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It has been recently found that the equations of motion of several semiclassical systems must take
into account terms arising from Berry phases contributions. Those terms are responsible for the
spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous
media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum
systems may be affected by Berry phase terms. It is therefore important to find a general procedure
allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This
article presents a general diagonalization method at order h̄ for a large class of quantum Hamiltonians
directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates
and momentum operators naturally arise during the diagonalization procedure. This leads to new
equations of motion for a wide class of semiclassical system. As physical applications we consider
here a Dirac particle in an electromagnetic or static gravitational field, and the propagation of a
Bloch electrons in an external electromagnetic field.

PACS numbers:

I. INTRODUCTION

Since the seminal work of Berry [1], the notion of Berry phase has found several applications in branches of
quantum physics such as atomic and molecular physic, optic and gauge theories. Most studies consider the geometric
phase that a wave function acquires when a quantum mechanical system has an adiabatic evolution. Yet, the Berry
phase in momentum space has recently found unexpected applications in the topic of spintronics. Such a term may
indeed be responsible for a transverse dissipationless spin-current in semiconductors in the presence of electric fields
[2]. This effect is a particular case of the Spin-Hall effect which is now predicted and observed in many different
physical situations and can be interpreted at the semiclassical level as due to the influence of Berry connections on
semiclassical equations of motions of spinning particles, like electrons in electric [3] or magnetic field [4]. In the above
cited examples, the semiclassical equations of motion where derived from an approximate semiclassical Hamiltonian
in a representation where this latter is diagonal. It was then shown that a noncommutative geometry, originating
from the presence of a Berry phase which turns out to be a spin-orbit coupling, underlies the semiclassical dynamics.
Spin-orbit contributions on the propagation of light has also been the focus of several other works [3, 5, 6] and has
led to a generalization of geometric optics called geometric spinoptics [7].

Semiclassical methods play a very important role in solid state physics too, in studying the dynamics of electrons
to account for the various properties of metals, semiconductors and insulators [8]. In a series of papers [9] (see also
[10]), a new set of semiclassical equations with a Berry phase correction was proposed to account for the semiclassical
dynamic of electrons in magnetic Bloch bands (in the usual one band approximation). These equations were derived
by considering a wave packet in a band and using a time-dependent variational principle in a Lagrangian formulation.
The derivation of a semiclassical Hamiltonian was shown to lead to difficulties in the presence of Berry phase terms
[9]. The apparent non-Hamiltonian character of the equations of motion with Berry phase corrections led the authors
of [11] to conclude that the naive phase space volume is not conserved in the presence of a Berry phase, violating
thus Liouville’s theorem. This point of view was immediately criticized by several authors using different approaches
[12, 13, 14]. In [15] we solved the debate by presenting an alternative approach for the derivation of the equations
of motion of an electron in magnetic Bloch bands based on a direct semiclassical diagonalization of the full quantum
Hamiltonian. This Hamiltonian approach allows deriving rigorously the semi classical equations of motion, including
explicitly the role of the Berry curvature and showed many similarities with the description of a Dirac electron
in an electromagnetic field as in [4]. In the present article the reader will find the details of the diagonalization
sketched in [15] . The common feature of the Hamiltonian formulations discussed above is that a noncommutative
geometry underlies the algebraic structure of both coordinates and momenta. Actually, a Berry phase contribution
to the dynamical operators stems from the representation where the kinetic energy is diagonal (for instance Foldy-
Wouthuysen or Bloch representation). The components of the coordinate and momentum become noncommutative
when interband transitions are neglected (adiabatic motion).
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The previous discussion shows that Berry phase terms could be present in the semiclassical equations of motion of
several physical systems ranging from electron in vacuum, in solid or in semiconductor to photon in inhomogeneous
media, with potential application in the fields of spintronic and spinoptic. This in turn called for a general semiclassical
Hamiltonian formalism from which semi classical dynamics of a quantum system can be derived. This paper presents
a general method of diagonalization at order h̄ for a quantum mechanical Hamiltonian presenting bands structure, like
for electrons in a periodic potential or for Dirac (massive or massless) like-Hamiltonian. Starting with an Hamiltonian
depending only on an invariant momentum P and whose diagonalization is known, we can introduce a dependence
in the variable R and diagonalize the Hamiltonian in four steps (discussed in the text). During this process of
diagonalization, we show that both position and momentum operators acquire a Berry-phase contribution making both
the coordinate and momentum algebra noncommutative, in contrast with the approach of [9], where the momentum is
always invariant. As physical applications and to check to validity of our method we further consider the case of Dirac
particle in an electromagnetic field and compare with the semiclassical diagonalization given in [4]. We also consider
the case of a Dirac particle in a static gravitational field where we can compare with the articles [16, 17]. As a last
application, we detail the case of the propagation of a Bloch electron (spinless) in an external electromagnetic field
already discussed in [15]. This various physical applications show that our semiclassical Hamiltonian diagonalization
approach is potentially promising since it unifies several apparently unrelated problematic in one formalism.

The paper is organized as follows. In section II we develop our formalism in the case of a general Hamiltonian
which has an energy bands structure. We then derive the very general equations of motion in this case. Section III is
devoted to the application of our method to the case of the Dirac Hamiltonian in an electromagnetic field but in a flat
space, and to the diagonalization of the Dirac Hamiltonian in a symmetric static gravitational field, allowing us to
check the validity of our method. Section IV retrieves the equations of motion for an electron in a periodic potential
within our general set up. Section V is for the conclusion.

II. A GENERAL PROCESS OF SEMICLASSICAL DIAGONALIZATION.

In this section we present the method to diagonalize at the semiclassical order (h̄) a quantum mechanical system
with canonical variables P and R, where P is the generator of some translation symmetry, the usual momentum for
instance, or the magnetic translation operator in solid state Physics. We assume further that the Hamiltonian can be
written as a matrix of a certain size H0 (P,R). The archetype example is the Dirac Hamiltonian, but in appendix
2 we show how a spinless electron in a periodic potential fits also in this set up. Our purpose is to solve the exact
diagonalization for H0 (P,R) at order h̄, when the diagonalization of a fictitious Hamiltonian H0 (P, r) is known for
a parameter r (replacing R) which is supposed to commute with P (for instance this may be the Foldy-Wouthuysen
transformation [18] for a free Dirac particle). Then we will show how to compute the quantum corrections (at leading
order in h̄) that were neglected during this formal diagonalization (where position and momenta where considered
as commuting quantities). The idea behind this procedure is that it is much easier to solve the diagonalization for
H0 (P, r), as seen in our applications, and only then turn to H0 (P,R).

A. Preliminary : Products of operators series.

To develop our process of diagonalization, the semiclassical expression of products of symmetrized expressions
S (P,R) depending on the canonical couple of variables P and R is required. These expressions are also assumed to
have series expansions in P and R whose coefficients can be of a matrix form (this last assumption allowing to deal
with Dirac Hamiltonians). Let us consider two such expressions S1 (P,R) and S2 (P,R), supposed to be symmetrized
in P and R. By symmetrization, we mean that each expression has been written in a form where all the powers
of P have been put half on the left and half on the right of the expression. Our aim is now to write the product
S1 (P,R)S2 (P,R) as a symmetric expression in terms of P and R. This is easy to realize at order h̄, since in that
case, pushing half of the powers of P in S2 (P,R) on the left and half the powers of S1 (P,R) on the right is equivalent
to the computation of some commutators. One can easily see that at order h̄

S1 (P,R)S2 (P,R) = Sym(S1 (P,R)S2 (P,R)) +
i

2
h̄Asym∇Rl

∇P l [S1 (P,R)S2 (P,R)] (1)

where Sym(S1 (P,R)S2 (P,R)) is the symmetrized expression for the product, and Asym is defined through

Asym∇Rl
∇P l [S1 (P,R)S2 (P,R)] = ∇Rl

S1 (P,R)∇P lS2 (P,R) −∇P lS1 (P,R)∇Rl
S2 (P,R) (2)
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This formula can be easily generalized to an arbitrary product of n terms, but for the sequel of this paper, only three
will be needed

S1 (P,R)S2 (P,R)S3 (P,R) = Sym(S1 (P,R)S2 (P,R)S3 (P,R))

+
i

2
h̄Asym∇Rl

∇P l [S1 (P,R)S2 (P,R)] S3 (P,R)

+
i

2
h̄S1 (P,R)Asym∇Rl

∇P l [S2 (P,R)S3 (P,R)]

+
i

2
h̄S1 (P,R)Asym∇Rl

∇P l

[
S1 (P,R)S2(P,R) S3 (P,R)

]
(3)

where

Asym∇Rl
∇P l

[
S1 (P,R)S2(P,R) S3 (P,R)

]

= [∇Rl
S1 (P,R)] S2 (P,R)∇P lS3 (P,R) − [∇P lS1 (P,R)] S2 (P,R)∇Rl

S3 (P,R) (4)

B. Diagonalization with a parameter r

Let us consider a general Hamiltonian H0 (P,R) which admits a series expansion in P and R written here for
convenience in a symmetrical form. To perform the semi classical diagonalization of this operator, we first consider
in this subsection a fictious Hamiltonian H0 (P, r) where a parameter r commuting with P has replaced the operator
R. We further assume that H0 (P, r) is known to be exactly diagonalized through a matrix U (P, r) ≡ U .

As an typical example we can consider the following kind of Dirac Hamiltonian

H0 = α. (P − A(r))+βm (5)

where A(r) mimics a formal magnetic potential. The potential A(r) being R independent, it only shifts the momentum
for each value of r. As a consequence, the usual Foldy Wouthuysen [18] transformation expressed in terms of P − A

instead of P, diagonalizes the Dirac Hamiltonian exactly.
Going back to the general case, the diagonalization of H0 ( P, r) will be written as

ε (P, r) = U (P, r)H0 (P, r)U+ (P, r) (6)

where ε (P, r) is a diagonal matrix. For later use, let us notice that we have U (P, r)PU+ (P, r) = P.
To gain some hints from our initial diagonalization, let us also remark that if ε (P, r) can be expanded in series as

ε (P, r) =
∑∏

i

(
Ai

ki
(r).Pki

)
(7)

where the Ai
k(r) are some matrices commuting with P, it can be written

ε (P, r) =
1

2

[
∑∏

i

(
Ai

ki
(r)
)∏

i

Pki +
∏

i

Pki

∏

i

(
Ai

ki
(r)
)
]

. (8)

Note moreover that in general, the diagonalization actually involves a symmetrization process

ε (P, r) =
∑ 1

n!

∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r).Pσ(ki)

)
(9)

where n! is a generic notation to denote the number of permutations involved in exchanging the indices ki. In practice
it will never be needed. As an example, think of the Dirac Hamiltonian diagonalization, which involves some products
α.Pα.P, rearranged as

1

2
[αiPiαjPj + αjPjαiPi] = [αiαj + αjαi] PiPj (10)
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Since the Ai
k(r) do not depend on R, one has also

ε (P, r) =
∑ ∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r).Pki

)
=

1

2

∑ 1

n!




∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r)
)



∏

i

Pki

+
1

2

∑∏

i

Pki
1

n!




∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r)
)


 (11)

The important consequence here is that the matrix




∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r)
)


 (12)

is thus Diagonal. Let us note that these symmetrizations are unnecessary here, but will be of a practical interest
when dealing with the exact diagonalization.

C. Introducing the R dependence. The transformation Ansatz.

We are now going to reintroduce R into H0 in order to diagonalize exactly H0 (P,R) at the h̄ order. In the
following symmetrization in R and P will be assumed in all expressions. To find the diagonalization transformation
for H0 (P,R), we will use the following method. First notice that the Hamiltonian H0 (P,R) is ”almost” diagonalized,
that is diagonalized at zeroth order in h̄, through the transformation U (P,R) (which is also symmetrized given our
convention).

However, through the symetrization process, the matrix U (P,R) does not remain unitary. As a consequence, we
will rather consider a matrix U (P,R) + X , where X is a contribution of order h̄ that ensures the unitarity of the
transformation at order h̄.

The matrix X can be be explicitly computed. Actually, from the unitary conditions

(U(P,R) + X)
(
U+(P,R) + X+

)
= 1 (13)

and

(
U+(P,R) + X+

)
(U(P,R) + X) = 1 (14)

or equivalently

U(P,R)U+(P,R) + XU+(P,R) + U(P,R)X+ = 1

U+(P,R)U(P,R) + U+(P,R)X + X+U(P,R) = 1 (15)

one see that X should satisfies the condition

U+(P,R)U(P,R) + U+
(
XU+(P,R) + U(P,R)X+

)
U = 1 (16)

To solve this equation, let us first notice that U(P,R)U+(P,R) 6= 1 since U(P,R) is not unitary. The crucial point
here and in the sequel of this paper is the computation of a product of expressions in which the R dependence has
been introduced. To do so let us use the initial relation

U(P, r)U+(P, r) = 1 (17)

expanded in a symmetric series (as we did for the Hamiltonian)

U(P, r)U+(P, r) =
1

2

∑


 1

n!

∑

σ∈permutations

∏

i

(
Bi

σ(ki)
(r)
)



∏

i

Pki

+
1

2

∑∏

i

Pki



 1

n!

∑

σ∈permutations

∏

i

(
Bi

σ(ki)
(r)
)


 = 1. (18)
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Therefore the series expansion
∑[

1
n!

∑
σ∈permutations

∏
i

(
Bi

σ(ki)
(r)
)]∏

i P
ki reduces to one constant term : the

identity matrix.
Now, going back to U(P,R), we use the symmetrization formula (1)

U(P,R)U+(P,R) =
1

2

∑


 1

n!

∑

σ∈permutations

∏

i

(
Bi

σ(ki)
(r)
)



∏

i

Pki

+
1

2

∑∏

i

Pki



 1

n!

∑

σ∈permutations

∏

i

(
Bi

σ(ki)
(R)

)




+
i

2
h̄Asym∇Rl

∇P l

[
U+(P,R)U(P,R)

]
(19)

Since our result about the recombinations of the series expansion of
[∑

σ∈permutations

∏
i

(
Bi

σ(ki)
(r)
)]

applies also to
[∑

σ∈permutations

∏
i

(
Bi

σ(ki)
(R)

)]
after replacing r by R, one has :

U(P,R)U+(P,R) = 1 +
i

2
h̄Asym∇Rl

∇P l

[
U(P,R)U+(P,R)

]

= 1 −
i

2h̄
[APl

,ARl
] (20)

where we have defined the Berry phases as

AR = ih̄U(P,R)∇P U+(P,R)

AP = −ih̄U(P,R)∇RU+(P,R). (21)

Similarly, we have also:

U+(P,R)U(P,R) = 1 +
i

2
h̄Asym∇Rl

∇P l

[
U+(P,R)U(P,R)

]

= 1 − U+(P,R)
i

2h̄
[APl

,ARl
] U(P,R) (22)

Let us note that, as can be checked easily, the Berry phases are Hermitian. So is i
2h̄

[APl
,ARl

]. Therefore we can
solve our problem with

XU+ (P,R) =
i

4h̄
[APl

,ARl
]

U (P,R)X+ =
i

4h̄
[APl

,ARl
] (23)

Let us make an important remark at this point. Our choice for X is obviously not unique. Actually, it has been
chosen to ensure the unitarity of the transformation and to obtain a transformation that reduces to the initial one
when P and R do commute. We could thus add to X an expression like δXU where δX is anti-Hermitian. It is
easy to see that the operator U (P,R) + X + δXU is still unitary. However, we will soon see that this non unicity is
irrelevant and that our choice is sufficient to perform the diagonalization at order h̄.

D. The quasidiagonalization

We will now consider the following quasi-diagonalization transformation
[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]
(24)

To compute this last expression, decompose it at the first order in h̄ as

U (P,R)H0 ((P,R)) U+ (P,R)

+XH0 (P,R)U+ (P,R) + U (P,R)H0 (P,R)X+

≃ U ((P,R))H0 ((P,R))U+ ((P,R)) + XU+ ((P,R)) ε ((P,R))

+ε (P,R)U (P,R)X+ (25)



6

Let us first have a look to U (P,R)H0 (P,R)U+ (P,R) and consider it, as before, as a series of products of operators

U (P,R)H0 (P,R)U+ (P,R) =
∑∏

i

(
Ai

ki
(R) .Pki

)
(26)

We use the same trick as in subsections B and C, and start the symmetrization process by first writing the non
symmetrized series expansion

U (P,R)H0 (P,R)U+ (P,R) =
∑ 1

n!

∑

σ∈ permutations

∏

i

(
Ai

σ(ki)
(R) .Pσ(ki)

)
(27)

If the matrices Ai
σ(k) (R) were commuting with the Pσ(k) we would recover the series expansion of ε (P,R) given in

the subsection B. The variable R being then seen as a parameter, it would not prevent us from diagonalizing exactly.
But now, since, R do not commute with P, one has rather

U (P,R)H0 (P,R)U+ (P,R) =
∑ 1

n!

∑

σ∈ permutations

∏

i

(
Ai

σ(ki)
(R) .Pσ(ki)

)

=
1

2

∑


 1

n!

∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(R)

)



∏

i

Pki

1

2

∑∏

i

Pki



 1

n!

∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(R)

)


+ [ commutators] (28)

We can compute the first two terms of the right hand side by the same trick as before. Actually, by construction, the
coefficients of the series expansion of




∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(R)

)


 (29)

in the variable R, are the same as the coefficients (which are diagonal) of the expansion of




∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(r)
)


 (30)

in the parameter r. As a consequence,

1

2

∑


 1

n!

∑

σ∈permutations

∏

i

(
Ai

σ(ki)
(R)

)



∏

i

Pki +
1

2

∑∏

i

Pki



 1

n!

∑

σ∈ permutations

∏

i

(
Ai

σ(ki)
(R)

)


 (31)

is the series expansion of ε (P,R), the powers of P being rejected symmetrically to the left and to the right.

As an example, consider again the case of the Dirac Hamiltonian with an electromagnetic field. The free
”Benchmark” case is ε2 (P) = P2, and given our conventions, replacing P by P− A(R) leads us to define

ε2 (P − A(R)) = P2 − A(R).P − P.A(R) + A2(R), which is simply the usual operator (P − A(R))
2
. By the same

way, we obtain as a series expansion

ε (P − A(R)) = ε (P) −
1

2

(
A(R).

P

P2
+

P

P2
.A(R)

)
+

1

4

[
1

P2
A2(R) + A2(R)

1

P2

]
+ ... (32)

The last term in the right hand side of (28) involves just half the commutators obtained in pushing the momentum
operators to the left or the right As explained in the subsection A Eq.(3), they are simply given by

[commutators] =
i

2
h̄Asym∇Rl

∇P l

[
∑∏

i

Ai
ki

(R) .Pki

]
=

i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]
(33)
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As a consequence, we can write

U (P,R)H0 (P,R)U+ (P,R) = ε (P,R) +
i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]
(34)

A lengthy but straightforward computation presented in appendix 1 leads to

U (P,R)H0 (P,R)U+ (P,R) = ε (P,R) +
1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
[ε (P,R) ,APl

]ARl
+

i

2h̄
[ε (P,R) ,ARl

]APl

+
i

2h̄
[ARl

,APl
] ε (P,R) , (35)

where we have introduced the transformed variables at order h̄ through the Berry Phases

r = (U (P,R) + X)R
(
U+(P,R)+X+

)
(36)

≃ R +
[
ih̄U (R)∇P U+ (R)

]

= R + AR

p = U (P,R)PU+(P,R) (37)

≃ P −
[
ih̄U (P,R)∇RU+ (P,R)

]

= P + AP (38)

To end up with the quasi-diagonalization, we have to add the expression

XU+ (P,R) ε (P,R) + ε (P,R) U (P,R)X+ (39)

Given the expression obtained previously for XU+ (P,R), we have thus

XU+ (P,R) ε (P,R) + ε (P,R)U (P,R)X+

= −
i

4h̄
[ARl

,APl
] ε (P,R) −

i

4h̄
ε (P,R) [ARl

,APl
] (40)

We can thus ultimately write the diagonalization process as :

[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]
= ε (P,R) +

1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
[ε (P,R) ,APl

]ARl
+

i

2h̄
[ε (P,R) ,ARl

]APl

+
i

4h̄
[[ARl

,APl
] , ε (P,R)] (41)

Let us conclude this section by noting that our transformation is not a diagonalization at order h̄, since it includes non
diagonal contributions of order h̄ through the Berry phases ARl

and APl
, justifying the name quasi-diagonalization.

However, the next paragraph will show that these non diagonal terms are only an artifact. Actually, projecting our
transformed Hamiltonian on the diagonal will in fact yield the true diagonalization.

E. The ”Exact” semiclassical diagonalization

As mentioned in subsection B, our choice of transformation U ( P,R) + X is somewhat arbitrary, however it is
sufficient to perform the exact diagonalization as shown in the present paragraph. Actually, consider the-unknown-
true Diagonalization unitary operator U1 (P,R). Given that both U1 (P,R) and U (P,R)+X are equal at the zeroth
order in h̄, that is both reduce to U (P, r) when R → r, the difference

δX = U1 (P,R) − U (P,R) − X (42)
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is of order h̄. Moreover U1 (P,R) and U (P,R) + X being both unitary, δX is easily seen to be antihermitian. As a
direct consequence, one can check that the difference between the exact diagonalization and our approximate one

[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]
−
[
U1 (P,R)H0 ( P,R)U+

1 (P,R)
]

(43)

is equal to

[δX, ε (P,R)] (44)

Given that ε (P,R) is diagonal, this last term is always non diagonal. As a consequence, if we project on the diagonal
the difference of our transformations, one gets 0.

[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]+
−
[
U1 (P,R)H0 (P,R)U+

1 (P,R)
]+

= 0 (45)

Here we have denoted the projection on the diagonal by a bracket with the upperscript +. This notation must not
to be mistaken with the Hermitian conjugate, and has been chosen here to conform with the usual conventions for
Berry Phases.

Now, given that U1 (P,R)H0 (P,R)U+
1 (P,R) is truly diagonal, one has

[
U1 (P,R)H0 (P,R)U+

1 (P,R)
]+

= U1 (P,R)H0 (P,R)U+
1 (P,R) (46)

so that ultimately

[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]+
= U1 (P,R)H0 (P,R)U+

1 (P,R) (47)

We can therefore conclude, that the projection of our quasi-diagonalized Hamiltonian, by eliminating thus the non
diagonal parts, is in fact the true diagonalized Hamiltonian at order h̄. Let us remark that we have just succeeded
here to justify the adiabatic approximation.

We can now perform the usual one band projection to get the following Hamiltonian :

[
(U (P,R) + X)H0 (P,R)

(
U+ (P,R) + X+

)]+
= ε (P,R) +

1

2

[
A+

Rl
∇Rl

ε (P,R) + ∇Rl
ε (P,R)A+

Rl

]

+
1

2

[
A+

Pl
∇Pl

ε (P,R) + ∇Pl
ε (P,R)A+

Pl

]

+

{
−

i

2h̄
[ε (P,R) ,APl

]ARl
+

i

2h̄
[ε (P,R) ,ARl

] APl

}+

(48)

which is equal to

ε
(
P+A+

P ,R+A+
R

)
+

i

2h̄
[[ε ( P,R) ,ARl

]APl
− [ε (P,R) ,APl

] ARl
]

≃ ε
(
p+, r+

)
+

i

2h̄

[[
ε
(
p+, r+

)
,ARl

]
APl

−
[
ε
(
p+, r+

)
,APl

]
ARl

]+
(49)

where we have defined the projected dynamical operators (on the diagonal)

r+ = R + A+
R (50)

p+ = P + A+
P (51)

F. The equations of motion

Given the Hamiltonian derived in the previous subsection, the equations of motion can now be easily derived. As
usual [3, 15] the dynamics equations have to be considered, not for the usual position and momentum, but rather for
the projected variables r+ and p+ . Actually, these latter naturally appear in our diagonalization process at the h̄
order. Let us remark, as now well known, that their components do not commute any more. Actually

[
r+
i , r+

j

]
= iΘrr

ij = ih̄
(
∇Pi

A+
Rj

−∇Pj
A+

Ri

)
+
[
A+

Rj
,A+

Ri

]
(52)

[
p+

i , p+
j

]
= iΘpp

ij = −ih̄
(
∇Ri

A+
Rj

−∇Rj
A+

Ri

)
+
[
A+

Pi
,A+

Pj

]
(53)

[
p+

i , r+
j

]
= −ih̄δij + iΘpr

ij = −ih̄δij − ih̄
(
∇Ri

A+
Rj

+ ∇Pj
A+

Pi

)
+
[
A+

Pi
,A+

Rj

]
(54)
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the Θij being the so called Berry curvatures.
Using now our Hamiltonian yields directly to general equations of motion for r+, p+ :

ṙ+ = −
i

h̄

[
r+, ε

(
p+, r+

)]
−

i

h̄

[
r+,

i

2h̄

[[
ε
(
p+, r+

)
,ARl

]
APl

−
[
ε
(
p+, r+

)
,APl

]
ARl

]+
]

ṗ+ = −
i

h̄

[
p+, ε

(
p+, r+

)]
−

i

h̄

[
p+,

i

2h̄

[[
ε
(
p+, r+

)
,ARl

]
APl

−
[
ε
(
p+, r+

)
,APl

]
ARl

]+
]

(55)

where the commutators can be computed through the previous commutation rules between r+and p+. The last term
in each equation represents a contribution of ”magnetization” type and has the advantage to present this general
form whatever the system initially considered. However, to put some flesh on these equations, we now turn to several
examples covered by our formalism.

III. APPLICATION 1 : THE DIRAC ELECTRON.

To apply our previous formalism, we will consider two cases of Dirac Hamiltonians : The electromagnetic field and
the static symmetrical gravitational field. These two cases have already been treated by different methods ([4] and
[16, 17]), but in the second case (gravitational field) no reference to the Berry phases was made previously.

A. The Dirac electron in an electromagnetic field

The diagonalization of the Dirac Hamiltonian in the presence of an electromagnetic field is a difficult problem
which was solved only approximately in the non-relativistic limit in an m−1 expansion. Another approach consists in
diagonalizing the Hamiltonian at the semi-classical order as was done in [4] using an approximate Foldy-Wouthuysen
transformation [18]. From the semi-classical Hamiltonian the equations of motion were derived showing a topological
spin-transport effect due to the presence of the Berry phases. Here we propose to apply our general formalism for the
semi-classical diagonalization of the Dirac Hamiltonian to show the effectiveness of our general method.

We thus start with the following Hamiltonian :

H0 (P,R) = α. (P − A(R)) + βm + V (R) (56)

Replacing R by the parameter r, A(r) just shifts the momentum, so that we can diagonalize H0 (P, r) through the
well known Foldy-Wouthuysen transformation

U (P, r) =
E + m + βα. (P− A(r))√

2E(E + m)
(57)

whereE =

√
(P − A(r))

2
+ m2. In this context, introducing the dependence in R we define the Berry phases at first

order in h̄

ARk
= ih̄U∇Pj

U+ = h̄
iα. (P − A(R)) Piβ + iβE(E + m)αi − EΣ× (P − A(R))

2E2(E + m)
(58)

and

APl
= −ih̄U∇Rj

U+ = ∇Rl
Ak(R)ARk

(59)

where E will now denote the symmetrized form of E =

√
(P−A(R))

2
+ m2 (here at zeroth order in h̄ we can

consider that P and R commute). Let us also denote ε = βE. Using our general method yields the diagonalized (i.e.
proportional to β) energy

ε
(
p+, r+

)
+

i

2h̄

[[
ε
(
p+, r+

)
,ARl

]
APl

−
[
ε
(
p+, r+

)
,APl

]
ARl

]+
+ [V (r)]

+
(60)

with ε (p+, r+) = β

√
(p+−A(r+))

2
+ m2. Using the expressions for the Berry phases, the hamiltonian can be

rewritten as:

ε
(
p+, r+

)
+

[
−

i

2

[
ε(K), U∇Pi

U+
]
εijkU∇Pj

U+

]+
δBk(r̂+)

h̄
+ [V (r)]+ (61)
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Moreover, a straightforward computation yields the correction to ε (p+, r+) :

[
−

i

2

[
ε(K), U∇Ki

U+
]
.εijkU∇Kj

U+

]+
δBk(r̂+)

h̄
+ [V (r)]

+
= −

β

2E
Σ.B −

β

E
L+.B + V (r+) (62)

at the first order in h̄, where L+ is defined as :

L+ =
(P × Σ)

2E(E + m)
= P×

[
iU∇KU+

]+
= P×A+ (63)

and A+
R is the Berry Connection

A+
R = h̄

(P− A(R)) × Σ

2E(E + m)
(64)

As a consequense, the diagonal Hamiltonian to be considered is

ε
(
p+, r+

)
+

β

2E
Σ.B −

β

E
L+.B + V (r+) (65)

which is the Hamiltonian considered in [4] which leads of course to the dynamics described in that paper.

B. The electron in a static gravitational field

The behaviour of Dirac particles in static gravitational field is an important issue. Different approaches for the
diagonalization of the Hamiltonian leads to contradictory results in particular with regard to the existence of a
dipole spin-gravity coupling [16, 17]. It is not our goal to discuss this specific point but we study the semiclassical
diagonalization of the Hamiltonian to get the velocity and momentum evolution. We can in particular compare our
results with the article [17] who uses a Foldy-Wouthuysen tranformation.

The interaction of a Dirac particle with a symmetric static gravitational field (g00 = V (R), gi0 = 0, gij = δijF (R))
is described by the Hamiltonian

H0 =
1

2
(α.PF (R) + F (R)α.P) + βmV (r) (66)

The Foldy Whouthuysen transformation when R is replaced by a parameter r is given by

U (P, r) =
E + mV (r) + βF (r)α.P√

2E(E + mV 2(r))
(67)

with E =
√

F 2(r)P2 + m2V 2(r). This is quite the same as the free particle transformation. As a consequence
introducing again the R dependence yields the non projected Berry phases for the position and the momentum
operators :

ARk
= ih̄U∇Pj

U+ = h̄
iF 3(R)α.PPiβ + iβF (R)E(E + mV (r))αi − EF 2(R)Σ× P

2E2(E + mV (r))
(68)

APk
= −ih̄U∇Pj

U+ = −h̄i
m∇φβF 2(R)α.P

E2
(69)

with φ = V
F

, and Σ the spin of the electron.
The expressions for ARk

and APk
allow us ultimately to define the semi classical transformation : U (P,R) +

i
4h̄

[APl
,ARl

] U (P,R) and to compute the diagonalized Hamiltonian

ε
(
p+, r+

)
=
√

F 2(r+)P2 + P2F 2(r+) + mV 2(r+) −
F 3(r+)

2E2
mh̄∇φ(r+). (P × Σ) (70)

where the dynamical variables are obtained through the projection

r+ = R+A+
R = R−h̄

F 2(R)Σ× P

2E(E + mV (R))
(71)

p+ = P+A+
P = P (72)
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The commutators of these variables are thus

[
r+
i , r+

j

]
= iΘrr

ij (73)
[
p+

i , r+
j

]
= −ih̄δij + iΘpr

ij (74)
[
p+

i , Pj

]
= 0 (75)

with

Θrr
ij = −

h̄2F 3(r+)εijk

2ε3 (p+, r+)

(
mφ(r+)Σk +

F (r+) (Σ.p+)p+
k

ε (p+, r+) + mV (r+)

)
(76)

Θpr
ij = −

h̄2F 3(r+)

2ε3 (p+, r+)
m∇iφ(r+)

(
Σ× p+

)
j

(77)

Θpp
ij = 0 (78)

One can check, after developing r+as a function of R and the Berry phase, that our Hamiltonian coincides with the
one given in [17] at order h̄. This confirms also the validity of the Foldy Wouthuysen approach asserted in [17] in
opposition with the transformation proposed in [16]. However our approach is more general since our computation
does not require an expansion in V and F as done in [17]. Of course, we retrieve the result of [17] if we expand
expression 78 at the leading order in F and V . Note also that when m = 0 one recovers the Hamiltonian for the
Neutrino or the photon proposed in [3].

To conclude this paragraph, we can derive the equations of motion with the help of:

ΘrΣ
ij =

[
r+
i , Σj

]
= ih̄c2

−p+
j Σi + p+.Σδij

ε (p+, r+) (ε (+, r+) + mV (r+))
+ o

(
h̄2
)

(79)

ΘpΣ
ij =

[
p+

i , Σj

]
= 0 (80)

leading to

ṙ+ = ∇pε −
1

h̄
ṗ+×Θrr +

i

h̄
∇Σε̃.ΘrΣ

ṗ+ = ∇r+ε −
1

h̄
∇r+ε.Θrp (81)

where we have defined the vectors Θrr and Θrp through

Θrr
ij = εijkΘrr

k (82)

Θpr
ij = εijkΘrp

k (83)

An explicit computation gives (we drop the suffix +)

ṙ =
Fp

ε (p, r)
+

h̄F 2(r)mφ(r)

2ε2 (p, r)

∇F

F
× Σ+h̄

(
F 2(r)m

2ε (p, r)
2 +

F 4(r)m3φ2(r)

2ε4 (p, r)

)
∇φ(r) × Σ

+
h̄F 4(r) (Σ.p)

(
∇F
F

+ m(Fmφ(r)−ε(p,r))∇φ(r)
ε(p,r)

)
× p

2ε3 (p, r) (ε (p, r) + mV (r))
(84)

ṗ = −

(
∇F

F
ε (p, r) +

Fm2φ(r)∇φ(r)

ε (p, r)

)
+ h̄∇

(
F 2(r)

2ε2
m∇φ(r). (p× Σ)

)

−
h̄F 3(r)m∇φ(r)

2ε3 (p, r)
(Σ × p) .

(
∇F

F
ε (p, r) +

Fm2φ(r)∇φ(r)

ε (p, r)

)
(85)

h̄Σ̇ = −

((
−h̄F 2(r)∇F

F

(ε (p, r) + mV (r))
+

h̄F 2(r)m∇φ(r)

ε (p, r) (ε (p, r) + mV (r))

)
× p

)
×Σ (86)
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IV. APPLICATION 2 : THE ELECTRON IN A PERIODIC POTENTIAL

This application has already been independently studied in [15], and is easily recovered by the present general setup.
The purpose is to find the Hamiltonian for an electron in a periodic potential facing an electromagnetic field. This
topic was also already dealt with in [9] in the context of wave packets dynamics. We will show that the semiclassical
equations of motions which are very essential in the solid state physics context must be corrected by Berry phases
terms. To apply our formalism, we start with the following unperturbed Hamiltonian including a periodic potential

H0 =
1

2m
(P − A(R))

2
+ V (R) (87)

whose symmetries are a lattice translation group. The Diagonalization is performed to diagonalize simultaneously H0

and the magnetic translation operators. This ones are

T (Ri) = exp

(
−

i

h̄

∫ Ri

0

Ai(R + r)dr

)
exp

(
i

h̄
Ri.P

)
(88)

whose generator are

Ki = −
i

Ri

log (T (Ri)) (89)

There is of course an ambiguity in the definition of the log which is dealt with in appendix 2, by a particular choice.
The diagonalization is performed as follows : Start with an arbitrary basis of eigenvectors of the T (Ri). As explained
in detail in Appendix 3, in this basis H0 can be seen as a square matrix with operators entries. H0 is diagonalized

through a unitary matrix U which should depend only on K̂ (since U should leave K̂ invariant). We will thus consider
U = U (K). Now, to add a perturbation δA(R) as in ([15]), that breaks the translational symmetry, we have to replace
K in the Hamiltonian by

K̃ = K −
δA(R)

h̄
(90)

and U = U
(
K̃
)

so that the non projected Berry phases are

ARk
= iU∇Ki

U+ (91)

and

APl
= ∇Rl

Ak(R)ARk
(92)

Using our results of section 2, the Hamiltonian

H =
1

2m
(P − A(R)−δA(R))

2
+ V (R) (93)

can thus be diagonalized through the transformation U(K̃)+ i
4h̄

[ARk
,APl

]U(K̃) plus a projection on the chosen n-th
Band (denoted Pn in the context of the Solid state Physics)

[
U
(
K̃
)

HU+
(
K̃
)]+

= Pn

[
ε
(
k̃
)
−

i

4

[
ε(K), U∇Ki

U+
]
εijk δBk(r)

h̄
U∇Kj

U+ −
i

4
U∇Kj

U+
[
ε(K), U∇Ki

U+
]
εijk δBk(r)

h̄

]

= εn

(
k̃+
)
− Pn

[
i

2

[
ε(K), U∇Ki

U+
]
εijkU∇Kj

U+

]
δBk(r̂+)

h̄
, (94)

where

k̃ =U(K̃)K̃U+(K̃) (95)

therefore

k̃+=Pn(U(K̃)K̃U+(K̃)) (96)
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This is the expression obtained in [15] and leading to the semiclassical equations of motion in the Magnetic Bloch
bands. The term proportional to the magnetic field is nothing else but the magnetization defined by the n-th band
projection

−

[
i

2

[
ε(K), U∇Ki

U+
]
.εijkU∇Kj

U+

]+
δBk(r̂+)

h̄
= M(K̃)

= Pn

(
i

2h̄

[
ε(K̃),A(K̃)

]
× A(K̃)

)
(97)

This magnetization can also be written under the usual form [19] in the (K, n) representation

Mi(K̃) = e/2m

′∑

n′

(Ak)nn′(Aj)n′n − (Aj)nn′(Ak)n′n (98)

We sum up here the results we obtained (with the upperscript + omitted)

ṙ = ∂E(k̃)/h̄∂k̃−
˙̃
k × Θ(k̃)

h̄
˙̃
k = −eE− eṙ × δB(r) − M∂δB/∂r (99)

As explained in [15] these equations are formally the same as the one derived in [9], with the exception of a contribution
depending on the gradient of the magnetic field.

V. CONCLUSION

Some recent applications of semi classical methods to several branches of Physics, such as spintronics or solid
state physics have shown the relevance of Berry Phases contributions to the dynamics of a system. However, these
progresses called for a rigorous Hamiltonian treatment that would allow for deriving naturally the role of the Berry
phase.

This paper has been devoted to derive a semi classical diagonalization method for a broad class of quantum systems,
including the electron in a periodic potential and the Dirac Hamiltonian. Doing so, we have exhibited a general
pattern for this class of systems implying the role of the Berry phases both for the position and the momentum. In
such a context, the coordinates and momenta algebra are no longer commutative, and the dynamical equations for
these variables directly include the influence of Berry phases through the parameters of noncommutativity (Berry
curvatures) and through an abstract magnetization term. Applications of our formalism consider the Dirac electron
in an electromagnetic field, or in a particular case of static gravitational field, as well as the electron in a periodic
potential. Our results are promising and indicate that our method will probably apply to several other systems.

Acknowledgement. The authors wish to thank Aileen Lotz for a critical reading of the manuscript.



14

A. Appendix 1

To start our computation, we will use the formula given in the preliminary :

i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]

=
i

2
h̄Asym∇Rl

∇P l [U (P,R)] H0 (P,R)U+ (P,R)

+
i

2
h̄U (P,R)Asym∇Rl

∇P l [H0 (P,R)] U+ (P,R)

+
i

2
h̄U (P,R)H0 (P,R)Asym∇Rl

∇P l

[
U+ (P,R)

]

+
i

2
h̄∇Rl

U (P,R)∇P lH0 (P,R)U+ (P,R)

−
i

2
h̄∇P lU (P,R)∇Rl

H0 (P,R)U+ (P,R)

−
i

2
h̄U (P,R)∇P lH0 (P,R)∇Rl

U+ (P,R)

+
i

2
h̄∇P lU (P,R)∇Rl

H0 (P,R)∇P lU+ (P,R)

+
i

2
h̄∇Rl

U (P,R)H0 (P,R)∇P lU+ (P,R)

−
i

2
h̄∇P lU (P,R)H0 (P,R)∇Rl

U+ (P,R) (100)

Let us first remark that H0 (P,R) is already symmetrized in R and P. As a consequence
Asym∇Rl

∇P l [H0 (P,R)] = 0. Actually, remember that the asymmetrisation term was the sum of com-
mutators obtained by pushing the momentum half on the left and half on the right. For the same reason

Asym∇Rl
∇P l [U (P,R)] = Asym∇Rl

∇P l

[
U+ (P,R)

]
= 0 (101)

Now, we introduce the transformed variables and the non projected Berry Phases at order h̄ :

r = (U (P,R) + X)R
(
U+(P,R)+X+

)

≃ R +
[
ih̄U (P,R)∇P U+ (P,R)

]

= R + AR

p = U (P,R)PU+(P,R)

≃ P −
[
ih̄U (P,R)∇RU+ (P,R)

]

= P + AP (102)

Before going further, we can find some relations on the Berry Phases. Given that :

U (P,R)U+(P,R) = 1 (103)

at the zeroth order in h̄ we have the following relations at the first order in h̄ :

AR = ih̄U (P,R)∇P U+ (P,R) = −i∇P U (P,R)U+ (P,R)

AP = −ih̄U (P,R)∇RU+ (P,R) = i∇RU (P,R)U+ (P,R) (104)

Using these results as well as ∇P l = −i
h̄

[Rl, ], ∇Rl
= i

h̄

[
P l,
]

and inserting the operators U (P,R) and U+ (P,R)
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when needed, we get :

i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]

=
−i

2h̄
APl

U (P,R) [Rl, H0 (P,R)] U+ (P,R)

+
i

2h̄
ARl

U (P,R) [Pl, H0 (P,R)] U+ (P,R)

−
i

2h̄
U (P,R) [Rl, H0 (P,R)] U+ (P,R)APl

+
i

2h̄
U (P,R) [Pl, H0 (P,R)] U+ (P,R)ARl

−i

2h̄
APl

ε (P,R)ARl
+

i

2h̄
ARl

ε (P,R)APl

=
−i

2h̄
APl

[rl, ε (P,R)] +
i

2h̄
ARl

[pl, ε (P,R)]

−
i

2h̄
[rl, ε (P,R)]APl

+
i

2h̄
[pl, ε (P,R)]ARl

−i

2h̄
APl

ε (P,R)ARl
+

i

2h̄
ARl

ε (P,R)APl

=
1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
APl

[ARl
, ε (P,R)] −

i

2h̄
[ARl

, ε (P,R)]APl

+
i

2h̄
ARl

[APl
, ε (P,R)] +

i

2h̄
[APl

, ε (P,R)]ARl

−i

2h̄
APl

ε (P,R)ARl
+

i

2h̄
ARl

ε (P,R)APl
(105)

Rearranging the commutators leads to :

i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]

=
1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
ARl

[ε (P,R) ,APl
] −

i

2h̄
[ε (P,R) ,APl

]ARl

+
i

2h̄
APl

[ε (P,R) ,ARl
] +

i

2h̄
[ε (P,R) ,ARl

]APl

−i

2h̄
APl

ε (P,R)ARl
+

i

2h̄
ARl

ε (P,R)APl
(106)

rewrite

−i

2h̄
APl

ε (P,R)ARl
+

i

2h̄
ARl

ε (P,R)APl

= −
i

2h̄
APl

[ε (P,R) ,ARl
] +

i

2h̄
ARl

[ε (P,R) ,APl
]

+
i

2h̄
[ARl

,APl
] ε (P,R) (107)
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so that :

i

2
h̄Asym∇Rl

∇P l

[
U (P,R)H0 (P,R)U+ (P,R)

]

=
1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
[ε (P,R) ,APl

]ARl
+

i

2h̄
[ε (P,R) ,ARl

]APl

+
i

2h̄
[ARl

,APl
] ε (P,R) (108)

And we thus have :

U (P,R)H0 (P,R)U+ (P,R) = ε (P,R) +
1

2
[ARl

∇Rl
ε (P,R) + ∇Rl

ε (P,R)ARl
]

+
1

2
[APl

∇Pl
ε (P,R) + ∇Pl

ε (P,R)APl
]

−
i

2h̄
[ε (P,R) ,APl

]ARl
+

i

2h̄
[ε (P,R) ,ARl

]APl

+
i

2h̄
[ARl

,APl
] ε (P,R) (109)

as claimed in the text.

VI. APPENDIX 2. HOW SOLID STATES PHYSICS FITS IN OUR FRAMEWORK.

In solid state Physics, we assume that the hamiltonian is invariant through a discrete group of translations, for
example a group of lattice translations, whose elements have the form

T (b) = exp

(
−

i

h̄

∫ b

0

Ai(R + r)dr

)
exp

(
i

h̄
P.b

)
(110)

where b is an arbitrary lattice vector. The eigenvalues of this operator are degenerated and have the form

exp (ik.b) (111)

where k belongs to some reduced dual lattice (a fraction of the dual lattice, i.e. a plaquette in solid state physics).
We aim at defining the generators K of these transformations as

K.b = log (T (b)) (112)

so that we can define

Ki = ∂bi
K.b (113)

However, this logarithm cannot be defined uniquely, and we will build an explicit choice in the sequel.
To do so, we work with the extended representation, so that the considered state space is defined, similarly to

the Dirac case, by : L2(R3) ⊗ E, where L2(R3) is seen as the set of functions of the variable k, running on R3. E
is a vector space of infinite size representing the Brillouin zones. For each value of k, T (b) is diagonal in E, with
eigenvalues exp (ik.b). We define Ki as acting diagonaly as the multiplication by ki. In other words, we have defined
the momentum through an extension : K ≡ K ⊗ IdE .

Now, define the position operator R as acting as i∇K. Turning now to the diagonalization process for the Hamil-
tonian, this last one can be performed independently for each value of k, since the Hamiltonian commutes with the
translations. We can thus see the Hamiltonian as a set of square matrices indexed by k, each of them acting on each
copy of E. As a consequence the diagonalization matrix is a Block acting on E for each value of k.

Note that this diagonalization matrix can of course be seen as an operator U(K,R) or, and this is the point of
view we adopt here, as a matrix acting on each copy of E, that is, a matrix U(K), whose entries depend on K only.
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Actually, the dependence in R appears in the non diagonal elements, and we can discard them if we consider this
”half matrix, half operator” version. This mixed representation has the advantage to do the connection with the
Dirac Hamiltonian.

In this set up, K being diagonal and proportional to the identity, it commutes with every matrix U(K,R)
preserving the Blocks. When considering the diagonalized Hamiltonian ε(R,K), it can also be seen as a diagonal
matrix (implicitly denoted ε(K)) whose components are diagonal and denoted εn(K), the n th band energy. The
commutator

[R,ε(K)] = ∇ε(K) (114)

is again a diagonal matrix whose entries are ∇εn(K) (sketch of proof : ε(K) is a series whose elements are products
of powers of K and R. For each power of K, the fact that ε(K) is diagonal implies that the dependence in R is
a diagonal matrix. The gradient in K acting only on the power of K, this diagonality is preserved.) Turning now
to the perturbation δA(R), let us remark that if the operator δA(R) preserves the bands, all operators ε(K)δA(R),
[ε(K),δA(R)] are diagonal, and given our previous remarks, the same is true for ∇ε(K)δA(R), [∇ε(K),δA(R)].

All this remarks that are obviously true for the Dirac case, appear to be useful in the solid state physics case
(application 2), since it shows that the electron in an periodic potential fits in our framework. Actually, we can
formally consider the Hamiltonian of such a problem as given by a matrix depending on the momenta and the
coordinates.
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