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Abstract. The Shubnikov-de Haas (SdH) oscillation spectra of the β”-(BEDT-

TTF)4(NH4)[Cr(C2O4)3]·DMF organic metal have been studied in pulsed magnetic fields of up to

either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure

SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a

rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is

evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure

increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other

isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which

the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied

salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle

temperatures as large as ≃ 7 K.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.20.Rv Poly-

mers and organic compounds – 72.20.My Galvanomagnetic and other magnetotransport effects
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1 Introduction

The family of isostructural monoclinic charge-transfer salts

β”-(BEDT-TTF)4(A)[M(C2O4)3]·Solv have been widely

studied in the past decade [1]. In the above formula, BEDT-

TTF stands for bis(ethylenedithio)tetrathiafulvalene, A is

a monovalent cation (A = H3O
+, K+, NH4

+, etc.), M

is a trivalent cation (M = Cr3+, Fe3+, Ga3+, etc.) and

Solv is a solvent molecule such as benzonitrile (C6H5CN),

dimethylformamide (C3H7NO), nitrobenzene (C6H5NO2)

and pyridine (C5H5N), labelled hereafter BN, DMF, NB

and P, respectively. In the following, the compounds be-

longing to this family are referred to as A-M·Solv. The in-

terest in this family of compounds has been motivated by

the observation of superconductivity at ambient pressure

in the H3O-Fe·BN salt (Tc = 8.5 K) [2]. Later on, other

superconducting salts with magnetic ions were reported

for this family [3,4]. Besides, a metallic and ferromagnetic

ground state was achieved in the (BEDT-TTF)3[MnCr(C2O4)3]

compound [5]. Contrary to the orthorhombic compounds

with the same generic formula and β” packing, which are

semiconductors [6,7], all the monoclinic salts of this family

exhibit metallic conductivity around room temperature.

Nevertheless, a large variety of temperature-dependent be-

haviours and various ground states are observed which

might be connected to details of their electronic structure.

According to band structure calculations [8], the Fermi

surface (FS) of NH4-Fe·DMF and (NH4)0.75K0.25-Cr·DMF

a UMR 5147: Unité Mixte de Recherche CNRS - Université

Paul Sabatier - INSA de Toulouse

Correspondence to: audouard@lncmp.org

Fig. 1. Fermi surface (FS) of (a) NH4-Fe·DMF and (b)

(NH4)0.75K0.25-Cr·DMF according to band structure calcula-

tions [8] in which the FS is considered on the basis of a unit

cell with vectors a’ = a and b’ = (a + b)/2. (c) schematic rep-

resentation of intersecting elliptic hole tubes leading to three

compensated electron (e) and hole (h1 and h2) orbits. The area

of the ellipses in dotted lines (
⊙

orbits, see text) is equal to

that of the First Brillouin zone.

salts originates from quasi two-dimensional (2D) hole el-

liptic orbits, labelled
⊙

in the following, whose cross sec-

tion is equal to the first Brillouin zone (FBZ) area (see

Fig. 1). In the case of NH4-Fe·DMF, these orbits intersect
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along the (a′∗+b′∗) direction 1, leading to one electron and

one hole compensated orbit with a cross section area of 8.8

percent of the FBZ one. Analogous FS topology has also

been reported for the superconducting H3O-Fe·BN salt [6].

These calculations are in agreement with the Shubnikov-

de Haas (SdH) oscillation spectrum of the H3O-Ga·NB

salt for which only one frequency was reported [9]. Never-

theless, as pointed out in Ref. [8], the
⊙

orbits may also

intersect in the b′∗ direction leading to one or more addi-

tional orbits around the Y’ point of the FBZ [see Figs. 1(b)

and (c)]. This picture holds for the NH4-Fe·DMF salt, for

which the SdH oscillation spectra can be interpreted on

the basis of three compensated orbits with cross section

areas of 1.2, 4.8 and 6 percent of the FBZ area that are

therefore connected by a linear combination [10]. How-

ever, the FS of other compounds of this family may be

more complicated since four frequencies corresponding to

orbit’s area in the range 1.1 to 8.5 percent of the FBZ area

were reported for the H3O-M·P (M = Cr, Ga, Fe) salts

[11]. In this latter case, a density wave ground state, re-

sponsible for the observed strongly non-monotonous tem-

perature dependence of the resistance, has been invoked in

order to account for this discrepancy. However, only two

frequencies were observed for the H3O-M·NB (M = Cr,

Ga) salts [12]. Additional combination frequencies, typical

of coupled 2D orbits networks, linked to the field-induced

1 In Ref. [8], the FS is considered on the basis of a unit cell

with vectors a’ = a, b’ = (a + b)/2 and c’ = c. This unit cell

contains four BEDT-TTF molecules.

chemical potential oscillation [13] and (or) field-dependent

Landau level broadening [14] were also reported [10,11].

An important feature of the oscillatory spectra of most

of these compounds is the strong field-damping factor. In-

deed, Dingle temperature values (TD) in the range 2 K

to 4 K were reported for e.g. H3O-M·P [11] which is the

signature of a significant disorder. This feature is in line

with structural data [15,16] which indicate that termi-

nal ethylene groups of some of the BEDT-TTF molecules

exhibit a large solvent-dependent positional disordering.

As for the compounds with the DMF solvent, the DMF

molecules themselves are also disordered [8]. As a matter

of fact, even larger Dingle temperatures (TD ≈ 4 K to 6

K) were reported for the NH4-Fe·DMF salt [10].

In order to get some insight in possible connection

between the FS topology and the ground state, we re-

port on the pressure dependence of the SdH spectrum of

the NH4-Cr·DMF salt which, contrary to the above men-

tioned NH4-Fe·DMF salt exhibits a metallic conductivity

down to about 10 K. Even though the overall behaviour

of the resistivity as the temperature varies is unaffected

by applied pressures up to 1 GPa, which suggests that the

ground state remains unchanged in this pressure range, it

is shown that the FS topology is very sensitive to applied

pressure.

2 Experimental

The crystals studied, labelled # 1 to # 3 in the following,

were elongated hexagonal platelets with approximate di-

mensions (0.6 × 0.4 × 0.25) mm3 for crystal # 2 and (0.4
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× 0.2 × 0.1) mm3 for crystals # 1 and # 3, the largest

faces being parallel to the conducting ab-plane. Magne-

toresistance experiments were performed in pulsed mag-

netic field of up to 36 T for crystals # 1 and # 2 and 50

T for crystal # 3, with pulse decay duration of 0.78 s and

0.32 s, respectively, in the temperature range from 2 K to

4.2 K. For crystals # 1 and # 3, the magnetic field was

applied normal to the conducting plane whereas a sample

holder rotating about an axis perpendicular to the mag-

netic field allowed a change of the direction of the magnetic

field with respect to the conducting plane for crystal # 2.

Crystal # 3 was studied under hydrostatic pressure in an

anvil cell designed for isothermal measurements in pulsed

magnetic fields [17]. The pressure applied at room tem-

perature was estimated from the primary pressure value

calibrated beforehand with a manganin piezoresistive sen-

sor. The maximum pressure reached in the experiments

was 1 GPa at low temperature, taking into account a pres-

sure decrease of 0.1 GPa on cooling. Electrical contacts to

the crystal were made using annealed platinum wires of

20 µm in diameter glued with graphite paste. Alternating

current (1 to 17 µA, 20 kHz) was injected parallel to the

c* direction (interlayer configuration). A lock-in amplifier

with a time constant of 100 µs was used to detect the

signal across the potential contacts.

Analysis of the oscillatory magnetoresistance is based

on discrete Fourier transforms and direct fittings of the

magnetoresistance data. Discrete Fourier transforms are

calculated with a Blackman window in a given field range

from Bmin to Bmax. The absolute value of the amplitude

(Ai) of the Fourier component with frequency Fi is de-

termined, for a mean field value Bmean = 2/(1/Bmin +

1/Bmax), from the amplitude of the discrete Fourier trans-

form (Acalc) as Ai = 4Acalc/0.84(1/Bmin−1/Bmax). The

direct fitting method was the following: a low order poly-

nomial (typically 2th order) together with one Fourier

component with initial frequency close to one of the fre-

quencies detected in experimental data is introduced. In

the case where residuals still exhibit oscillatory features,

a subsequent oscillation is introduced with a frequency

close to one of the main frequencies detected in the resid-

uals. The procedure is repeated until either not any os-

cillatory component can be detected in the residuals or

the oscillatory component corresponds to high order har-

monics of already detected frequencies. Finally, the order

of the polynomial, which account for the background, is

increased up to at most the 4th order. It has been checked

that neither the detected frequencies depend appreciably

on the order in which the various components are intro-

duced in the fittings nor the magnitude of the background

significantly depends on the order of the polynomial.

3 Results and discussion

The zero-field temperature dependence of the resistance

of the studied crystals is displayed in Figure 2. A metallic

behaviour is observed down to about 10 K in the pres-

sure range explored. The crystal-dependent resistance ra-

tio R(10 K)/R(293 K) is in the range 0.15 ÷ 0.5. This

behaviour, which is in agreement with the data of [8], is at

variance with the strongly non-monotonic temperature de-
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Fig. 2. Temperature dependence of the zero-field resistance

normalized to the room temperature value for various pressures

measured at room temperature. The crystal number (see text)

is indicated on the curves. The inset displays the temperature

dependence of the crystal # 3 resistance for the same pressures.

pendence reported for other salts such as H3O-M·Solv (M

= Ga, Cr; Solv = NB, P) [9,15], NH4-Fe·DMF [10] or H3O-

M·P (M = Ga, Fe) [11]. In the latter case, a metal-density

wave transition has been suggested to occur around 150 K

in order to account for the observed behaviour. Below 10

K, a small resistance rise is observed that might be linked

to disorder. Although a significant pressure dependence

of the resistance is observed (see the inset of Figure 2) in
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Fig. 3. Magnetoresistance at 2 K for various pressures (the

low temperature values of which are given). The crystal number

(see text) is indicated. Curves have been shifted from each

other for clarity.

the whole temperature range explored [e.g. dln(R)/dP ≃

1 GPa−1 at room temperature], the applied pressure has

only a minor effect on the resistance ratio. Magnetoresis-

tance data at 2 K are presented in Figure 3 for various

pressures. In addition to magnetoresistance oscillations, a

non-monotonous behaviour which appears as a slow un-

dulation is observed up to 0.6 GPa.

In the following, we concentrate first on the ambient

pressure SdH oscillation spectra (see Section 3.1). The

pressure dependence of the magnetoresistance oscillation

spectra is considered in Section 3.2.
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Fig. 5. Magnetoresistance data of crystal # 2 at ambient pressure (thick black solid lines). Thin blue solid lines are corre-

sponding best fits of Eq. 6. Thin black dashed and solid lines displays the background magnetoresistance (4th order polynomial)

and the contribution of each frequency (index i in Eq. 6), respectively, entering the fits. Curves have been shifted down from

each other for clarity. Data are collected at 2 K for various directions of the magnetic field. Residuals values are given by [R(B)

/ R(B = 0)]experimental - [R(B) / R(B = 0)]fit.

3.1 Ambient pressure oscillatory spectrum

Figure 4 displays the normalized magnetoresistance of sam-

ple # 2 at a temperature of 2 K for various directions

of the magnetic field. The nature of the above mentioned

slow undulation, whose extremes are angle-dependent, needs

clarification since it can be due to either some non-monotonic

behaviour of the background magnetoresistance or to a

slow SdH oscillation linked to the presence of a very small

orbit. In any case, it makes the determination of the back-

ground magnetoresistance difficult. This background should

be properly removed from the magnetoresistance data in

order to avoid a large zero-frequency peak liable to ham-

per the extraction of reliable oscillatory data at low fre-

quency (say below few tens of teslas) by Fourier analysis.

Moreover, as developed later on and in agreement with

data from other compounds of the same family [10,11],

large Dingle temperatures are observed. This feature leads

to a steep field dependence of the oscillation amplitude

which reduces the field range in which oscillations can be

detected and therefore broadens the various components’

peaks appearing in the Fourier transforms. For these rea-

sons, in addition to Fourier analysis, information on the

oscillatory spectra were extracted from direct fittings of

the Lifshits-Kosevich formula (LK) to the magnetoresis-
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Fig. 4. Ambient pressure magnetoresistance of crystal # 2 at

2 K for various directions of the magnetic field. The angle be-

tween the magnetic field and the conducting plane is indicated.

Curves have been shifted down from each other for clarity.

tance data, assuming the background magnetoresistance

(Rbg) can be approximated by a 4th order polynomial.

According to the LK formula, the oscillatory magne-

toresistance of a metal whose FS is composed of several

2D orbits is given by:

R(B)

Rbg
= 1 +

∑

i

ai ×

∞∑

λ=1

RTiλRDiλRMBiλRSiλ(−1)λ+1cos[2πλ(
Fi

B
− γi)] (1)

where λ is the harmonic order. Fi and γi are the fre-

quency and the phase factor of the oscillation linked to

the orbit i. Equation 1 assumes that the oscillations am-

F
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Fig. 6. Angle dependence of the frequencies observed at am-

bient pressure. (a) and (b) displays F2 to F5 and F1, respec-

tively. Open and closed symbols are deduced from best fits of

Eq. 6 (see Fig. 5) and Fourier analysis, respectively. (c) dis-

plays the angle variation of F0 (circles) and of the parameter

B0 (squares) deduced from best fits of Eq. 6 to the data.

plitude is small so that R(B)/Rbg - 1 ≃ 1 - σ(B)/σbg and

that the Hall effect is either negligible (which is actually

the case for interlayer magnetoresistance measurements

with the magnetic field normal to the conducting plane)

or contributes to the background magnetoresistance, only.

The thermal (for a 2D FS), Dingle, magnetic breakthrough

(MB) and spin (S) damping factors are respectively given

by [18]:

RTiλ =
αTλm∗

i (θ = 0)

Bcosθsinh[αTλm∗

i (θ = 0)/Bcosθ]
(2)

RDi = exp[−αTDλm∗

i (θ = 0)/Bcosθ] (3)
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RMBiλ = exp(−
tiBMB

2Bcosθ
)[1 − exp(−

BMB

Bcosθ
)]bi/2 (4)

RSiλ =| cos(πλµ/ cos θ) | (5)

where α = 2π2mekB/eh̄ (≃ 14.69 T/K), m∗

i is the ef-

fective mass normalized to the free electron mass me, θ is

the angle between the field direction and the conducting

plane, TD is the Dingle temperature, µ = g∗m∗

i (θ = 0)/2,

g∗ is the effective Landé factor and BMB is the MB field.

Integers ti and bi are respectively the number of tunnelling

and Bragg reflections encountered along the path of the

quasiparticle. In the high Tm∗

i /B range, for Rbg close to

R(B = 0) and assuming large (low) BMB values and ti =

0 (bi = 0), in which case RMBi = 1, Equation 1 can be

approximated as:

R(B) ≃ Rbg +
∑

i

Ai

B
×

∞∑

λ=1

exp(−λ
Bi

B
)cos[2πp(

Fi

B
− γi)] (6)

where Ai is a field-independent parameter, including

in particular the contribution of the spin damping factor,

and Bi = α(T + TD)m∗

i /cosθ. It should be kept in mind

that, in addition to the above mentioned approximations,

some deviations of the magnetoresistance oscillations from

the LK formula are observed for 2D FS’s, in particular

for clean crystals at low T/B values. As a consequence,

Equation 6 may not yield reliable values of the Ai and Bi

parameters. Nevertheless, as reported hereafter, this equa-

tion is useful in order to identify the various components

entering the Fourier spectra with a restricted number of

free parameters.

Examples of best fits of Equation 6 to magnetoresis-

tance data recorded at ambient pressure are displayed in

Figure 5. According to these data, six frequencies labelled

F0 to F5 in the following, enter the oscillatory part of

the magnetoresistance for magnetic field direction not too

far from the normal to the conducting plane (up to θ ≃

30◦), the lower frequencies F0 to F2 being perceptible up

to θ ≃ 65◦. The residuals displayed in the bottom part

of the figures either only contain high order harmonics or

do not reveal any periodic component. E.g. the high field

part of the residuals of data in Figure 5(a) is dominated

by the 2nd harmonic of F3 and the 3rd harmonic of F4.

As reported in Figure 6, the deduced frequencies follow

the orbital behaviour expected for a 2D FS. Remarkably,

the slow undulation is accounted for by an SdH oscilla-

tion with the frequency F0. In addition, a clear orbital

behaviour of the parameter B0 is observed in Figure 6(c),

as it is the case for the Bi parameters relevant to the other

components. A strongly negative background magnetore-

sistance is deduced from the fits for low θ values [see Figs.

5(a) and (b)]. Although a strongly negative magnetore-

sistance has already been reported above the critical field

in the H3O-M·NB superconducting salts (M = Ga, Cr)

[9], it should be noticed that the main part of the magne-

toresistance results from the contributions of F0 and the

background which, according to the data in Figure 5, have

opposite variation above ∼ 15 T. In addition, the quantum

limit is reached at a few tens of teslas for this frequency.

In such a case, a significant error on their amplitude can-

not be excluded. The frequency values deduced from the
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Table 1. Frequencies, reduced to θ = 0◦, deduced from the

best fits of Eq. 6 to magnetoresistance data at ambient pressure

and from Fourier analysis (see Fig. 7). i is the frequency index

appearing in Eqs. 1 and 6.

crystal # 1 crystal # 2

i fit FT fit FT

0 6.2±1.0 5.0±0.5

1 54±1 54.8±0.5 53.5±1.5 53.7±1.0

2 202±3 200±2 193±3 196±3

3 229±6 230±5 218±7 226±4

4 257±5 250±2 253±5 253±4

5 295±3 287±5 288±6 284±6

fits of the magnetoresistance data for crystals # 1 and #

2 are displayed in Table 1. Since the frequency F0 is very

low, Fourier analyses have been performed subtracting the

contributions of both the background magnetoresistance

Rbg and the oscillation with frequency F0 from the magne-

toresistance data. An example is given in Figure 7: a good

agreement between Fourier analysis of the fits of Equation

6 and of the experimental data is observed.

F0 may correspond to an orbit with a very small cross

section amounting to 0.1 percent of the FBZ area only.

Such a low value is compatible with band structure calcu-

lations since the cross section values of the orbits close to

the Y’ point of the FBZ in Figure 1(b) are of the same or-

der of magnitude or even smaller. The values of the other

observed frequencies (F1 to F5) correspond to orbital ar-

eas in the range 1 to 7 percent of the FBZ area. Such

values are of the same order of magnitude as those de-

duced from the data of Refs. [10,11]. For example, F1 is

F (T)
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Fig. 7. Fourier spectra of the oscillatory magnetoresistance

of crystals # 2 (at ambient pressure) and # 3 (under applied

pressure) at 2 K (blue symbols) and of the corresponding fits

of Eq. 6 (solid black lines). The magnetic field range is 8 T - 36

T for the data at 0.1 MPa, 15 T - 50 T for the data in the range

0.2 GPa to 0.8 GPa and 18 T - 50 T for the data at 1 GPa.

The spectra, which are shifted from each other for clarity, have

been normalized to the component with the highest amplitude.

The labels correspond to the frequency index used in the text.

very close to the frequencies Fa = 48 T and Fα = 38 to 50

T reported for the NH4-Fe·DMF [10] and H3O-M·P [11]

salts, respectively, while F4 is very close to the frequency

Fb = 248 T reported for NH4-Fe·DMF [10]. It can be de-

duced from the data in Table 1 that F0+F1+F2+F4 is

equal to F3+F5 within the error bars, as expected for a

compensated metal. However, even in the case where this

latter relationship is not fortuitous, the large number of

observed frequencies cannot be fully understood on the ba-
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sis of the band structure calculations displayed in Figure

1. Nevertheless, a FS based on the intersection of elliptic

2D tubes scheme might still account for a large number

of orbits. If true, the actual picture would be less naive

than that displayed in Figure 1(c) and, in any case, this

point needs a more detailed determination of the FS topol-

ogy. Other relationships such as F4 = F1 + F2 or F5 =

F1 + F4 are also observed (see Table 1). Still in the case

where they are not fortuitous, such linear combinations

could indicate that frequencies F4 and (or) F5 are linked

to either MB orbits or frequency combinations. However,

since band structure calculations cannot yield detailed FS

topology, no reliable conclusion can be drawn regarding

the presence of MB orbits. Effective masses deduced from

the temperature dependence of the Fourier component’s

amplitudes are in the range from 0.4 to 1.2 free electron

mass (see Table 2) which is of the same order of magnitude

as for other salts of this family [10,11]. Dingle tempera-

ture values are high (TD ∼ 7 K) which certainly rules out

frequency combinations due to an oscillation of the chemi-

cal potential [13]. Otherwise, although crystals # 1 and #

2 exhibit significantly different residual resistance ratios,

their Dingle temperature are rather close. This feature is

in line with the statement of Ref. [11] that the crystals are

composed of a mixture of insulating and metallic domains,

although a metallic conductivity is observed in the present

case. Within this picture, the temperature dependence of

the resistance reflects the relative parts of metallic and

insulating domains while the oscillatory behaviour is only

related to the metallic parts which are in turn character-

ized by a large disorder as indicated by the large measured

Dingle temperatures.

3.2 Pressure-dependent oscillatory spectra

Examples of best fits of Equation 6 to the data collected

under applied pressure are displayed in Figure 8. As it is

the case for the ambient pressure data, a good agreement

with Fourier analysis is obtained (see Fig. 7). The salient

feature of the pressure dependence of the oscillatory spec-

tra is the progressive decrease of the number of observed

frequencies as the pressure increases. Indeed, only five and

four frequencies can be detected at 0.2 GPa and 0.5 GPa,

respectively. In addition, the slow undulation attributed to

F0 cannot be detected above 0.5 GPa. Finally, only three

frequencies labelled F1 to F3 in Figures 8(b) and (c) are

observed at 0.8 GPa and 1 GPa. Both the effective masses

(see Table 2) and the Dingle temperatures (see Table 2

and Fig. 10) remain constant within error bars. The three

frequencies observed at high pressure are connected by the

relation F1 + F2 = F3. This point is in agreement with

e.g. Fourier analysis at 1 GPa that yields F1 = (68 ± 2)

T, F2 = (238 ± 4) T and F3 = (313 ± 7) T, respectively.

This suggests that the corresponding orbits are compen-

sated. As it is the case for the NH4-Fe·DMF salt [10], the

high pressure spectra of NH4-Cr·DMF can be accounted

for by the band structure calculations assuming the
⊙

orbit, from which originates the FS, intersects both along

the (a′∗ + b′∗) and a′∗ directions yielding 3 compensated

electron and hole orbits as depicted in Figure 1(c). Within

this framework, the frequencies F1, F2 and F3 observed at
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Fig. 8. Same as Fig. 5 for crystal # 3 at various applied pressures.

Table 2. Effective masses and Dingle temperatures deduced from temperature and field dependence, respectively, of the

amplitude of the various oscillations observed. i is the frequency index appearing in Eqs. 1 and 6. The crystal numbers are

indicated.

0.1 MPa (# 1) 0.1 MPa (# 2) 0.5 GPa (# 3) 0.8 GPa (# 3) 1 GPa (# 3)

i m∗

i TD m∗

i TD m∗

i TD m∗

i TD m∗

i TD

1 0.4±0.2 7.5±5.0 0.4±0.2 6.5±4.0 0.5±0.05 8±2 0.4±0.2 5.0±2.5 0.60±0.15 4±2

2 0.4±0.1 6±4 0.4±0.1 7±4.5 0.6±0.2 6.5±3.5 0.80±0.25 7.5±4.0 0.8±0.2

3 0.7±0.2 0.6±0.2 0.9±0.2 1.10±0.25 8.5±3.5 0.8±0.2 9±3

4 1.2±0.2 6±3 1.2±0.2 6±2

5 0.65±0.20 0.65±0.20

0.8 GPa and 1 GPa can be ascribed to the frequencies

labelled Fa, Fb−a and Fb observed at ambient pressure in

the NH4-Fe·DMF salt.

The various frequencies observed as the pressure varies

are collected in Figure 9. Provided a given orbit keeps its

identity as the applied pressure varies, the pressure de-

pendence of the relevant oscillation frequency can be ac-

counted for by a relationship of the form d[ln(F)]/dP =

κ where κ is related to the compressibility tensor. The

above relationship holds for various organic metals based

on the BEDT-TTF molecule with κ ranging from 0.14

GPa−1 [19] to 0.7 GPa−1 [20]. The solid line in Figure
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9(a) has been derived assuming this is the case for F1.

It is obtained with κ = 0.6 GPa−1 which is within the

above range. A clear downward departure from this line is

nevertheless observed above 0.5 GPa. A maximum in the

pressure dependence of the frequency linked to the closed

orbit was also reported at ∼ 0.6 GPa for β”-(BEDT-

TTF)2SF5CH2CF2SO3 [21]. In this latter compound a

pressure-induced phase transition is observed, although at

1.2 GPa. Regarding the other frequencies, no clear pres-

sure dependence can be derived from data in figure 9(b)

which certainly accounts for the observed drastic change

of the FS topology as the applied pressure varies.

With regards to frequency combinations linked to ei-

ther field-dependent Landau level broadening or chemi-

cal potential oscillations, no such features are observed,

at least in the high pressure range. As a matter of fact,

the frequency labelled Fa+b, observed in the NH4-Fe·DMF

salt, which would correspond to the frequency F1 + F3 in

the present case, is not observed. This can be considered

at the light of the large Dingle temperatures observed (TD

∼ 4 to 9 K under applied pressure), keeping in mind that

oscillations of the chemical potential are strongly damped

by disorder. Since the other source of frequency combina-

tion is the Landau level broadening induced by coherent

magnetic breakdown [14], the absence of such frequencies

suggests that the FS only contains individual orbits, at

least at high pressure.
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Fig. 9. Pressure dependence of the frequencies (a) F0 and F1

and (b) F2 to F5, deduced from Fourier analysis (solid symbols)

and fits of Eq. 6 (open symbols). The solid line is a fit of the

equation F(P) = F(P=0)exp(-κP), with κ = 0.6 GPa−1, to the

data for F1.
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Fig. 10. Dingle plots of the Fourier amplitude A1 at 2 K

corresponding to the component at the F1 frequency. Solid

lines are best fits of Eq. 1 to the data.

4 Summary and conclusion

The pressure dependence of the FS topology of the β”-

(BEDT-TTF)4(NH4)[Cr(C2O4)3]·DMF organic metal have

been studied up to 1 GPa. The SdH oscillation spectra
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observed at ambient pressure are compatible with a FS

composed of up to six individual orbits. A drastic change

of the FS topology is observed under pressure. As a mat-

ter of fact, the number of orbits decreases as the applied

pressure increases. At 0.8 GPa and above, only three com-

pensated orbits are observed, as it is the case for the

NH4-Fe·DMF salt at ambient pressure. This feature sug-

gests similar FS in both cases, although the latter com-

pound exhibits a strongly non-monotonous temperature-

dependent behaviour. This result demonstrates that such

non-monotonous behaviour is not necessarily connected

with a density wave condensation, which was invoked in

the case of H3O-M·P [11]. At variance with magnetore-

sistance data of the NH4-Fe·DMF compound and more

generally of many networks of coupled orbits, no frequency

combinations, due to e. g. field-induced chemical potential

oscillations, were observed. This is likely connected to the

large amount of disorder present in the studied crystals as

indicated by the very large measured Dingle temperatures

(TD ∼ 7 K).
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