(B)

(
−

∫

B

|∇f |p dµ
) 1

p
(9.1)

for all locally Lipschitz functions f and all balls B with radius r(B). Here mBf is the
average of f with respect to µ on B. Assume that f ∈ S is such that ‖∇f‖Lp(µ) < ∞.†

Let α > 0. Then, one can find a collection of balls {Bi}i, smooth functions {bi}i and
a function g ∈ L1

loc(R
n, µ) such that

f = g +
∑

i

bi (9.2)

and the following properties hold:

|∇g(x)| ≤ Cα, for µ-a.e. x ‡ (9.3)

supp bi ⊂ Bi and

∫

Bi

|∇bi|
p dµ ≤ Cαpµ(Bi), (9.4)

∑

i

µ(Bi) ≤ Cα−p

∫

Rn

|∇f |p dµ, (9.5)

∑

i

χBi
≤ N, (9.6)

where C and N depends only on dimension, the doubling constant of µ and p. As-
suming furthermore that µ supports an Lp − Lq Poincaré inequality with p ≤ q < ∞,
that is,

(
−

∫

B

|f − mBf |q dµ
) 1

q

≤ C r(B)
(
−

∫

B

|∇f |p dµ
) 1

p

(9.7)

†We avoid here regularity issues by taking a smooth f .
‡The gradient of g exists µ-almost everywhere, that is almost everywhere for the Lebesgue measure.

In fact, a similar argument shows that g is almost everywhere equal to a Lipschitz function g̃. Hence,
∇g coincide almost everywhere with the distributional gradient of g̃.
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for all f locally Lipschitz and all ball B. Then
(
−

∫

Bi

|bi|
q dµ

) 1
q

. α r(Bi). (9.8)

Since Ap weights support an Lp −Lq Poincaré inequality for some q > p, the latter
result applies to any w ∈ A∞ and p > rw.

10. Proofs of the main results

We prove Theorem 8.1, Theorem 8.2, and Proposition 9.1.

10.1. Proof of Theorem 8.1. We follow closely the proof in [Au1] (we include it
since it will be needed for the next section). By Marcinkiewicz interpolation theorem,
it suffices to show that T is of weak-type (p0, p0). Let f ∈ D (so f ∈ Lp0(µ)) and
α > 0. By the Calderón-Zygmund decomposition (see [CW] or [Ste]) for |f |p0 at height
αp0 it follows that there exist a collection of balls {Bi}i and functions g, {hi}i such
that f = g +

∑
i hi and the following properties hold:

‖g‖L∞(µ) ≤ C α, (10.1)

supp hi ⊂ Bi,
(
−

∫

Bi

|hi|
p0 dµ

) 1
p0 ≤ C α, (10.2)

∑

i

µ(Bi) ≤ C α−p0

∫

Rn

|f |p0 dµ, (10.3)

∑

i

χBi
≤ N, (10.4)

where C and N depends on µ, n and p0. We write ri = r(Bi) and control Tf by

|Tf | ≤ |Tg|+
∣∣∣T

(∑

i

Ari
hi

)∣∣∣ +
∑

i

|T (I −Ari
)hi| = F1 + F2 + F3.

We estimate µ{Fi > α/3}. For F1, since T is of weak-type (q0, q0) and (10.1)

µ{F1 > α/3} .
1

αq0

∫

Rn

|g|q0 dµ .
1

αp0

∫

Rn

|g|p0 dµ .
1

αp0

∫

Rn

|f |p0 dµ, (10.5)

where we have used that (10.4), (10.2), (10.3) yield
∫

Rn

∣∣∣
∑

i

hi

∣∣∣
p0

dµ .
∑

i

∫

Bi

|hi|
p0 dµ . αp0

∑

i

µ(Bi) .

∫

Rn

|f |p0 dµ.

For F2, we first use that T is of weak-type (q0, q0),

µ{F2 > α/3} .
1

αq0

∫

Rn

∣∣∣
∑

i

Ari
hi

∣∣∣
q0

dµ. (10.6)

To compute the Lq0-norm we dualize against 0 ≤ u ∈ Lq′0(µ) with ‖u‖
Lq′

0(µ)
= 1. We

use (8.3), (10.2), (10.4)
∫

Rn

∣∣∣
∑

i

Ari
hi

∣∣∣ u dµ .
∑

i

∞∑

j=1

2j D µ(Bi)
(
−

∫

Cj(Bi)

|Ari
hi|

q0 dµ
) 1

q0

(
−

∫

2j+1 Bi

uq′0 dµ
) 1

q′
0
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.
∑

i

∞∑

j=1

2j D µ(Bi) αj

(
−

∫

Bi

|hi|
p0 dµ

) 1
p0 ess inf

y∈Bi

Mµ

(
uq′0

) 1
q′
0 (y)

. α

∫

Rn

∑

i

χBi
Mµ

(
uq′0

) 1
q′
0 dµ . α

∫

∪iBi

Mµ

(
uq′0

) 1
q′
0 dµ

. α µ(∪iBi)
1
q0

∥∥uq′0
∥∥

1
q′
0

L1(µ) = α µ(∪iBi)
1

q0 , (10.7)

where we have used Kolmogorov’s lemma and the weak-type (1, 1) for the Hardy-
Littlewood maximal function Mµ (this idea is borrowed from [HM]). Next, we take
the supremum on u and plug the obtained estimate into (10.6):

µ{F2 > α/3} . µ(∪iBi) .
1

αp0

∫

Rn

|f |p0 dµ, (10.8)

where we have used (10.3). Next, we consider F3. By (8.2), (10.2) and (10.3)

µ
(
(Rn \ ∪i4 Bi) ∩ {F3 > α/3}

)
≤

3

α

∑

i

∫

Rn\4 Bi

|T (I −Ari
)hi| dµ

.
1

α

∑

i

∞∑

j=2

2j D µ(Bi)
(
−

∫

Cj(Bi)

|T (I −Ari
)hi| dµ

)

.
1

α

∑

i

∞∑

j=2

2j D µ(Bi) αj

(
−

∫

Bi

|hi|
p0 dµ

) 1
p0

.
1

αp0

∫

Rn

|f |p0 dµ. (10.9)

Gathering (10.5), (10.8), (10.9), and using (10.3) we conclude that

µ{x ∈ Rn : |Tf(x)| > α} .
1

αp0

∫

Rn

|f |p0 dµ.

10.2. Proof of Theorem 8.2. The basic ingredient is the following consequence of
John-Nirenberg’s inequality: for any ball B, 0 < s < ∞ and j ≥ 0,

(
−

∫

2j B

|b − bB |
s dµ

) 1
s

. (1 + j) ‖b‖BMO(µ). (10.10)

Lemma 10.1. Assume (8.3) and (8.4) of Theorem 8.2. Let p0 < p < q < q0. Let
b ∈ L∞(µ) with ‖b‖BMO(µ) = 1. Then for all ball B with radius r, all functions f
supported in B and m ∈ N, m ≥ 1,

(
−

∫

B

|(b − b4 B)m f |p0 dµ
) 1

p0 .
(
−

∫

B

|f |p dµ
) 1

p
, (10.11)

for j ≥ 1,
(
−

∫

Cj(B)

|(b − b4 B)m Arf |
q dµ

) 1
q

. jm αj

(
−

∫

B

|f |p0 dµ
) 1

p0 (10.12)

and for j ≥ 2,

−

∫

Cj (B)

|(b − b4 B)m T (I −Ar)f | dµ . jm αj

(
−

∫

B

|f |p0 dµ
) 1

p0 , (10.13)

where the constants involved are independent of b and f .
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The proof of (10.11) is a direct application of Hölder inequality and (10.10). Next,
using that q < q0, (10.12) follows from Hölder inequality, (8.3) and (10.10). Eventually,
(10.13) is a consequence of Hölder inequality, (8.4) as r > 1 and (10.10).

We begin the proof of Theorem 8.2. As before it is enough to consider the case
b ∈ L∞(µ) obtaining the desired estimates with a constant independent of b. Let us
observe that here we assume that T is of weak-type (q0, q0) in place of being bounded
on Lq0 . This changes slightly Lemma 6.1. Namely, in (a) one obtains that T k

b f ∈
Lq0,∞(µ). The proof of (b) changes in the following way: one shows that T

(
(bN )m f −

bm f
)
−→ 0 in Lq0,∞(µ) which also implies the convergence almost everywhere for a

subsequence. From here the proof can be carried out in the same manner.
When b ∈ L∞(µ), all the formal computations below make sense. Notice that

by homogeneity, it suffices to consider the case ‖b‖BMO(µ) = 1. By Marcinkiewicz
interpolation theorem, it suffices to show that T k

b is of weak-type (p, p) for all p0 <
p < q0 because T k

b is sublinear. We proceed by induction and assume that we have
proved that Tm

b is of weak-type (p, p) for all p0 < p < q0 and m = 0, . . . , k − 1, the
case m = 0 being covered by Theorem 8.1.

Fix p so that p0 < p < q0 and let q with p < q < q0. Let f ∈ L∞
c (so f ∈ Lp(µ))

and α > 0. By the Calderón-Zygmund decomposition (see [CW] or [Ste]) for |f |p at
height αp it follows that there exist a collection of balls {Bi}i, a collection of functions
{hi}i and a function g such that f = g +

∑
i hi and (10.1), (10.2), (10.3) (10.4) hold

with p in place of p0. We wish to estimate µ{|T k
b f | > α}. First, we have

|T k
b f | ≤ |T k

b g| +
∣∣∣T k

b

(∑

i

hi

)∣∣∣.

By the weak-type (q0, q0) of T k
b ,

µ{|T k
b g| > α/2} .

1

αq0

∫

Rn

|g|q0 dµ .
1

αp

∫

Rn

|f |p dµ, (10.14)

where the last inequality follows as in (10.5). Next, set hm
i,b = (b4 Bi

− b)m hi and
ri = r(Bi). Then

∣∣∣T k
b

(∑

i

hi

)
(x)

∣∣∣ ≤
k∑

m=0

Ck,m

∣∣∣T
(∑

i

(b(x) − b4 Bi
)k−m Ari

hm
i,b

)
(x)

∣∣∣

+
k∑

m=0

Ck,m

∑

i

|b(x) − b4 Bi
|k−m

∣∣∣T
(
(I −Ari

)hm
i,b

)
(x)

∣∣∣

The m-th term in the first sum is bounded by
∑k−m

ℓ=0 cm
ℓ Fm,ℓ(x) with

Fm,ℓ(x) =
∣∣∣T k−m−ℓ

b

(∑

i

(b − b4 Bi
)ℓ Ari

hm
i,b

)
(x)

∣∣∣.

Fix ℓ = m = 0 and A some large number depending just on k. Then the estimate
of µ{F0,0 > α/A} is done as for the term F2 in the proof of Theorem 8.1, using the
weak-type (q0, q0) of T k

b . Next, fix ℓ, m with m+ℓ > 0. Then, the induction hypothesis
implies that T k−m−ℓ

b is of weak-type (q, q). Hence, the estimate of µ{Fm,ℓ > α/A} is
done as for the term F2 in the proof of Theorem 8.1, by replacing q0 by q and using
(10.12) with f = hm

i,b and then (10.11) with f = hi.
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It remains to estimate µ{Gm,ℓ > α/A} with

Gm,ℓ(x) =
∑

i

|b(x) − b4 Bi
|k−m

∣∣∣T
(
(I −Ari

)hm
i,b

)
(x)

∣∣∣.

We proceed as for the term F3 in the proof of Theorem 8.1, using (10.13) with f = hm
i,b

and then (10.11) with f = hi. We leave details to the reader.

Remark 10.2. The latter argument can be carried out for the multilinear commuta-
tors introduced above. We give some of the ideas leaving the precise computations to
the reader. As before, it suffices to consider the case bm ∈ L∞ with ‖bm‖BMO(µ) = 1

for all 1 ≤ m ≤ k. Given σ ⊂ {1, . . . , k}, we write πi,~bσ
=

∏
j∈σ

(
bj − (bj)4 Bi

)
and

hi,~bσ
= hi πi,~bσ

Here, when σ = Ø we understand that πi,~bσ
= 1 and hi,~bσ

= hi. Thus,

combining the preceding ideas with [PT, p. 684] we have

|T~bf | ≤ |T~bg| +
∑

σ1,σ2,σ3

∣∣∣T~bσ1

(∑

i

πi,~bσ2
Ari

hi,~bσ3

)∣∣∣ +
∑

σ1,σ2

∑

i

|πi,~bσ1
| |T (I −Ari

)hi,σ2|,

where the first sum (resp. the second sum) runs over all partitions of {1, . . . , k} in
three (resp. two) pairwise disjoint sets σ1, σ2, σ3 (resp. σ1, σ2).

The estimate for the first term is obtained as in (10.14). The second term is treated
as Fm,l above (notice that the case σ1 = {1, . . . , k}, σ2 = σ3 = Ø is handled differently
as happened before). Finally, the third term is estimated as Gm,l above. Full details
are left to the reader.

10.3. Proof of Proposition 9.1. Let Ω = {x ∈ Rn : Mµ(|∇f |p)(x) > αp} where Mµ

is the uncentered maximal operator over cubes† of Rn with respect to µ. If Ω is empty,
then set g = f . Otherwise, since µ is doubling it follows that Mµ is of weak-type (p, p)
and so

|Ω| ≤ Cα−p

∫

Rn

|∇f |p dµ.

Let F be the complement of Ω. By the Lebesgue differentiation theorem, |∇f | ≤ α
µ-almost everywhere on F .

Lemma 10.3. One can redefine f on a µ-null set of F so that for all x ∈ F , and for
all cube Q centered at x,

|f(x) − mQf | ≤ Cαℓ(Q) (10.15)

where ℓ(Q) is the sidelength of Q. Furthermore, for all x, y ∈ F ,

|f(x) − f(y)| ≤ Cα|x− y|. (10.16)

The constant C depends only on dimension, the doubling constant of µ and p.

Proof of Lemma 10.3. Let x be a point in F . Fix a cube Q with center x and let Qk

be co-centered cubes with ℓ(Qk) = 2−k ℓ(Q) for k ≥ 1. Then, by Poincaré’s inequality

|mQk+1
f −mQk

f | . −

∫

Qk

|f −mQk
f | dµ . ℓ(Qk)

(
−

∫

Qk

|∇f |pdµ
) 1

p
. 2−kℓ(Q)α (10.17)

since x ∈ Qk ∩ F . This easily implies that {mQk
f}k≥1 is a Cauchy sequence and so it

converges as k → ∞ or what is the same as ℓ(Qk) → 0. The Lebesgue differentiation

†We freely change balls to cubes.
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theorem implies that mQk
f −→ f(x) whenever x is a Lebesgue point of f , that is

µ-almost everywhere. If x is not a Lebesgue point, it is easy to show that limmQk
f

does not depend on Q (the original cube). Hence, we redefine f(x) as the value of
this limit. With this new definition, summing over k ≥ 1 on (10.17) one gets (10.15).

To see (10.16), let x, y ∈ F and Qx be the cube centered at x with sidelength
2 |x − y| and Qy be the cube centered at y with sidelength 4 |x − y|. It is easy to see
that Qx ⊂ Qy. As in (10.17), one can see that |mQxf − mQyf | ≤ Cα|x − y|. Hence
by the triangle inequality and (10.15), one obtains (10.16) readily. �

Let us continue the proof of Lemma 9.1. Let {Qi}i be a Whitney decomposition
of Ω by dyadic cubes. Hence, Ω is the disjoint union of the Qi’s, the cubes 2 Qi ⊂ Ω
have bounded overlap, and the cubes 4 Qi intersect F . As usual, λ Q is the cube co-
centered with Q with sidelength ℓ(λ Q) = λ ℓ(Q). Hence (9.5) and (9.6) are satisfied
by the cubes 2 Qi.

Let us now define the functions bi and show (9.4). Let {Xi}i be a partition of unity
on Ω associated to the covering {Qi}i so that for each i, Xi is a C∞ function supported
in 2 Qi with ‖Xi‖∞ + ℓi ‖∇Xi‖∞ ≤ c(n), ℓi being the sidelength of Qi. Set

bi = (f − m2Qi
f)Xi.

It is clear that bi is supported in 2Qi. Since ∇
(
(f − m2Qi

f)Xi

)
= Xi∇f + (f −

m2Qi
f)∇Xi, we have by the Lp Poincaré inequality, the fact that the average of |∇f |p

on 4 Qi is controlled by αp (since 4 Qi meets F ) and the doubling property that
∫

2Qi

|∇
(
(f − m2Qi

f)Xi

)
|p dµ ≤ Cαpµ(2Qi).

Thus (9.4) is proved.
It remains to obtain (9.2) and (9.3). To do so, we introduce an auxiliary function

h =
∑

i m2Qi
f ∇Xi, for which we claim that h ≤ Cα on Rn. First, note that this

sum is locally finite in Ω and vanishes on F , hence h well-defined on Rn. Note also
that

∑
i Xi is 1 on Ω and 0 on F . Since it is also locally finite we have

∑
i ∇Xi = 0

in Ω. Fix x ∈ Ω. Let Qj be the Whitney cube containing x and let Ix be the set of
indices i such that x ∈ 2 Qi. We know that #Ix ≤ N . Also for i ∈ Ix we have that
C−1 ℓi ≤ ℓj ≤ C ℓi where the constant C depends only on dimension (see [Ste]). We
also have |m2Qi

f − m2Qj
f | ≤ C ℓj α (embed 2 Qi and 2 Qj in some dilate of Qj and

apply Poincaré’s inequality as in (10.17) and the definition of F ). Hence,

|h(x)| =

∣∣∣∣∣
∑

i∈Ix

(m2Qi
f − m2Qj

f)∇Xi(x)

∣∣∣∣∣ ≤ C
∑

i∈Ix

|m2Qi
f − m2Qj

f |ℓ−1
i ≤ CNα.

We are ready to prove (9.2) and (9.3). Set g = f −
∑

bi. This function is defined µ-
almost everywhere, hence (9.2) trivially holds. Next, we claim that ∇g = 1F (∇f)+h
µ-almost everywhere where 1E is the indicator function of a set E. Admitting this,
for µ-a.e. x ∈ F , we have that |∇g(x)| = |∇f(x)| ≤ Mµ

(
|∇f |p)(x)p ≤ α, and for

µ-a.e. x ∈ Ω, |∇g(x)| = |h(x)| ≤ C N α. To conclude the proof of (9.3), it remains to
see the claim. First, observe that

∑
i bi converges in Lp

loc(R
n, µ). Indeed, fix a compact

set K and observe that the sidelengths of the cubes Qi meeting K are bounded. Since
‖bi‖

p
Lp(µ) ≤ Cℓp

i α
pµ(Qi) and

∑
i µ(Qi) < ∞, we obtain convergence of the series in

Lp(K, µ) from the bounded overlap property of the Qi’s. Next, it follows from (9.4),
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(9.5) and (9.6) that
∑

i |∇bi| converges in Lp(Rn, µ). We invoke [FHK, Corollary
11] (this is where we use that µ is given by a weight) which implies that ∇g exists
almost everywhere (which is the same as µ-almost everywhere by the assumption on
the weight) and is given by ∇f −

∑
i ∇bi. But as

∑
i ∇Xi(x) = 0 for x ∈ Ω, we have

∇f = 1F (∇f) + 1Ω(∇f) = 1F (∇f) + h +
∑

i

∇bi µ-a.e.,

and the claim follows.
It remains to prove (9.8) assuming an Lp−Lq Poincaré inequality. By the definition

of bi and similar computation as above,
(
−

∫

Qi

|bi|
q dµ

) 1
q

. ℓi

(
−

∫

2 Qi

|∇f |p dµ
) 1

p

. ℓi α.

References

[AE] W. Arendt & A.F.M. ter Elst, Gaussian estimates for second order operators with bound-

ary condition, J. Operator Theory 38 (1997), 87–130.

[Au1] P. Auscher, On necessary and sufficient conditions for Lp estimates of Riesz transform

associated elliptic operators on Rn and related estimates, To appear in Mem. Amer.
Math. Soc.

[Au2] P. Auscher, On Lp estimates for square roots of second order elliptic operators on Rn,

Publ. Mat. 48 (2004), no. 1, 159–186.

[AC] P. Auscher & T. Coulhon, Riesz transforms on manifolds and Poincaré inequalities, Ann.
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