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Networked Control using GPS Synchronization

Alexandre Seuret, Fabien Michaut, Jean-Pierre Richard and Thierry Divoux

Abstract— This work concerns the control, the observation delay to be constant,e. h(t) = h, which assumption does
and then, the implementation principles of a remote system correspond to actual situation.
(Master and Slave parts) through the Internet network. This In the case of variable delays, some researches have used

communication link introduces variable delays that have to . " . -
be taken into account in the control-observation loop. The independent-of-delay conditions. Such i.0.d. conditions are

data-sampling effects will also be considered, even in the generally conservative, but in [4], the results appear to
aperiodic case. The Slave part is considered to be a linear be well-fitted for particular cases such as constant delays,

system. But, since its computation power is supposed to be or symmetric delays. What we mean here refers to the
limited, the control complexity (which, here, is an observer- case where Master-to-Slabg(t) and Slave-to-Mastef (t)

based state feedback) has to stay in the Master part. The o : — N
global system must ensure speed performance whatever the ransmission delays are equak. hy(t) =hy(t) = R(t)/2,

delay variation. Such a performance is obtained by showing Where R(t) denotes the round trip time (RTT). Another
the robust, exponential stability property, which is proven by reference [10] considered non-symmetric delays, but only

using adequate Lyapunov-Krasovskii functionals. This makes in the case of constant delays. hy(t) = hy # ha(t) = hy.
possible to compute the controller and observer gains by Another interesting approach was recently given in [21],

using LMI optimization. The technical solution we propose . . .
is based on a GPS system, which guarantees the Master who generalized the predictor techniques to the case of

and Slave clocks to be synchronized. Then, the control and Variable delays. In this case, a maximal upper-bound of the
measurement packets are sent together with time-stamps that delay is assumed to be known{such that G< h(t) < hpy),

allow for reconstructing a non-symmetric delay information.  which is not that constraining. The main assumption is that
It means that Master-to-Slave and Slave-to-Master delays are a dynamical ODE model (Ordinary Differential Equation)

separately reconstructed by the system (and not only the global . . L .
RTT, round-trip-time). The last part of the paper provides an of the delay is supposed to be available, which is possible

example where the Slave is a second-order system. in the case of a single-ownéithernet network.
Another possible solution [11], [12], [16] consists in

introducing an input buffer that makes the receiver wait
|. INTRODUCTION until the maximum value of the delay is reached and, then,
Remote control is a good way to perform tasks irfleliver the information to the control. In this case, from the
dangerous or hard-to-reach areas, or to broaden the numbggeiver’s point of view, the delay becomes constant and
of users on a localized test-bed. The web technology c#fual to the maximum valubm. However, it is obvious
the Internet now appears as a natural, cheap way to ensutBat this situation maximizes the delay up to its worst
the communication link in such remote controlled systemglargest) value and, consequently, may decrease the speed
Nowadays, the Quality of Service provided by the interngerformance of the global, remote system. Then, the speed
is often good enough for that kind of applications. performance has to be figured out within the design phase,
However, a communication link unavoidably introducegvhich problem was not explicitly considered in [11], [12].
time delays that have to be taken into account in thiloreover, these studies were considersggimetric delays.
control/observation loop. The references [13], [17] provide The present study aims at using theernet as a com-
overviews on control techniques for time-delay systemgnunication media linking a Master system and a Slave one.
which great influence on stability was already mentioneth such a situation, the generated delays are not only time-
in the 60's [6]. Several works on teleoperation introducedarying, non-symmetric, but also unknown (no dynamical
the question of transmission delays, first, in the constantodel of the delays is available see, [14]). They just can be
case [2], [5], [15]. assumed to have known maxirha, so that 0< hi(t) < hin
In networked control situations, the delays are basicallolds. In the network framework, this assumption means
variable {itter phenomenon) and unknown, which is athat if a packet is lost, it is not re-emitted because we use
source of problem when one intend to apply the classicdyDP (User Datagram Protocol) . One also can assume that
predictor-based control laws (as, for instance, FSA: finithe delay variation satisfigg(t) < 1, which means that all

spectrum assignment). Such techniques generally need the packets are re-organized in their chronological emission
order.
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exact periodT such thatty = kT). So, we just assume
a maximum sampling intervall is known, so that O<

Master Slave

GPs GPsS

tkr1 —tx < T holds. The global delays resulting from the ‘Setva/ue

Implementation
card

communication-plus-sampling phenomena will be denoted
by & (tk) = hi(t) +t—tx , and one can see that the limit case
& =1 can occur.

Of course, additional information are needed for achiev-
ing the global performance. The technical solution we
propose is based on a GPS system. Both the Slave and
the Master are equipped with a GPS antenna, which allows
the Master and Slave clocks to be synchronized. Then,
the control and measurements packets are sent together
with “time-stamps” that permit to reconstruct then-
symmetric delay information. By this way, both Master-to-
Slaveh; (t) and Slave-to-Masteh,(t) delays are separately
reconstructed by the system, and not only the RTT.

The exchanged data correspond to the control (sent by
the Master to the Slave) and to the output of the remote
system (sent by the Slave to the Master). Since the Slave
is not supposed to have a large computation power, the
control and observation complexity has to be concentrated
in the Master. Our purpose is to guarantee the robustness
and speed performances of the global Master-Slave system.
In particular, the global system must ensure the closed-loop
stability and a guaranteed speed rate whatever the delay
variation.

Stabilizing a system in such conditions is not that easy. ,
The Master receives the information he needs for the control
computation after it has crossed the communication zone.
The GPS-based estimation of the transmission delay, joined
to the observer, allows to know what was the Slave state at
the instant the information was sent to the Master. Similarly,
the control computed by the Master will be applied some
time after it is sent to the Slave, and this dead-time is not
known in advance.

For simplicity, the Slave is considered to be a linear
system. The global performance is obtained by showing an e
exponential stability propertyo(—stability), robust w.r.t. the
delay, and which is proven by using adequate Lyapunov-
Krasovskii functionals. This makes possible to compute the
controller and observer gains by using LMI optimization.

The last part of the paper gives simulation results for a
second order system.

FEATURES OF THE REMOTE SYSTEM

E i . <.‘}\:§
(]
Fig. 1. Features of the remote system
input delay:
y(t) = Cx(t),

whered; (t) is a delay to be defined later on (subsection
1-D).
The Slave measures its sampled-data output variables
y(t), that the Master receives after a delay(t). An
other delayr,(t) due to the sampling is added, Which
means that the Master only can acceés— &, (1)),
whered, corresponds to the resulting delay. The Mas-
ter includes an observer which aims at providing an
estimationx’of the complete Slave stakeat the present
time. From this estimation, the Master elaborates the
control law.
The sampling instant§ may not be periodicalig.,
t # KT), but it is supposed there is a knownsuch
that, for anyk:

t1—t <T.

)

The two generated delays have a known maximum
6™ =h"+T, so that 0< §(t) < &™ holds, and the
delay variation satisfieg(t) < 1 (the interpretation in

the network and sampled-time framework is given in
the Introduction part).

Each part of the Master-Slave system has a GPS card,
which gives a shared clock. Thus, the internal clock of
Master and Slave are synchronized. Each data packet
includes an added time-stamp (the time the packet
was sent). By this way, the receiver can calculate the
transfer delayshi(t) as soon as it receives the packet.

The next subsections present the main features and
notations, this is: (1) The modeling the sampling effects,

_ . considered as additional, variable delay$t); (2) The
Figure 1 presents the overall structure of the Master-SIa&mro”er, which is a static, linear state feedback; (3) The
remote system. _ different communication delays;(t); (4) The observer,
The system has the following features: which is a linear, Luenberger-type one, but with delays.
« The Slave is supposed to have a limited computation ]
power. Then it can not build its own control. TheA The sampling delays
Master computes and forwards the control to the Slave. From a practical point of view, the global system (includ-
The forwarding cannot be instantaneous, because tivg the controller, the observer, the network, the process)
communication lines induces a delby(t), as well as cannot be considered as a continuous-time one. If the Slave
sampling effects, which create the variable defgf). has fast dynamics, exchanging the packets between Slave
« The Slave is driven by a linear, controllable andand Master in continuous time would mean the network
observable, known modélA,B,C), influenced by an can support a very high data flow. Then, the packets only



give discrete-time information. The corresponding sampling _ .
effect represents a possible disturbance to the stabilizatiol

. . Control data Receipt of Injection at
of the remote system and must be taken into account in sending of the control data  Slave input
the observer and controller design. Instead of turning into
discrete-time, recurrent equations, recent works [8], [19],
[22] have considered such sampling effects as continuous
time phenomena with variable time delays. Indeed, the Resulting input delay
sampleg(tx) of a functiong(t) at timety can be written Time
as: g(tk) = g(t — [t —tx]) = g(t — (1)), which notation re- b n
places the sample-and-hold with an additional deldy) =
t—t, t € [t,tkra][ By this way, an aperiodic sampling
is modeled as unknown delay with the upper-bouhd Fig. 2.
(defined by (2)). This change allows one to use continuous-
time techniques, as Lyapunov-Krasovskii functionals, for
the stability study of sampled systems. In our case, We, Transmission of the measured output information
can define a delay(t) which represents the combination
of such a sampling delayy(t) with the delayh(tx) the
transmission line subjects to the packet containingkfe
sample. For any signa(t), this delay will be of the form:

Transmission delay

ti+him

Control data processing

The Slave accesses its outpufat discrete instants. A
sent packet contains the outpyft, /) together with its
measurement instat,; which is thek™™ one. The Master
receives at tlmeg K the output data. Once the packet has

gtk —h(t)) =gt —h(t) —(t—t)), reached the Master, the delty, —t¢ is known thanks to
=g(t—o(t)), (3)  the GPS synchronization.
t <t <tgp1, O(t) 2h(te)+t—ty
B. The control law F. Observation of the process

The controller computes a control law which takes into For a givenk and for anyt € [tk +him , tik+1 + himl,
account some set value to be reached by the Slave. The stéiere exists & such that the proposed observer is of the
feedback control(t) is defined from the state estimate “form:

iven by the observer, as follows: A . .
MEn DY R(t) = A1) +Bu(t) —LY(tw) ~Iltow)),
jt)= CA() ©
u(t) = KX(t). (4) = :
The main difficulty is to determine the linear gal The index k' corresponds to the most recent output

of the state feedback control so to guarantee the stabilitgformation the Master has received. Note that the Master
of the Slave motion despite the value of the time-varyingnows the time; x and the controli(t; k) (see Section II-D),
delay & (t). This delay is not known by the Master whenwhich makes this observer realizable.

its control data is sent. Using the delay re-writing proposed in (3), one obtains:
C. Transmission of the control u X(t) = AX(t)+Bu(t — &y(t))

Thekih data sent by the Master to the Slave includes the —L(y(t = 2(t)) — 9(t — 52(1))), (6)
control u(ty k) it has just designed, together with the time yt) = CX(1),

t1k when the packet was sent. This packet goes across the N

network. The Slave receives this information at tithe. ~ With d(t) 2t-tixandG(t) 2t -ty

Thanks to the GPS clock synchronization, this time has the In other words, the observer is realizable because the
same meaning for the Slave as for the Master. Then tfignest;x andty s defining the observer delays are known,
termty, —t, corresponding to the transmission delay, ighanks to the common GPS clock. The system features lead

known by the Slave once the packet has reached it. 10 &i(t) <h{'+T and&(t) <hy'+T.

D. Receipt and processing of the control data I1l. DESIGN OF THE CONTROLLER AND OBSERVER
The control, sent by the Master at tirig, is received by GAINS

the Slave at t|mealk > t1 . It will be injected in the Slave

input only at the pre-defined “target t|ml=fl"”rget =ty +hi

The corresponding waiting tim@" is depicted on Flgure 2. The controller and observer gains will have to be com-

This is realistic because the transmission delay is boundgedted so to guarantee the optimal speed catgespite the

by a known value (in general, one can chodfe= o". presence of delays (communication plus sampling). This

By this way, at any present time, the Master also knowsubsection gives a result on exponentiatstabilization of

the timety x when this control(ty k) will be injected at the systems with variable delays. The theorem is an adaptation

Slave input. from [18], [19] and is presented with a sketch of a proof.

A. A preliminary result on exponential stabilization



Consider the following linear system with bounded variconditions of theorem 1. Note that the first integral part of
able delays: the functional takes in account the constant deldyand
K1) = Agxt) + At~ (1) +But— (1), 1hC 1ast one the fime-varying disturbing delayst) which
X(t) = (P(t), te [7h70]7 -

where the delay$(t) satisfy, fori =1,2: B. Observer design

a(t)=a+m(t), with [nit) <y and ni(t) <L Since the pai(A,C) is observable, it is possible to de-
(8) termine a linear gaimh such that the observer exponentially
Note that the delays have a non zero lower bound (“nogonverges to the real system in the non-delayed case. The
small delays” [9]). The following theorem uses a polytopimext theorem allows one to design anotteso that the
formulation of the variable delays and this leads to thebserver state(f) converges sufficiently fast (then, with
definition of the following extrema, to be involved in the exponential ratex) to the real system statet) despite a

stability conditions: variable delayd;(t) on the Slave output. The error vector
— ea(d-p) _ (Bt is defined ase(t) = x(t) — X(t). From 1 and 6, this error is
B W, Pa=e ; ©) ruled by:
Theorem 1 (Exponential stability): Given a gain matrix &) = Ae(t) —LCe(t — (1)), (15)

K, the system (7) isr—stable if there exista x n matrices
0< P, P, Ps, S, Y, Yo, Zis Zikos Zis, Re et Ra, for Theorem 2: Suppose that, for some positive scalars

k = 1,2 satisfying the LMI conditions: ande, there exist$1x n matrices 0< Py, P, S Yy, Y2, Z1, 2,
Z3, R, Ry and a matrixWV with appropriate dimensions such
T 0 T T 0 T . oy . . .
¥ P [ BuiAy ]*Yl P [ [2BK }*YZ that the following LMI conditions are satisfied for= 1,2:
* -S 0
* * % ByWC -V [ we
: - - [ ff { BaWC Y, ] HoPei {OSWC } ] <0, (16)
0 0 ) -
a7 pia, || g | (10) i
0 0
<0
0 0 )
e S [F Y=o (17)
* —H2Roa

where B,; are defined by (9) foj = 1,2 and the matrices

v(i,j) € {1,2}? Y, Z andW¥; are given by:
and 5 7
[ R }t}zo, k=1,2, (11) Y =[Y1 Yo, Z:[ . 7 } (18)
where
P [ poo } Z = [ 2 2 } 12)  WVi=PT(Actal)+(Ao+al)TP4St&Z+ Y1 +Y],
Ye=[Ya Ye], W2 =P —P+ePT (Aot al) + 52+ Yz,
W22 = —g(P+PT) + 823+ 21Ra,
T
Y= PT [ ,SO ! }Jr[ ,SO ! } P Then, the gain:
T
Yi Yi
+ZE=1{[ b+ %] +oa (13) L=(PT)'w, (19)
+| 3 an e, |} i
0 SRt2URa | [ ~makes the error (15) of observer (6) exponentially converge
These LMI conditions will be used in the computationg the solutione(t) = 0, with a decay rater > O.
of the gainsK of the feedback control and. of the Proof: The proof comes from Theorem 1 with a single
observer. Proof: The proof is based on Lyapunov- delay and:

Krasovskii technics with descriptor representation. Consider
the Lyapunov-Krasovskii functional:

V(t)= XOEPK () + 32, [% f X5 (9R¥a(s)dsde.  m
Y21 8 S o5 X5 (S)RXq(s)dsd6, Remark 1: In the previous theorem, the deldy(t) and
(14) then,d, and o, are imposed by the quality of the network
whereiy (t) = col {Xq (1),%Xa (1)} , Xa (t) =x(t)e?t andE = and maximum the sampling period. The greater the
diag{l,0. }. Differentiating this functional along the faster the stabilization. Thus, the objective is to tuneo
trajectory of (7) and using LMI techniques leads to the LMImaximizea.

P=PR,=¢P;, W=P,L. (20)



C. Control design Introducing the variablee(t) = col {x(t),e(t)}, (27) be-
In this part, the interest will be focussed on the design dfomes.

an ideal controIIeAu = KX, which means a perfect obser_ver &) = Agelt) + At — &1 (t)) + Agelt — B(t)),  (28)
(e(t) = 0,x(t) = X(t). The influence of the observation
dynamics €(t) # 0) on the global system will be considered™ith

in the next subsection . Then one considers: /30:[ AO ] gl:[ BlC B } Kz:[ 00 ] (29)
X(t) = AX(t)+BKx(t—a(t)), (21)  Then, the exponential stability of the global system is

Theorem 3: [19] Suppose that, for some positive num-Proven by using Theorem 1.
bersa and ¢, there exists a positive_definite matri%, E. Operating overview
matrices of sizenx n: P, U, Z1, Z, Z3, Y1, Y2 similarly to
(18) and an x m matrix W, such that the following LMI

conditions hold:

We can summarize here the way one operates the remote
system design. The first step consists in the determination of
the delay upper-bounds", hJ', and T. Then, the observer
gainL is computed by applying Theorem 2 to system (15),

—_— [ W, [ ggi./\\//v;\(% } ul{ fl;fB\(,V\, ] <0 and the controller ggiK by applying Theorem 3 to system
3i % -S 0_ ’ (22) (21). Once these gains are found, the stability of the closed-
* ’{ﬂ 19 ~HiRa loop system is checked by applying Theorem 1 to (28). An
o7 additional study of the robustness w.r.t. delay mismatches
[ R ;-1 ;:i ] >0, (23) is possible, even if it not developed here.
o B IV. APPLICATION TO A MOBILE ROBOT

where By, for i = 1,2, are defined by (9) and This study is illustrated on the model of a mobile robot
Wil = (Ag+al)P+PT(Ag+al)T +S+&Zi+Y1i+Y],  (Slave) which can move in 1 direction. The identification

W2 p Py ePT (Ag+al)T + 572+ Y, phase gives the following dynamics:
W22 = —g(P+P")+ 873+ 21Ra. :
2 ( | ) 3+2 X(t) = { 9 71132 }x(t)+{ 1]?32 } u(t —au(t)),
Then, the gain: _, yit)= [1 o]x().
K=WP 1 (24) (30)
exponentially stabilizes the system (21) with the decay rate (15), respectively theorem 3 to system . Once these gains
a for all delay & (t) satisfying (8). are found, the stability of the closed-loop system is proven

Proof: We apply Theorem 1 withP; = P>, where by using theorem 1 applied to (28).
€ is a tuning scalar parameter. Note thfatis nonsingular The characteristics of transmission delays combined with
since the only matrix which can be negative definite in théhe sampling and with the computation effect lead to the
second block on the diagonal of (10) iss(P,+P]) ). We Values (see (8)p = & = 0.37sec., and iy = pz = 0.11sec.
also define: Theorem 2 applied to (15) guarantees that the error dy-
P= R L. (25) hamics converge exponentially to the solutigt) = 0 with

, o =1.01 (obtained fore = 3.00) if the gainL is chosen as:
For any matrixV € {Py, Yjj, S, U, R Ria, Z} for all
i=12 j=12 k=123, we define another matrix L= o] (31)

V byV £ PTVP. The proof is achieved by multiplying . .

(10), from the right and the left sides respectively, byTheorem_3 appllgq to (21) ensures the con_trol law will

Py = diag{lglglglglglglg} and its transpose?], and exponentially stabilize the reduced system wath= 1.01,
- AR LIRS 4 o ¢ 7 H _ .

multiplying (11) by 473 = diag{P,P,P} and its transpose obtained fore = 3.43 and:

23, from the right and the left sides respectively. K =[ -09125 -0.0801 | (32)

D. Global stability of the remote system With these values, the global stability of the remote

The gainskK and L have to be computed in such aSystem (28) is also ensured by Theorem 1. _
way they exponentially stabilize the global Master-Slave- Figure 3 shows a simulation result that was obtained
Observer system despite the variable deiys) andd,(t). for @ delay variation lawd (t) = & + pi/2sin(wit) + bi(t),

This global system is: depicted on Figure 4w; represents the frequency of the
. . time-varying part of the delay and wheugt) is a piecewise
{ ).((t) = AX(1)+BKX(t—4(1)), (26) continuous function which corresponds to the sampling
&t) = Ae(t) —LCe(t — &(1)), effects and which satisfigg;(t)|| < /2. On Figure 3, the
which leads to: continuous model of the observercérresponds to the blue
X(t) = AX(t) +BKx(t— (1)) — BKe(t — & (t)), and red curves, while the sampling instants correspond to
{ &t) = Ae(t) —LCe(t — &(t)), the blue and red dots. The blue output is driven to its set

(27) value (dark-blue steps).
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VI. CONCLUDING REMARKS

&

[29]

A main feature of our control strategy is that the Master
works in continuous time, whereas the Slave works if?0]

discrete time. By this way, the observer always works angd

provides an estimation of the Slave state even if the Slave

information is not sent continuously.

Another characteristic of this approach is to consider norEZ]

small delays i(e. delays which lower bound is non zero)

with few assumptions ( non symmetric, unknown, time-

varying). The global system will be implemented soon.
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