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Towards the Optimal Amplify-and-Forward

Cooperative Diversity Scheme

Sheng Yang and Jean-Claude Belfiore

Abstract

How to find a cooperative diversity scheme that achieves rdmesimit diversity bound is still an
open problem. In fact, all previously proposed amplify-dadvard (AF) and decode-and-forward (DF)
schemes do not improve with the number of relays in termseféithersity-multiplexing tradeoff (DMT)
for multiplexing gainsr higher than0.5. In this work, we study the class of slotted amplify-and-
forward (SAF) schemes. We first establish an upper-bountd®@®MT for any half-duplex SAF scheme
with an arbitrary number of relayd” and number of slotd/. Then, we propose a naive SAF scheme
that can exploit the potential diversity gain in the high tipléxing gain regime. More precisely, in
certain conditions, the naive SAF scheme achieves the peghDMT upper-bound which tends to the
transmit diversity bound whe goes to infinity. In particular, for the two-relay case, theee-slot
naive SAF scheme achieves the proposed upper-bound anerfmutps the NAF scheme of Azariat
al. for multiplexing gainsr < 2/3. Numerical results reveal a significant gain of our schemer tive

previously proposed AF schemes, especially in high speeffiaiency and large network size regime.

Index Terms

Cooperative diversity, relay, diversity-multiplexingitteoff (DMT), slotted amplify-and-forward (SAF),

relay scheduling.

. INTRODUCTION AND PROBLEM DESCRIPTION
As a new way to exploit spatial diversity in a wireless netky@ooperative diversity techniques

have recently drawn more and more attention. Since the widBendonari®t al.[1], [2], a flood
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of works has appeared on this subject and many cooperattequis have been proposed (see,
for example, [3]-[8]). A fundamental performance measwreetaluate different cooperative
schemes is the diversity-multiplexing tradeoff (DMT) wihivas introduced by Zheng and Tse [9]
for the MIMO Rayleigh channel. It is well known that the DMT ahy N-relay cooperative
diversity scheme is upper-bounded (referred to astitesmit diversity boundn [4]) by the

DMT of a MISO system withV + 1 antennas,
d(r)y=(N+1)(1—-7r)". Q)

This bound is actually proved achievable by the cooperatiuétiple access (CMA) scheme [6],
using a Gaussian code with an infinite cooperation frametlheng

However, how to achieve (1) in a single-user setting.,(half-duplex relay channel) in the
general case is still an open problem, even with an infinitgecation frame length. In the single-
relay case, the best known cooperative scheme, in the dasemify-and-forward strategies, is
the Non-orthogonal Amplify-and-Forward (NAF) scheme amel Dynamic Decode-and-Forward
(DDF) scheme in the class of decode-and-forward stratedies NAF scheme was proposed
by Nabaret al. [5] and has been proved to be the optimal amplify-and-fodwscheme for
a single-relay channel by Azariaet al. [6]. It is therefore impossible to achieve (1) by only
amplifying-and-forwarding and one relay. The DDF scheme maposed independently in [6],
[10], [11] in different contexts. In [6], it is shown that tH@DF scheme does achieve (1) in the
low multiplexing gain regimer( < 0.5) but it fails in the high multiplexing gain regime, which is
due to thecausalityof the decode-and-forward scheme. Intuitively, to achigaeeMISO bound
with a multiplexing gainr, the source and the relay need to cooperate during atteasttion
of the time. However, before this might possibly happen,rthay also needs at leastportion
of the time to decode the source signal (even with a Gaussiarce-relay link). Therefore, it
is impossible for the DF schemes to achieve the MISO bounaifos 1.

Being optimal in the single-relay case, the generalizatbthe NAF and the DDF schemes
proposed in [6], also the best known in each class, fails pdo#xthe potential spatial diversity
gain in the high multiplexing gain regime: ¢~ 0.5) with the growth of the network size. The
suboptimality of these two schemes becomes very signifitand large number of relays, as
shown in Fig. 1. Our goal is therefore to find a practical schdhat can possibly fill the gap

between the two schemes and the MISO bound. In this work, wesfon the class of slotted
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Fig. 1. Diversity-multiplexing tradeoff of av-relay channel : NAF, DDFs. MISO bound.

amplify-and-forward (SAF) schemes because of the follgnattractive properties :

1) Low relaying complexity. The relays only need to scale tbeeived signal and retransmit
it.

2) Existence of optimal codes with finite framelength. Wel whow that any SAF scheme
Is equivalent to a linear fading channel, whose DMT is adkdely perfect [12]M x M
codes. The code length for an-slot SAF scheme is therefore at mdgt.

3) Flexibility. The source does not have to know the numbeelafys or the relaying procedure.
The coding scheme only depends on the number of dlbtnd is always optimal in terms
of DMT.

A natural question is raisedls it possible for a SAF scheme to achieve the MISO bound (1)?
And how to achieve it if it is possiblePhis question is partially answered in this work. The
main contributions of this work are as follows :

« For a generalV-relay M-slot SAF scheme, we establish a new upper-bound :

d*(r):(l—r)++N<1— MA{1T>+’ 2

from which we conclude that it is impossible to achieve theSMIbound with a finite
length. This bound is however tending to the MISO bound whémoes to infinity. Then,
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we argue that the suboptimality of thg-relay NAF scheme is due to the fact that only
half of the source signal igrotectedby the relays.

« To approach the upper-bound (2), we propose a naive SAF shénhe basic idea is to
let as many slots as possiblee(, M — 1) be forwarded by the relays. By introducing two
relay scheduling strategies, we show that the naive SAFeaekithe DMT upper-bound for
arbitrary (N, M) when all relays are isolated from each othex, there is no physical link
between the relays. Fav/ = 2 and an arbitraryV, the proposed scheme corresponds to
the single-relay NAF scheme combined with the relay sedacticheme [7] and the DMT
upper-bound is achieved without the relay isolation asgiomp

« In particular, we show explicitly that the two-relay thrslet naive SAF scheme dominates
the two-relay NAF scheme for multiplexing gains< 2/3. It is therefore the best known
two-relay amplify-and-forward scheme.

In this paper, we use boldface lower case lettets denote vectors, boldface capital lettdds

to denote matrice<’ /' represents the complex Gaussian random varighlel-]' respectively
denote the matrix transposition and conjugated transposiiperations/|-|| is the vector norm
and||-|| is the Frobenius matrix nornjz)” meansmax (0, z). The dot equal operatet denotes

asymptotic equality in the high SNR regimee.,

, . log py . log p2
= means 1 =1
pr="p2 SNR o log SNR SNR 0o log SNR’

and <, > are similarly defined.

The rest of the paper is organized as follows. Section lloohices the system model and
the class of SAF schemes. In Section Ill, we establish an ripmpend on the DMT of any
SAF schemes, using a genie-aided model. Then, Section Ipoges a naive SAF scheme that
achieves the previously provided DMT upper-bound with aiartconditions, when using two
relay scheduling schemes. To show the performance of theopeal scheme, numerical results
with the naive SAF scheme are presented in Section V, cordp@arehe NAF scheme and
the non-cooperative scheme. Finally, we provide some cdittd remarks in Section VI. For

continuity of demonstration, most proofs are left in the Apgix.

II. SYSTEM MODEL

The considered system model consists of one sasiro@e destinationl and N relays (coop-

erative terminalsjy, . . ., ry. The physical links between terminals are slowly faded aerchzod-
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eled as independent quasi-static Rayleigh channelsthe channel gains do not change during
the transmission of a cooperation frame, which is definedraotg to different schemes (pro-
tocols). The gain of the channel connectiagand d is denoted byg,. Similarly, g; and h;
respectively denote the channel gains betwgeand d and the ones betwees andr;. v;;

is used to denote the channel gain betweeand r;,. Channel quality between terminals is

parameterized by the variance of the channel gains.

A. Slotted Amplify-and-Forward

In the paper, we study half-duplex slotted amplify-andafard (SAF) cooperative schemes.
For anN-relay M-slot scheme, the cooperation frame, composegi/aflots of/ symbols, is of
length M [. During any sloti, ¢ = 1, ..., M, the sources transmits a sub-frame dfsymbols,
denoted by a vectar; € C' and the relayr;, j = 1,..., N, can transmit, ; € C!, a linear
combination of the vectors it received in previous slotsdéinthe half-duplex constraint, a relay
does not receive while transmitting. For example, the NAfeste [6] is anN-relay (2N )-slot
scheme and the non-orthogonal relay selection scheme pfj /8-relay two-slot scheme.

Obviously, the transmission of a cooperation frame with 8% scheme is equivalent to

channel uses of the following vector (MIMO) channel
y=VSNRHz + 2 3)

wherez is the transmitted signak ~ CN(0,X,) is the equivalent additive colored noise with
covariance matriX, and H is an M x M lower-triangular matrix representing the equivalent
“space-time” channel between the source and the destmatloreover, we havédi;; = ¢; go

with ¢; being a constant related to the transmission power.

B. Diversity-Multiplexing Tradeoff and Achievability

Let us recall the definition of the multiplexing and diveysgains.
Definition 1 (Multiplexing and diversity gain [9])A coding scheméC(SNR)} is said to achieve
multiplexing gainr anddiversity gaind if

R(SNR) _ log Ps(SNR)
_ lim 28t eloN )
Al ogSNR — 7 and i ShR

where R(SNR) is the data rate measured by bits per channel use (PCU)Pgi3\R) is the

average error probability using the maximum likelihood (Miecoder.

= —d
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Theorem 1:The DMT of any SAF scheme with equivalent channel model (3) is
d(r) = dg(Mr), (4)

with dgy being the DMT of the linear channel (3). Furthermore, by wgzing a full rateM x M
space-time code with non-vanishing determinant (NVD), weaycode that achieves the tradeoff
d(r) for the SAF scheme.

Proof: The equality (4) is obvious, sinck is the normalization factor of the channel use.
The achievability is immediate from the results in [13], J14tating that the DMT of a fading

channel with any fading statistics can be achieved by a &i# NVD code. [ |

C. Properties of the SAF Schemes

Theorem 1 implies that for any SAF scheme, the optimal codestcoction is available,
using the NVD codes design (see, for example, [12], [15]) &vel code length is at mdst
M?2. Since the optimal code construction is independent of daéinfy statistics of the channel,
the only information that the source needs is the numberaif 3l/. In practice, M can be
decided by the destination, based on the channel cohereneecdecoding complexity, etc. The
relaying strategies are between the destination and tlagselnd can be completely ignored
by the source. When no relay is helping, the equivalent cblacen be the identity matrix (by
settingc;’s identical). In this case, even if the source is not awarethefnon-relay situation, the
destination can decode the signal in linear complexity wipenfect” codes are used, since they
are a rotated version of a vector of symbols from the origuaistellation Z**) [12], [15]. All
these properties make SAF schemes very flexible and suitablgireless networks, especially

for ad hocnetworks where the network topology changes frequently.

[1I. UPPERBOUND OF THE SAF SCHEMES

The following theorem states the best DMT that we can havh ®AF schemes.

Theorem 2:The DMT of any N-relay M-slot half-duplex SAF scheme is upper-bounded by

d*(r) :(1—7’)++N<1— Mj\{lr)+’ (5)

!In some particular cases, the code length can be shorterexzmnple, the NAF scheme has a block-diagonal equivalent

channel. As shown in [14], we can have an optimal code of fe@gdt .

March 24, 2006 DRAFT



for any M > 1.

In this theorem, we exclude the cadé = 1 for the obvious reason that the single-slot SAF
scheme corresponds to the non-cooperative caseNFerl, M = 2, this bound is achieved by
the NAF scheme, as shown in [6]. In fact, we can easily showtttia bound is achievable for
arbitrary N with M = 2 slots by combining the relay-selection scheme [7] with tingle-relay
NAF scheme. The rest of this section is dedicated to the pobtiis theorem, by introducing

a genie-aided model.

A. The Genie-Aided Model

To get an upper-bound of the DMT, we consider the followingigeaided SAF model. We
assume that the source-relay links are noiseless broadtasbels, which means that before the
transmission of theth slot, the relays know exactly the coded signafor any j < i. However,
the relays are not allowed to decode the message embeddee signhal, according to the AF
constraint. The half-duplex constraint is also removed, in the: th slot, the relays can transmit
any linear combinations of the vectars for j < i. With the above assumptions, the equivalent
noisez in (3) is spatially white and the equivalent channel maffixis lower-triangular with

off-diagonal components being any linear functions of thammel gaingj, ..., gn.

B. Upper-bound on the DMT

Lemma 1:For the genie-aided model, let us defigg..|° £ max |g|*, then we have
i=0...N

det (T+ SNRHH") < (1 + SNR [go|?)"
(6)
+ (14 SNR [gmax )"
Proof: See Appendix B. [ ]

Now, definea £ [ay, ...y, ], Wherea,, is such thatg;|* = SNR™. By applying Lemma 3
on the right hand side (RHS) of (6), we get an upper-bound erDxIT

N
dg(r) = inf Q,
H() O(QT)ZZ:; gi
with
B M(1—ag,)" <1
O“’"”‘{(M—l)(l—agi)*w, fori=1,... N[’
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Due to the symmetry ofi,, for i = 1,..., N, we can solve the linear programming problem by

adding the constraint,, = ... = ay,. Applying Theorem 1, we can get the closed-form DMT

().

C. Discussion

From the upper-bound (5), two observations can be made : B SKXemes can never
achieve the MISO bound with a finite number of slots, even euthithe half-duplex constraint,
and 2) SAF schemes can never beat the non-cooperative s¢heme- % In fact, the first
observation can be seen as a necessary condition of thedseoen and it applies to all AF
schemes.

Intuitively, even in the genie-aided model, the last slohat protected by any relay. This is
due to the causality of the relay channel, not to the halflefuponstraint. Therefore, at most
M — 1 slots out of M slots can be protected, which explains the suboptimality-fo % In
the same way, since only slots out of2/V slots are protected by one relay in the NAF scheme,
the NAF scheme is not better than the non-cooperative schieme> 0.5.

As stated in [6], an important guideline for cooperativeedsity is to let the source keep
transmitting all the time so that the maximum multiplexirgjrgis achieved. Here, we provide
another guideline let most of the source signal be protected by extra paBased on this
guideline, we propose, in next section, a naive SAF schengdevan show that this scheme

actually achieves the upper-bound (5) for some particldses.

IV. THE NAIVE SAF SCHEME

As previously stated, the NAF scheme is optimal in the shnglay case, due to the half-duplex
constraint. We consider the multiple-relay case in the oéshe paper.

Let us consider the following naive SAF scheme. First ofthk, source must transmit during
all the M slots. Then, from the beginning of the second slot, in eact) 8iere is one and only
one relay forwarding a scaled version of what it receivedhi@ previous slot. In such a way,
M — 1 slots out of M slots of the source signal are forwarded by at least one.relase, we
can see that this is only possible when we have more than tene vehere different relays can
alternatively help the source. Thus, we havVe2 M — 1 effective relays,, . .. , Iy during the

transmission of a specific source. The mapping between Higegkys and the effective relays
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Fig. 2. Frame structure and relaying procedure of NAF angen&AF, solid box for transmitted signal and dashed box for

received signal.

is accomplished by relays scheduling that will be discuda&st on. The frame structure and

the relaying procedure are illustrated in Fig. 2, compacethée NAF scheme.

A. Equivalent Linear Fading Channel

In SAF schemes, there’s no difference in data processinglifegrent symbols within the
same slot. Thus, we can consider one symbol from a slot, witloss of generality. With the

previous description of the naive SAF scheme, we have thewwilg signal model :
Ya; = V7 SNR g z; + /7 SNR g;_4 bi_1 Yri—1 + U;

Yri = V™ SNR ;Li 7 + /T SNRY;_1 4 Bi—l Yri—1 + Ui

wherez; is the transmitted symbol from the source in thé slot; y,; andy,, are the received

(7)

symbols at the th effective relay and at the destination, respectivelythmi th slot; u;'s and
v;'s are independent AWGN with unit varianck; andg;, i = 1, ..., N, are the channel gains
from the source to theth effective relay and from theth effective relay to the destination,
respectively;y;_1; is the channel gain between the- 1th and thei th effective relayp; is the
’ <1. The

Bi Yr,i
power allocation factors;, 7;, @ = 1,..., M, are independent of the channel coefficients and

processing gain at theth effective relay subject to the power constrdiit,

satisfyzf‘il(m + ;) = M. Finally, by definition, we haver; = 0 andb, = 0.
By carefully treating the signal part and the noise part, @we express the signal model of
M slots in the vectorized form
y, = VSNRHz + 2.
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The equivalent channel matrix and the noise are in the fatigvform :
H = diag(y/m go) + T diag (/7 h;) (8)
z = u+To, (9)

wheré T 2 U (1 -U,) ', andU,, Uy are M x M matrices defined as

_— 0 0
| diag(c;) 0
0 0
Ui =
| diag(d;) 0

with ¢; 2 /7, SNR§; b; andd; £ /7;SNR#,;41b; for i = 1,...,N. Both U, and U, are
forward-shift like matrices. From (9), the covariance rxawf the noise is¥, = I + TT".
We can show that the largest and smallest eigenvalués, afatisfy Ay (2,) = Auin (82) =
SNR?, which implies that the DMT of the proposed scheme dependls @m H and not on
Y,. Unfortunately, the complex form of the equivalent chanmeitrix H (8) prevents us from
obtaining the closed-form DMT in the general case. Nevégtse in some particular cases, we

can have the closed-form DMT and furthermore, it achievesugper-bound (5).

B. Isolated Relays

Let us consider a special scenario where the relays have intakonnections. In this case,
we can assume that the relays are isolated from each othen, Tire DMT of the naive SAF
scheme can be obtained explicitly.

Proposition 1: When the relays are isolated from each other, 7, ;.; = 0, Vi, the DMT (5)
is achievable with the naive SAF scheme.

We prove this proposition in the following paragraphs. Witle assumption of relay isolation,
we haveT = U, and H is therefore a bidiagonal matrix. The special formHfallows us get

the following lemma that is crucial to the proof.

2We can get the signal part recursively by the malfiy, where we use the identity+Uq + U3+ --- = (I -Ug) ™"
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Lemma 2:
det (T+ SNRHH") > (1 + SNR[go]*)"

N , (10)
+1] (1 + SNR )

Proof: The matrixI + SNRHH' being tridTagonaI, we can use the recursive determinant
formula to get the RHS of (10) in the high SNR regime. See AppegR for details. [ |
Inspired by the RHS of (10), we propose the following two sitiimg strategies :

Gih

« Dump scheduling: For N = kN with k being any integer, the relays help the source in a
round-robin mannefi.e., ; = r;_,4+1. For N = kN +m with m € [1, N — 1], we first

order the relays,,...,ry in such a way that

min{[gy hal, .. [Gm Al } > max{|gmi1 Pmial, - -, lgn Ay}

Then, we apply the round-robin scheduling.

« Smart scheduling: First, select the two “best” relays in the sense that theyeHargest
lg: h;|. Then, we apply the dump scheduling on these two relays, ageifvere in the
two-relay M-slot case.

These two scheduling strategies maximiatistically the RHS of (10) in the high SNR
regime, so that upper-bound (5) is achieved. The detailedfps provided in Appendix D.
Even though both schemes achieve DMT (5) under the relagatieal assumption, the smart
scheme outperforms the dump scheme in a general case, witiay isolation. The basic idea
of the smart scheduling is to avoid using the “bad” relayserehthe noise level is higher than
the other relays in average. Therefore Mhslots, noise amplification is less significant with the
smart scheduling than with the dump scheduling. The immattvestigated in the next section,
with the simulation results.

As an example, Fig. 3 shows the DMT of different cooperatigbesnes for a three-relay
channel, with relay isolation assumption. Fdr= 2, the DMT of the proposed scheme coincides
with that of the NAF scheme. With increasiig, the proposed scheme is approaching the MISO

bound, which makes it asymptotically optimal.

C. Two-Slot with Arbitrary Number of Relays

Note that for the particular cased! = 2, i.e,, kK =0 andm = 1, the above analysis is valid

whether the relays are isolated from each other or fdtis is because a x 2 triangular matrix
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Fig. 3. D-M tradeoff of different three-relay schemes wisblated relays.

is also a bidiagonal matrix. Therefore, the achievability®) for M = 2 and arbitraryN is
proved. And the proposed scheme is actually the single-idksF scheme combined with the

relay selection scheme [7].

D. Two-Relay and Three-Slot

Proposition 2: The two-relay three-slot naive SAF scheme achieves the DdfiFgy.4, where
the relay ordering is such thdt,|> > ||, i.e, the relay with worse source-relay link transmits
first.

Proof: The DMTs are obtained with the same method as previouslyxpsessing explicitly
the determinantlet (I + SNRHH). See Appendix E for details. u
As shown in Appendix E, even though we have the closed-fortardenant expression, we can
only have a lower-bound on the DMT because of the complexah@tant form. Unfortunately,
the lower-bound we get does not coincide with the upper-tdo@) for » < 0.5. By adding a

relay ordering proceduré/(,|> > |hy|*), we finally get a lower-bound equal to the upper-bound.
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Fig. 4. Diversity-multiplexing tradeoff of the two-relaglsemes.

However, this does not necessarily mean that the relay iaglénproves the performance, as
we will show in the next section.
As shown in Fig. 4, the naive SAF scheme (with or without rebagtering) outperforms the
- - 2 -
two-relay NAF scheme. Since with the three-slot structueeprotects of the source signal, we
can beat the non-cooperative scheme(fet r < % It is therefore the best AF scheme known

for the two-relay case. To further improve the DMT, we shouicirease the number of slots.

E. Practical Considerations

To implement the naive SAF schemes, the relay ordering isngiss for the smart scheduling
and theN # kN case of the dump scheduling. If we have the reciprocity ferférward and
the backward relay-destination linksg., the channel gains are the samg (or the forward and
backward links, an intelligent way to implement the relageying is similar to the RTS/CTS
scheme proposed in [7]. First, the relays measure the soelag channel qualityh;| by the

reception of the(RTS(Ready-to-Send) frame from the source. Then, the destim&tioadcasts a

March 24, 2006 DRAFT



14

relay-probingframe, from which the relays can estimate the relay-destinahannel g;|. Each
relay calculates the product galigth;| and reacts by sending availability frame aftert; time
which is proportional tdg;h;|. Therefore, the relay with the strongest product gain istified

as relay 1, and so on. Finally, based on the order, the déstindecides a scheduling strategy
and broadcasts the parametargy( the relay ordering for the relays and number of slatdor

the source, etc...) in th€TS(Clear-to-Send) frame. When there is no reciprocity for ritlay-
destination links, we modify the last three steps as folldaech relay quantizes the source-relay
gain and sends it in thavailability frame to the destination using its own signature. Then, the
destination can estimate the relay-destination linksityu@j;| and also gets the estimatgs|

by decoding the signal. Finally, the destination decidesdider based on the product gains and
broadcasts th€TSframe.

Since we only consider slow fading channels, the orderinglavoot be so frequent and the
signaling overhead is negligible in both cases (the ovethesue is mentioned in [7]). In the
worst case where the above signaling is impossible, a catiperorder for the relays should be
predefined and we apply the dump scheduling with a slot numbesuch thatd/ — 1 = kN.

In this case, the same DMT is achieved.

V. NUMERICAL RESULTS

In this section, we investigate the numerical results oleiby Monte-Carlo simulations. By
default, we consider a symmetric network, where all the nkanoefficients are i.i.d. Rayleigh
distributed with unit variance. There is therefore a@riori advantage of the source-relay links
over the source-destination link. The power allocationdexarer; =7, =05fori =2,..., M
and ; = 1. Information rate is measured in bits per channel use (BP@W compare the
proposed naive SAF scheme to the NAF scheme and the non+edi@pescheme in both small

network scenarios2(relays) and large network scenaridg telays).

A. Two-Relay Scenario

1) Three-Slot CaseFig. 5 shows the performance of the proposed two-relay tbi@escheme
for different spectral efficiencies. Note that with a low sal efficiency £ BPCU), the proposed
schemes have almost the same performance as the NAF schewevéd, when increasing

the spectral efficiency, the gain of our schemes comparetled\AF strategy increases. For
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Fig. 5. Outage probabilities for the non-cooperative, NAK aaive SAF scheme with three slots. Two-relay symmetric

network. Considered information ratek:6 and 10 BPCU.

10 BPCU, the NAF scheme barely beats the non-cooperative sEh&liso note that in all cases,
the scheme with relay ordering proposed in Sec. IV-D is ndétebéhan the one without relay
ordering. Based on that observation, we conjecture thataneachieve the DMT (2) even without
relay ordering in the two-relay three-slot case.

Then, we consider the error rate performance of NVD codes é&chieving the DMT) under
ML decoding. For the two-relay NAF scheme, we use the opticealeC,; (QAM) proposed
in [14]. For the naive SAF scheme, we use the perfiest 3 code construction proposed in
[15], based on QAM constellations, the best knosvx 3 real rotation [16] and the “non-norm”
elementy = 422 The vectorized code (frame) lengths areand 9 QAM symbols for the
NAF and the naive SAF, respectivel=QAM and 64-QAM uncoded constellations are used,
corresponding to the BPCU and6 BPCU counterpart in the outage performance. The frame

error rate (FER) is shown in Fig. 6(a). It is surprising to seeh a similarity between code
performance and outage performance: for a given probgal§diror or outage respectively), all

SNR differences between the compared schemes are almasdrttee We have a power gain of
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Fig. 6. Error rate performance: naive SAE. NAF scheme. Two-relay symmetric network, perfdct 3 code for the three-slot
SAF scheme and.,; for the NAF scheme for the NAH- and 64-QAM for 2 and6 BPCU, respectively.

more than3 dB for FER lower thanl0—3 with 64-QAM. For fairness of comparison between
different frame length, we also show the symbol error ratdopemance in Fig. 6(b).

As stated in theorem 1, we can always construct optimal céates given SAF scheme. To
focus on the cooperative scheme itself, we only considethiage probability hereafter.

2) Impact of the Number of Slot§ig. 7 shows the outage performance with different numbers
of slots. For2 BPCU, the difference is minor (withihdB). However, foit BPCU, the power gain
compared to the three-slot scheme increasésand3 dB for 5 slots andl3 slots, respectively.
The increasing SNR gain shows the superiority of the schemitbsa larger number of slots in
terms of DMT, even without the relay isolation assumption.

3) Inter-Relay Geometric Gainln Fig. 8, we show the impact of the inter-relay geometric
gain (defined aﬁi‘,mj\?/E\hj\?) on the outage performance. In this scenario, all paths have
the same average channel gaindB), except for the inter-relay channels whose channelsgain
vary form —20 dB (bad interconnection) t20 dB (good interconnection). The y-axis represents
the power gain to the non-cooperative scheme WitBPCU and outage probability of0—3.

The x-axis represents the inter-relay geometric gain. Asvshin Fig. 8, the NAF scheme is

independent of the geometric gain since there is no intag@mmunication at all in the NAF
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Fig. 7. Outage probability of the naive SAF scheme wiilb, 9 and 13 slots. Two-relay symmetric network.

scheme. In the bad interconnection regime ({ dB), the naive SAF scheme is not sensitive
to the geometric gain and we always have a better performiayeecreasing the slot number.
However, in the good interconnection regime ({ dB), the performance degrades dramatically
with the increase of inter-relay gain and the increase ohtlmaber of slots. Intuitively, the task
of the i th effective relay is to protect the source sigmgl transmitted in the th slot. A strong
interconnection between tl{é— 1) th relay and the th relay makes; drowned in the combined

signal ofzy,...,z; ; from the (i — 1) th relay.

B. Large Network : Dumlys. Smart Scheduling

Now, we consider a large symmetric network witR available relays. We compare the
proposed scheme to the NAF scheme. To ensure fairness, tistddeoed NAF is combined
with the relay selection schemee., the source is only helped by the best relay (with largest
|gi hi|). For the naive SAF scheme, both the dumb and the smart sahgslare considered.
Obviously, with3 slots, the dumb scheduling is the same as the smart schgdaknshown in

Fig. 9, the power gain increases with spectral efficiencgwshg the superiority of our scheme
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Fig. 8. Power gain to the non-cooperative scheme : impachefinter-relay geometric gain. Two-relay network. Target

information rate :6 BPCU. Target outage probability10 3.

in terms of DMT. The increase is more significant with a larglet number. With the same slot
number, the curve of the dump scheduling is parallel to tfidh® smart scheduling, meaning
the same DMT for the same slot number. The power gain is up aod 16 dB for 6 BPCU
and10 BPCU, respectively. Foz BPCU, the 13-slot dump scheduling scheme is worse than the
NAF, since the noise amplification is significant. As we she,dmart scheduling is always better
than the dump scheduling. In the considered cases)-#et smart scheduling outperforms the
13-slot dump scheduling. Since the optimal codes are resdetdf length5? and 132 for the

5 slot and thel3 slot cases, the use of smart scheduling can dramaticallyceethe decoding

complexity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the class of slotted ampliy-amvard schemes. We first derived,
for the SAF schemes, an upper-bound of the DMT which asyngatot (when the framelength
grows to infinity) achieves the MISO bound. Then, we propoaed analyzed a naive SAF

scheme for which the DMT upper-bound is achieved in someiapegses. In particular, the two-
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Fig. 9. Power gain to the NAF scheme with selection : durasmart scheduling. Symmetric network witB relays. Target

outage probability 1073,

relay three-slot naive SAF is optimal within thé = 2, M/ = 3 class and therefore outperforms
all previously proposed two-relay AF schemes.

The superiority of the naive SAF scheme over the previousippsed AF schemes lies in the
fact that it exploits the potential diversity gain in the higwltiplexing gain regimer{> 0.5),
whereas all previously proposed AF schemes do not beat theoaperative scheme for> 0.5.

An important guideline for the design of AF schemes was thepgsed : let most of the source
signal be protected by extra paths. We also showed that, ing assmart relay scheduling, the
complexity of decoding can be dramatically reduced. Nuoaniesults on both the outage and
error rate performance reveal a significant gain of our seheompared to previously proposed
AF schemes. Since we can always find optimal codes of finitgthefor any SAF scheme
and the code construction is independent of the number af/selthe proposed scheme is a
combination of efficiency and flexibility.

Even though we showed that the naive SAF scheme is asynmitptioptimal in some
particular cases, the DMT for the general case is unknownvolild also be interesting to

find a new SAF scheme, more sophisticated than the naive ameén to improve the statistical
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properties of the equivalent channel matrix.

APPENDIX

A. Preliminaries
For any linear fading Gaussian channel
y=VSNRHz + 2
wherez is an AWGN withE {2z} = I andz is subject to the input power constraint{l& [zz ]} <
1, the DMT dg(r) can be found as the exponent of the outage probability initife BNR regime,
ie.,
Poui(rlog SNR) = Prob{log det (I + SNRHH') < rlog SNR}
= Prob{det (I+ SNRHH') < SNR"}
= SNR™4= ("), (11)

Lemma 3 (Calculation of diversity-multiplexing tradeofffonsider a linear fading Gaussian
channel defined by for which det (I+ SNRHHY)) is a function of A, a vector of positive

random variables. Then, the DMiy(r) of this channel can be calculated as

dy(r) = Oi(gfr) £(a)

wherea; = —logv;/log SNR is the exponent of;, O(c,7) is the outage event set in terms of

a andr in the high SNR regime, and «) is the exponential order of the pdf,(«) of «, i.e,
pal(a) = SNR™(),

Proof: This lemma can be justified by (11) using Laplace’s methodshasvn in [9]. =

Lemma 4:Let X be ay?-distributed random variable with¢ degrees of freedom and be

a uniformly distributed random variable in an interval inding 0. Define ¢ £ —gggsf\fR and
A log|y]?
= — oz SNR then we have

SNR™ for £ <0,
pe =
SNR™®  for £ > 0;
and
SNR™  forn <0,
Py =
SNR™2 for n > 0.
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B. Proof of Lemma 1

Any (n+1) x (n+ 1) lower-triangular matrix, denoteff,, . ; can be written as

H, 0
11n+1::

v, g

Let us defineD,,; = det (I+ SNRH ., H} ;) andC £ 1 + SNR lg|>. Then, we have

l)n+1

= Cdet (I + SNTRvnvIL + SNRHILHn)

(a) SNR 5\ T
<C (1 + SNRAL + =5 lv| ) [T+ snrRy)

1=2

= C Dy, + SNRjw, | T] (1 + SNRA;)
=2

n—1
(b) 1
< C' D,, + SNR|v,,|” <m >+ SNRM)

1=2

< CD,+ (14 SNRJlw,||*) (1 + SNR [H, )"

<C Dy + (14 SNR [gina]*)”

21

with )\; theith smallest eigenvalue df,,H' . The inequality (a) comes from the fact thaw!

has only one nonzero eigenvalue and that for any nonnegatatex A and B, det(A + B)

is maximized when they are simultaneously diagonalizalolé have eigenvalues in reverse

order. (b) uses the arithmetic-geometric means inequaitg the last asymptotic inequality

holds becausév, || < |gumax|” and |H||Z < |gmax|*. The above result leads directly to (6) in a

recursive manner.

C. Proof of Lemma 2

For any(k + 1) x (k + 1) bidiagonal matrixG with G;; = =, and G;;1,; = z;, the matrix

M, . 21+ GG'is a tridiagonal matrix in the form

March 24, 2006
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Define X; £ \xi|2 fori =0,...,k, D, = det(M,) and use the formula for the calculation of

the determinant of a tridiagonal matrix [17], we have

Dyy1 = (1 4+ Xo + X)) Dy, — XXy Di—1

(12)
= (1 + Xo)Dk + Xk(Dk — XODk_l).
Let us rewrite the last equation as
Dyy1 — XoDy, = Xi(Dy, — XoDg—1) + Dy, (13)
and defineB;, £ D, — X,D;_1, from (12) and (13), we get
Di1 I+ Xo Xi| [Dr
= ) (24)
By 1 Xk By

First, it is easy to show thab, = X? + 2X, + (X; + 1) and B, = X, + X; + 1. Then, from
(14), it is obvious that, as a polynomial @Ky, ..., X}), D1 has nonnegative coefficients for
any k. Finally, as a polynomial ofX,, D, ’s coefficients can be found recursively using (12)

and we have

k
Diy1(Xo) = XgH + (1 + Xi) + P(Xo).

i=1

where P(X,) > 0 is a polynomial of X, and is always nonnegative. Thus, we have

k
Dia(Xo) > X5 + H(l + Xi)
i=1
which can be used to get (10). [ ]

D. Lower-bound on the DMT with Isolated Relays

1) Dump scheduling:ln the N = kN case with any integek, a round-robin scheme is
optimal since theV slots are equally protected by all the relays. The RHS of He&omes
N
(1+SNRgo")" + TT (1 + SNR [g; hif?)". (15)
=1
We carry out the same calculations as in section Il with sonmifications. Definear =
(g, - .- gy Oy ... By applying Lemma 3 on (15), we have

C_lH(T) = inf) <a!]0 + Z(agi + ahi))

o
(aur i=1
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with
M(l - O‘go)Jr <7 }
ksz\il (l_agi _ahi)+ <r .

Note that by using the variable changes £ a, +ap, fori =1,...,N, we get a linear

o) = {

programming problem with symmetry of ,...,a; . The optimum must satisfy;, = ... =

g1’ 7Nt

ay, = [, and the optimization problem reduces to

dy(r) = inf (g, + ND) (16)
with
M(1 — * :
o= {4755 )

Solving this problem, we get exactly (5).

In the N = kN + m case, the RHS of (10) is directly revised as

(1+SNR |go)"
N A\ 17)
+ (H (1+SNR |g, b ) ) IT (1+SNR g hi?) .
n=1 1=1

Then, we have the same optimization problem (16) with déffiérconstraints, due to the relay

ordering. Using the same variable changes, we have

( M(1— O‘go)Jr <7 )
N m
k 1—a )"+ 1—a ) <
Ofar) = P 2 el
max{ay ,...,o) } <min{a] ... o] }

\ J
The second and the third constraints together are equividen

m

N
{’fZﬂ —ap )"+ (I—ay ) <r, VSC{l,...,N}and|S| = m}, (18)
i=1

=1
from which we get a symmetric problem far, , i = 1,..., N. We can then prove the same
result as the previous case.
2) Smart schedulinglUsing the two “best” relays, we can arrive at (18) with= 2. Since
our definition of “best” also corresponds to minimum valuexpf, it is not difficult to verify that
the outage region in this case is included in the region (IBus, the DMT is lower-bounded

by that of the dump scheduling and the achievability is pdove
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E. Proof of Proposition 2

Fact 1: Let f £ [f, fo] U & [““ 0 ] and H be a3 x 3 upper-triangular matrix defined by

Uu21 U22

U 0
g

H=:

with ¢ being a scalar. Then, we have
det(I+SNRHH") = (1 + SNR|g[*) det (I + SNRUU")
+ SNR[|£]|* + SNR? | fouy, |” (19)

+ SNR? [usa f1 — U21f2|2 .
Since non-zero multiplicative constants independent oRSN not appear in the high SNR

regime analysis, from (8), we consider the following matrix

90 0 0

H= g1 hy 9o 0, (20)

[ 9271201 g2ha go
where the coefficients/SNR b, andv/SNR b, are neglectedSNR |b;]* = SNR). With (19), we
can now obtain the outage event set, in terms of the entrid#. of

In order to apply lemma 3, however, we must get the outaget@eatiin the high SNR regime,
|2

in terms ofa. To this end, we must rewritgiss f1 — ug f2|” in (19) in @ more convenient form

of positive variables. Let us use the notatign= |v\2 for v being any variable. Then, from (19)

and (20), we have
Fy = GyH T'yo; Fy = Gy Hy;
Ui = Uz = Go; U = G1H;.
Let us rewrite
U2 f1 — U21f2|2 = U Iy + U Iy — 21/ U Upa Fy F cos 0

= (1 —cos0)(Usa F'y + Uy F)

2
+ cos 6 )\/UQQF:[ — \/UQlFQ‘
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with ¢ uniformly distributed in[0, 7] and is independent of the other random variables. The
outage probability conditioned ahis maximized whert is close to0*, wherel — cosf ~ %
In this region, we have
2. 0°
"= §(U22F1 + Un )
) (21)
+ ‘\/U22F1 - \/Ulez)

Then, from (19) and (21), we have the outage redit(#H , r)

\U22f1 - U21f2

[ (14 SNRGy) det(I+SNRUUY < SNR’

1+SNR(Fy, +F,) < SNR
1+SNR?FU;;, < SNR™ » (22)

1+ SNR?0%(Upo Fy + UnF5) < SNR’

| 1+ SNR? VT Fy — VU By|° < SNR'

The last inequality in (22) implies
1+ SNR?*(Upy Fy 4 Uy ) <SNR” + 2SNR?\/ Uy Usy Fy F,

which means that, in the high SNR regime, the outage re@igH, ) is included in the region
O(a,r) defined by

p

31—ay) < r
(1—ago)+(l—agl —Ozhl) < r
2—ag —ag —ap, < T
=0y, =y —ap, <1
2= gy — Qgy — Qypy —Qpy; — Qg < T
2=y —ag, —ap, —ap, —p <7

2 — g, — g, — Qyy, —ap, < max{r, ¢(a)}

2 —ay — oy —ap, — o, < max{r ¢(a)}

\ J

®In this case, we hav®(H,r) C O(a,r) but O(a,r) ¢ O(H,r)
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with ¢(a) £ 2 — 1(ay, + g, + ayyy + any) — i, — ag,. Let us define

Or(a,7) 2 O(a,7)NT(ax,7)

Oz(a,r) = O(a,7)NT(a,7)

with

T(a,r) &2 {a : r<o(a)}.

SinceO(a,r) = Or(a,r) U Ox(ex,r), we have

inf e(a) =min{ inf e(a), inf e(a);p,
O(ex,r) ( ) {OT(a,r) ( )(’)7(05,7") ( )}

with e(a) = ay, + a4, + ag, + an, + ap, + ayy, + 309 by lemma 4 and the independence

between the random variables. Thus, the DMT can be obtaingdtwo linear optimizations.

This problem can be solved numerically using sophisticéitezar programming algorithms or

softwares. If the relay ordering is such that| > |h,|, we adday, > «y, to the constraints and

carry out the same optimization problem. We can finally get@MTs of Fig. 4.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

REFERENCES

A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperativersity—Part |: system descriptiodEEE Trans. Commun.
vol. 51, pp. 1927-1938, Nov. 2003.

——, “User cooperation diversity—Part Il: implementati aspects and performance analysiEEE Trans. Commun.
vol. 51, pp. 1939-1948, Nov. 2003.

J. N. Laneman and G. W. Wornell, “Distributed space-tioogled protocols for exploiting cooperative diversity iireless
networks,”|IEEE Trans. Inform. Theorwol. 49, no. 10, pp. 2415-2425, Oct. 2003.

J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Coopemtiliversity in wireless networks: Efficient protocols and
outage behavior,JEEE Trans. Inform. Theorwol. 50, pp. 3062-3080, Dec. 2004.

R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fadirgpy channels: Performance limits and space-time sigesgd,”
IEEE J. Select. Areas Communol. 22, no. 6, pp. 1099-1109, Aug. 2004.

K. Azarian, H. El Gamal, and P. Schniter, “On the achidgatbiversity-multiplexing tradeoff in half-duplex coopeive
channels,"IEEE Trans. Inform. Theoryol. 51, pp. 4152-4172, Dec. 2005.

A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simptooperative diversity method based on network path
selection,” 2005, to appear IEEE J. Select. Area Commun., special issue on 4G

P. Elia and P. V. Kumar, “Approximately universal optilityaover several dynamic and non-dynamic cooperative rdite
schemes for wireless networks.” [Online]. Available: hitfiparxiv.org/pdf/cs.IT/0512028

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: Airfdamental tradeoff in multiple-antenna channelEEE
Trans. Inform. Theoryvol. 49, no. 5, pp. 1073-1096, May 2003.

March 24, 2006 DRAFT



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

27

P. Mitran, H. Ochiai, and V. Tarokh, “Space-time diigr&nhancements using collaborative communicatiolisZE Trans.
Inform. Theory vol. 51, pp. 2041-2057, 2005.

M. Katz and S. S. (Shitz), “Transmitting to colocatecrssin wireless ad hoc and sensor networkSEE Trans. Inform.
Theory vol. 51, pp. 3540-3563, Oct. 2005.

F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, rfet Space Time Block Codes,” submitted IfBEE Trans. on
Inf. Theory September 2004. [Online]. Available: http://www.engt:belfiore/publi.html

S. Tavildar and P. Viswanath, “Approximately univdrsades over slow fading channels,” February 2005, subthitte
IEEE Trans. on Inform. Theory

S. Yang and J.-C. Belfiore, “Optimal space-time codestfie MIMO amplify-and-forward cooperative channel,” Sept
2005, submitted tdEEE Trans. Inform. Theory{Online]. Available: http://fr.arxiv.org/pdf/cs.ITEDI006

P. Elia, B. A. Sethuraman, and P. V. Kumar, “Perfect sptime codes with minimum and non-minimum delay for any
number of antennasf/EEE Trans. Inform. TheoryDec. 2005, submitted for publication.

E. Viterbo, “Table of best known full diversity algelicarotations.” [Online]. Available: http://wwwZ1.tlc.pib.it/~viterbo/
rotations/rotations.html

R. A. Horn and C. R. JohnsoMatrix Analysis New York: Cambridge, 1985.

March 24, 2006 DRAFT



