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School of Mathematical Sciences
University College Dublin
Belfield, Dublin 4, Ireland
Email: Joe.Pule@ucd.ie

and

Valentin A. Zagrebnov
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Luminy-Case 907, 13288 Marseille, Cedex 09, France

Email: zagrebnov@cpt.univ-mrs.fr

Abstract

We give a two parameter variational formula for the grand-canonical pressure of the

Pair Boson Hamiltonian model. By using the Approximating Hamiltonian Method we

provide a rigorous proof of this variational principle.

Keywords: Pair Boson Hamiltonian, Approximating Hamiltonian method, general-

ized Bose-Einstein condensation

PACS : 05.30.Jp, 03.75.Hh, 03.75.Gg, 67.40.-w

AMS : 82B10, 82B26, 82B21, 81V70

Contents

1. Introduction
2. Superstability
3. The First Approximation
4. The Second Approximation
5. Discussion
Acknowledgements
Appendix A: Commutators
Appendix B: Bounds
References

a
Research Associate, School of Theoretical Physics, Dublin Institute for Advanced Studies.



Proof of the Variational Principle for a Pair Boson Model 1

1 Introduction

The first version of the Pair Boson Hamiltonian (PBH) model was proposed by Zubarev
and Tserkovnikov in 1958 [1]. Their intention was to generalize the Bogoliubov model of the
Weakly Imperfect Bose Gas [2] by including more terms from the total interaction, without
losing the possibility of having an exact solution. We refer the reader to [3] and to [4] for a
more recent discussion of this question.
The suggestion of Zubarev and Tserkovnikov [1] was to consider a truncated Hamiltonian
which includes a diagonal term representing forward-scattering and exchange-scattering as
well as a non-diagonal BCS-type interaction term. The model containing only the forward-
scattering part of the interaction corresponds to the Mean-Field (or the Imperfect) Bose gas,
see [4] and [5] for details. Using the same method as they had used earlier for the fermion
BCS model [6], the authors give in [1] a “solution” of the PBH model. Later this Hamil-
tonian became the subject of very intensive analysis [7]-[9], leading essentially to the same
conclusion as in [1], namely, that the PBH has the same thermodynamic properties as a cer-
tain approximating Hamiltonian quadratic in the creation and annihilation operators. Using
this Hamiltonian which can be diagonalized by the canonical Bogoliubov transformation,
its thermodynamic properties were investigated and it was shown to have some intriguing
properties. One of these is possibility of the occurrence of two kinds of condensation, the
standard one-particle Bose-Einstein condensation as well as a BCS-type pair condensation
which may appear in two stages, see e.g. [10], [11]. Another one concerns the gap in the
spectrum of “elementary excitations” [7]-[9]. In spite of fairly convincing arguments these
papers did not prove rigorously that the above mentioned solution of the PBH model is exact.
A mathematical treatment of the PBH model, related to representations of the Canonical
Commutation Relations (CCR) appeared in [12].

In the present paper we give a variational formula for the pressure for the PBH model and
provide a rigorous derivation of the formula. The latter yields the same expression for the
pressure as was obtained in [1], the corresponding Euler-Lagrange equations coinciding with
self-consistency equations studied in [1] and [7]-[12]. In an earlier paper [13] we conjectured
that the pressure can be expressed as the supremum of a variational functional depending
on two measures: a positive measure describing the particle density and a complex measure
describing the pair density, similar to the Cooper pairs density in the BCS model. This con-
firmed the conclusion of [10], [11] about the coexistence of one-particle and pair condensates.
The study in [13] was inspired by the Large Deviation Principle (LDP) developed for the
analysis of boson systems in [14]-[17]. This method gives rigorous results for the pressure
in the case of models with diagonal (commutative) boson interactions. A similar technique
was developed in [18]-[23] based on the work [22], extending the LDP to noncommutative
Mean-Field models (including the BCS one) with only bounded operators involved in Hamil-
tonians. Since neither of these methods apply to the PBH without extensive modifications,
here we opted for the Approximating Hamiltonian Method (AHM) [24], which has been al-
ready successfully applied to many models, including some interacting boson models (see for
example [4], [5], [25]).

There is renewed interest in the properties of the PBH interaction in the context of finite
boson systems confined in a magneto-optic trap, see e.g. [26]-[28]. We do not discuss this
aspect in the framework of our approach leaving it for future publications.

Now we turn to the exact formulation of the PBH model in its simplest form, that is, with
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constant pair and mean-field boson couplings [13].

Let Λ ⊂ Rν be a cube of volume V = |Λ| centered at the origin. Then the kinetic energy oper-
ator for a particle of massm confined to the cubic box Λ, that is the operator −∆/2m with pe-
riodic boundary conditions, has eigenvalues ǫ(k) = ‖k‖2/2m, k ∈ Λ∗ := {2πs/V 1/ν |s ∈ Zν}.
Consider a system of identical bosons of mass m enclosed in Λ. For k ∈ Λ∗ let a∗k and ak be
the usual boson creation and annihilation operators satisfying the CCR [ak , a

∗
k′] = δk,k′ and

let Nk := a∗kak be the k-mode particle number operator. The kinetic-energy operator TΛ for
the Perfect Bose-gas, can be expressed in the form TΛ :=

∑

k∈Λ∗ ǫ(k)Nk.
To introduce a pairing term in the Hamiltonian we shall need the operators

Ak = A−k := aka−k , k ∈ Λ∗ . (1.1)

Let
NΛ :=

∑

k∈Λ∗

Nk and Q̃Λ :=
∑

k∈Λ∗

λ̃(k)Ak , (1.2)

where the function λ̃ : R
ν 7→ C satisfies the following conditions:

|λ̃(k)| ≤ |λ̃(0)| = 1 , λ̃(k) = λ̃(−k) for all k ∈ R
ν ,

there exists C <∞ and δ > 0 such that

|λ̃(k)| ≤ C

1 + ‖k‖max(ν, ν/2+1)+δ
(1.3)

for all k ∈ Rν . Note that (1.3) implies that λ̃ ∈ L1(Rν) and that there exists M < ∞ such
that

mΛ :=
∑

k∈Λ∗

|λ̃(k)| ≤MV, (1.4)

nΛ :=
∑

k∈Λ∗

ǫ(k)|λ̃(k)|2 ≤MV, (1.5)

and
cΛ := sup

k∈Λ∗

ǫ(k)|λ̃(k)|2 ≤M (1.6)

for all Λ ⊂ Rν .
Then for constant couplings u, v the PBH is defined by

HΛ := TΛ − u

2V
Q̃∗

Λ
Q̃

Λ
+

v

2V
N2

Λ
. (1.7)

Remark 1.1 Let ϕ := arg λ̃(0) and λ(k) := λ̃(k)e−iϕ. Then λ(0) = 1 and we can write HΛ

in the form

HΛ = TΛ − u

2V
Q∗

Λ
Q

Λ
+

v

2V
N2

Λ
(1.8)

with
Q

Λ
:=
∑

k∈Λ∗

λ(k)Ak , (1.9)

where |λ(k)| ≤ λ(0) = 1 for all k ∈ R
ν.
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Remark 1.2 We shall assume that v > 0 and α := v− u > 0. The latter condition ensures
the superstability of the model, see Theorem 2.1. Note that in the case u ≤ 0 (BCS repulsion),
the second condition α > 0 is trivially satisfied. In [13] we have proved that the case u ≤ 0
gives the same thermodynamics as the Mean-Field (MF) Bose-gas:

HMF
Λ

:= TΛ +
v

2V
N2

Λ
. (1.10)

Thus in deriving the variational formula we emphasize the case u > 0. We recall that this
condition is necessary for nontrivial condensation of boson pairs, see e.g. [8]-[13]. We shall
discuss the relation between these conditions and the thermodynamic properties of the model
(1.8) in Section 5.

For the convenience of the reader we now state (without proof) the principal theorems and
describe the the logical sequence used in proving the main result of this paper. We shall
need the grand-canonical pressures for several approximating Hamiltonians. Recall that for
an inverse temperature β and a chemical potential µ the the grand-canonical pressure for a
system with Hamiltonian HΛ is

1

βV
ln Tr exp {−β(HΛ − µNΛ)} . (1.11)

For simplicity in the sequel we shall omit the thermodynamic variables β and µ and we shall
write, for example, pΛ for the grand-canonical pressure corresponding to the Hamiltonians
HΛ

pΛ :=
1

βV
ln Tr exp {−β(HΛ − µNΛ)} . (1.12)

We shall denote the thermodynamic limit Λ ↑ Rν by the symbol ‘ lim
Λ

’.

Consider the approximating Hamiltonian

H
(2)
Λ (q, ρ) := TΛ + vρNΛ − 1

2
u(Q∗

Λ
q +Q

Λ
q∗) − V

2
vρ2 +

V

2
u|q|2 , (1.13)

where q ∈ C and ρ ∈ R+ are variational parameters. The Hamiltonian H
(2)
Λ (q, ρ) can be

diagonalized and the corresponding pressure p
(2)
Λ (q, ρ) can be calculated explicitly to give in

the thermodynamic limit

p(2)(q, ρ) : = lim
Λ
p

(2)
Λ (q, ρ)

=

∫

Rν

dνk

(2π)ν

{

− 1

β
ln[1 − exp(−βE(k,q,ρ))] − 1

2
(E(k,q,ρ) − f(k,ρ))

}

−1

2
u|q|2 +

1

2
vρ2 , (1.14)

where
E(k,q,ρ) := {f 2(k,ρ) − |h(k,q)|2}1/2 , (1.15)

with
f(k,ρ) := ǫ(k) − µ+ vρ and h(k,q) := u q λ∗(k) . (1.16)

Using (1.13) the Hamiltonian (1.8) can be written identically as

HΛ = H
(2)
Λ (q, ρ) +Hr

Λ
(q, ρ) (1.17)
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where

Hr
Λ
(q, ρ) := − 1

2V
u(Q∗

Λ
− V q∗)(Q

Λ
− V q) +

1

2V
v(NΛ − ρ)2 . (1.18)

The main result of this paper states that if the variational parameters q and ρ are chosen
in an “optimal” way, then the contribution to the pressure arising from the residual term
Hr

Λ(q, ρ) vanishes in the thermodynamic limit.

Let us define the following function for q ≥ 0 and ρ ≥ 0

σ(q, ρ) := inf
k∈Rν

(f(k, ρ) − |h(k, q)|) = vρ− µ− |u|q , (1.19)

see (1.16).

Theorem 1.1 The limiting pressure for the PBH model (1.8) with u > 0 (BCS attraction)
has the form

p := lim
Λ
pΛ = sup

q∈C

inf
ρ≥0

p(2)(q, ρ) = sup
q≥0

inf
ρ : σ(q,ρ)≥0

p(2)(q, ρ) , (1.20)

while with u ≤ 0 (BCS repulsion) it has the form

p := lim
Λ
pΛ = inf

q∈C

inf
ρ≥0

p(2)(q, ρ) = inf
q≥0

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ) . (1.21)

Note that to obtain the approximating Hamiltonian (1.13), the term −uQ∗
Λ
Q

Λ
/2V in (1.8)

is replaced by −u(Q∗
Λ
q +Q

Λ
q∗)/2 + V u|q|2/2 and vN2

Λ
/2V by vρNΛ − V vρ2/2.

We shall prove Theorem 1.1 in two steps. Here we describe these steps for u > 0 and before
the end of the section we indicate the modifications necessary for the case u ≤ 0.

The first step which we call the first approximation is to linearize the term −uQ∗
Λ
Q

Λ
/2V in

HΛ. For technical reasons we need to add to our Hamiltonians some source terms. Therefore,
we define for ν, η ∈ C

HΛ(ν, η) := HΛ − (νQ∗
Λ

+ ν∗Q
Λ
) −

√
V (ηa∗0 + η∗a0) , (1.22)

and the first approximating Hamiltonian

H
(1)
Λ (q, ν, η) := TΛ +

v

2V
N2

Λ
− 1

2
u(Q∗

Λ
q +Q

Λ
q∗) +

1

2
V u|q|2 − (1.23)

(νQ∗
Λ

+ ν∗Q
Λ
) −

√
V (ηa∗0 + η∗a0) .

From (1.22) and (1.23) we have

HΛ(ν, η) = H
(1)
Λ (q, ν, η) +Hr

Λ(q)

where

Hr
Λ
(q) = − 1

2V
u(Q∗

Λ
− V q∗)(Q

Λ
− V q) ≤ 0. (1.24)

First we show (see Section 3) that with the right choice of the parameter q = q̄, the residual
perturbation Hr

Λ
(q̄) does not contribute to pΛ(ν, η), the pressure for the PBH (1.22) in the

thermodynamic limit, i.e., the pressure corresponding to the Hamiltonian HΛ(ν, η) coincides

with the limit of p
(1)
Λ (q̄, ν, η), the pressure for H

(1)
Λ (q̄, ν, η):
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Theorem 1.2 For any ν and η with |ν| ≤ 1 and |η| ≤ 1,

lim
Λ
pΛ(ν, η) = lim

Λ
sup
q
p

(1)
Λ (q, ν, η). (1.25)

In particular
lim
Λ
pΛ(η) = lim

Λ
sup
q
p

(1)
Λ (q, η). (1.26)

where pΛ(η) := pΛ(0, η) and p
(1)
Λ (q, η) := p

(1)
Λ (q, 0, η) are the pressures corresponding to the

Hamiltonians HΛ(η) := HΛ(0, η) and H
(1)
Λ (q, η) := H

(1)
Λ (q, 0, η) respectively.

Next, in Section 4 we study a second approximating Hamiltonian obtained from (1.23) by
replacing the term vN2

Λ
/2V by a linear term vρNΛ − V vρ2/2:

H
(2)
Λ (q, ρ, η) := TΛ + vρNΛ −

1

2
u(Q∗

Λ
q +Q

Λ
q∗) − V

2
vρ2 +

V

2
u|q|2 −

√
V (ηa∗0 + η∗a0) . (1.27)

We denote the pressure corresponding to the Hamiltonian (1.27) by p̃
(2)
Λ (q, ρ, η). Note that

by (1.13) and (1.27) one has H
(2)
Λ (q, ρ, 0) = H

(2)
Λ (q, ρ). We shall show in Lemma 4.1 that

p̃
(2)
Λ (q, ρ, η) = p

(2)
Λ (q, ρ) + |η|2

{

f(0,ρ) − |u||q| cos(θ − 2ψ)

f 2(0,ρ) − u2|q|2
}

where θ := arg q and ψ := arg η.

Our next theorem establishes a similar variational relation between the pressure pΛ(η) and

p̃
(2)
Λ (q, ρ, η):

Theorem 1.3

lim
Λ
pΛ(η) = lim

Λ
sup
q∈C

inf
ρ≥0

p̃
(2)
Λ (q, ρ, η) = lim

Λ
sup
q≥0

inf
ρ≥0

p
(2)
Λ (q, ρ, η) , (1.28)

where for q ≥ 0 we put

p
(2)
Λ (q, ρ, η) := p̃

(2)
Λ (qei(π+2ψ), ρ, η) = p

(2)
Λ (q, ρ) +

|η|2
f(0, ρ) − uq

. (1.29)

Note that the difference between the statement in Theorem 1.1 and that in Theorem 1.3
(apart from the η dependence) is that the thermodynamic limit is taken after taking the
infimum over ρ and the supremum over q. In the next theorem we show that the order of
the thermodynamic limit and taking the infimum and supremum can be reversed:

Theorem 1.4 For η 6= 0,

p(η) := lim
Λ
pΛ(η) = sup

q≥0
inf

ρ : σ(q,ρ)≥0
p(2)(q, ρ, η) , (1.30)

where we put

p(2)(q, ρ, η) := lim
Λ
p

(2)
Λ (q, ρ, η) = p(2)(q, ρ) +

|η|2
f(0, ρ) − uq

, (1.31)

cf. expression (1.29) .
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In Lemma 4.5 we prove that p = limη→0 p(η) so that Theorem 1.4 gives

p = lim
η→0

sup
q≥0

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ, η). (1.32)

Finally in Lemma 4.6 we prove that the order of the limit η → 0 and taking the infimum
and supremum can be reversed to yield the main result Theorem 1.1 for the BCS attraction.

The important difference for the repulsive case, u < 0, is that instead of (1.24) we now have

Hr
Λ
(q) = − 1

2V
u(Q∗

Λ
− V q∗)(Q

Λ
− V q) ≥ 0 . (1.33)

Therefore the first approximation (Section 3) should be constructed in the same way as the
second approximation (Section 4). The proof of the second part of Theorem 1.1, (1.21), for
u ≤ 0 is given in Section 5 (f).

It is important to note that the variational formula conjectured in [13] has the same Euler-
Lagrange equations as those given by Theorem 1.1. Thus the detailed study of these equa-
tions carried out in [13] applies to our result. In particular, this concerns the sequence
of phase transitions in the PBH model (1.8) and the conditions for the coexistence of the
generalized Bose condensation and the condensation of boson pairs, see also Section 5.

The paper is organized as follows. We start by proving in Section 2 that the PBH model
(1.8) is superstable. In Sections 3 and 4 we shall assume that u > 0. Section 3 is devoted to
establishing the first approximation giving the proof of Theorem 1.2. In Section 4 we turn
to the second approximation giving the proof of Theorem 1.3 and the other results needed
to obtain Theorem 1.1 for u > 0. Finally in Section 5 we discuss the variational problem as
well as related open questions for all values of u and we finish the proof of Theorem 1.1 for
u ≤ 0. Some commutator relations are given in Appendix A and in Appendix B we give a
bound needed in our proofs.

2 Superstability

In this section we establish the superstability of the PBH model (1.8). When u ≤ 0 super-
stability is obvious. To prove it for u > 0 and α = v − u > 0, we shall need the following
lemma which is used in several other places in the paper.

Lemma 2.1 The following inequality is satisfied

Q∗
Λ
Q

Λ
≤ N2

Λ
+MVNΛ. (2.1)

Proof: The inequalities
(

λ∗(k)ak′a
∗
k ± λ∗(k′)a∗−k′a−k

)∗ (
λ∗(k)ak′a

∗
k ± λ∗(k′)a∗−k′a−k

)

≥ 0

and definition (1.1) imply that for k 6= {k′,−k′},

−(Nk + |λ(k)|)Nk′ − (N−k′ + |λ(k′)|)N−k

≤ −|λ(k)|2(Nk + 1)Nk′ − |λ(k′)|2(N−k′ + 1)N−k

≤ λ∗(k)λ(k′)A∗
kAk′ + λ∗(k′)λ(k)A∗

k′Ak (2.2)

≤ |λ(k)|2(Nk + 1)Nk′ + |λ(k′)|2(N−k′ + 1)N−k

≤ (Nk + |λ(k)|)Nk′ + (N−k′ + |λ(k′)|)N−k .
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By (1.1) we also have

A∗
kAk = NkN−k for k 6= 0 ,

A∗
0A0 = N0(N0 − 1) ≤ N2

0 . (2.3)

Then by (2.2) and (2.3) one gets

Q∗
Λ
Q

Λ
=

∑

k,k′∈Λ∗,
k 6=k′, k 6=−k′

λ∗(k)λ(k′)A∗
kAk′ + 2

∑

k∈Λ∗, k 6=0

|λ(k)|2A∗
kAk + |λ(0)|2A∗

0A0

=
1

2

∑

k,k′∈Λ∗,
k 6=k′, k 6=−k′

(λ∗(k)λ(k′)A∗
kAk′ + λ∗(k′)λ(k)A∗

k′Ak) + 2
∑

k∈Λ∗, k 6=0

|λ(k)|2A∗
kAk + |λ(0)|2A∗

0A0

≤ 1

2

∑

k,k′∈Λ∗,
k 6=k′, k 6=−k′

((Nk + |λ(k)|)Nk′ + (N−k′ + |λ(k′)|)N−k) + 2
∑

k∈Λ∗, k 6=0

NkN−k +N2
0

=
∑

k,k′∈Λ∗,
k 6=k′

NkNk′ ++
∑

k∈Λ∗, k 6=0

NkN−k +N2
0 +

∑

k,k′∈Λ∗,
k 6=k′, k 6=−k′

|λ(k)|Nk′ . (2.4)

Using the inequality

NkN−k ≤
1

2

(

N2
k +N2

−k

)

, (2.5)

we get
∑

k∈Λ∗, k 6=0

NkN−k ≤
∑

k∈Λ∗, k 6=0

N2
k . (2.6)

Thus (2.1) follows by (1.9) and (1.4). �

We now use the inequality (2.1) in Lemma 2.1 to prove superstability of the model (1.8).

Theorem 2.1 The Hamiltonian (1.8) is superstable:

HΛ − µNΛ ≥ TΛ +
1

2V
αN2

Λ
− (µ+R)NΛ (2.7)

where R := Mu/2 and M is defined by (1.4).

Proof: From Lemma 2.1

HΛ − µNΛ ≥ TΛ +
1

2V
(v − u)N2

Λ − (µ+R)NΛ

= TΛ +
1

2V
αN2

Λ
− (µ+R)NΛ. (2.8)

Since we are assuming that α > 0, the estimate (2.8) implies superstability, see [29]. �

In the next two sections we develop the proofs for the variational formula for the pressure.
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3 The First Approximation

Recall that the auxiliary Hamiltonians HΛ(ν, η) and H
(1)
Λ (q, ν, η) are source dependent with

ν, η ∈ C, see (1.22) and (1.23). Since later we shall let ν and η tend to zero, we can assume
that |ν| ≤ 1 and |η| ≤ 1. Because we are making the assumption on PBH (1.8) that u > 0,
it follows from (1.24) that Hr

Λ(q) ≤ 0.

Let ν ∈ C and φ := arg(ν∗λ(k)). Then from

(a∗k ± e−iφa−k)(ak ± eiφa∗−k) ≥ 0

we get

−|ν|(Nk +N−k + |λ(k)|) ≤ νλ∗(k)A∗
k + ν∗λ(k)Ak ≤ |ν|(Nk +N−k + |λ(k)|) . (3.1)

Also

√
V (ηa∗0 + η∗a0) = (a∗0 +

√
V η∗)(a0 +

√
V η) − a∗0a0 − V |η|2 ≥ −NΛ − V |η|2 .

Therefore, by Theorem 2.1 one gets for |ν| ≤ 1 and |η| ≤ 1, the estimate:

HΛ(ν, η) − µNΛ ≥ HΛ −
∑

k∈Λ∗

(Nk +N−k + |λ(k)|) −NΛ − V − µNΛ

≥ HΛ − (µ+ 3)NΛ − mΛ − V

≥ TΛ +
1

4V
αN2

Λ
− (µ+ 3 +R)NΛ − (M + 1)V . (3.2)

Since Hr
Λ
(q) ≤ 0, we also have

H
(1)
Λ (q, ν, η) − µNΛ ≥ HΛ(ν, η) − µNΛ

≥ TΛ +
1

4V
αN2

Λ − (µ+ 3 +R)NΛ − (M + 1)V . (3.3)

Proof of Theorem 1.2 :

For simplicity we shall prove this theorem for ν = 0. The proof for a general ν follows
through verbatim by translation for ν 6= 0. Clearly since Hr

Λ
≤ 0, it follows from (3.3) that

for any q we have for the pressure of the PBH (1.22) the estimate from below:

pΛ(η) ≥ p
(1)
Λ (q, ν = 0, η) = p

(1)
Λ (q, η).

Also for any q one obviously has the estimate from above:

pΛ(η) = p
(1)
Λ (q, η) +

(

pΛ(ν, η) − p
(1)
Λ (q, ν, η))

)

− (pΛ(ν, η) − pΛ(η)) +
(

p
(1)
Λ (q, ν, η)) − p

(1)
Λ (q, η)

)

≤ sup
q′
p

(1)
Λ (q′, η) +

(

pΛ(ν, η) − p
(1)
Λ (q, ν, η)

)

− (pΛ(ν, η) − pΛ(η)) + sup
q′

(

p
(1)
Λ (ν, q′, η) − p

(1)
Λ (q′, η)

)

,
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and, therefore, we get

sup
q
p

(1)
Λ (q, η) ≤ pΛ(η) ≤ sup

q
p

(1)
Λ (q, η) + inf

q

(

pΛ(ν, η) − p
(1)
Λ (q, ν, η)

)

− (pΛ(ν, η) − pΛ(η)) + sup
q

(

p
(1)
Λ (q, ν, η) − p

(1)
Λ (q, η)

)

. (3.4)

We shall prove in Lemma 3.1 that, if νΛ → 0 as Λ ↑ Rν , then

lim inf
Λ

(pΛ(νΛ, η) − pΛ(η)) = 0 , (3.5)

and
lim sup

Λ
{sup

q
(p

(1)
Λ (q, νΛ, η) − p

(1)
Λ (q, η))} = 0 . (3.6)

Next, with a particular choice of νΛ that tends to zero as Λ ↑ Rν , we shall show also that

lim sup
Λ

{inf
q

(pΛ(νΛ, η) − p
(1)
Λ (q, νΛ, η))} = 0 . (3.7)

This last result (which is proved in Lemma 3.2) is much harder and requires the arguments
developed in [24]. Putting these together we get

lim
Λ
pΛ(η) = lim

Λ
sup
q
p

(1)
Λ (q, η) , (3.8)

that proves Theorem 1.2 . �

We now prove the two lemmas quoted earlier.

Lemma 3.1

lim inf
Λ

(pΛ(νΛ, η) − pΛ(η)) = 0 (3.9)

and
lim sup

Λ
(p

(1)
Λ (q, νΛ, η) − p

(1)
Λ (q, η)) = 0 (3.10)

Proof: Writing ν = x + iy, using the convexity of the pressure and (3.1) we get

pΛ(ν, η) − pΛ(η) ≥ x

(

∂

∂x
pΛ(ν, η)

)

∣

∣

∣

∣

∣

ν=0

+ y

(

∂

∂y
pΛ(ν, η)

)

∣

∣

∣

∣

∣

ν=0

=
1

V
〈νQ∗

Λ + ν∗QΛ〉HΛ(η)

≥ − 1

V
|ν|
∑

k∈Λ∗

〈Nk +N−k + |λ(k)|〉HΛ(η)

≥ − 1

V
|ν|
(

2 〈NΛ〉HΛ(η) + mΛ

)

≥ −K|ν| , (3.11)

by (1.4) and Lemma B.1. Therefore if νΛ → 0 as Λ ↑ Rν , we get (3.9):

lim inf
Λ

(pΛ(νΛ, η) − pΛ(η)) = 0 . (3.12)
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Similarly one gets

sup
q

(

p
(1)
Λ (q, ν, η) − p

(1)
Λ (q, η)

)

≤ 1

V
|ν| sup

q

(

2 〈NΛ〉H0
Λ(q,ν,η) + mΛ

)

≤ K|ν| , (3.13)

by (1.4), (3.3) and Lemma B.1. Thus

lim sup
Λ

{sup
q

(p
(1)
Λ (q, νΛ, η) − p

(1)
Λ (q, η))} = 0 , (3.14)

that implies (3.10). �

Lemma 3.2 There exists a sequence {νΛ}Λ
that tends to 0 as Λ ↑ Rν, such that

lim sup
Λ

inf
q

(

pΛ(νΛ, η) − p
(1)
Λ (q, νΛ, η)

)

= 0 . (3.15)

Proof: Using the Bogoliubov convexity inequality [24]:

Tr(A− B)eB

TreB
≤ ln TreA − ln TreB ≤ Tr(A− B)eA

TreA
(3.16)

and (1.24) we get the estimate

0 ≤ pΛ(ν, η) − p
(1)
Λ (q, ν, η) ≤ 1

2V 2
u 〈(Q∗

Λ
− V q∗)(Q

Λ
− V q)〉HΛ(ν,η) .

Let δQ
Λ
(ν, η) := Q

Λ
− 〈Q

Λ
〉HΛ(ν,η) and let

∆Λ(ν, η) := 〈δQ∗
Λ(ν, η) δQΛ(ν, η)〉HΛ(ν,η) ≥ 0.

Then
inf
q

(

pΛ(ν, η) − p
(1)
Λ (q, ν, η)

)

≤ u

2V 2
∆Λ(ν, η) . (3.17)

We want to obtain an estimate for ∆Λ(ν, η) in terms of ν and V .

Let
DΛ(ν, η) := (δQ∗

Λ
(ν, η), δQ

Λ
(ν, η))HΛ(ν,η) , (3.18)

where (· , ·)H denotes the Bogoliubov-Duhamel inner product with respect to the Hamilto-
nian H , see for example [24] or [25]. Using the Ginibre inequality (e.g. (2.10) in [25]) we
get

∆Λ(ν, η) ≤ 1

2
〈δQ∗

Λ(ν, η) δQΛ(ν, η) + δQ∗
Λ(ν, η) δQΛ(ν, η)〉HΛ(ν,η)

≤ DΛ(ν, η) +
1

2
{βDΛ(ν, η)}1/2

{

〈[Q∗
Λ
, [HΛ(ν, η) − µNΛ, QΛ

]]〉HΛ(ν,η)

}1/2

.

We shall show in Appendix A that there is a real number C such that

〈[Q∗
Λ, [HΛ(ν, η) − µNΛ, QΛ]]〉HΛ(ν,η) ≤ C V 3/2 .

Thus
∆Λ(ν, η) ≤ DΛ(ν, η) + (Cβ)1/2

{

V 3/2DΛ(ν, η)
}1/2

. (3.19)



Proof of the Variational Principle for a Pair Boson Model 11

From the definition of the Bogoliubov-Duhamel inner product we have

DΛ(ν, η) = V
∂2

∂ν∂ν∗
pΛ(ν, η) =

V

4

{

∂2

∂x2
+

∂2

∂y2

}

pΛ(ν, η) .

Here we consider the pressure pΛ(ν, η) as a function of two real variables, x = Re ν and
y = Im ν. Since u > 0, then following the Approximating Hamiltonian Method for attractive
interactions [24] we consider the integral

IΛ(δ) :=

∫

[−δ,δ]2
dx dy

∂2

∂x2
pΛ(ν, η) .

With ν+ := δ + iy and ν− := −δ + iy, this integral is equal to

IΛ(δ) =

∫

[−δ,δ]

dy

{

∂

∂x
pΛ(ν+, η) − ∂

∂x
pΛ(ν−, η)

}

=
1

V

∫

[−δ,δ]

dy
{

〈QΛ +Q∗
Λ〉HΛ(ν+,η)

− 〈QΛ +Q∗
Λ〉HΛ(ν−,η)

}

.

Then by (3.1) one gets

|IΛ(δ)| ≤ 2

V

∫

[−δ,δ]

dy

{

〈

ÑΛ

〉

HΛ(ν+,η)
+
〈

ÑΛ

〉

HΛ(ν−,η)

}

,

where ÑΛ :=
∑

k∈Λ∗(Nk +N−k + |λ(k)|)/2. Since by (3.2) and Lemma B.1, the expectation
〈NΛ/V 〉HΛ(ν,η) is bounded uniformly in ν and in V , we obtain the estimate

∣

∣

∣

∣

∫

[−δ,δ]2
dx dy

∂2

∂x2
pΛ(ν, η)

∣

∣

∣

∣

≤

2

V

∫

[−δ,δ]

dy
{

〈NΛ〉HΛ(ν+,η)
+ 〈NΛ〉HΛ(ν−,η)

+ mΛ

}

≤ 2C̃δ .

Similarly one gets the estimate

∣

∣

∣

∣

∫

[−δ,δ]2
dx dy

∂2

∂y2
pΛ(ν, η)

∣

∣

∣

∣

≤ 2C̃δ .

These give
∫

[−δ,δ]2
dx dyDΛ(ν, η) ≤ C̃V δ . (3.20)

Since the integrand is continuous, by the integral mean-value theorem there exists a sequence
{νΛ}Λ

with |νΛ| ≤ δ such that

∫

[−δ,δ]2
dx dyDΛ(ν, η) = (2δ)2DΛ(νΛ, η) .

The last equation and inequality (3.20) imply that

DΛ(νΛ, η) ≤ C̃V

4δ
,
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which together with (3.19) give the estimate

1

V 2
∆Λ(νΛ, η) ≤ C̃

4V δ
+

(C̃Cβ)1/2

2V 3/4δ1/2
.

Choosing δ = δΛ such that δΛ → 0, but V δΛ → ∞, we get

lim
Λ

1

V 2
∆Λ(νΛ, η) = 0 .

By (3.17) this completes the proof of the lemma. �

This proves the first approximation. In the next section we deal with the second one.

4 The Second Approximation

Note that from definitions (1.23) and (1.27) of the first and the second approximating Hamil-

tonians, H
(1)
Λ (q, ν, η) and H

(2)
Λ (q, ρ, η), respectively, it follows that

H
(1)
Λ (q, ν = 0, η) −H

(2)
Λ (q, ρ, η) =

1

2V
v(NΛ − ρ)2 ≥ 0 . (4.1)

Later in this section we shall show (see Lemma 4.1 and Remark 4.1) that

p̃
(2)
Λ (q, ρ, η) ≤ p̃

(2)
Λ (|q|ei(π+2ψ), ρ, η) = p

(2)
Λ (|q|, ρ, η) . (4.2)

In Lemma 4.2 we prove that for each q ≥ 0 there is a unique density ρ = ρ̄Λ(q, η) > 0, such
that

p
(2)
Λ (q, ρ̄Λ(q, η), η) = inf

ρ
p

(2)
Λ (q, ρ, η) . (4.3)

We can also show (Lemma 4.3) that there is at least one q = q̄Λ(η) > 0, such that

p
(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) = sup

q
p

(2)
Λ (q, ρ̄Λ(q), η) = sup

q
inf
ρ
p

(2)
Λ (q, ρ, η) . (4.4)

For the sake of simplicity below we shall omit the variable η, and we put

ρ̄Λ(q, η) := ρ̄Λ(q) and q̄Λ(η) := q̄Λ .

Finally, we shall show in Lemma 4.4 that if η 6= 0, then

lim
Λ
{p(2)

Λ (q̄Λ, ρ̄Λ(q̄Λ), η) − p
(1)
Λ (q̄Λe

i(π+2ψ), η)} = 0 . (4.5)

We start by proving Theorem 1.3, assuming the results of Lemmas 4.1 - 4.4, which we prove
later.

Proof of Theorem 1.3 :

We have to prove the limit (1.28) i.e. that

p(η) := lim
Λ
pΛ(η) = lim

Λ
p

(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) . (4.6)
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First, by (4.1) and (4.2) we have for all values of the variational parameters q, ρ and the
source parameter η that

p
(1)
Λ (q, η) := p

(1)
Λ (q, ν = 0, η) ≤ p̃

(2)
Λ (q, ρ, η) ≤ p

(2)
Λ (|q|, ρ, η) .

Therefore,
p

(1)
Λ (q, η) ≤ inf

ρ
p

(2)
Λ (|q|, ρ, η) = p

(2)
Λ (|q|, ρ̄Λ(|q|), η)

and thus by definition (1.29) we obtain

sup
q
p

(1)
Λ (q, η) ≤ sup

q
p

(2)
Λ (|q|, ρ̄Λ(|q|), η) = sup

q≥0
p

(2)
Λ (q, ρ̄Λ(q), η) = p

(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) .

This estimate implies that

lim
Λ

sup
q
p

(1)
Λ (q, η) ≤ lim

Λ
p

(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) . (4.7)

On the other hand for all η we obviously have

sup
q
p

(1)
Λ (q, η) ≥ p

(1)
Λ (q̄Λe

i(π+2ψ), η) = p
(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) (4.8)

−
(

p
(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) − p

(1)
Λ (q̄Λe

i(π+2ψ), η)
)

.

Now the limit (4.5) and the estimate (4.8) imply that

lim
Λ

sup
q
p

(1)
Λ (q, η) ≥ lim

Λ
p

(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η). (4.9)

Taking into account (4.7) and (4.9) we get

lim
Λ

sup
q
p

(1)
Λ (q, η) = lim

Λ
p

(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) .

Combining this result with Theorem 1.2 we get (4.6), i.e. the proof of Theorem 1.3. �

Now we return to proof of the lemmas quoted earlier.

Lemma 4.1 Let the functions f and h and the spectral function E(k,q,ρ) be as defined in
(1.16) and (1.15) respectively.

(i) If f(0, ρ) > u|q| ≥ 0, the pressure p̃
(2)
Λ (q, ρ, η) corresponding to H

(2)
Λ (q, ρ, η) is given by

p̃
(2)
Λ (q, ρ, η) = − 1

βV

∑

k∈Λ∗

ln{1 − exp(−βE(k,q,ρ))} − 1

2V

∑

k∈Λ∗

(E(k,q,ρ) − f(k,ρ))

+ |η|2
{

f(0,ρ) − |uq| cos(θ − 2ψ)

f 2(0,ρ) − u2|q|2
}

− 1

2
u|q|2 +

1

2
vρ2 , (4.10)

where θ = arg q and ψ = arg η .

(ii) If f(0, ρ) ≤ u|q|, then p̃
(2)
Λ (q, ρ, η) is infinite.
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Proof: (i) By (1.16) and (1.27) we can write H
(2)
Λ (q, ρ, η) − µNΛ in the form

H
(2)
Λ (q, ρ, η) − µNΛ =

∑

k∈Λ∗

{f(k,ρ)a∗kak −
1

2

(

h(k,q)a∗ka
∗
−k + h∗(k,q)a−kak

)

}

−
√
V (ηa∗0 + η∗a0) + VW (q,ρ) ,

where

W (q,ρ) =
1

2
u|q|2 − 1

2
vρ2 .

Let qλ∗(k) = |qλ∗(k)|eiθ(k). Then with ak = ãke
iθ(k)/2 , for k ∈ Λ∗, one gets

H
(2)
Λ (q, ρ, η) − µNΛ =

∑

k∈Λ∗

{f(k,ρ)ã∗kãk −
1

2
|h(k,q)|

(

ã∗kã
∗
−k + ã−kãk

)

}

−
√
V
(

ηe−iθ/2ã∗0 + η∗eiθ/2ã0

)

+ VW (q,ρ) , (4.11)

where θ = arg q = θ(0).
Note that if f(0, ρ) > u|q| ≥ 0, then f(k, ρ) > |h(k, q)| ≥ 0 for all k ∈ Λ∗, so that E(k,q,ρ)
is well-defined and positive, see (1.15). Let

x2
k =

1

2

{

f(k,ρ)

E(k,q,ρ)
+ 1

}

and y2
k =

1

2

{

f(k,ρ)

E(k,q,ρ)
− 1

}

. (4.12)

Then the canonical Bogoliubov transformation: ãk = xkαk − ykα
∗
−k, gives

H
(2)
Λ (q, ρ, η) − µNΛ =

∑

k∈Λ∗

E(k,q,ρ)α∗
kαk −

√
V (ξα∗

0 + ξ∗α0)

+
1

2

∑

k∈Λ∗

(E(k,q,ρ) − f(k,ρ)) + VW (q,ρ) , (4.13)

where α∗
k and αk , k ∈ Λ∗, are boson creation and annihilation operators and

ξ = η x0e
−iθ/2 − η∗y0e

iθ/2 .

We note that

|ξ|2 = |η|2 f(0,ρ) − |uq| cos(θ − 2ψ)

E(0,q,ρ)
.

From the diagonal form of H
(2)
Λ (q, ρ, η) − µNΛ in (4.13) we get the pressure (4.10).

(ii) Now let f(0, ρ) < u|q|. Then the quadratic Hamiltonian (4.11) is not bounded from

below. This means that the trace in (1.12) is divergent and therefore the pressure p̃
(2)
Λ (q, ρ, η)

is infinite. If f(0, ρ) = u|q|, then by definitions (1.16) and the conditions on λ̃(k) at least
the zero-mode term of the Hamiltonian (4.11) is not positive. This again implies that the
trace in expression (1.12) diverges. �

Remark 4.1 From the explicit formula (4.10) it follows that

p̃
(2)
Λ (q, ρ, η) ≤ p̃

(2)
Λ (|q|ei(π+2ψ), ρ, η) = p

(2)
Λ (|q|, ρ, η) .

Recall that by (1.29) and (4.10) one gets for q ≥ 0

p
(2)
Λ (q, ρ, η) = − 1

βV

∑

k∈Λ∗

ln{1 − exp(−βE(k,q,ρ))} − 1

2V

∑

k∈Λ∗

(E(k,q,ρ) − f(k,ρ))

+
|η|2

f(0,ρ) − uq
− 1

2
uq2 +

1

2
vρ2 . (4.14)
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Lemma 4.2 Let η 6= 0. Then there are numbers 0 < ρ̃1(q,η) < ρ̃2(q,η) < ∞, such that

the infimum of p
(2)
Λ (q, ρ, η) over ρ is attained in the interval (ρ̃1(q,η), ρ̃2(q,η)) and if ρ̄Λ(q) is

a value of ρ at which the infimum is attained, then ∂p
(2)
Λ (q, ρ̄Λ(q), η)/∂ρ = 0. Moreover, if

0 < q0 <∞, then

inf
q≤q0

(vρ̃1(q,η) − (µ+ uq)+) > 0 and sup
q≤q0

ρ̃2(q,η) <∞ ,

where s± := max(0,±s) for s ∈ R.

Proof: By (4.14) we have

∂p
(2)
Λ

∂ρ
(q, ρ, η) = − v

V

∑

k∈Λ∗

{

1

exp(βE(k,q,ρ)) − 1

f(k,ρ)

E(k,q,ρ)
+

1

2

(

f(k,ρ)

E(k,q,ρ)
− 1

)}

− v|η|2
(f(0,ρ) − uq)2

+ vρ . (4.15)

From (4.15) we get

∂p
(2)
Λ

∂ρ
(q, ρ, η) ≤ − v|η|2

(f(0,ρ) − uq)2
+ vρ .

Let x := vρ− (µ+ uq)+. Using the identity µ+ uq = (µ+ uq)+ − (µ+ uq)− we obtain

∂p
(2)
Λ

∂ρ
(q, ρ, η) ≤ − v|η|2

((µ + uq)− + x)2
+ (µ+ uq)+ + x .

As x→ 0, the right-hand side of the last inequality becomes negative. Therefore, there exists
δ(q,η) > 0 such that the infimum of p

(2)
Λ (q, ρ, η) over ρ cannot be achieved if vρ−(µ+uq)+ <

δ(q,η), i.e. ρ < ρ̃1(q,η) := ((µ+ uq)+ + δ(q,η))/v.

It is clear that if 0 < q0 <∞, then infq≤q0 δ(q,η) > 0.

Suppose now that ρ > ρ̃1(q,η) and take vρ > max(2µ, 2q + 2). Then for k ∈ Λ∗ one has
E(k,q,ρ) > max(ǫ(k), 1). Therefore, using

0 ≤ f(k,ρ)

E(k,q,ρ)
− 1 ≤ |h(k, q)|

E(k,q,ρ)
≤ uq|λ(k)|,

we obtain the estimate

∂p
(2)
Λ

∂ρ
(q, ρ, η) = − v

V

∑

k∈Λ∗

{

1

exp(βE(k,q,ρ)) − 1
+

1

2
coth

1

2
βE(k,q,ρ)

(

f(k,ρ)

E(k,q,ρ)
− 1

)}

− v|η|2
(f(0,ρ) − uq)2

+ vρ (4.16)

≥ − v

V

∑

k∈Λ∗

1

exp[βmax(ǫ(k), 1)] − 1
− v

2V
uq

∑

k∈Λ∗

|λ(k)| − v|η|2
δ(q,η)2

+ vρ .

Making use of (1.4), this implies that there exists a volume V0 independent of q and ρ, and
K(q,η) > 0 such that if V > V0, then

∂p
(2)
Λ

∂ρ
(q, ρ, η) ≥ −K(q,η) + vρ ,
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and therefore, if ρ is large enough, then
∂p

(2)
Λ

∂ρ
(q, ρ, η) > 0. As a consequence, there is ρ̃2(q,η)

such that the infimum of p
(2)
Λ (q, ρ, η) is attained in the interval (ρ̃1(q,η), ρ̃2(q,η)). If ρ̄Λ(q) is

a value of ρ at which the infimum is attained, then
∂p

(2)
Λ

∂ρ
(q, ρ̄Λ(q), η) = 0.

Let 0 < q0 < ∞. Then one can see that supq≤q0 K(q,η) < ∞, and therefore we get
supq≤q0 ρ̃2(q,η) <∞. �

Lemma 4.3 Let η 6= 0. Then there is q0(η) <∞ such that the supremum of p
(2)
Λ (q, ρ̄Λ(q), η)

with respect to q is attained in the interval (0, q0(η)) for all Λ and if q̄Λ is a maximizer of

p
(2)
Λ (q, ρ̄Λ(q), η), then

dp
(2)
Λ

dq
(q̄Λ, ρ̄Λ(q̄Λ), η) = 0 .

There exists c̄0(η) such that for all Λ

f(0,ρ̄Λ(q̄Λ)) − uq̄Λ > c̄0(η) ,

if q̄Λ is a maximizer of p
(2)
Λ (q, ρ̄Λ(q), η).

Proof: Recall that v − u := α > 0. Differentiating p
(2)
Λ (q, ρ, η) we get

∂p
(2)
Λ

∂q
(q, ρ, η) =

u2q

V

∑

k∈Λ∗

|λ(k)|2
{

1

exp(βE(k,q,ρ)) − 1

1

E(k,q,ρ)
+

1

2E(k,q,ρ)

}

+
u|η|2

(f(0,ρ) − uq)2
− uq . (4.17)

By Lemma 4.2 we have

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) =

∂p
(2)
Λ

∂q
(q, ρ̄Λ(q), η) +

∂p
(2)
Λ

∂ρ
(q, ρ̄Λ(q), η)

dρ̄Λ(q)

dq
=
∂p

(2)
Λ

∂q
(q, ρ̄Λ(q), η) ,

since ∂p
(2)
Λ (q, ρ̄Λ(q), η)/∂ρ = 0. Therefore, we can also write

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) =

∂p
(2)
Λ

∂q
(q, ρ̄Λ(q), η) +

∂p
(2)
Λ

∂ρ
(q, ρ̄Λ(q), η) . (4.18)

Insertion of (4.15) and (4.17) into the identity (4.18) gives

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) = − 1

V

∑

k∈Λ∗

{ 1

exp{βE(k,q,ρ̄Λ(q))} − 1

vf(k,ρ̄Λ(q)) − u2q|λ(k)|2
E(k,q,ρ̄Λ(q))

+
1

2

(

vf(k,ρ̄Λ(q)) − u2q|λ(k)|2
E(k,q,ρ̄Λ(q))

− v

)

}

− α|η|2
(f(0,ρ̄Λ(q)) − uq)2

+ vρ̄Λ(q) − uq . (4.19)
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Then, since f(k,ρ) > uq|λ(k)| ≥ uq|λ(k)|2, f(k,ρ) > E(k,q,ρ̄Λ(q)) and α > 0, by (4.19) we
get the estimate

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) ≤ 1

2V

∑

k∈Λ∗

u2q|λ(k)|2
E(k,q,ρ̄Λ(q))

− α|η|2
(f(0,ρ̄Λ(q)) − uq)2

+ vρ̄Λ(q) − uq . (4.20)

Now we have

E2(k,q,ρ) = (f(k,ρ) − uq|λ(k)|)(f(k,ρ) + uq|λ(k)|)
= (ǫ(k) + {f(0,ρ) − uq} + uq{1 − |λ(k)|})

×(ǫ(k) + {f(0,ρ) − uq} + uq{1 + |λ(k)|})

≥ (f(0,ρ) − uq)uq . (4.21)

Therefore, by (1.3), (1.4) and (4.20), (4.21) we obtain

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) <

C mΛ q
1/2u1/2

2V (f(0,ρ̄Λ(q)) − uq)1/2
− α|η|2

(f(0,ρ̄Λ(q)) − uq)2
+f(0,ρ̄Λ(q))−uq+µ. (4.22)

Let σΛ(q) := (f(0,ρ̄Λ(q)) − uq) (max(1, q))1/3. Then the inequality (4.22) gives

dp
(2)
Λ

dq
(q, ρ̄Λ(q), η) <

(max(1, q))2/3

σ
1/2
Λ (q)

{

CM u1/2

2
− α|η|2

σ
3/2
Λ (q)

+ σ
3/2
Λ (q)

}

+ µ. (4.23)

Therefore, there exists c0(η) such that if q ≥ 1 and σΛ(q) < c0(η), then
dp

(2)
Λ

dq
(q, ρ̄Λ(q), η) < 0

for all Λ. Thus for all Λ the supremum of p
(2)
Λ (q, ρ̄Λ(q), η) over q cannot be attained in the

domain defined by the condition σΛ(q) < c0(η).

Now assume that q ≥ 1 and σΛ(q) ≥ c0(η). Then, using again (4.21), we obtain from (4.17)
the estimate

∂p
(2)
Λ

∂q
(q, ρ̄Λ(q), η) ≤ K

{

1

(f(0,ρ̄Λ(q)) − uq)
+

q1/2

(f(0,ρ̄Λ(q)) − uq)1/2

}

+
u|η|2

(f(0,ρ̄Λ(q)) − uq)2
− uq

≤ K

{

q1/3

c0(η)
+

q2/3

c
1/2
0 (η)

}

+
u|η|2q2/3

c20(η)
− uq . (4.24)

Since the right-hand side of (4.24) becomes negative for large q, there is q0(η) < ∞ such

that the supremum of p
(2)
Λ (q, ρ̄Λ(q), η) with respect to q is attained in q < q0(η) for all Λ.

Note that from (4.17) we see that if q̄Λ is a maximizer of p
(2)
Λ (q, ρ̄Λ(q), η), then q̄Λ 6= 0, and

therefore combining this with the last statement we can deduce that

dp
(2)
Λ

dq
(q̄Λ, ρ̄Λ(q̄Λ), η) = 0 . (4.25)

Putting c̄0(η) = c0(η)/{max(1, q0(η))}1/3 finishes the proof. �
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Lemma 4.4 If η 6= 0, then

lim
Λ
{p(2)

Λ (q̄Λ, ρ̄Λ(q̄Λ), η) − p
(1)
Λ (q̄Λe

i(π+2ψ), η)} = 0 . (4.26)

Proof: By Bogoliubov’s inequality (3.16) one gets

0 ≤ p
(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) − p

(1)
Λ (q̄Λe

i(π+2ψ), η)

= p̃
(2)
Λ (q̄Λe

i(π+2ψ), ρ̄Λ(q̄Λ), η) − p
(1)
Λ (q̄Λe

i(π+2ψ), η)

≤ 1

2V 2
v
〈

(NΛ − V ρ̄Λ(q̄Λ))2
〉

H
(2)
Λ (q̄Λei(π+2ψ), ρ̄Λ(q̄Λ),η)

. (4.27)

Let δNΛ := NΛ − V ρ̄Λ(q̄Λ) and

∆̃Λ(η) :=
〈

δN2
Λ

〉

H
(2)
Λ (q̄Λei(π+2ψ), ρ̄Λ(q̄Λ),η)

. (4.28)

Then (4.27) implies

0 ≤ p
(2)
Λ (q̄Λ, ρ̄Λ(q̄Λ), η) − p

(1)
Λ (q̄Λe

i(π+2ψ), η) ≤ v

2V 2
∆̃Λ(η) .

We want to obtain an estimate for ∆̃Λ(η) in terms of V . To this end we introduce

D̃Λ(η) = (δNΛ, δNΛ)
H

(2)
Λ (q̄Λei(π+2ψ), ρ̄Λ(q̄Λ),η)

(4.29)

and calculate the derivatives

∂p
(2)
Λ

∂µ
(q, ρ, η) =

1

V

∑

k∈Λ∗

{

1

exp(βE(k,q,ρ)) − 1

f(k,ρ)

E(k,q,ρ)
+

1

2

(

f(k,ρ)

E(k,q,ρ)
− 1

)}

+
v|η|2

(f(0,ρ) − uq)2
, (4.30)

∂p
(2)
Λ

∂ρ
(q, ρ, η) = −v

(

∂p0
Λ

∂µ
(q, ρ, η) − ρ

)

, (4.31)

∂2p
(2)
Λ

∂µ2
(q, ρ, η) =

1

V

∑

k∈Λ∗

{

β exp(βE(k,q,ρ))

(exp(βE(k,q,ρ)) − 1)2

f 2(k, ρ)

E2(k,q,ρ)
+

1

2

exp(βE(k,q,ρ)) + 1

exp(βE(k,q,ρ)) − 1

u2q2|λ(k)|2
E3(k,q,ρ)

}

+
2|η|2

(f(0,ρ) − uq)3
. (4.32)

From (4.32), using ex/(ex− 1) ≤ 2(1 + 1/x) for x ≥ 0 and f 2(k,ρ) = E(k,q,ρ)2 +u2q2|λ(k)|2,
we get the estimate

∂2p
(2)
Λ

∂µ2
(q, ρ, η) ≤ 2

V

∑

k∈Λ∗

1

(exp(βE(k,q,ρ)) − 1)

(

β +
1

E(k,q,ρ)

)

+
1

V

∑

k∈Λ∗

{

1

(exp(βE(k,q,ρ)) − 1)

2βE(k,q,ρ) + 3

E3(k,q,ρ)
+

1

2E3(k,q,ρ)

}

u2q2|λ(k)|2

+
2|η|2

(f(0,ρ) − uq)3
. (4.33)
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The second sum in (4.33) is bounded from above by

K0

V

∑

k∈Λ∗

(

1

E3(k,q,ρ)
+

1

E4(k,q,ρ)

)

u2q2|λ(k)| ≤ C

(

1

(f(0,ρ) − uq)3
+

1

(f(0,ρ) − uq)4

)

q2 ,

and the first sum (using E2(k,q,ρ) ≥ ǫ(k)(ǫ(k) − µ)) by

K01

V











∑

k∈Λ∗

ǫ(k)≤1+4|µ|/3

(

1

E(k,q,ρ)
+

1

E2(k,q,ρ)

)

+
∑

k∈Λ∗

ǫ(k)>1+4|µ|/3

1

(exp(βǫ(k)/2) − 1)











≤ K02

(

1

(f(0,ρ) − uq)
+

1

(f(0,ρ) − uq)2
+ 1

)

.

Consequently

∂2p
(2)
Λ

∂µ2
(q̄Λ, ρ̄Λ(q̄Λ), η) ≤ C1

(

1

c̄0(η)
+

1

c̄20(η)
+
q2
0(η)

c̄30(η)
+
q2
0(η)

c̄40(η)
+ 1

)

+
2|η|2
c̄30(η)

, (4.34)

where c̄0(η) and q2
0(η) are as in Lemma 4.3.

By Lemma 4.3 we have
∂p

(2)
Λ

∂ρ
(q̄Λ, ρ̄Λ(q̄Λ), η) = 0. Then from (4.31) one gets that

ρ̄Λ(q̄Λ) =
∂p

(2)
Λ

∂µ
(q̄Λ, ρ̄Λ(q̄Λ), η) =

∂p̃
(2)
Λ

∂µ
(q̄Λe

i(π+2ψ), ρ̄Λ(q̄Λ), η) =

〈

NΛ

V

〉

H
(2)
Λ (q̄Λ,ρ̄Λ(q̄Λ),η)

,

and therefore by (4.29)

D̃Λ(η)

V
=
∂2p̃

(2)
Λ

∂µ2
(q̄Λe

i(π+2ψ), ρ̄Λ(q̄Λ), η) =
∂2p

(2)
Λ

∂µ2
(q̄Λ, ρ̄Λ(q̄Λ), η) .

It then follows from (4.34) that

lim
Λ

D̃Λ(η)

V 2
= 0 . (4.35)

Now Ginibre’s inequality for (4.28) and (4.29), cf. Section 3, gives

∆̃Λ(η) ≤ D̃Λ(η) + (4.36)

1

2
β1/2

{

D̃Λ(η)
}1/2

{

〈

[NΛ, [H
(2)
Λ (q̄Λe

i(π+2ψ), ρ̄Λ(q̄Λ), η), NΛ]]
〉

H
(2)
Λ (q̄Λei(π+2ψ),ρ̄Λ(q̄Λ),η)

}1/2

.

Note that here
〈

[NΛ, [H
(2)
Λ (q, ρ, η), NΛ]]

〉

H
(2)
Λ (q,ρ,η)

= 2u 〈q∗Q
Λ

+ qQ∗
Λ
〉
H

(2)
Λ (q,ρ,η)

+
√
V 〈ηa∗0 + η∗a0〉H(2)

Λ (q,ρ,η)
.

By differentiating the pressure we find that

u 〈q∗Q
Λ

+ qQ∗
Λ
〉
H

(2)
Λ (q,ρ,η)

= 2u|q|2V +
2V

u

(

q
∂p̃

(2)
Λ

∂q
(q, ρ, η) + q∗

∂p̃
(2)
Λ

∂q∗
(q, ρ, η)

)

,
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so that if we define q̂ := |q|ei(π+2ψ), then we get

u 〈q̂∗QΛ + q̂Q∗
Λ〉H(2)

Λ (q̂,ρ,η)
= 2u|q|2V +

4V

u

(

|q|∂p
(2)
Λ

∂|q| (|q|, ρ, η)

)

.

An explicit calculation gives

〈ηa∗0 + η∗a0〉H(2)
Λ (q,ρ,η)

=
√
V

(

η
∂p̃

(2)
Λ

∂η
(q, ρ, η) + η∗

∂p̃
(2)
Λ

∂η∗
(q, ρ, η)

)

= 2|η|2
√
V

{

f(0,ρ) − u|q| cos(θ − 2ψ)

f 2(0,ρ) − u2|q|2
}

and so

〈ηa∗0 + η∗a0〉H(2)
Λ (q̂,ρ,η)

= 2
√
V

{ |η|2
f(0,ρ) − u|q|

}

. (4.37)

Therefore, if ∂p
(2)
Λ (|q|, ρ, η)/∂|q| = 0, then

〈

[NΛ, [H
(2)
Λ (q̂, ρ, η), NΛ]]

〉

H
(2)
Λ (q̂,ρ,η)

= 2V

(

2u|q|2 +
|η|2

(f(0,ρ) − u|q|)

)

.

Thus

〈

[NΛ, [H
(2)
Λ (q̄Λe

i(π+2ψ), ρ̄Λ(q̄Λ), η), NΛ]]
〉

H
(2)
Λ (q̄Λei(π+2ψ),ρ̄Λ(q̄Λ),η)

≤ 2V

(

uq2
0(η) +

|η|2
c̄0(η)

)

.

From (4.35), (4.36) and the last estimate we then see that

lim
Λ

∆̃Λ(η)

V 2
= 0 ,

completing the proof. �

Now we prove that the order of the thermodynamic limit and taking the infimum and
supremum in (4.26) can be reversed.

Proof of Theorem 1.4 :

We know from Lemma 4.3 that there is q0(η) < ∞, independent of Λ, such that for
large Λ, the maximizer q̄Λ ∈ [0, q0(η)]. Then it follows from Lemma 4.2 that δ0(η) :=
infq∈[0, q0(η)] vρ̃1(q,η) − (µ + uq̄)+ > 0 and ρ̃02(η) := supq∈[0, q0(η)] ρ̃2(q,η) < ∞. Thus ρ̄Λ(q̄) is
in [0, ρ̃02(η)] and vρ̄Λ(q̄) − (µ+ uq̄)+ > δ0(η). Let Gη ⊂ R2

+ be the compact set

Gη := {(q, ρ) | 0 ≤ q ≤ q0(η), [(µ+ uq)+ + δ0(η)]/v ≤ ρ ≤ ρ̃02(η)} .

Then (q̄Λ, ρ̄Λ(q̄Λ)) ∈ Gη. Therefore, there is a sequence Λn such that (q̄Λn , ρ̄Λn(q̄Λn) converges
to some point (q̄, ρ̄) in Gη.

The derivatives of p
(2)
Λ (q, ρ, η) are uniformly bounded on Gη and therefore as Λ ↑ Rν ,

p
(2)
Λ (q, ρ, η) converges uniformly to p(2)(q, ρ, η) on Gη. Thus

lim
Λ
pΛ(η) = lim

n→∞
p

(2)
Λn (q̄Λn , ρ̄Λn(q̄Λn), η) = p(2)(q̄, ρ̄, η) . (4.38)
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By repeating the arguments of Lemmas 4.2 and 4.3 and by replacing (for V → ∞) the sums
over k by integrals, we see that if ¯̄q maximizer of infρ :σ(q,ρ)≥0 p

(2)(q, ρ, η) with respect to q,
then 0 ≤ ¯̄q ≤ q0(η) and if ¯̄ρ(¯̄q) is a minimizer of p(2)(¯̄q, ρ, η), then (¯̄q, ¯̄ρ(¯̄q)) is in Gη. Thus

sup
q≥0

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ, η) = sup
q∈[0,q0(η)]

inf
{ρ:(q,ρ)∈Gη}

p(2)(q, ρ, η) .

Since
p

(2)
Λn (q̄Λn, ρ̄Λn(q̄Λn), η) ≤ p

(2)
Λn (q̄Λn, ρ, η)

for ρ such that (q̄Λn , ρ) ∈ Gη, we get also that

p(2)(q̄, ρ̄, η) ≤ p(2)(q̄, ρ, η) ,

for ρ such that (q̄, ρ) ∈ Gη. That is

p(2)(q̄, ρ̄, η) = inf
{ρ:(q̄,ρ)∈Gη}

p(2)(q̄, ρ, η) . (4.39)

Similarly, for all q ≥ 0 we have

p
(2)
Λn (q̄Λn, ρ̄Λn(q̄Λn), η) ≥ p

(2)
Λn (q, ρ̄Λn(q), η) . (4.40)

If 0 ≤ q ≤ q0(η), then (q, ρ̄Λn(q)) ∈ Gη and therefore ρ̄Λn(q) has a convergent subsequence
ρ̄Λnr

(q) converging to some ρ̂, where (q, ρ̂) ∈ Gη. Taking the limit in (4.40) we obtain

p(2)(q̄, ρ̄, η) ≥ p(2)(q, ρ̂, η) ≥ inf
{ρ:(q,ρ)∈Gη}

p(2)(q, ρ, η).

Thus, by (4.39)

p(2)(q̄, ρ̄, η) = inf
{ρ:(q̄,ρ)∈Gη}

p(2)(q̄, ρ, η) ≥ inf
{ρ:(q,ρ)∈Gη}

p(2)(q, ρ, η)

for all q ∈ [0, q0(η)]. Therefore

p(2)(q̄, ρ̄, η) = sup
q∈[0,q0(η)]

inf
{ρ:(q,ρ)∈Gη}

p(2)(q, ρ, η) = sup
q≥0

inf
ρ : σ(q,ρ)≥0

p(2)(q, ρ, η). (4.41)

Combining the relation (4.41) with (4.38) we prove the theorem and obtain an explicit
formula for the limiting value of the pressure. �

Remark 4.2 By the definition of ρ̄Λ(q), q̄Λ (Lemma 4.2, 4.3) and by (4.38) we also get that
for η 6= 0

lim
n→∞

p
(2)
Λn (q̄Λn , ρ̄Λn(q̄Λn), η) = lim

n→∞
sup
q≥0

inf
ρ≥0

p
(2)
Λn (q, ρ, η) = sup

q≥0
inf
ρ≥0

p(2)(q, ρ, η)

= p(2)(q̄, ρ̄, η) , (4.42)

where (cf. (4.14))

p(2)(q, ρ, η) = −
∫

Rν

dνk

(2π)ν

{

1

β
ln [1 − exp(−βE(k,q,ρ))] +

1

2
(E(k,q,ρ) − f(k,ρ))

}

+
|η|2

f(0,ρ) − uq
− 1

2
uq2 +

1

2
vρ2 , (4.43)

and q̄, ρ̄ satisfy the equations

∂p(2)

∂ρ
(q, ρ, η) = 0 ,

∂p(2)

∂q
(q, ρ, η) = 0 . (4.44)
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We now show that the zero-mode η-source term can be switched off.

Lemma 4.5 Thermodynamic limit of the pressure is equal to

p := lim
Λ↑Rν

pΛ = lim
η→0

lim
Λ↑Rν

pΛ(η) .

Proof: By Bogoliubov’s convexity inequality (3.16) one gets

− |η|√
V
| 〈a0 + a∗0)〉HΛ

| ≤ pΛ − pΛ(η) ≤ |η|√
V
| 〈a0 + a∗0)〉HΛ(η) | ,

that implies

0 ≤ |pΛ − pΛ(η)| ≤ 2|η|√
V
| 〈a∗0〉HΛ(η) | ≤

2|η|√
V

〈a∗0a0〉
1
2

HΛ(η) ≤
2|η|√
V

〈NΛ〉
1
2

HΛ(η) . (4.45)

From Lemma B.1 and (3.2) we see that for |η| ≤ 1,

〈

NΛ

V

〉

HΛ(η)

≤ K1 ,

where K1 is independent of η. Thus the right-hand side of (4.45) tends to zero as η tends to
zero. �

Finally we prove that the order of the limit η → 0 and taking the infimum and supremum
in (4.41) can be reversed.

Lemma 4.6

lim
η→0

sup
q≥0

inf
ρ : σ(q,ρ)≥0

p(2)(q, ρ, η) = sup
q≥0

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ) , (4.46)

where p(2)(q, ρ) := p(2)(q, ρ, 0) is defined in (1.14).

Proof: Let ρ̄η(q) be such that

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ, η) = p(2)(q, ρ̄η(q), η) ,

and q̄η be such that
sup
q≥0

p(2)(q, ρ̄η(q), η) = p(2)(q̄η, ρ̄η(q̄η), η) .

Let
G0 := {(q, ρ) | q ≥ 0 , σ(q, ρ) ≥ 0} .

By arguments similar to the above (see proof of Theorem 1.4) we can show that these exist
and that (q̄η, ρ̄η(q̄η)) ∈ G0. We shall need the following derivative of (4.43):

∂p(2)

∂ρ
(q, ρ, η) = −v

∫

Rν

dνk

(2π)ν

{

1

exp(βE(k,q,ρ)) − 1

f(k,ρ)

E(k,q,ρ)
+

1

2

(

f(k,ρ)

E(k,q,ρ)
− 1

)}

− v|η|2
(f(0,ρ) − uq)2

+ vρ . (4.47)



Proof of the Variational Principle for a Pair Boson Model 23

Moreover, in the same way as in (4.17), (4.19) we also obtain:

dp(2)

dq
(q, ρ̄η(q), η) =

u2q

∫

Rν

dνk

(2π)ν
|λ(k)|2

{

1

exp(βE(k,q,ρ̄η(q))) − 1

1

E(k,q,ρ̄η(q))
+

1

2E(k,q,ρ̄η(q))

}

+
u|η|2

(f(0,ρ̄η(q)) − uq)2
− uq , (4.48)

and for any number t

dp(2)

dq
(q, ρ̄η(q), η) = −

∫

Rν

dνk

(2π)ν

{

1

exp(βE(k,q,ρ̄η(q))) − 1

t vf(k,ρ̄η(q)) − u2q|λ(k)|2
E(k,q,ρ̄η(q))

+
1

2

(

t vf(k,ρ̄η(q)) − u2q|λ(k)|2
E(k,q,ρ̄η(q))

− t v

)

}

− α|η|2
(f(0,ρ̄η(q)) − uq)2

+ t vρ̄η(q) − uq . (4.49)

As in (4.24), from (4.48) we get the estimate

dp(2)

dq
(q, ρ̄η(q), η) ≤ K

{

1

(f(0,ρ̄η(q)) − uq)
+

q1/2

(f(0,ρ̄η(q)) − uq)1/2

}

+
u|η|2

(f(0,ρ̄η(q)) − uq)2
− uq . (4.50)

Therefore, if f(0,ρ̄η(q̄η)) − uq̄η ≥ 1, then by the definition of q̄η and by (4.50) we obtain

0 =
dp(2)

dq
(q̄η, ρ̄η(q̄η), η) ≤ K1(1 + q̄

1/2
η )

(f(0,ρ̄η(q̄η)) − uq̄η)1/2
− uq̄η .

Since the right-hand side of the last inequality must be non-negative, then

f(0,ρ̄η(q̄η)) − uq̄η ≤
K2

1 (1 + q̄
1
2
η )2

u2q̄2
η

.

Similarly, if f(0,ρ̄η(q̄η)) − uq̄η ≤ 1, then

dp(2)

dq
(q̄η, ρ̄η(q̄η), η) ≤ K2(1 + q̄

1/2
η )

(f(0,ρ̄η(q̄η)) − uq̄η)2
− uq̄η .

The right-hand side of the last inequality must be positive and thus

f(0,ρ̄η(q̄η)) − uq̄η ≤
K

1/2
2 (1 + q̄

1/2
η )1/2

u1/2q̄
1/2
η

.

Therefore, either

1 ≤ f(0,ρ̄η(q̄η))−uq̄η ≤
K2

1 (1 + q̄
1/2
η )2

u2q̄2
η

or 0 ≤ f(0,ρ̄η(q̄η))−uq̄η ≤ min

(

1,
K

1/2
2 (1 + q̄

1/2
η )1/2

u1/2q̄
1/2
η

)

.
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Thus the only way that (q̄η, ρ̄η(q̄η)) can escape to infinity as η → 0 is, if either ρ̄η(q̄η) → ∞
and q̄η → 0, or if ρ̄η(q̄η) → ∞, q̄η → ∞ and f(0,ρ̄η(q̄η)) − uq̄η → 0. Now, if ρ → ∞ and
q → 0, the right-hand side of (4.47) tends to +∞. Therefore the case ρ̄η(q̄η) → ∞ and
q̄η → 0, is not possible.

Suppose now that ρ̄η(q̄η) → ∞, q̄η → ∞ and f(0,ρ̄η(q̄η)) − uq̄η → 0. From (4.49) with
t = u/v we get

0 =
dp(2)

dq
(q̄η, ρ̄η(q̄η), η) <

‖λ‖u
2

+ uρ̄η(q̄η)) − uq̄η =
‖λ‖u

2
+
u

v
(f(0,ρ̄η(q̄η)) − uq̄η + µ− αq̄η) .

This contradicts our supposition and therefore ρ̄η(q̄η) and q̄η must remain finite.

As in (4.22) and (4.23), from (4.49) with t = 1, we get

0 =
dp(2)

dq
(q̄η, ρ̄η(q̄η), η) <

1

(f(0,ρ̄η(q̄η)) − uq̄η)1/2

(

‖λ‖u1/2q̄
1/2
η

2
− α|η|2

(f(0,ρ̄η(q̄η)) − uq̄η)3/2

)

+f(0,ρ̄η(q̄η)) − uq̄η + µ.

Therefore, since the right-hand side must be positive, the term

|η|2
(f(0,ρ̄η(q̄η)) − uq̄η)3/2

must remain bounded when f(0,ρ̄η(q̄η)) − uq̄η → 0.

Summarizing we see that (q̄η, ρ̄η(q̄η)) must remain in a bounded subset of G0 and

lim
η→0

|η|2
(f(0,ρ̄η(q̄η) − uq̄η)

= 0 . (4.51)

Since (q̄η, ρ̄η(q̄η)) remains in a bounded subset of G0, there exists a sequence ηn → 0 such
that (q̄ηn , ρ̄ηn(q̄ηn)) converges to (q̄, ρ̄) ∈ Ḡ0, where Ḡ0 is the closure of G0. Now p(2)(q, ρ) is
continuous on Ḡ0. Thus by (4.51) we obtain

lim
Λ
pΛ = lim

n→∞
p(2)(q̄ηn , ρ̄ηn(q̄ηn), ηn)

= lim
n→∞

p(2)(q̄ηn , ρ̄ηn(q̄ηn)) + lim
n→∞

|η|2
(f(0,ρ̄ηn(q̄ηn) − uq̄ηn)

= p(2)(q̄, ρ̄) .

Now for ρ such that (q̄, ρ) ∈ G0, for large n we have (q̄ηn , ρ) ∈ G0. Therefore, for large n we
get

p(2)(q̄ηn , ρ̄ηn(q̄ηn), ηn) ≤ p(2)(q̄ηn , ρ, ηn)

and letting n→ ∞, we obtain for ρ such that (q̄, ρ) ∈ G0, the estimate

p(2)(q̄, ρ̄) ≤ p(2)(q̄, ρ) .

That is
p(2)(q̄, ρ̄) = inf

{ρ:(q̄,ρ)∈G0}
p(2)(q̄, ρ).
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Similarly, for all q ≥ 0 we have

p(2)
ηn (q̄ηn , ρ̄ηn(q̄ηn), ηn) ≥ p(2)

ηn (q, ρ̄ηn(q), ηn) .

From (4.47), we see that for each q ≥ 0, both ρ̄η(q) and |η|2/(f(0,ρ̄η(q)−uq)2 remain bounded
as η → 0. Let

{

ρ̄ηnr (q)
}

nr≥1
be a convergent subsequence of {ρ̄ηn(q)}n≥1 converging to ρ̂

say, where (q, ρ̂) ∈ Ḡ0. By letting r → ∞ we then have

p(2)(q̄, ρ̄) ≥ p(2)(q, ρ̂) ≥ inf
{ρ:(q,ρ)∈G0}

p(2)(q, ρ) .

Therefore
p(2)(q̄, ρ̄) = inf

{ρ:(q̄,ρ)∈G0}
p(2)(q̄, ρ) ≥ inf

{ρ:(q,ρ)∈G0}
p(2)(q, ρ),

for all q ≥ 0, and thus we get the relation

p(2)(q̄, ρ̄) = sup
q≥0

inf
{ρ:(q,ρ)∈G0}

p(2)(q, ρ) = sup
q≥0

inf
ρ :σ(q,ρ)≥0

p(2)(q, ρ)

proving the theorem. �

Combining Theorem 1.4, Lemma 4.5 and Lemma 4.6 we get the first part of our main result,
Theorem 1.1, (1.20).
The second part we shall consider in the next section.

5 Discussion

Let us put in Hamiltonian (1.22) the source equal ν = 0 and suppose that η 6= 0. Then
the corresponding Euler-Lagrange equations, obtained by the condition that the derivatives
(4.47) and (4.48) are equal to zero, take the form

ρ =
1

2

∫

Rν

dνk

(2π)ν

{

f(k,ρ)

E(k,q,ρ)
coth

1

2
βE(k,q,ρ) − 1

}

+
|η|2

(f(0,ρ) − uq)2
, (5.1)

q =
u q

2

∫

Rν

dνk

(2π)ν
|λ(k)|2
E(k,q,ρ)

coth
1

2
βE(k,q,ρ) +

|η|2
(f(0,ρ) − uq)2

. (5.2)

We shall now discuss some of the consequences of these equation in relation to the existence
of Bose-Einstein condensation (BEC) in the model (1.22).

(a) The solution (ρ̄η(β, µ), q̄η(β, µ)) of the equations (5.1), (5.2) always exist and is a smooth
function of β, µ and η, for η 6= 0. Moreover, we can identify it with the Gibbs expectations
of the corresponding observables. Since the pressure pΛ(ν = 0, η) is a convex function of µ
and of u, then by the Griffiths lemma, see e.g. [4], the corresponding derivatives converges
in the thermodynamic limit to derivatives of the limiting pressure (1.30). Differentiating
(1.30) with respect to µ and u and comparing these derivatives with the solutions of (5.1)
and (5.2), we get

lim
Λ

〈

NΛ

V

〉

HΛ(ν=0,η)

= ρ̄η(β, µ), lim
Λ

〈

Q∗
Λ
Q

Λ

V 2

〉

HΛ(ν=0,η)

= q̄2
η(β, µ).
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(b) Similarly we can show that the zero-mode BEC for η 6= 0 is given by

ρ0(η) := lim
Λ

〈

a∗0a0

V

〉

HΛ(0,η)

=
|η|2

(f(0,ρ̄η) − uq̄η)2
. (5.3)

To obtain this result let us make a global gauge transformation Uϕ = eiϕNΛ of the Hamiltonian
HΛ(µ, ν = 0, η) = HΛ(ν = 0, η) − µNΛ, see (1.22), with ϕ = arg η. Then :

H̃Λ(µ, 0, η) = UϕHΛ(µ, 0, η)U∗
ϕ = H̃Λ − µNΛ −

√
V |η| (ã∗0 + ã0) .

From
0 = 〈[H̃Λ(µ, 0, η), NΛ]〉H̃Λ(µ,0,η) =

√
V |η|〈ã∗0 − ã0〉H̃Λ(µ,0,η)

and
0 ≤ 〈[NΛ, [H̃Λ(µ, 0, η), NΛ]]〉H̃Λ(µ,0,η) =

√
V |η|〈ã∗0 + ã0〉H̃Λ(µ,0,η)

we obtain
〈ã∗0〉H̃Λ(µ,0,η) = 〈ã0〉H̃Λ(µ,0,η) ≥ 0. (5.4)

Let δA0 := (ã∗0 + ã0) − 〈ã∗0 + ã0〉H̃Λ(µ,0,η). Then

∂2pΛ(η)

∂|η|2 = (δA∗
0, δA0)H̃Λ(µ,0,η) ≥ 0, (5.5)

where (· , ·)H̃Λ(µ,0,η) denotes the Bogoliubov-Duhamel inner product with respect to the

Hamiltonian H̃Λ(µ, ν = 0, η). Hence, the convexity (5.5) and convergence of the pressure
pΛ(η) (see Theorem 1.4 and Remark 4.2) imply by the Griffiths lemma the convergence of
the first derivatives to the derivative of the limiting pressure :

lim
Λ

∂pΛ(η)

∂|η| = lim
Λ

1√
V
〈ã∗0 + ã0〉H̃Λ(µ,0,η) =

2|η|
f(0,ρ̄η) − uq̄η

, (5.6)

see (1.30), (1.31) and (4.37). Therefore, by (5.4), (5.6), and returning back to original
zero-mode operators, we obtain

lim
Λ

〈

a∗0√
V

〉

HΛ(0,η)

=
η∗

f(0,ρ̄η) − uq̄η
, lim

Λ

〈

a0√
V

〉

HΛ(0,η)

=
η

f(0,ρ̄η) − uq̄η
. (5.7)

So, by (5.7) we conclude that the η - source in Hamiltonian (1.22) breaks the zero-mode gauge
invariance creating a zero-mode macroscopic occupation with the particle density estimated
from below by the Cauchy-Schwarz inequality:

lim
Λ

〈

a∗0a0

V

〉

HΛ(0,η)

≥ lim
Λ

〈

a∗0√
V

〉

HΛ(0,η)

〈

a0√
V

〉

HΛ(0,η)

(5.8)

=
|η|2

(f(0,ρ̄η) − uq̄η)2
.

To prove that in fact there is an equality in (5.8), we consider pΛ(η, s) the pressure with ǫ(0)
replaced by ǫ(0) − s with s positive and again use its convexity with respect to s. Then
Griffiths lemma and that fact that f(0,ρ̄η)−uq̄η > 0, as soon as η 6= 0, imply, see (4.14) and
(4.38):

lim
Λ

〈

a∗0a0

V

〉

HΛ(0,η)

= lim
Λ

(

∂pΛ(η, s)

∂s

)

s=+0

≤
(

∂p(η, s)

∂s

)

s=+0

=
|η|2

(f(0,ρ̄η) − uq̄η)2
.
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Here we have used the fact that the s-dependence of p(η, s) is only through the last term in
(1.31).

(c) In the limit η → 0 equations (5.1) and (5.2) coincide with equations (3.7) and (3.8) or
(3.10) and (3.11) in [13]. There the amount of the generalized condensate density is denoted
there by m0(β, µ). By inspection this coincides with the limit of ρ0(η) in (5.3) as η → 0:

m0(β, µ) = lim
η→0

ρ0(η) .

In [13] we found that for m0 to be non-zero, µ must be greater than a certain critical value
of chemical potential µc(β, u, v) . For u = 0, this critical chemical potential coincides with
the one for the Mean-Field boson gas (1.10), namely µc(β, u = 0, v) = vρc(β), where ρc(β)
is the critical density for the Perfect Bose-gas, see e.g. [5].

(d) It was shown in [13] that the phase diagram is quite complicated. Subject to these
Euler-Lagrange equations the expressions for the pressure given in [13] equation (2.11) and
at the top of page 438, are the same as p(2)(q, ρ) in (1.14). (We warn the reader that in these
equations for the pressure in [13] there is a misprint and a term is missing.) There we were
able to solve the problem only for some values of u and v, see Fig. 2 in [13]. For example
(5.2) shows that for u > 0 (attraction in the BCS part of the PBH (1.8)) the existence of
the generalized Bose condensate m0 6= 0 causes an abnormal boson pairing :

lim
η→0

lim
Λ

1

2
〈Q∗

Λ
+QΛ〉HΛ(0,η) = lim

η→0
q̄η(β, µ) 6= 0 . (5.9)

This is because, for u > 0, equation (5.2) cannot have the trivial solution q̄η = 0 when the
generalized condensate

m0(β, µ) = lim
η→0

|η|2
(f(0,ρ̄η) − uq̄η)2

6= 0 . (5.10)

Note that on the other hand the equations (5.1) and (5.2) allow the possibility that m0 = 0
without limη→0 q̄η = 0. This “two-stage” condensation is possible only when u > 0 and it is
similar to that discussed in [13].

(e) As in [13] we interpret the spectrum (1.15) of the effective Hamiltonian

εexcit(k) := lim
η→0

E(k,qη,ρη) , (5.11)

as the spectrum of excitations for the PBH (1.8). Our analysis of the Euler-Lagrange equa-
tions (5.1), (5.2) (as well as (5.13), (5.14 below) shows that there no gap in this spectrum
as soon as there is the Bose condensation (5.10):

lim
k→0

εexcit(k) = lim
k→0

lim
η→0

(ǫ(k) − µ+ ρη − |uqηλ∗(k)|) = 0. (5.12)

This conclusion is again in agreement with [13].

(f) The case of repulsion (u ≤ 0) in the BCS part of the PBH (1.8) is quite different. In
this case the pressure coincides with the mean-field one (u = 0) and we always have for the
boson paring : limη→0 q̄η(β, µ) = 0. The first property was derived in great generality in [13].
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To make a contact with the variational principle proved in this paper, let us change notation
and replace u by −w, with w ≥ 0. The Euler-Lagrange equations, (5.1)and (5.2), become

ρ =
1

2

∫

Rν

dνk

(2π)ν

{

f(k,ρ)

E(k,q,ρ)
coth

1

2
βE(k,q,ρ) − 1

}

+
|η|2

(f(0, ρ) + wq)2
, (5.13)

q =
(−w)q

2

∫

Rν

dνk

(2π)ν
|λ(k)|2
E(k,q,ρ)

coth
1

2
βE(k,q,ρ) +

|η|2
(f(0, ρ) + wq)2

. (5.14)

Since the solutions ρ̄η(β, µ), q̄η(β, µ) of equations (5.13), (5.14) must satisfy the condition
σ(q̄η, ρ̄η) ≥ 0, one gets by (1.19) the estimate

f(0, ρ̄η) + wq̄η ≥ 2wq̄η . (5.15)

Note that the first term in the right-hand side of (5.14) is negative. Therefore, by (5.15) we
obtain

q̄η(β, µ) <
|η|2

(f(0, ρ) + wq̄η(β, µ))2
<

|η|2
(2wq̄η(β, µ))2

or q̄η(β, µ) <
|η|2/3

(2w)2/3
.

This implies that in the limit η → 0 the equation (5.14) may have only a trivial solution:

lim
η→0

q̄η(β, µ) = 0 , (5.16)

and

lim
η→0

|η|2
(f(0, ρ̄η) + wq̄η)2

= 0 . (5.17)

Let ρc(β) be the critical density for the Perfect Bose Gas: w = v = 0, see (1.9) or (1.10),

ρc(β) :=

∫

Rν

dνk

(2π)ν
1

eβǫ(k) − 1
.

For µ ≤ vρc(β), limits (5.16) and (5.17) imply that as η → 0 the solution of equation (5.13)
tends to ρ̂(β, µ) the solution of the corresponding equation for the Mean-Field model (1.10):

ρ =

∫

Rν

dνk

(2π)ν
1

eβ(ǫ(k)−µ+vρ) − 1
,

and the pressure

pw(β, µ) := lim
η→0

inf
ρ : σ(q,ρ)≥0

inf
q≥0

p(2)(q, ρ, η) = inf
ρ :σ(0,ρ)≥0

p(2)(0, ρ, 0) = p(2)(0, ρ̂(β, µ))

coincides with the mean-field pressure, see (1.14) and [5]. On the other hand, if ρ > µ/v,
then from (5.13) we obtain for any ε > 0 and η is sufficiently small

µ

v
< ρ̄η(β, µ) = ρc(β) + ε ,

giving a contradiction for µ > vρc(β). This means that in this case equations (5.13) and
(5.14) are inconsistent and the minimum point must lie on the boundary of the allowed
range on the ρ-q plane. This boundary consists of the two lines q = 0 and ρ = (µ + wq)/v.
Minimizing the pressure on the first line is equivalent to solving the variational problem in
the mean-field case. This was done in [5] where one sees that the minimum is attained at
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a point which tends to ρ = µ/v as η → 0. On the other boundary ρ = (µ + wq)/v similar
calculations show that the minimizer also tends to (ρ = µ/v, q = 0). Thus the pressure again
coincides with the with the mean-field pressure.
This proves the second part of our main result for repulsive BCS interaction in the PBH,
Theorem 1.1, (1.21).

We end with the following remark concerning BEC in the PBH model. Though the pressure
of the model with the PB Hamiltonian for w > 0 coincides with the one for w = 0, it is an
open question wether these models coincide completely. As has been shown in [32]-[34] a
similar type of diagonal quadratic repulsion is able to change the type of Bose condensation,
from condensation in the zero mode (type I) to generalized van den Berg-Lewis-Pulé con-
densation [30] out of the zero mode without altering the pressure. Therefore, the analysis
of the Bose condensate structure in the PBH model requires a more detailed study of the
corresponding quantum Gibbs states. This is beyond the scope of the present paper.
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Appendix A: Commutators

By (1.9) and (1.22) we have

[HΛ(ν, η) − µNΛ, QΛ
] = (−2)

∑

k∈Λ∗

(ǫ(k) − µ)λ(k)Ak +
2u

V

∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

Q
Λ

− v

V
(NΛQΛ

+ Q
Λ
NΛ) + 4ν

∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

− 2
√
V ηa0 ,

and

[Q∗
Λ
, [HΛ(ν, η) − µNΛ, QΛ

]] = 8
∑

k∈Λ∗

(ǫ(k) − µ)|λ(k)|2
(

Nk +
1

2

)

− 4u

V







∑

k∈Λ∗

|λ(k)|2λ∗(k)A∗
k QΛ + 2

[

∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

]2






+
4v

V

{

Q∗
ΛQΛ + 2

∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

(NΛ + 1)

}

− 8ν
∑

k∈Λ∗

|λ(k)|2λ∗(k)A∗
k + 4

√
V ηλ(0)a∗0 . (A.1)

Using (1.5) and (1.6) we see that the first term in (A.1) is bounded by

8(cΛ + |µ|)〈NΛ〉 + 4nΛ + 4|µ|mΛ ,

where 〈 · 〉 := 〈 · 〉HΛ(ν,η). Recall that Lemma 2.1 gives

Q∗
Λ
Q

Λ
≤ N2

Λ
+MVNΛ
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and as in (2.3) we get AkA
∗
k ≤ NkN−k + 3(Nk + N−k) + 2. Using these we obtain

∑

k∈Λ∗

|λ(k)|3|〈A∗
k QΛ

〉| ≤
∑

k∈Λ∗

|λ (k)|〈AkA∗
k〉1/2〈 Q∗

Λ
Q

Λ
〉1/2

≤ 〈N2
Λ +MVNΛ〉1/2

(

∑

k∈Λ∗

|λ(k)|
)1/2(

∑

k∈Λ∗

|λ(k)|〈AkA∗
k〉
)1/2

≤ 〈N2
Λ +MVNΛ〉1/2m1/2

Λ

(

∑

k∈Λ∗

|λ(k)|〈NkN−k + 3(Nk +N−k) + 2〉
)1/2

≤ 〈N2
Λ +MVNΛ〉1/2m1/2

Λ

(

〈N2
Λ + 6NΛ + 2mΛ〉

)1/2
,

and independently we have

∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

≤
∑

k∈Λ∗

|λ(k)|
(

Nk +
1

2

)

≤ NΛ +
mΛ

2

and
∑

k∈Λ∗

|λ(k)|2
(

Nk +
1

2

)

(NΛ + 1) ≤
∑

k∈Λ∗

|λ(k)|
(

Nk +
1

2

)

(NΛ + 1) ≤
(

NΛ +
mΛ

2

)

(NΛ + 1) ,

which gives estimates for the second and the third terms in (A.1). We now bound the
penultimate term in (A.1).
∑

k∈Λ∗

|λ(k)|3| 〈A∗
k〉 | ≤

∑

k∈Λ∗

|λ(k)|| 〈A∗
k〉 | ≤

∑

k∈Λ∗

〈N−k〉1/2 〈Nk + 1〉1/2 |λ(k)|1/2

≤
(

∑

k∈Λ∗

〈N−k〉
)1/2(

∑

k∈Λ∗

|λ(k)| 〈Nk + 1〉
)1/2

≤ 〈NΛ〉1/2 (〈NΛ〉 + mΛ)1/2 .

Finally for the last term we have

| 〈a∗0〉 | ≤ 〈N0〉1/2 ≤ 〈NΛ〉1/2 .
Putting these bounds together we get

〈[Q∗
Λ
, [HΛ(ν, η) − µNΛ, QΛ

]]〉 ≤ 8(cΛ + |µ|)〈NΛ〉 + 4nΛ + 4|µ|mΛ

+
4u

V
〈N2

Λ +MV NΛ〉1/2m1/2
Λ

(

〈N2
Λ + 6NΛ + 2mΛ〉

)1/2

+
8u

V

(

NΛ +
mΛ

2

)2

+
4v

V

(

N2
Λ

+MV NΛ

)

+
8v

V

(

NΛ +
mΛ

2

)

(NΛ + 1)

+8 〈NΛ〉1/2 (〈NΛ〉 + mΛ)1/2 + 32
√
V 〈NΛ〉1/2 .

for |ν| ≤ 1 and |η| ≤ 1. From Lemma B.1 and (3.2) we see that for |ν| ≤ 1 and |η| ≤ 1,
〈

NΛ

V

〉

HΛ(ν,η)

≤ K1 and

〈

N2
Λ

V 2

〉

HΛ(ν,η)

≤ K2, (A.2)

where K1 and K2 are independent of ν, η. Thus

〈[Q∗
Λ
, [HΛ(ν, η) − µNΛ, QΛ

]]〉HΛ(ν,η) ≤ C V 3/2 (A.3)

for some number C.
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Appendix B: Bounds

Lemma B.1 If a Hamiltonian HΛ satisfies the condition

HΛ ≥ TΛ +
1

2V
γN2

Λ
− δNΛ − σV (B.1)

with γ > 0 then there exist constants K1 and K2, depending only on γ, δ, σ and µ but not
on Λ, such that

〈

NΛ

V

〉

HΛ

≤ K1 (B.2)

and
〈

N2
Λ

V 2

〉

HΛ

≤ K2 . (B.3)

Proof: Let pΛ(µ) be the pressure for HΛ, then

〈

NΛ

V

〉

HΛ

≤ pΛ(µ+ 1) − pΛ(µ) ≤ pΛ(µ+ 1) ≤ K1,

where K1 is independent of Λ by (B.1). Also for λ ∈ [0, γ) let

HΛ(λ) := HΛ −
1

2V
λN2

Λ
,

and let pΛ(µ, λ) be the corresponding pressure. Then

〈

N2
Λ

V 2

〉

HΛ

≤ 2

γ
{pΛ(µ, γ/2) − pΛ(µ)} ≤ 2

γ
pΛ(µ, γ/2) ≤ K2 ,

where K2 is independent of Λ, again by (B.1). �

Note that by Theorem 2.1 the Hamiltonians (1.8) and (1.22) verify the condition (B.1), see
estimate (3.2).
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