
HAL Id: hal-00021810
https://hal.science/hal-00021810

Submitted on 26 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ANDROMEDA: Astronomical Data Mediation for
Virtual Observatories

José-Luis Zechinelli-Martini, Genoveva Vargas-Solar, Victor Cuevas-Vicenttin

To cite this version:
José-Luis Zechinelli-Martini, Genoveva Vargas-Solar, Victor Cuevas-Vicenttin. ANDROMEDA: As-
tronomical Data Mediation for Virtual Observatories. 2006. �hal-00021810�

https://hal.science/hal-00021810
https://hal.archives-ouvertes.fr

ANDROMEDA: building e-Science data integration tools

José Luis Zechinelli-Martini, Genoveva Vargas-Solar, Víctor Cuevas-Vicenttín

Research Center of Information and Automation Technologies, UDLAP

Ex-hacienda Sta. Catarina Martir s/n, San Andrés Cholula, México

LSR-IMAG, CNRS

BP 72 38402 Saint-Martin d’Hères, France

{joseluis.zechinelli, victor.cuevasv}@udlap.mx, Genoveva.Vargas@imag.fr

Abstract: This paper ANDROMEDA, an astronomical data mediation system that

enables transparent access to astronomical data servers. Transparent access is

achieved by a global view that expresses requirements of community of users

(e.g., astronomers) and data integration mechanisms adapted to astronomical

data characteristics. Instead of providing an ad hoc mediator, ANDROMEDA can

be configured for giving access to different data servers according to different

user requirements (data types, content, data quality, and provenance).

ANDROMEDA can be also adapted when new sources are integrated to the com-

munity or new requirements are specified.

1 Introduction

In recent years, there has been a prodigious increase in the quantity of available data

for astronomical research, due in part to (i) new technological breakthroughs in sen-

sors and storage devices, and (ii) the increasing automation in data acquisition and

processing. Consequently, in the years to come, astronomers will be able to generate

calibrated data far more rapidly than they can process and analyze them.

New extended surveys like 2dF, SDSS, 2MASS, VIRMOS, and DEEP2 are revolu-

tionizing the way astronomy is done; making available huge amounts of high quality

data. To this avalanche of optical data, obtained via medium size telescopes, we must

add the large databases that will be produced by the new generation of large ground

and space telescopes in x-ray, optical, infrared and radio wavelengths. The nature of

this databases (wide wavelength coverage), will represent an unprecedented challenge

for the unification of optical observations in infrared, millimetrical and x-ray obtained

from space and ground observatories, which also include radio-telescopes such as the

GTM, which is now being built by INAOE and the University of Massachusetts in

Cerro La Negra, Mexico at 4600 m. of altitude.

We cannot overemphasize the importance and complexity of this challenge. In the

next five years, the available databases will grow to the point of tens of thousands of

mailto:victorcuevasv%7d@udlap.mx
mailto:Genoveva.Vargas@imag.fr

2 José Luis Zechinelli-Martini, Genoveva Vargas-Solar, Víctor Cuevas-Vicenttín

parameters for hundreds of millions of astronomical objects, i.e., teradatasets. This

complexity will be augmented by the existence of measurement errors, deviations and

tendencies in the data, and above all the greatest difficulty is the absence of homolo-

gation between the different databases. Each one of which will have not only its own

set of parameters but also its own access software, which will make extremely diffi-

cult the cross match between them [10].

In order to advance under the growing burden of the large amounts of data, we need

applications to manage, ask queries, visualize, and analyze the entire space of large

databases in an intelligent and automatic manner: a Virtual Observatory (VO). This is

even more important for countries such as Mexico, which do not have access to the

large international observational facilities [10]. The VO is a system in which the vast

astronomical archives and databases around the world, together with analysis tools

and computational services, are linked together into an integrated facility. Several VO

projects are now funded through national and international programs, and all projects

work together under the International Virtual Observatory Alliance (IVOA) to share

expertise and develop common standards and infrastructures for data exchange and

interoperability [4].

For the first time data acquisition and archival is being designed for online interactive

analysis. Shortly, it will be much easier to download a detailed sky map or object

class catalogue, than to wait several months to access a telescope that is often quite

small. The several surveys that have been completed or are under way will yield to-

gether a Digital Sky of interoperating multi-terabyte databases. In time, more cata-

logues will be added and linked to the existing ones. Query engines will become more

sophisticated, providing a uniform interface to all these datasets [7].

The objective of our work is to provide data integration mechanisms that can help as-

tronomers to avoid the tedious task of manual data integration. Such mechanisms can

be tuned for accessing specific collections of data servers according to different in-

formation requirements. This paper presents our approach for integrating astronomi-

cal data and the design and implementation of ANDROMEDA (Astronomical Data Re-

sources Mediation).

The remainder of this paper is organized as follows. Section 2 introduces our ap-

proach for integrating astronomical data. Section 3 describes ANDROMEDA, its archi-

tecture, data servers and implementation issues. Section 4 describes an experimental

validation that we conducted with real astronomical data. Section 5 compares related

works with our solution. Finally, Section 6 concludes the paper and discusses future

work.

1 Astronomical data integration

Data integration is a well known problem in the database domain. It essentially con-

sists in combining data coming from different sources into a single and homogeneous

Andromeda: building e-Science data integration tools 3

data set structured according to a so called mediation (global) schema. The mediation

schema provides a homogeneous and generic view of a set of databases contents.

Most data integration solutions are based on the descriptions of databases contents

and their semantic relationships with the mediation schema.

Databases describe their content by exporting their schema. In our work each infor-

mation source exports a local view of the data it contains, the exported schema ex-

pressed as XML schema. Figure 1 illustrates a tree representation of the exported

schema of the Sky Server photometric data server. Elements and attributes are de-

noted by nodes. Attributes are circled, keys are underlined and an asterisk denotes

multi-valued cardinality (multi-valued node). This schema defines that a photoObj

element is composed of two complex elements: coordinates and magnitude. As well

as a series of simple elements and attributes of which only the id attribute is presented

in the figure. The coordinates element is composed of ra and dec elements. The mag-

nitudes element consists of a sequence of magnitude elements. In turn, a magnitude

element is composed of a modelMag and modelMagError elements as well as a mag-

nitudeName attribute. The primary key of the photoObj element is the id attribute.

Fig. 1. Sky Server photometric data server exported schema

Data integration is possible as long as meta-information describing semantic corre-

spondences1 among data sources and mediation schemas (attribute equivalence),

transformation functions and mediation query expressions enabling the population of

the mediation schema, are available. Most approaches imply that such information

and particularly mediation query expressions are manually defined. This is particular

cumbersome when the number of sources increases. Therefore, inspired in [1, 5, 6],

we propose an approach for automatically generating mediation queries for integrat-

ing astronomical data.

Astronomical data integration is executed in a series of phases:

 Identify for each data source which data elements are relevant. The relevant ele-

ments can be found provided it is established a priori which elements in the ex-

1 A semantic correspondence establishes a relationship between two elements that refer to the

same object of the real world.

4 José Luis Zechinelli-Martini, Genoveva Vargas-Solar, Víctor Cuevas-Vicenttín

ported schemata correspond to elements in the mediation schema. Documents that

contain only the relevant elements should then be obtained and organized accord-

ing to a so called mapping schema. The result of the first phase is a series of cou-

ples <mapping schema, intentional specification>. Each tuple

associates a mapping schema (expressed as a tree) with its intentional specification

expressed as an XQuery statement.

 Identify the operations (join, union) that can be used for integrating the results

from the different sources and populated the mediation schema.

 Generate a mediation query expressed as an XQuery statement that intentionally

expresses the content of the mediation schema in terms of local sources.

1.1 Mapping schemata generation

The objective of this phase is to identify for each exported schema a mapping schema

(i.e., the set of nodes that are relevant for populating the mediation schema) and to

compute an XQuery expression that specifies how to transform data from the ex-

ported schema to the mapping schema. For example, consider the exported and medi-

ation schemata presented in Figure 2. The mediation schema is represented by the tree

at the top, while the exported schema corresponding to the Sky Server spectra data is

located at the bottom. The dashed lines represent semantic correspondences between

elements.

Fig. 2. Mediation and exported schemata

Looking for relevant nodes for building a mapping schema

A relevant node verifies at least one of the following conditions:

1. The node semantically corresponds to a node in the mediation schema.

Andromeda: building e-Science data integration tools 5

2. The node does not have a corresponding node in the mediation schema, but its

maximum cardinality is strictly greater than one; and at least one of its descendants

has a semantic correspondence with a node in the mediation schema.

3. The node is key or foreign key of a relevant node in the exported schema.

4. The node does not have a corresponding node in the mediation schema, but it is the

root of the exported schema and there is at least one node of this schema which

semantically corresponds to a node in the mediation schema.

Accordingly, in order to find relevant nodes in an exported schema, the mediation

schema tree is traversed first in preorder to find all the nodes that have a semantic cor-

respondence with a node in the exported schema or that are no-text nodes. These

nodes are used to create a new tree with a structure resembling that of the mediation

schema. This procedure is carried out by the following recursive algorithm:

Input: Mediation schema tree

Output: Mapping schema tree

traverseTree(TreeNode currentNode, TreeNode medNode,

 Hashtable nodeCorresp, Hashtable nextCorresp) {

 //Make a copy of the mediation schema node to add

 //it to the tree if appropiate

 TreeNode nodeToAdd := medNode.copy();

 //Add all no-text nodes to the tree

 if(~medNode.isTextNode()) {

 currentNode.add(nodeToAdd);

 //Save the node pairs that have semantic

 //correspondences in a hashtable

 TreeNode corresp := nodeCorresp.get(medNode);

 if(corresp ≠ nil)

 nextCorresp.put(nodeToAdd, corresp);

 }

 //Add only the text nodes that have semantic

 //correspondences

 else if(nodeCorresp.containsKey(medNode)) {

 currentNode.add(nodeToAdd);

 TreeNode node := nodeCorresp.get(medNode);

 nextCorresp.put(nodeToAdd, node);

 }

 else

 return;

 //Traverse the children of the current node

 //in preorder

 for each n  medNode.children()
 traverseTree(nodeToAdd, n, nodeCorresp,

 nextCorresp);

}

6 José Luis Zechinelli-Martini, Genoveva Vargas-Solar, Víctor Cuevas-Vicenttín

Figure 3 shows the resulting mapping schema for the Sky Server example. The obje-

cAll, object and redshift nodes are first added to the new tree since they are no-text

nodes. Then the children of the redshift node: z, zError, and zConf; are added because

they are text-nodes with semantic correspondences with nodes in the mediation

schema (see semantic correspondences in Figure 2). Next, the coordinates element is

added, since it is a no-text node as well as its children ra and dec, having corres-

pondences with nodes in the mediation schema. Finally, the no-text nodes magni-

tudes and magnitude are added, because their children do not have semantic corres-

pondences with nodes in the mediation schema.

Fig. 3. Generated Sky server mapping schema after the first step of the algorithm

Next it is necessary to traverse the new tree in postorder to eliminate all the remaining

no-text leaves of the tree that do not have semantic correspondences with nodes

in the mediation schema. For this purpose, the hash table nextCorresp has been

created to keep track of all the nodes that have a semantic correspondence with a node

in the mediation schema. The algorithm follows:

removeNodes(TreeNode mappingNode, Hashtable

 nextCorresp) {

 //Traverse the children of the current node

 //in postorder

 for each n  mappingNode.children()
 removeNodes(n, nextCorresp);

 //If the node is a leaf and does not have a semantic

 //correspondence with a node in the mediation schema

 //remove it from the tree

 if(mappingNode.isLeaf() and

 ~nextCorresp.containsKey(mappingNode)) {

 TreeNode parent = mappingNode.getParent();

 parent.remove(mappingNode);

 }

}

By applying the algorithm to the tree in Figure 3, the children of the redshift element,

are kept in the tree because they have semantic correspondences with nodes in the

Andromeda: building e-Science data integration tools 7

mediation schema. The same principle applies to the children of the coordinates node.

However, the child of the magnitudes element, magnitude, is a leaf node and does not

have a semantic correspondence with a node in the mediation schema, so it is re-

moved. After the removal of the magnitude node, its parent, the magnitudes node be-

comes a leaf node itself and it is removed for the same reason as its child. This algo-

rithm yields the tree presented in Figure 4.

Fig. 4. Final Sky Server mapping schema

Intentional expression of a mapping schema

Finally, this mapping schema tree is traversed for creating its intentional description

as a XQuery expression. The algorithm to generate this expression is presented in ap-

pendix A. The derived mapping XQuery expression for this example looks as follows:

<objectAll>{

 for $var1 in

 doc("SkyServerSpectraData.xml")

 /specObjAll/specObj return

 <object>

 <redshift>

 <zConf>{$var1/redshift/zConf/text()}</zConf>

 <zError>{$var1/redshift/zErr/text()}</zError>

 <z>{$var1/redshift/z/text()}</z>

 </redshift>

 <coordinates>

 <dec>{$var1/coordinates/dec/text()}</dec>

 <ra>{$var1/coordinates/ra/text()}</ra>

 </coordinates>

 </object>

}</objectAll>

1.2 Candidate operations derivation

Once the mapping schema and its associated XQuery statement have been created for

each source, it is necessary to define which operations should be used for integrating

them. The join and union operators are frequently used for integrate the data from dif-

8 José Luis Zechinelli-Martini, Genoveva Vargas-Solar, Víctor Cuevas-Vicenttín

ferent sources [1, 5, 6]. The result of this phase it the set of candidate operations, that

is, all possible combinations of mapping schema expressions, that can be used for

populating the mediation schema by integrating data from a set of sources.

In the case of astronomical data servers, usually no primary keys can be used for

uniquely identifying the same object. In our solution we consider a spatial join, which

identifies entries of the same object in different data servers based on their position

(right ascension and declination coordinates). However due to the variability on the

position measured by each survey, which is worsened by different error magnitudes

for each survey, object positions are approximated and thus the same object can have

different positions in different data servers. We propose a special method to determine

whether two objects found on different surveys refer to the same physical object. The

method consists of computing the distance between two objects from different sur-

veys and compares it against a threshold supplied by the user:




),(
1ii

objobjdist }..1{ ni 

Whenever the distance is less than the threshold, the two objects are considered to be

the same. The advantage of this solution is that it is easy to implement, since it only

requires a condition in the where clause of the query and it can be extended to an ar-

bitrary number of data sources. It has the disadvantage that the error magnitudes of

each survey are not taken into consideration. Methods that are more sophisticated

have been proposed, for example the Xmatch algorithm for Sky Query. In principle,

the Xmatch or a similar probabilistic algorithm can be adapted to our system.

1.3 Mediation queries generation

The objective of this phase is to generate a set of mediation queries expressions that

specify the mediation schema intention. In our case only consider the spatial join de-

scribed earlier and the resulting mediation query is an XQuery statement. Given a

mediation schema, this statement is generated by traversing the mediation schema in

preorder. The basic idea is to merge the nodes from each mapped source according to

the mediation schema.

However, not all nodes should be handled in the same way. Since a valid XML

document should have only one root element, this is taken from the mediation

schema. The coordinates elements require special treatment since the same object has

approximately the same position in different data servers. In order to provide a global

view over the data, it is appropriate to associate the same position coordinates values

for each integrated object. A straightforward approach is to take the average of the

measures of the object's position for all the sources involved. Certain elements in-

volve difficulties as well, for example, some multi-valued nodes are grouped within a

single node (e.g. magnitude elements in a magnitudes element). In this case the multi-

valued nodes from the different sources should be grouped together; otherwise the

syntax of the mediation schema would be violated. The complete algorithm is pre-

sented in appendix B. The generated mediation XQuery expression for the integration

Andromeda: building e-Science data integration tools 9

of the exported schemata of the SkyServerPhoto and SkyServerSpectra according to

the mediation schema in Figure 2 follows:

<objectAll>{

for $var1 in

doc("SkyServerPhotoMappedData.xml")/objectAll/object

for $var2 in

doc("SkyServerSpectraMappedData.xml")/objectAll/object

where (andromedaf:distance(

number($var1/coordinates/ra/text()),

number($var1/coordinates/dec/text()),

number($var2/coordinates/ra/text()),

number($var2/coordinates/dec/text())) < 0.08)

return

 <object>

 <magnitudes>

 {for $var3 in $var1/magnitudes/magnitude

 return $var3}

 </magnitudes>

 <coordinates>

 <ra>{(number($var1/coordinates/ra/text()) +

 number($var2/coordinates/ra/text()) div 2}

 </ra>

 <dec>{(number($var1/coordinates/dec/text()) +

 number($var2/coordinates/dec/text())

 div 2}

 </dec>

 </coordinates>

 <redshift>

 <zConf>{$var2/redshift/zConf/text()}</zConf>

 <zError>

 {$var2/redshift/zError/text()}

 </zError>

 <z>{$var2/redshift/z/text()}</z>

 </redshift>

 </object>

}</objectAll>

2 ANDROMEDA

ANDROMEDA is an astronomical data mediation system for integrating astronomical

data sources used in the Mexican Virtual Observatory built at INAOE. Users specify

their information needs through a mediation schema created with their expert knowl-

edge and expressed using XML Schema language. The mediation schema includes the

data elements of interest that can be retrieved from one or many of the astronomical

data sources (e.g., the right ascension and declination coordinates). Queries are ex-

10

pressed by specifying the right ascension and declination coordinates of the centre of

the circular area, the radius of the circle, a tolerance value for the spatial join, and the

data sources. The coordinates are given in decimal format according to the J2000 ep-

och convention and the radius and tolerance values in arc minutes (see Figure 5).

When the user clicks the data button, an HTTP request is created using the GET

method to pass the parameters to the mediator, which generates and returns the re-

sults. ANDROMEDA has been implemented in Java and it uses SAXON 8.0-B for exe-

cuting XQuery expressions.

Fig. 5. ANDROMEDA user interface

2.1 Architecture

Figure 6 illustrates the architecture of ANDROMEDA. The system follows a wrapper-

mediator architecture [11]. In this architecture, the mediator provides a uniform user

interface to query integrated views of heterogeneous information sources while wrap-

pers provide local views of data sources in a global data model [5]. In ANDROMEDA

users express their queries following a mediation schema that provides a unified

global view of the local data sources and describes information requirements provided

by an expert. The ANDROMEDA mediator adopts the semi-structured data model as

pivot model.

The key aspect in ANDROMEDA is the automatic generation of meta data describing

mediation queries used for integrating data (populating completely or partially de

mediation schema). Such data are essential during the integration process, especially

when the number of sources is important: the more semantic knowledge is available

the easier and more precise is data integration with respect to application require-

ments.

Andromeda: building e-Science data integration tools 11

Fig. 6. ANDROMEDA general architecture

2.2 Data Servers and wrappers

The current version of ANDROMEDA works with three data sources, although the sys-

tem is designed in such a way that can be extended to an arbitrary number of data

sources. These are the Sky Server [7] photometric data, Two Micron All Sky Survey

[8] photometric data, and Sky Server spectrographic data2.

The sources integrated by the current version of ANDROMEDA are accessible via the

WWW using the standard HTTP protocol. Each of them provides an HTML form in

which the user can specify the area of the sky of interest providing the coordinates of

the centre of a circle and its radius. The results can be obtained in several formats, in-

cluding HTML, text and XML.

In order to obtain data from a source, the wrapper creates an HTTP request with the

coordinates and radius parameters provided by the user. Then a connection is estab-

lished to send the request and retrieve the data from the response. Since the sources of

our implementation return data under the XML format, an XSL stylesheet provides

the means to transform the data to the format required by the exported schema defined

using XML Schema.

2 Although both, the photometric and spectrographic data of the Sky Server [8] are accessible

by a single interface, for purposes of design and testing we considered and implemented

them as separate data sources.

12

2.3 Mediator

The mediator gives a global view of a set of data sources while making transparent

their heterogeneity by automating data integration. The mediator transforms each user

query expressed with respect to the mediation schema into a set of sub-queries ex-

pressed on the exported schemata; it dispatches sub-queries to sources, retrieves par-

tial results and integrates them into a final result expressed according to given user

requirements.

When the user sends a query, the Mapper creates the mapping schemata for each of

the registered sources according to the mediation schema. Then a query is dispatched

to each of the local sources and the results are transformed to its corresponding map-

ping schema and saved in temporary XML files. Finally the mapped results from the

local sources are integrated by an XQuery expression generated by the Joiner and

the final results are presented to the user.

2.4 Meta database

In order to integrate data, the system requires an appropriate meta-database, which

initially contains descriptions of exported schemata, the mediation schema, and the

semantic correspondences between them (see Figure 7). The meta-database stores also

a set of mediation queries that are automatically generated and can be combined for

totally or partially populating the mediation schema.

Fig. 7. UML diagram of the meta-database schema

A schema is identified by its id, a name and its full XML Schema file. Semantic rela-

tionships among schemata are described by semantic correspondences that are also

stored in the meta-database. The meta-database of ANDROMEDA was implemented us-

ing MySQL Database Server.

ID: integer

NAME: varchar

BASETIME: integer

TIMEOUTFACTOR: integer

Source

ID: integer

NAME: varchar

BASETIME: integer

TIMEOUTFACTOR: integer

Source

ID: integer

NAME: varchar

TYPE: integer

SCHEMA: text

Schem a

ID: integer

NAME: varchar

TYPE: integer

SCHEMA: text

Schem a

ID: integer

IDMEDIATION: integer

IDEXPORTED: integer

PATHMEDIATION: varchar

PATHEXPORTED: varchar

Correspondence

ID: integer

IDMEDIATION: integer

IDEXPORTED: integer

PATHMEDIATION: varchar

PATHEXPORTED: varchar

Correspondence

ID: integer

IDMEDIATION: integer

IDEXPORTED: integer

QUERY: text

Mapping

ID: integer

IDMEDIATION: integer

IDEXPORTED: integer

QUERY: text

Mapping

0,n 1

0,n

2

0,n

1

Andromeda: building e-Science data integration tools 13

3 Experimentation

In order to have a realistic experiment to validate our ANDROMEDA, the INAOE pro-

vided us with a list of objects in the SDSS of particular relevance in their research.

The objective was to obtain the data for each of these objects available from both Sky

Server and 2MASS. For the spatial join procedure, we used a value of 0.0014 degrees

(aprox. 5 seconds of arc) as it was suggested. Since the position given is exactly that

measured by SDSS, we only needed to give a radius similar to the spatial join toler-

ance itself. In this case we used a radius of 0.1 arc minutes. For the list contained 409

objects, matches were found for 322 of them, and within these 322 objects, multiple

possible matches were found for 71 objects. The total execution time was approx-

imately 20 minutes.

For determining the global query execution time of our solution we tried to extensive-

ly integrate as much objects as possible from SkyServerPhoto, TwoMASS [9], Sky-

ServerSpectra, by defining increasingly larger regions. The evaluation was done in a

Dell Inspiron 8600, Intel Pentium M 1.50GHz, 512MB RAM. Of course the first ob-

servation is that our algorithm is polynomial and that execution time increases with

respect to the area of the specified regions (see Figure 8).

Query Execution Time

0

200

400

600

800

1000

1200

0 5 10 15 20

radius (arcmin)

ti
m

e
 (

s
e
c
)

Query Execution Time

y = 0,3776x3 - 5,1025x2 + 28,218x - 26,532

R2 = 0,9995

-200

0

200

400

600

800

1000

1200

0 5 10 15 20

radius (arcmin)

ti
m

e
 (

s
e
c
)

Fig. 8. Query execution behavior

Other important information concerning our experiment is shown in Figure 9. For a 2

arc minutes radio, results contain respectively 143 objects from Skyserver photo

(139983 bytes), 10 objects from TwoMass (6595 bytes) and 2 from SkyServerSpectra

(555 bytes). Only two objects could be integrated (those whose distance was less than

a 0.0014 threshold) which represented (3284 bytes). The largest radio that could be

processed under the specified conditions was 18 arc minutes, representing 60 inte-

grated objects corresponding to (96570 bytes). Our execution time is reasonable even

if it will be penalizing for large sky areas it can remain interesting even if the number

of sources increases. We are currently running extensive experimentations for inte-

grating data according to the set of queries proposed by J. Gray for SkyServer. Such

queries were initially specified for the SkyServer multidatabase and thus no integra-

tion is considered. We are adapting them for testing ANDROMEDA.

14

radius

(arcm in)

tim e

(m sec)

tim e

(sec)

SkyServerPhoto TwoMASS SkyServerSpectra Global SkyServerPhoto TwoMASS SkyServerSpectra Global

1 6599 6,599 143 10 2 2 139983 6595 555 3284

2 5598 5,598 508 22 2 2 496980 14439 555 3284

4 17655 17,66 1616 79 4 4 1580806 51678 1043 6502

6 40198 40,2 2755 144 10 8 2695023 94134 2506 12939

8 74888 74,89 3859 234 18 12 3775458 152957 4460 19367

10 131949 131,9 5173 332 27 19 5060981 216997 6647 30616

12 228839 228,8 6700 444 37 24 6554558 290199 9084 38663

14 394297 394,3 8538 594 49 37 8352454 388212 11989 59540

16 663905 663,9 10539 777 60 47 10309689 507790 14661 75632

18 1034667 1035 12746 961 74 60 12468276 628033 18059 96570

retrieved objects file sizes (bytes)

Fig. 9. Query results

Finally, it is important to note that providing transparent access to astronomical data

sources and enabling data integration must be evaluated under qualitative criteria. It is

always interesting to automate a process that is in general done manually.

4 Related work

Several approaches have been proposed for astronomical data integration and the con-

struction of the Virtual Observatory. SkyQuery [3] is maybe the most representative

prototype of a federated database application, implemented using a set of interoper-

ating Web services. In SkyQuery a portal provides an entry point into a distributed

query system relying on metadata and query services of the database SkyNodes. Such

database consists of individual databases representing a particular survey located at

different sites along with their wrappers. SkyQuery receives queries expressed in

SQL, it locates the referenced SkyNodes and submits the query to every SkyNode.

The final result is computed by a applying a probabilistic spatial join to partial results.

Recently, the SkyQuery architecture is being redesigned (Open SkyQuery project [2])

for the emerging VO standards such as the VOTable, the Astronomical Data Query

Language (ADQL), the VO Query Language (VOQL) and the VO Registry services.

A limitation in SkyQuery is that it does not provide a unified global view over the set

of data sources, so the user needs to be familiar with the schema of each data source

in order to build the query and interpret results. Yet, when the number of sources in-

creases it is difficult to imagine that a user will easily remember details about each

server. Even if the number of sources is reduced, astronomical data formats and are

highly heterogeneous. Even values referring to the same astronomical objects can

vary depending on the type of instrument used for observing the sky.

Most existing astronomical automatic data integration approaches concern homoge-

neous relational data servers. However, astronomical data integration is still done

manually especially when heterogeneous data are involved. The challenge is to pro-

vide an integrated view over a set of astronomical data sources, while making trans-

Andromeda: building e-Science data integration tools 15

parent to the users the heterogeneity of these sources. In addition, it is desirable to

have the ability to easily incorporate new data sources.

5 Conclusions and future work

The methodology and algorithms presented in this paper provide a reasonable solution

to the integration of distributed, heterogeneous and autonomous data sources in the

domain of astronomy. In addition, the inclusion of new data sources can be achieved

with relative ease. Our prototype implementation demonstrates that our approach pro-

vides a viable method for astronomical data integration. The system provides users a

unified global view over the set of data sources, while it hides the specificities of each

source. The particularities of astronomical data, mainly the possibility to identify ob-

jects by their position and to query data sources by specific areas of the sky, proved to

be more helpful than challenging. Still the query evaluation algorithms can be im-

proved by using a formal XML algebra. There is also room for improvement in the

spatial join procedure, which could be modified to take into consideration the speci-

ficities of each data source in order to lead to more reliable cross identification of ob-

jects among different surveys.

References

[1] Bouzeghoub M., Farias Lóscio B., Kedad Z., Soukane A., Heterogeneous Data Source In-

tegration and Evolution. In Proceedings of the 13th International Conference, DEXA

2002, Aix-en-Provence, France, September, 2002,

[2] Budavári T., Szalay A., Malik T., Thakar A., O'Mullane W., Williams R., Gray J., Mann

B., and Yasuda N. Open SkyQuery - VO Compliant Dynamic Federation of Astronomical

Archives, In Proceedings of the ADASS’03, 2003

[3] Budavári, T. Malik, A. Szalay and A. Thakar. T. SkyQuery – A Prototype Distributed

Query Web Service for the Virtual Observatory, In Proceedings of the ADASS’02, 2002

[4] Hanisch R. J. and Quinn P. J. The IVOA. http://www.ivoa.net/pub/info/TheIVOA.pdf

[5] Kedad, Z., Xue, X. Mapping generation for XML data sources: a general framework, In

Proceedings of WIRI 2005, in conjuction with ICDE'05, 2005

[6] E. Métais, Z. Kedad, I. Comyn-Wattiau and M. Bouzeghoub, "Using Linguistic Knowledge

in View Integratio: toward a third generation of tools", International Journal of Data and

Knowledge Engineering (DKE), 1 (23), North Holland, 1997.

[7] Szalay A., Gray J., Kunszt P., and Thakar A. Designing and Mining Multi-Terabyte As-

tronomy Archives: The Sloan Digital Sky Survey. In Proceedings of SIGMOD, 2000.

[8] Szalay A., Kunszt P., Thakar A., Gray J., and Slutz D. The Sloan Digital Sky Survey and

its Archive. In Proceedings of the ADASS IX, eds. N. Manset, C. Veillet, D. Crabtree, (ASP

Conference series), 2000

[9] 2MASS Explanatory Supplement to the 2MASS All Sky Data Release.

http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html

[10] Terlevich R., López López A. and Terlevich, E. El Grupo de Ciencia con Observatorios

Virtuales del INAOE, 2003. http://haro.inaoep.mx/ov/archivos/ObservatorioVirtual.pdf.

[11] Wiederhold, G., "Mediators in the architecture of future information systems", Computer,

pages 38-49, 1992.

http://www.ivoa.net/pub/info/TheIVOA.pdf
http://www.ipac.caltech.edu/2mass/releases/allsky/doc/explsup.html
http://haro.inaoep.mx/ov/archivos/ObservatorioVirtual.pdf

16

Appendix A

Mapping schema query generation algorithm.

createQuery(TreeNode mappingNode, HashMap nextCorresp){

//The buffer will keep track of the expression

buffer := “”;

//Use a stack to traverse the tree in preorder

Stack nodesStack ;

//Take the root node as the parent of the key node

TreeNode keyNodeParent := keyNode.getParent();

rootElementName: = mappingSchemaNode.getName();

//Add the root element to the XQuery statement and take //its path

buffer += "<" + rootElementName + ">{ ";

keyNodeParentPath : = keyNodeParent.getPath();

//Keep track of the variables in the statement

varNumber := 1;

//Generate the desired indentation

indent := " ";

//This expression refers to the node that contains

//the key

buffer += indent + "for $var" + varNumber + "in doc(\""

+ exportedName + "Data.xml\")" + keyNodeParentPath + " return";

//Put this node in the stack

nodesStack.push(mappingNode);

//Keep track if the node being processed is the root

isRoot := true;

//Keep track of when the first multi-valued node has //been found

firstMultiValuedFound := false;

//Store the elements that need to be closed in the //statement

Stack tagsToClose;

//Keep track of the node the current variable refers to

SchemaNode currentVarNode := keyNodeParent;

//Use a stack to keep the scopes of each variable

//related node

Stack varNodes;

varNodes.push(currentVarNode);

//Traverse the tree in preorder

while(~nodesStack.isEmpty()) {

 //Take the next item from the stack

 o := nodesStack.pop();

 nodeName := null;

 TreeNode node = null;

 //Check if this item is a node or a level mark

 //If it is a node then take its name

 if(o  “”) {
 nodeName := node.getName();

 }

 //If it is a level marker close the current tag

 //if needed, reduce the indent and change the

 //current variable node

 else {

 if(~tagsToClose.isEmpty()) {

 closeTag := tagsToClose.pop();

 indent -= “ “;

 buffer += indent + closeTag;

 if(closeTag.indexOf("}")  -1) {
 varNodes.pop();

 currentVarNode = varNodes.peek();

Andromeda: building e-Science data integration tools 17

 varNumber--;

 }

 }

 continue;

 }

 //Check if the node being processed is not the root

 if(~isRoot) {

 //If the node is a text node put this element

 //in the statement and make a reference to

 //its contents

 if(node.isTextNode()) {

 buffer += indent + "<" + nodeName + ">";

 TreeNode exportedNode:=nextCorresp.get(node);

 nodePath := exportedNode.getPath();

 expression := "{$var" + varNumber +

 t := currentVarNode.getPath().length();

 nodPath.substring(t);

 if(~node.isAttribute())

 expression += "/text()";

 expression += "}";

 buffer += expression;

 buffer += "</" + nodeName + ">";

 }

 //Check if the node is a multi-valued node

 else if(node.cardinality() > 1) {

 //if the first multi-valued node has already been

 //found, then create a new variable

 //with a for expression

 if(firstMultiValuedFound) {

 varNumber++;

 oldNodePath := currentVarNode.getPath();

 TreeNode corresp := nextCorresp.get(node);

 if(corresp = null)

 error("no matching node found");

 currentVarNode: = corresp;

 varNodes.push(corresp);

 nodePath = currentVarNode.getPath();

 forExpression := indent + " { for $var" +

 varNumber + " in $var" + (varNumber-1) +

 nodePath.substring(oldNodePath.length()) +

 “ return";

 buffer += forExpression;

 buffer += (indent + "<" + nodeName + ">";

 tagsToClose.push("</" + nodeName + ">" +

 indent + "}");

 }

 //If this is the first multi-valued node in the

 //tree then just add the element tags

 else {

 buffer += indent + "<" + nodeName + ">";

 tagsToClose.push("</" + nodeName + ">");

 firstMultiValuedFound := true;

 }

 }

 //For no-text and not multi-valued nodes just

 //add the element tags

 else {

 buffer += indent + "<" + nodeName + ">";

 tagsToClose.push("</" + nodeName + ">");

 }

18

 }

 isRoot := false;

 //If there is next level in the subtree add a

 //level marker and increase the indent

 E := node.children();

 if(|E| > 1) {

 nodesStack.push("");
 indent.append(" ");

 }

 //Add all the children of the current node

 //to the stack

 for each e  E
 nodesStack.push(e);

 }

 //Close the root element

 buffer += "}</" + rootElementName + ">";

 return buffer;

}

Appendix B

Mediation query generation algorithm.

createJoinQuery(TreeNode mappingSchemas[],

 TreeNode mediationSchemaNode){

 //Use a buffer to keep track of the generated statement

 buffer := “”;

 //Add the root element to the expression

 buffer += "<" + mediationSchemaNode.getName() + ">{";

 vars := 0;

 //Save the paths of the root elements of each

 //mapping schema

topPaths[];

 //Save the paths of the ra and dec elements of

 //each mapping schema

 raPaths[];

 decPaths[];

 for i := 0 to mappingSchemas.length {

 vars++;

 mappingSchemas[i] =

 mappingSchmas[i].getFirstChild();

 file := mappingNames[i] + "MappedData.xml";

 topPaths[i] := mappingSchemas[i].getPath();

 buffer += "for $var" + vars +

 "in doc(\"" + file + "\")" + topPaths[i];

 TreeNode ra :=

 getDescendantByName(mappingSchemas[i], "ra");

Andromeda: building e-Science data integration tools 19

 raPaths[i] := ra.getPath();

 TreeNode dec := getDescendantByName(

 mappingSchemas[i], "dec");

 decPaths[i] := dec.getPath();

 }

 //Add the clause that carries out the spatial join

 buffer += createWhereClause(mappingSchemas, topPaths,

 raPaths, decPaths));

 buffer += “return”;

 //Use as stack to traverse the tree in preorder in

 //a non-recursive manner

 Stack nodesStack;

 nodesStack.push(mediationSchemaNode.getFirstChild());

 //Use a stack to keep track of the elements

 //that need to be closed

 Stack tagsToClose;

 //Keep track of the indent the statement should have

 indent = " ";

 //Keep track of wheter the first multi-valued node

 //has been found

 boolean firstMultiValuedFound := false;

 //Traverse the tree in preorder

 while(~nodesStack.isEmpty()) {

 //Take the next item from the stack

 o = nodesStack.pop();

 String nodeName := null;

 SchemaNode node := null;

 //Check if this item is a node or a level marker

 if(o  “”) {
 //If it is a node then take its name

 nodeName = node.getName();

 //If it is the coordinates element add the

 //associated special expression

 if(nodeName = "coordinates") {

 buffer += createCoordinatesExp(indent,

 topPaths, raPaths, decPaths));

 continue;

 }

 if(node.cardinality() > 1) {

 //If it is a multi-valued node check if

 //the first multi-valued node has already

 //been found.

 //If that is the case generate new

 //variables with for expressions

 if(firstMultiValuedFound) {

 for i := 0 to mappingSchemas.length {

 TreeNode nodei = getDescendantByName(

 mappingSchemas[i], nodeName);

 //Add the for expression only

20

 //if the node is found in the

 //mapping schema

 if(nodei  null) {
 nodeiPath = nodei.getPath();

 buffer += indent + "{for $var" +

 (vars+1) + " in $var" + (i+1) +

 nodeiPath.substring(to

 Paths[i].length + " return $var" +

 (vars+1) + "}";

 vars++;

 }

 }

 continue;

 }

 firstMultiValuedFound := true;

 }

 //For text-nodes add expressions to take their

 //values if they are found in the mapping schemas

 if(node.isTextNode()) {

 for i := 0 to mappingSchemas.length {

 TreeNode textNode = getDescendantByName(

 mappingSchemas[i], nodeName);

 if(textNode  null) {
 textNodePath = textNode.getPath();

 textNodeExp = "{$var" + (i+1) +

 textNodePath.substring(

 topPaths[i].length()) + "/text()}";

 buffer += indent + "<" +

 nodeName + ">" + textNodeExp + "</" +

 nodeName + ">";

 }

 }

 }

 //For no-text and not multi-valued nodes add

 //only the element tags

 else {

 buffer += indent + "<" + nodeName + ">";

 tagsToClose.push(indent+"</"+nodeName+">";

 }

 }

 //If a level marker is found close the current tag

 //and reduce the indent

 else {

 if(~tagsToClose.isEmpty()) {

 closeTag := tagsToClose.pop();

 indent -= “ “;

 buffy.append(closeTag);

 }

 continue;

 }

 //If there is a next level in the subtree

 //add a level marker and increase the indent

Andromeda: building e-Science data integration tools 21

 E := node.children();

 if(|E| > 1) {

 nodesStack.push("");

 indent += " ";

 }

 //Add all the children of the current node

 //to the stack

 for each e  E
 nodesStack.push(e);

 }

 //Close the root element

 buffer += "}</" + mediationSchemaNode.getName()

 + return buffer;

}

