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Networked Control using GPS Synchronization

Alexandre Seuret, Fabien Michaut, Jean-Pierre Richard and Thierry Divoux

Abstract— This work concerns the control, the observation
and then, the implementation principles of a remote system
(Master and Slave parts) through the Internet network. This
communication link introduces variable delays that have to
be taken into account in the control-observation loop. The
data-sampling effects will also be considered, even in the
aperiodic case. The Slave part is considered to be a linear
system. But, since its computation power is supposed to be
limited, the control complexity (which, here, is an observer-
based state feedback) has to stay in the Master part. The
global system must ensure speed performance whatever the
delay variation. Such a performance is obtained by showing
the robust, exponential stability property, which is proven by
using adequate Lyapunov-Krasovskii functionals. This makes
possible to compute the controller and observer gains by
using LMI optimization. The technical solution we propose
is based on a GPS system, which guarantees the Master
and Slave clocks to be synchronized. Then, the control and
measurement packets are sent together with time-stamps that
allow for reconstructing a non-symmetric delay information.
It means that Master-to-Slave and Slave-to-Master delays are
separately reconstructed by the system (and not only the global
RTT, round-trip-time). The last part of the paper provides an
example where the Slave is a second-order system.

I. I NTRODUCTION

Remote control is a good way to perform tasks in
dangerous or hard-to-reach areas, or to broaden the number
of users on a localized test-bed. The web technology on
the Internet now appears as a natural, cheap way to ensure
the communication link in such remote controlled systems.
Nowadays, the Quality of Service provided by the internet
is often good enough for that kind of applications.

However, a communication link unavoidably introduces
time delays that have to be taken into account in the
control/observation loop. The references [13], [17] provide
overviews on control techniques for time-delay systems,
which great influence on stability was already mentioned
in the 60’s [6]. Several works on teleoperation introduced
the question of transmission delays, first, in the constant
case [2], [5], [15].

In networked control situations, the delays are basically
variable (jitter phenomenon) and unknown, which is a
source of problem when one intend to apply the classical,
predictor-based control laws (as, for instance, FSA: finite
spectrum assignment). Such techniques generally need the
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delay to be constant,i.e. h(t) = h, which assumption does
correspond to actual situation.

In the case of variable delays, some researches have used
independent-of-delay conditions. Such i.o.d. conditions are
generally conservative, but in [4], the results appear to
be well-fitted for particular cases such as constant delays,
or symmetric delays. What we mean here refers to the
case where Master-to-Slaveh1(t) and Slave-to-Masterh2(t)
transmission delays are equal,i.e. h1(t) = h2(t) = R(t)/2,
where R(t) denotes the round trip time (RTT). Another
reference [10] considered non-symmetric delays, but only
in the case of constant delays,i.e. h1(t) = h1 6= h2(t) = h2.

Another interesting approach was recently given in [21],
who generalized the predictor techniques to the case of
variable delays. In this case, a maximal upper-bound of the
delay is assumed to be known (hm such that 0≤ h(t)≤ hm),
which is not that constraining. The main assumption is that
a dynamical ODE model (Ordinary Differential Equation)
of the delay is supposed to be available, which is possible
in the case of a single-ownerEthernet network.

Another possible solution [11], [12], [16] consists in
introducing an input buffer that makes the receiver wait
until the maximum value of the delay is reached and, then,
deliver the information to the control. In this case, from the
receiver’s point of view, the delay becomes constant and
equal to the maximum valuehm. However, it is obvious
that this situation maximizes the delay up to its worst
(largest) value and, consequently, may decrease the speed
performance of the global, remote system. Then, the speed
performance has to be figured out within the design phase,
which problem was not explicitly considered in [11], [12].
Moreover, these studies were consideringsymmetric delays.

The present study aims at using theInternet as a com-
munication media linking a Master system and a Slave one.
In such a situation, the generated delays are not only time-
varying, non-symmetric, but also unknown (no dynamical
model of the delays is available see, [14]). They just can be
assumed to have known maximahim, so that 0≤ hi(t)≤ him

holds. In the network framework, this assumption means
that if a packet is lost, it is not re-emitted because we use
UDP (User Datagram Protocol) . One also can assume that
the delay variation satisfieṡhi(t) ≤ 1, which means that all
the packets are re-organized in their chronological emission
order.

Now, for the discrete-time implementation, the data-
sampling effect has to be taken into account. Following the
lines of [8], [22], we consider it produces an additional,
variable delayt − tk, where tk is the kth sampling instant.
Generally, due to the computer architecture and operating
system, the sampling may be aperiodic,i.e. there is no



exact periodT such thattk = kT ). So, we just assume
a maximum sampling intervalT is known, so that 0≤
tk+1 − tk ≤ T holds. The global delays resulting from the
communication-plus-sampling phenomena will be denoted
by δi(tk) = hi(t)+ t− tk , and one can see that the limit case
δ̇i = 1 can occur.

Of course, additional information are needed for achiev-
ing the global performance. The technical solution we
propose is based on a GPS system. Both the Slave and
the Master are equipped with a GPS antenna, which allows
the Master and Slave clocks to be synchronized. Then,
the control and measurements packets are sent together
with “time-stamps” that permit to reconstruct thenon-
symmetric delay information. By this way, both Master-to-
Slaveh1(t) and Slave-to-Masterh2(t) delays are separately
reconstructed by the system, and not only the RTT.

The exchanged data correspond to the control (sent by
the Master to the Slave) and to the output of the remote
system (sent by the Slave to the Master). Since the Slave
is not supposed to have a large computation power, the
control and observation complexity has to be concentrated
in the Master. Our purpose is to guarantee the robustness
and speed performances of the global Master-Slave system.
In particular, the global system must ensure the closed-loop
stability and a guaranteed speed rate whatever the delay
variation.

Stabilizing a system in such conditions is not that easy.
The Master receives the information he needs for the control
computation after it has crossed the communication zone.
The GPS-based estimation of the transmission delay, joined
to the observer, allows to know what was the Slave state at
the instant the information was sent to the Master. Similarly,
the control computed by the Master will be applied some
time after it is sent to the Slave, and this dead-time is not
known in advance.

For simplicity, the Slave is considered to be a linear
system. The global performance is obtained by showing an
exponential stability property (α−stability), robust w.r.t. the
delay, and which is proven by using adequate Lyapunov-
Krasovskii functionals. This makes possible to compute the
controller and observer gains by using LMI optimization.

The last part of the paper gives simulation results for a
second order system.

II. FEATURES OF THE REMOTE SYSTEM

Figure 1 presents the overall structure of the Master-Slave
remote system.

The system has the following features:

• The Slave is supposed to have a limited computation
power. Then it can not build its own control. The
Master computes and forwards the control to the Slave.
The forwarding cannot be instantaneous, because the
communication lines induces a delayh1(t), as well as
sampling effects, which create the variable delayτ1(t).

• The Slave is driven by a linear, controllable and
observable, known model(A,B,C), influenced by an

�

Fig. 1. Features of the remote system

input delay:
{

ẋ(t) = Ax(t)+Bu(t −δ1(t)),
y(t) = Cx(t),

(1)

whereδ1(t) is a delay to be defined later on (subsection
II-D).

• The Slave measures its sampled-data output variables
y(t), that the Master receives after a delayh2(t). An
other delayτ2(t) due to the sampling is added, Which
means that the Master only can accessy(t − δ2(t)),
whereδ2 corresponds to the resulting delay. The Mas-
ter includes an observer which aims at providing an
estimation ˆx of the complete Slave statex at the present
time. From this estimation, the Master elaborates the
control law.

• The sampling instantstk may not be periodical (i.e.,
tk 6= kT ), but it is supposed there is a knownT such
that, for anyk:

tk+1− tk ≤ T. (2)

• The two generated delays have a known maximum
δm

i = hm
i + T , so that 0< δi(t) ≤ δm

i holds, and the
delay variation satisfieṡδi(t) ≤ 1 (the interpretation in
the network and sampled-time framework is given in
the Introduction part).

• Each part of the Master-Slave system has a GPS card,
which gives a shared clock. Thus, the internal clock of
Master and Slave are synchronized. Each data packet
includes an added time-stamp (the time the packet
was sent). By this way, the receiver can calculate the
transfer delays,hi(t) as soon as it receives the packet.

The next subsections present the main features and
notations, this is: (1) The modeling the sampling effects,
considered as additional, variable delaysτi(t); (2) The
controller, which is a static, linear state feedback; (3) The
different communication delayshi(t); (4) The observer,
which is a linear, Luenberger-type one, but with delays.

A. The sampling delays

From a practical point of view, the global system (includ-
ing the controller, the observer, the network, the process)
cannot be considered as a continuous-time one. If the Slave
has fast dynamics, exchanging the packets between Slave
and Master in continuous time would mean the network
can support a very high data flow. Then, the packets only



give discrete-time information. The corresponding sampling
effect represents a possible disturbance to the stabilization
of the remote system and must be taken into account in
the observer and controller design. Instead of turning into
discrete-time, recurrent equations, recent works [8], [19],
[22] have considered such sampling effects as continuous-
time phenomena with variable time delays. Indeed, the
sampleg(tk) of a function g(t) at time tk can be written
as: g(tk) = g(t − [t − tk]) = g(t − τ (t)), which notation re-
places the sample-and-hold with an additional delayτk(t) =
t − tk, t ∈ [tk, tk+1[. By this way, an aperiodic sampling
is modeled as unknown delay with the upper-boundT
(defined by (2)). This change allows one to use continuous-
time techniques, as Lyapunov-Krasovskii functionals, for
the stability study of sampled systems. In our case, we
can define a delayδ(t) which represents the combination
of such a sampling delayτk(t) with the delayh(tk) the
transmission line subjects to the packet containing thekth

sample. For any signalg(t), this delay will be of the form:

g(tk −h(tk)) = g(t −h(tk)− (t − tk)),
= g(t −δ(t)),

tk ≤ t < tk+1, δ(t) , h(tk)+ t − tk.
(3)

B. The control law

The controller computes a control law which takes into
account some set value to be reached by the Slave. The state
feedback controlu(t) is defined from the state estimate ˆx
given by the observer, as follows:

u(t) = Kx̂(t). (4)

The main difficulty is to determine the linear gainK
of the state feedback control so to guarantee the stability
of the Slave motion despite the value of the time-varying
delay δ1(t). This delay is not known by the Master when
its control data is sent.

C. Transmission of the control u

The kth data sent by the Master to the Slave includes the
control u(t1,k) it has just designed, together with the time
t1,k when the packet was sent. This packet goes across the
network. The Slave receives this information at timetr

1,k.
Thanks to the GPS clock synchronization, this time has the
same meaning for the Slave as for the Master. Then the
term tr

1,k − t1,k, corresponding to the transmission delay, is
known by the Slave once the packet has reached it.

D. Receipt and processing of the control data

The control, sent by the Master at timet1,k, is received by
the Slave at timetr

1,k > t1,k. It will be injected in the Slave
input only at the pre-defined “target time”ttarget

1,k = t1,k +hm
1 .

The corresponding waiting timehm
1 is depicted on Figure 2.

This is realistic because the transmission delay is bounded
by a known value (in general, one can choosehm

1 = δm
1 .

By this way, at any present time, the Master also knows
the timet1,k when this controlu(t1,k) will be injected at the
Slave input.

�

Fig. 2. Control data processing

E. Transmission of the measured output information

The Slave accesses its outputy at discrete instants. A
sent packet contains the outputy(t2,k′) together with its
measurement instantt2,k′ which is thek′th one. The Master
receives at timetr

2,k′ the output data. Once the packet has
reached the Master, the delaytr

2,k′ − t2,k′ is known thanks to
the GPS synchronization.

F. Observation of the process

For a givenk and for anyt ∈ [t1,k + h1m , t1,k+1 + h1m[,
there exists ak′ such that the proposed observer is of the
form:

{

˙̂x(t) = Ax̂(t)+Bu(t1,k)−L(y(t2,k′)− ŷ(t2,k′)),
ŷ(t) = Cx̂(t).

(5)

The index k′ corresponds to the most recent output
information the Master has received. Note that the Master
knows the timet1,k and the controlu(t1,k) (see Section II-D),
which makes this observer realizable.

Using the delay re-writing proposed in (3), one obtains:






˙̂x(t) = Ax̂(t)+Bu(t −δ1(t))
−L(y(t −δ2(t))− ŷ(t −δ2(t))),

ŷ(t) = Cx̂(t),
(6)

with δ1(t) , t − t1,k andδ2(t) , t − t2,k′ .
In other words, the observer is realizable because the

times t1,k and t2,k′ defining the observer delays are known,
thanks to the common GPS clock. The system features lead
to δ1(t) ≤ hm

1 +T andδ2(t) ≤ hm
2 +T .

III. D ESIGN OF THE CONTROLLER AND OBSERVER

GAINS

A. A preliminary result on exponential stabilization

The controller and observer gains will have to be com-
puted so to guarantee the optimal speed rateα despite the
presence of delays (communication plus sampling). This
subsection gives a result on exponentialα−stabilization of
systems with variable delays. The theorem is an adaptation
from [18], [19] and is presented with a sketch of a proof.



Consider the following linear system with bounded vari-
able delays:

{

ẋ(t) = A0x(t)+A1x(t −δ1(t))+Bu(t −δ2(t))),
x(t) = φ(t), t ∈ [−h̄,0],

(7)

where the delaysδi(t) satisfy, for i = 1,2:

δi(t) = δi +ηi(t), with |ηi(t)| ≤ µi and η̇i(t) ≤ 1.
(8)

Note that the delays have a non zero lower bound (“non
small delays” [9]). The following theorem uses a polytopic
formulation of the variable delays and this leads to the
definition of the following extrema, to be involved in the
stability conditions:

β11 = eα (δ1−µ1), β12 = eα (δ1+µ1),

β21 = eα (δ2−µ2), β22 = eα (δ2+µ2).
(9)

Theorem 1 (Exponential stability): Given a gain matrix
K, the system (7) isα−stable if there existsn×n matrices
0 < P1, P2, P3, Sk, Yk1, Yk2, Zk1, Zk2, Zk3, Rk et Rka, for
k = 1,2 satisfying the LMI conditions:









Ψ1 PT

[

0
β1iA1

]

−Y T
1 PT

[

0
β2 jBK

]

−Y T
2

∗ −S1 0
∗ ∗ −S2
∗ ∗ ∗
∗ ∗ ∗

µ1PT

[

0
β1iA1

]

µ2PT

[

0
β2 jBK

]

0 0
0 0

−µ1R1a 0
∗ −µ2R2a









< 0,

∀(i, j) ∈ {1,2}2

(10)

and
[

Rk Yk

∗ Zk

]

≥0, k = 1,2, (11)

where

P =
[

P1 0
P2 P3

]

, Zk =
[

Zk1 Zk2

ZT
k2 Zk3

]

,

Yk = [ Yk1 Yk2 ] ,
(12)

Ψ1 = PT
[

0 I
A0 −I

]

+
[

0 I
A0 −I

]T
P

+∑2
k=1

{

[

Yk

0

]

+
[

Yk

0

]T
+δkZk

+
[

Sk 0
0 δkRk +2µkRka

]}

.

(13)

These LMI conditions will be used in the computation
of the gains K of the feedback control andL of the
observer. Proof: The proof is based on Lyapunov-
Krasovskii technics with descriptor representation. Consider
the Lyapunov-Krasovskii functional:

V (t) = x̄T
α (t)EPx̄α (t)+∑2

i=1
∫ 0
−δi

∫ t
t+θ ẋT

α (s)Riẋα (s)dsdθ.

∑2
i=1

∫ µi
−µi

∫ t
t+θ−δi

ẋT
α (s)Riẋα (s)dsdθ,

(14)
where¯xα (t) = col{xα (t), ẋα (t)} , xα (t) = x(t)eα t andE =

diag{I,0(2×2)}. Differentiating this functional along the
trajectory of (7) and using LMI techniques leads to the LMI

conditions of theorem 1. Note that the first integral part of
the functional takes in account the constant delaysδi and
the last one the time-varying disturbing delaysηi(t) which
is norm bounded byµi.

B. Observer design

Since the pair(A,C) is observable, it is possible to de-
termine a linear gainL such that the observer exponentially
converges to the real system in the non-delayed case. The
next theorem allows one to design anotherL so that the
observer state ˆx(t) converges sufficiently fast (then, with
exponential rateα ) to the real system statex(t) despite a
variable delayδ2(t) on the Slave output. The error vector
is defined ase(t) = x(t)− x̂(t). From 1 and 6, this error is
ruled by:

ė(t) = Ae(t)−LCe(t −δ2(t)), (15)

Theorem 2: Suppose that, for some positive scalarsα
andε, there existsn×n matrices 0< P1, P, S, Y1, Y2, Z1, Z2,
Z3, R, Ra and a matrixW with appropriate dimensions such
that the following LMI conditions are satisfied forj = 1,2:

[

Ψ2

[

β2 jWC−Y1
εβ2 jWC−Y2

]

µ2β2 j

[

WC
εWC

]

∗ −S 0
∗ ∗ −µ2Ra

]

< 0, (16)

[

R Y
∗ Z

]

≥ 0, (17)

whereβ2 j are defined by (9) forj = 1,2 and the matrices
Y , Z andΨ2 are given by:

Y = [Y1 Y2], Z =
[

Z1 Z2
∗ Z3

]

, (18)

Ψ11
2 = PT (A0 +α I)+(A0 +α I)T P+S +δ2Z1 +Y1 +Y T

1 ,
Ψ12

2 = P1−P+ εPT (A0 +α I)T +δ2Z̄2 + Ȳ2,
Ψ22

2 = −ε(P+PT )+δ2Z̄3 +2µ2Ra,

Then, the gain:

L = (PT )−1W, (19)

makes the error (15) of observer (6) exponentially converge
to the solutione(t) = 0, with a decay rateα > 0.

Proof: The proof comes from Theorem 1 with a single
delay and:

P = P2 = εP3, W = P2L. (20)

Remark 1: In the previous theorem, the delayδ2(t) and
then,δ2 andµ2, are imposed by the quality of the network
and maximum the sampling period. The greaterα , the
faster the stabilization. Thus, the objective is to tuneε to
maximizeα .



C. Control design

In this part, the interest will be focussed on the design of
an ideal controlleru = Kx, which means a perfect observer
(e(t) = 0,x(t) = x̂(t). The influence of the observation
dynamics (e(t) 6= 0) on the global system will be considered
in the next subsection . Then one considers:

ẋ(t) = Ax(t)+BKx(t −δ1(t)), (21)

Theorem 3: [19] Suppose that, for some positive num-
bers α and ε, there exists a positive definite matrix̄P1,
matrices of sizen×n: P̄, Ū , Z̄1, Z̄2, Z̄3, Ȳ1, Ȳ2 similarly to
(18) and an×m matrix W , such that the following LMI
conditions hold:

Γ3i =

[

Ψ3

[

βiBW − Ȳ T
1

εβ1iBW − Ȳ T
2

]

µ1

[

β1iBW
εβ1iBW

]

∗ −S̄ 0
∗ ∗ −µ1R̄a

]

< 0,

∀i = 1,2,

(22)

[

R̄ Ȳ1 Ȳ2
∗ Z̄1 Z̄2
∗ ∗ Z̄3

]

≥ 0, (23)

whereβ1i, for i = 1,2, are defined by (9) and

Ψ̄11
3 = (A0 +α I)P̄+ P̄T (A0 +α I)T + S̄ +δ1Z̄1 + Ȳ1 + Ȳ T

1 ,
Ψ̄12

3 = P̄1− P̄+ εP̄T (A0 +α I)T +δ1Z̄2 + Ȳ2,
Ψ̄22

3 = −ε(P̄+ P̄T )+δ1Z̄3 +2µ1R̄a.

Then, the gain:
K = WP̄−1, (24)

exponentially stabilizes the system (21) with the decay rate
α for all delayδ1(t) satisfying (8).

Proof: We apply Theorem 1 with:P3 = εP2, where
ε is a tuning scalar parameter. Note thatP2 is nonsingular
since the only matrix which can be negative definite in the
second block on the diagonal of (10) is−ε(P2 + PT

2 ). We
also define:

P̄ = P−1
2 . (25)

For any matrixV ∈ {P1, Yi j, Si, U , Ri Ria, Zik} for all
i = 1,2, j = 1,2, k = 1,2,3, we define another matrix
V̄ by V̄ , P̄TV P̄. The proof is achieved by multiplying
(10), from the right and the left sides respectively, by
P7 = diag{P̄, P̄, P̄, P̄,P̄, P̄, P̄} and its transposePT

7 , and
multiplying (11) by P3 = diag{P̄, P̄, P̄} and its transpose
PT

3 , from the right and the left sides respectively.

D. Global stability of the remote system

The gainsK and L have to be computed in such a
way they exponentially stabilize the global Master-Slave-
Observer system despite the variable delaysδ1(t) andδ2(t).
This global system is:

{

ẋ(t) = Ax(t)+BKx̂(t −δ1(t)),
ė(t) = Ae(t)−LCe(t −δ2(t)),

(26)

which leads to:
{

ẋ(t) = Ax(t)+BKx(t −δ1(t))−BKe(t −δ1(t)),
ė(t) = Ae(t)−LCe(t −δ2(t)),

(27)

Introducing the variable ¯e(t) = col{x(t),e(t)}, (27) be-
comes:

˙̄e(t) = Ā0ē(t)+ Ā1ē(t −δ1(t))+ Ā2ē(t −δ2(t)), (28)

with

Ā0 =

[

A 0
0 A

]

, Ā1 =

[

BK −BK
0 0

]

, Ā2 =

[

0 0
0 LC

]

. (29)

Then, the exponential stability of the global system is
proven by using Theorem 1.

E. Operating overview

We can summarize here the way one operates the remote
system design. The first step consists in the determination of
the delay upper-boundshm

1 , hm
2 , andT . Then, the observer

gain L is computed by applying Theorem 2 to system (15),
and the controller gainK by applying Theorem 3 to system
(21). Once these gains are found, the stability of the closed-
loop system is checked by applying Theorem 1 to (28). An
additional study of the robustness w.r.t. delay mismatches
is possible, even if it not developed here.

IV. A PPLICATION TO A MOBILE ROBOT

This study is illustrated on the model of a mobile robot
(Slave) which can move in 1 direction. The identification
phase gives the following dynamics:

{

ẋ(t) =
[

0 1
0 −11,32

]

x(t)+
[

0
11,32

]

u(t −δ1(t)),

y(t) = [ 1 0 ]x(t).
(30)

(15), respectively theorem 3 to system . Once these gains
are found, the stability of the closed-loop system is proven
by using theorem 1 applied to (28).

The characteristics of transmission delays combined with
the sampling and with the computation effect lead to the
values (see (8))δ1 = δ2 = 0.37sec., andµ1 = µ2 = 0.11sec.
Theorem 2 applied to (15) guarantees that the error dy-
namics converge exponentially to the solutione(t) = 0 with
α = 1.01 (obtained forε = 3.00) if the gainL is chosen as:

L =
[

−0.9119
−0.0726

]

. (31)

Theorem 3 applied to (21) ensures the control law will
exponentially stabilize the reduced system withα = 1.01,
obtained forε = 3.43 and:

K = [ −0.9125 −0.0801 ] (32)

With these values, the global stability of the remote
system (28) is also ensured by Theorem 1.

Figure 3 shows a simulation result that was obtained
for a delay variation law,δi(t) = δi + µi/2sin(wit)+ bi(t),
depicted on Figure 4.wi represents the frequency of the
time-varying part of the delay and wherebi(t) is a piecewise
continuous function which corresponds to the sampling
effects and which satisfies‖bi(t)‖ ≤ µi/2. On Figure 3, the
continuous model of the observer ˆx corresponds to the blue
and red curves, while the sampling instants correspond to
the blue and red dots. The blue output is driven to its set
value (dark-blue steps).
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VI. CONCLUDING REMARKS

A main feature of our control strategy is that the Master
works in continuous time, whereas the Slave works in
discrete time. By this way, the observer always works and
provides an estimation of the Slave state even if the Slave
information is not sent continuously.

Another characteristic of this approach is to consider non-
small delays (i.e. delays which lower bound is non zero)
with few assumptions ( non symmetric, unknown, time-
varying). The global system will be implemented soon.
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