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Rue du Doyen Marcel Roubault - B.P. 40
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Abstract

One of the major problem for the identification of industrial multi-input
muti-output (MIMO) systems is the too small variance of some signals
collected during several experiments. Usually, sufficient information exist
but are often dispersed among many data-files. In this case, it is difficult
to conciliate this information to build a single well adapted modgl. The
ALS procedure (Alternate Least Squares) has been performed in order to
solve this kind of problem. In the first part of this paper, the authors
present the principle of the ALS procedure ; the details of the complete
algorithm are given in part two. Then, based on some examples, a
comparison of the Prediction Error Method (PEM) with our new method
is presented.
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1. Introduction

During the last twenty years, the identification of continuous and discrete
MIMO systems has been the subject of many works of research. A brief
description of the main methods as well as the contribution of the
proposed method are presented below.

Let us consider a system with r inputs and s outputs. It can be
decomposed into s muti-input/single-output (MISO) systems. Each MISO
system comprises r single-input/single-output (SISO) subsystems ; the
output of a subsystem, also called partial output or intermediate output, is
linked to the corresponding MISO system input by the relation :

=B o o
yij(t) = AjQ ) uj(t-kj) e A (1)
where k;j are the delays, Ajj(q’") and Bjj(q!) are constant polynomials and

q-! represents the backward shift operator (g1 f(t) = f(t-1)) :

Ai@ =1+a5 Q! +.. + ajjm; ™ (2a)
Bij(q1) = bijo + bjji q'! + ... + byjn;; g (2b)

The outputs of the MIMO system are then described by the following
equation :

- Bi(q! :
yi(t) = J; ._A}:!(%T} uj(t-kj) Pkt 3)
To identify the parameters of the SISO system, several methods have
been developed. The main one is, without any doubt, the Least Squares
(LS) method whose the basic principles have been established by Gauss
in 1809 [8]. However, this method gives a biased estimator if the matrix
observation composed by the measures are correlated with the residuals.
Therefore, several methods have been proposed to solve this problem

among which we can cite the Generalised Least Squares (GLS) method
presented by Clark [2]. The least squares estimation of the transfer
function parameters of process and noise, using a single-stage estimator,
was developed by Talmon and Der Boom [15]. The two least squares
estimation and their recursive approximation were proposed by Pandya
and Pagurek [13]. The approximation on-line algorithm for maximum
likelihood identification of linear dynamic system, proposed by Furht and
Carapic [7], based on the application of quasilinearization technique. The
instrumental matrix methods whose one of them is proposed by Young
[17] based on the substitution of the output measurement by the simulated
outputs of an auxiliary model and those proposed by Banon [1] using the
instrumental matrix delayed observation.

All of these methods enable to identify the mono-variable systems easily.
Their extension to the MISO case is possible under the condition that we
use the common denominator reduction principle of the transfer functions
of the subsystems. Therefore, several methods give solutions to this
problem. Among them, we mention :

- The DU method, proposed by Diekmann and Unbehauen [3,4], whose
algorithm is composed by two identification phases. The first one consists
in the reduction on the common denominator of the transfer functions of
the subsystem and in the identification of the obtained parameters. The
second phase consists in estimating the intermediate outputs using the
parameters found in the first phase and identifying the actual parameters
using the estimated intermediate outputs.

- The GDU method presented by Rao, Dieckmann and Unbehauen [14],
based on the intermediate outputs estimation.

- The PEM (Prediction Error Method) which the presentation has been
done by Ljung [11].

Therefore, considerable attention has been paid in the literature to the
parameter estimation problem of MIMO system. Various methods have
been applied towards the solution of the problem. Gauthier and Landau
[9] discussed the recursive identification of MIMO system using a
normalized input-output description in terms of polynomial matrices
straight for wardly related to a canonical state space realization. A system
reference adaptive model approach has also been suggested by
Unbehauen and Rao [16]. For more details, a brief survey is presented by
Mukhopadhyay and al [12].

However, these methods give insufficient results in the case where the
collected information is disseminated on several measurement campaigns
that cannot be directly assembled. With the object to bring a solution to
this problem, we have developed the present method. In order to avoid
the over parametrisation of the form which uses the reduction to the
common denominator of the transfer functions, we start from Fkirin's
idea [6] and those of Kamoun and Titli [10], which consists to
decompose the MIMO system in MISO subsystems and then to estimate
the partial outputs of the MISO models after decomposing them in single-



input, single-output (SISO) models. The knowledge of these partials
outputs enable to identify the corresponding transfer function SISO
models.

The paper is organized as follows. In the first part, we present the general
principle of the method and its algorithm ; the details of the complete algo-
rithm are given in part two. Then, based on some examples, a comparison
of the Prediction Error Method (PEM) with our method is presented.

2. Presentation of the method
The ALS technique enables MIMO systems, which may be split into

MISO systems, to be identified. Such systems can be represented in block
diagrams (figure 1).
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figure | : model structure

The transfer function of each subsystem is described by the following po-
lynomials :

Bi@h = Zbia” “a)

Fiqh =1+ Ififijq-j (4b)
J- i
The relation between the n inputs u;(t) and the global output y(t) is :

B B,(q) B
y(t) =F;1f(3_; uy(t-ky) *F:(_;IT up(t - ko) + ... + F—:% ug(t- kp) (5)

where the k,, are the different transfer-function delays. The partial output
are defined by :

yilh = g’%&% ui(t-k;) e e 6)
Using the expression of the partial outputs, the global output is written as
well by :

y(©) = yi(t) + y2(t) + ... + ya(t) ()]

The expression (5) of the system output y(t) with respect to the different
parameters fi; and bj; is non-linear. To be able to apply a simple method
of estimation, we have to remove the coupling that exist between the
differént subsystems due to the fact that the sum of the intermediate
outputs is known and equal to y(t). This remark is the origin of the
method that we propose. The principle is based on the following
condition : if the intermediate output yi(t) of the subsystem "i" is known,
the estimation of the parameters f;; and b;; of the transfer function of this
subsystem is easily achieved. As the intermediate outputs are not
measured, they must be estimated from the inputs ; besides, the sum of all
these outputs has to be the same as the complete model output y(1). A two
levels relaxation algorithm enables to estimate gradually the intermediate
outputs : indeed, if (n-1) intermediate outputs are known then the last may
be estimated from the constraint (7).

3. The identification algorithm

Based on the preceeding two levels relaxation scheme, the whole
algorithm is now detailed. The scheme of the algorithm is shown on
figure 2. So that we can dispose of a certain number of degrees of
freedom, the constraint is changed into the following form :

y(1) = ayyi(t) + aaya()) + ... + Ctayn(t) 3)

In this relaxation, the parameters aj play the role of intervention
parameters that enable to modify the local identification of each subsystem
guaranteeing the respect of the constraint (4).

Before the first iteration 1, the algorithm begins with a first static
regression between the inputs and the output :

y() = o uy(t - ky) + 03 unt - ky) + .. + 0p up(t- ky) )

The T-values (ratio of each coefficient regression and its standard devia-
tion) of this regression are computed and stored. Then, to improve the
static model (9), the method proposes to replace each parameter o by a
transfer function, the parameters of which are estimated as follows : each
iteration consists first in building a temporary variable yo(t) regarded as an
estimation of the current partial output. We have now to choose an order
for the variables to be processed ; this can be done for example by using
the decreasing T-values order as a criterion. At iteration 1, suppose that
y1(t) is the first output to be calculated (because the t-value for u? is the
most expressive :

¥ = y@© - 0 u(t - ky) - ... - & up(t- k) (10)

Considering that y?(t) and y, (t) are similar, the knowledge of y?(t) and
uy(t - ky) allows us to identify By(q) and Fi(q) by using the SISO linear
model (6). B (q) and F}(q) are the first estimates of B(q) and Fi(q).
Then we can compute y,(t), the first estimate of y () :

1 B:(Q)
)= — wy(t-k 11
¥, (0 Fi@ uy(t-ky) (1)

Since initial values of partial ouiputs are unknown at this point, y]l (1) is
computed with null initial values.

The second part of iteration 1 is a static regression using the general
output y(t) and the estimated partial outputs y;(t) ; at this time, only y,(t)
has been computed :

yO =a! yl©) +a) uy(t - kp) + ... + 2} up(t-ky) 12)

This regression ends with iteration 1. At iteration 2, ALS reestimates y(t)
using the parameters o, which are better estimations of static gains than
the parameters o:io. ALS algorithm computes y,(t) until that the correlation
coefficient stops increasing. Then ALS computes y,(t). For instance, if
the correlation coefficient doesn't change after iteration 1, and of the
second partial output which must be computed is y,(t), then the temporary
variable yg(l). regarded as an estimation of this partial output, is defined

by :
Y20 =y® - af YO - o uz(t - ks) - ..o - 0 ug(t- k) (13)

Since B;(q) and Fg(q) are computed from equation (2) using yg(t) and
uz(t-k) ; it is now possible to generate y;(t) :

B2(q)
t-k 14
e T

2\q

yi0 =

At each iteration, only one partial output is reestimate while the others
keep their preceding value. thus we have :



yi®) = yj@) (15)

At the end of procedure, the last correlation coefficient computed from re-
gression (9) is stored ; then, after each partial output has been reestimated,
this correlation coefficient is compared to the current one. When no more
substantial change occurs, the processing is stopped.
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Classification of the inputs according to
their influence on the output

I

Selection of the most influent u; (t)

———
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1
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1
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1
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Figure 2 : organigram of the ALS

One of the advantage of the ALS technique gives the possibility of using
information from many campaigns. The concatenation of these ones in a
single file of measurements let some signal discontinuities appear ;
indeed, the value of a variable at the beginning of a measurement
campaign is not, usually, equal to the value of this variable at the end of
the preceding campaign. To take account easily for these discontinuities,
we use a recursive identification procedure of the parameters. Let's
assume the algorithm treats the intermediate output number "i". At first,
we identify b;; and f;j using the RLS method and the observations of the
first measurement campaign.

Then, we identify once again these parameters on the whole of the other
measurement campaign. The identification algorithm used in the i*h
measurement campaign will be initialised by the vector composed by the
parameters obtained at the end of the (i-1)! measurement campaigns. The
final result which will be kept is the one obtained at the end of the last
campaign when a vector parameters estimation is made. We can build an
estimation of y;(t) on the whole of the campaign (equation (6)). The
unknown initial conditions of y;(t) lay down a problem during its
estimation. A way 1o rise above this difficulty consists to work on the
measurement campaigns whose the first observations are constant values.
In this case, the relation that links the input u(t-k;) to the output y;(t) is a
proportionality relation, then the initial value of the y;(t) can be calculated
by multiplying the initial values of the inputs by static gains. Static gains
are computed after a first step (identification phases) using null initial
values. A second step using these initial values contributes improving the
precision of the parameters.

4. First example

This is a simulation example where the model structure is known :

b2
l+f2q+ quz

up(t) + usy(t) (16)

R, by
T e O T+14q

and where the parameter values are :

by =1 f, =-0.9

b2= 1 f2=‘1<5

h3=0,5 f3= 0.7
fy=-0.95

The output y(1) and the three corresponding inputs uj(t) are shown on fi-
gure 3. As this is a simulation example, the partial outputs y;(t) are also
known and they are represented on figure 4. In this example, the output is
free-noise.
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100} :

Output and partiel outputs
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80}
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Figure 4



Figure 5 shows the comparison between the output and the modelized
output after the different steps, and the corresponding residues. At the
first step, the model is calculated using null initial conditions, steps 2, %
4 and 5 use at each time the initial conditions computed with the
parameters given by the preceding step ; there is a perfect agreement
between the measured output and the model output as the last step.

The Prediction Error Method proposed by MATLAB software (in
Identification-Toolbox) has been tested on the same data and in the same
conditions, and the simulation of the model, which was been poorly
identified is also shown on figure 5.
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Figure 5

Table 1 represents the values of the parameters. At each step (the first co-
lumn), this table gives the corresponding values of the parameters
(column 2 to 8). The last column contains the correlation coefficient
between the measured output and the model output. The line 6 contains
the exact values and line 7 contains the parameters identified by PEM.

step | bl b2 b3 fl 2 3 f4 p

1 0.918 |0.917 |0.574 |-0.908)-1.527]0.589 |-0.931]0.643
2 10.975 |0.992 |0.506 |-0.902]-1.501]0.679 |-0.950{0.974
3 [0.996 | 1.005 |0.499 |-0.895]-1.499]0.698 |-0.9510.999
4 0.999 | 1.003 |0.499 |-0.899]-1.499]0.699 |-0.950]0.999
S 1.000 | 1.000 | 0.500 |-0.900{-1.500]0.700 |-0.950] 1.000
6 1.000 | 1.000 | 0.500 |-0.900{-1.500]0.700 |-0.950

7 |3.465 | 1.258 |0.775 |-0.879]-1.207] 0.207 | -0.780] 0.246

Table 1 : Parameter values (p is the correlation coefficient)

5. Second example

The model and the parameters are the same as the preceding example. The
only difference is that the output is now added up with a white noise
(standard deviation 6=1). Figure 6 shows that in spite of difficult condi-
tions (output with noise and very few observations) the procedure does
still not diverge. The parameter values are stored in table 2.

150 — Output and model at step 5 5 Residues
100 |+ 4
\M\-’V\/\‘h’a 0 4
50+ R
0 -5
0 50 100 0 50
Figure 6
step|by [bp b3 |fy S 1 fy P
1 0.414 | 0.821 |0.577 | -0.916] -1.438| 0.502 | -0.935] 0.640
v 0.463 | 0.914 | 0.524 | -0.935|-1.465| 0.614 | -0.950| 0.954
3 0.471 | 0.899 | 0.514 |-0.961|-1.458] 0.652 | -0.945)| 0.998
4 |0.478 [0.922 | 0.516 | -0.926| -1.462| 0.647 |-0.953|0.989
& 0.471 10.903 | 0.515 |-0.960|-1.457]| 0.651 |-0.944|0.989
6 1.000 | 1.000 | 0.500 | -0.900| -1.500] 0.700 | -0.950
Table 2

6. Third example

This is still a simulation example and the model structure is the same :

by by b3
e 3 (T T BT T T b T R
The parameter values are now :
by =1 f; =-09
by=0.5 fa=-15
by=2 fy= 0.7
fq4 =-0.95

This file is composed of a first recording from observation 1 to 50, and a
second from observation 51 to 100. The model and the coefficients are the
same for the two recordings, but the data are different ; the initial
conditions of the second recording are different of the final conditions of
the first one. The algorithm is informed that there is a discontinuity at the
observation 50, because it is known that the data have been obtained by
the concatenation of two records. The output is free-noise. The data are
represented in figure 7 (due to the scale factor, only the output clearly
appears on this figure).

100



The results of identification are represented in figure 8. We remark that
the discontinuity is progressively taken into account. At the step 3, the
discontinuity between the two records is perfectly appreciated. In table 3
are stored the values of the parameters at each step. For step 1, the change
at time 50 has not been taken into account ; this will be done in the
following steps.
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step|bl |b2  [b3 |fi fp |f3 fa P
1 0.806 | 0.430 | 1.687 |-0.933] -1.152] 0.207 -0.960| 0.680
2 1.001 |0.516 | 2.074 | -0.947|-1.337| °.559 |-0.948 0.998
3 0.969 |0.513 | 2.063 |-0.907|-1.418] 0.642 -0.948 1.000
4 0.987 | 0.502 | 2.004 | -0.900] -1.497{ 0.698 -0.949| 1.000
5 1.000 | 0.500 | 1.999 |-0.900] -1.500| 0.699 |-0.950 1.000
6 1.000 | 0.500 | 2.000 | -0.900| -1.500] 0.700 -0.950
Table 3

7. Conclusion

This paper introduces a new identification procedure that is well adapted
to take into account information arising out of different files ; but even
when working on a single file, the results obtained are comparable to
those of the classical methods. This procedure has been performed on
many simulation cases and on industrial processes, and we noticed only a
few cases of divergence occurrences compared to classical methods.

However, some problems probably require further research. For
example, the model is only deterministic and does not include the
influence of the noises acting on the process.
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