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Towards the Optimal Amplify-and-Forward

Cooperative Diversity Scheme

Sheng Yang and Jean-Claude Belfiore

Abstract

How to find a cooperative diversity scheme that achieves the transmit diversity bound is still an

open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF)

schemes do not improve with the number of relays in terms of the diversity-multiplexing tradeoff (DMT)

for multiplexing gainsr higher than0.5. In this work, we study the class of slotted amplify-and-

forward (SAF) schemes. We first establish an upper-bound on the DMT for any half-duplex SAF scheme

with an arbitrary number of relaysN and number of slotsM . Then, we propose a naive SAF scheme

that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in

certain conditions, the naive SAF scheme achieves the proposed DMT upper-bound which tends to the

transmit diversity bound whenM goes to infinity. In particular, for the two-relay case, the three-slot

naive SAF scheme achieves the proposed upper-bound and outperforms the NAF scheme of Azarianet

al. for multiplexing gainsr ≤ 2/3. Numerical results reveal a significant gain of our scheme over the

previously proposed AF schemes, especially in high spectral efficiency and large network size regime.

Index Terms

Cooperative diversity, relay, diversity-multiplexing tradeoff (DMT), slotted amplify-and-forward (SAF),

relay scheduling.

I. INTRODUCTION AND PROBLEM DESCRIPTION

As a new way to exploit spatial diversity in a wireless network, cooperative diversity techniques

have recently drawn more and more attention. Since the work of Sendonariset al. [1], [2], a flood
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nications and Electronics,́Ecole Nationale Supérieure des Télécommunications, 46, rue Barrault, 75013 Paris, France (e-mail:
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of works has appeared on this subject and many cooperative protocols have been proposed (see,

for example, [3]–[8]). A fundamental performance measure to evaluate different cooperative

schemes is the diversity-multiplexing tradeoff (DMT) which was introduced by Zheng and Tse [9]

for the MIMO Rayleigh channel. It is well known that the DMT ofany N-relay cooperative

diversity scheme is upper-bounded (referred to as thetransmit diversity boundin [4]) by the

DMT of a MISO system withN + 1 antennas,

d(r) = (N + 1)(1 − r)+. (1)

This bound is actually proved achievable by the cooperativemultiple access (CMA) scheme [6],

using a Gaussian code with an infinite cooperation frame length.

However, how to achieve (1) in a single-user setting (i.e., half-duplex relay channel) in the

general case is still an open problem, even with an infinite cooperation frame length. In the single-

relay case, the best known cooperative scheme, in the class of amplify-and-forward strategies, is

the Non-orthogonal Amplify-and-Forward (NAF) scheme and the Dynamic Decode-and-Forward

(DDF) scheme in the class of decode-and-forward strategies. The NAF scheme was proposed

by Nabaret al. [5] and has been proved to be the optimal amplify-and-forward scheme for

a single-relay channel by Azarianet al. [6]. It is therefore impossible to achieve (1) by only

amplifying-and-forwarding and one relay. The DDF scheme was proposed independently in [6],

[10], [11] in different contexts. In [6], it is shown that theDDF scheme does achieve (1) in the

low multiplexing gain regime (r < 0.5) but it fails in the high multiplexing gain regime, which is

due to thecausalityof the decode-and-forward scheme. Intuitively, to achievethe MISO bound

with a multiplexing gainr, the source and the relay need to cooperate during at leastr-portion

of the time. However, before this might possibly happen, therelay also needs at leastr-portion

of the time to decode the source signal (even with a Gaussian source-relay link). Therefore, it

is impossible for the DF schemes to achieve the MISO bound for2r > 1.

Being optimal in the single-relay case, the generalizationof the NAF and the DDF schemes

proposed in [6], also the best known in each class, fails to exploit the potential spatial diversity

gain in the high multiplexing gain regime (r > 0.5) with the growth of the network size. The

suboptimality of these two schemes becomes very significantfor a large number of relays, as

shown in Fig. 1. Our goal is therefore to find a practical scheme that can possibly fill the gap

between the two schemes and the MISO bound. In this work, we focus on the class of slotted
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Fig. 1. Diversity-multiplexing tradeoff of anN -relay channel : NAF, DDFvs. MISO bound.

amplify-and-forward (SAF) schemes because of the following attractive properties :

1) Low relaying complexity. The relays only need to scale thereceived signal and retransmit

it.

2) Existence of optimal codes with finite framelength. We will show that any SAF scheme

is equivalent to a linear fading channel, whose DMT is achieved by perfect [12]M × M

codes. The code length for anM-slot SAF scheme is therefore at mostM2.

3) Flexibility. The source does not have to know the number ofrelays or the relaying procedure.

The coding scheme only depends on the number of slotsM and is always optimal in terms

of DMT.

A natural question is raised :Is it possible for a SAF scheme to achieve the MISO bound (1)?

And how to achieve it if it is possible?This question is partially answered in this work. The

main contributions of this work are as follows :

• For a generalN-relay M-slot SAF scheme, we establish a new upper-bound :

d∗(r) = (1 − r)+ + N

(

1 − M

M − 1
r

)+

, (2)

from which we conclude that it is impossible to achieve the MISO bound with a finite

length. This bound is however tending to the MISO bound whenM goes to infinity. Then,
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we argue that the suboptimality of theN-relay NAF scheme is due to the fact that only

half of the source signal isprotectedby the relays.

• To approach the upper-bound (2), we propose a naive SAF scheme. The basic idea is to

let as many slots as possible (i.e., M − 1) be forwarded by the relays. By introducing two

relay scheduling strategies, we show that the naive SAF achieves the DMT upper-bound for

arbitrary(N, M) when all relays are isolated from each other,i.e., there is no physical link

between the relays. ForM = 2 and an arbitraryN , the proposed scheme corresponds to

the single-relay NAF scheme combined with the relay selection scheme [7] and the DMT

upper-bound is achieved without the relay isolation assumption.

• In particular, we show explicitly that the two-relay three-slot naive SAF scheme dominates

the two-relay NAF scheme for multiplexing gainsr ≤ 2/3. It is therefore the best known

two-relay amplify-and-forward scheme.

In this paper, we use boldface lower case lettersvvv to denote vectors, boldface capital lettersMMM

to denote matrices.CN represents the complex Gaussian random variable.[·]T, [·]† respectively

denote the matrix transposition and conjugated transposition operations.‖·‖ is the vector norm

and‖·‖F is the Frobenius matrix norm.(x)+ meansmax(0, x). The dot equal operator
.
= denotes

asymptotic equality in the high SNR regime,i.e.,

p1
.
= p2 means lim

SNR→∞

log p1

log SNR
= lim

SNR→∞

log p2

log SNR
,

and ≤̇ , ≥̇ are similarly defined.

The rest of the paper is organized as follows. Section II introduces the system model and

the class of SAF schemes. In Section III, we establish an upper-bound on the DMT of any

SAF schemes, using a genie-aided model. Then, Section IV proposes a naive SAF scheme that

achieves the previously provided DMT upper-bound with certain conditions, when using two

relay scheduling schemes. To show the performance of the proposed scheme, numerical results

with the naive SAF scheme are presented in Section V, compared to the NAF scheme and

the non-cooperative scheme. Finally, we provide some concluding remarks in Section VI. For

continuity of demonstration, most proofs are left in the Appendix.

II. SYSTEM MODEL

The considered system model consists of one sources, one destinationd andN relays (coop-

erative terminals)r1, . . . , rN . The physical links between terminals are slowly faded and are mod-
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eled as independent quasi-static Rayleigh channels,i.e., the channel gains do not change during

the transmission of a cooperation frame, which is defined according to different schemes (pro-

tocols). The gain of the channel connectings and d is denoted byg0. Similarly, gi and hi

respectively denote the channel gains betweenri and d and the ones betweens and ri. γij

is used to denote the channel gain betweenri and rj. Channel quality between terminals is

parameterized by the variance of the channel gains.

A. Slotted Amplify-and-Forward

In the paper, we study half-duplex slotted amplify-and-forward (SAF) cooperative schemes.

For anN-relay M-slot scheme, the cooperation frame, composed ofM slots ofl symbols, is of

lengthM l. During any sloti, i = 1, . . . , M , the sources transmits a sub-frame ofl symbols,

denoted by a vectorxxxi ∈ Cl and the relayrj, j = 1, . . . , N , can transmitxxxrj ,i ∈ Cl, a linear

combination of the vectors it received in previous slots. Under the half-duplex constraint, a relay

does not receive while transmitting. For example, the NAF scheme [6] is anN-relay (2N)-slot

scheme and the non-orthogonal relay selection scheme [7] isan N-relay two-slot scheme.

Obviously, the transmission of a cooperation frame with anySAF scheme is equivalent tol

channel uses of the following vector (MIMO) channel

yyy =
√

SNRHHHxxx + zzz (3)

wherexxx is the transmitted signal,zzz ∼ CN (0,ΣΣΣzzz) is the equivalent additive colored noise with

covariance matrixΣΣΣzzz andHHH is an M × M lower-triangular matrix representing the equivalent

“space-time” channel between the source and the destination. Moreover, we haveHii = ci g0

with ci being a constant related to the transmission power.

B. Diversity-Multiplexing Tradeoff and Achievability

Let us recall the definition of the multiplexing and diversity gains.

Definition 1 (Multiplexing and diversity gain [9]):A coding scheme{C(SNR)} is said to achieve

multiplexing gainr anddiversity gaind if

lim
SNR→∞

R(SNR)

log SNR
= r and lim

SNR→∞

log Pe(SNR)

log SNR
= −d

whereR(SNR) is the data rate measured by bits per channel use (PCU) andPe(SNR) is the

average error probability using the maximum likelihood (ML) decoder.
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Theorem 1:The DMT of any SAF scheme with equivalent channel model (3) is

d(r) = dHHH(Mr), (4)

with dHHH being the DMT of the linear channel (3). Furthermore, by vectorizing a full rateM×M

space-time code with non-vanishing determinant (NVD), we get a code that achieves the tradeoff

d(r) for the SAF scheme.

Proof: The equality (4) is obvious, sinceM is the normalization factor of the channel use.

The achievability is immediate from the results in [13], [14], stating that the DMT of a fading

channel with any fading statistics can be achieved by a full rate NVD code.

C. Properties of the SAF Schemes

Theorem 1 implies that for any SAF scheme, the optimal code construction is available,

using the NVD codes design (see, for example, [12], [15]) andthe code length is at most1

M2. Since the optimal code construction is independent of the fading statistics of the channel,

the only information that the source needs is the number of slots M . In practice,M can be

decided by the destination, based on the channel coherence time, decoding complexity, etc. The

relaying strategies are between the destination and the relays and can be completely ignored

by the source. When no relay is helping, the equivalent channel can be the identity matrix (by

settingci’s identical). In this case, even if the source is not aware ofthe non-relay situation, the

destination can decode the signal in linear complexity when“perfect” codes are used, since they

are a rotated version of a vector of symbols from the originalconstellation (ZMl) [12], [15]. All

these properties make SAF schemes very flexible and suitablefor wireless networks, especially

for ad hocnetworks where the network topology changes frequently.

III. U PPER-BOUND OF THE SAF SCHEMES

The following theorem states the best DMT that we can have with SAF schemes.

Theorem 2:The DMT of anyN-relay M-slot half-duplex SAF scheme is upper-bounded by

d∗(r) = (1 − r)+ + N

(

1 − M

M − 1
r

)+

, (5)

1In some particular cases, the code length can be shorter. Forexample, the NAF scheme has a block-diagonal equivalent

channel. As shown in [14], we can have an optimal code of length 2M .
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for any M > 1.

In this theorem, we exclude the caseM = 1 for the obvious reason that the single-slot SAF

scheme corresponds to the non-cooperative case. ForN = 1, M = 2, this bound is achieved by

the NAF scheme, as shown in [6]. In fact, we can easily show that this bound is achievable for

arbitraryN with M = 2 slots by combining the relay-selection scheme [7] with the single-relay

NAF scheme. The rest of this section is dedicated to the proofof this theorem, by introducing

a genie-aided model.

A. The Genie-Aided Model

To get an upper-bound of the DMT, we consider the following genie-aided SAF model. We

assume that the source-relay links are noiseless broadcastchannels, which means that before the

transmission of thei th slot, the relays know exactly the coded signalxxxj for any j < i. However,

the relays are not allowed to decode the message embedded in the signal, according to the AF

constraint. The half-duplex constraint is also removed,i.e., in thei th slot, the relays can transmit

any linear combinations of the vectorsxxxj for j < i. With the above assumptions, the equivalent

noisezzz in (3) is spatially white and the equivalent channel matrixHHH is lower-triangular with

off-diagonal components being any linear functions of the channel gainsg0, . . . , gN .

B. Upper-bound on the DMT

Lemma 1:For the genie-aided model, let us define|gmax|2 , max
i=0...N

|gi|2, then we have

det (I + SNRHHHHHH†) ≤̇
(

1 + SNR |g0|2
)M

+
(

1 + SNR |gmax|2
)M−1

.
(6)

Proof: See Appendix B.

Now, defineα , [αg0 . . . αgN
], whereαgi

is such that|gi|2 .
= SNR

−αgi . By applying Lemma 3

on the right hand side (RHS) of (6), we get an upper-bound on the DMT

d̄HHH(r) = inf
O(α,r)

N
∑

i=0

αgi

with

O(α, r) =

{

M(1 − αg0)
+ < r;

(M − 1)(1 − αgi
)+ < r, for i = 1, . . . , N

}

.

March 24, 2006 DRAFT
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Due to the symmetry ofαgi
for i = 1, . . . , N , we can solve the linear programming problem by

adding the constraintαg1 = . . . = αgN
. Applying Theorem 1, we can get the closed-form DMT

(5).

C. Discussion

From the upper-bound (5), two observations can be made : 1) SAF schemes can never

achieve the MISO bound with a finite number of slots, even without the half-duplex constraint,

and 2) SAF schemes can never beat the non-cooperative schemefor r > M−1
M

. In fact, the first

observation can be seen as a necessary condition of the second one, and it applies to all AF

schemes.

Intuitively, even in the genie-aided model, the last slot isnot protected by any relay. This is

due to the causality of the relay channel, not to the half-duplex constraint. Therefore, at most

M − 1 slots out ofM slots can be protected, which explains the suboptimality for r > M−1
M

. In

the same way, since onlyN slots out of2N slots are protected by one relay in the NAF scheme,

the NAF scheme is not better than the non-cooperative schemefor r > 0.5.

As stated in [6], an important guideline for cooperative diversity is to let the source keep

transmitting all the time so that the maximum multiplexing gain is achieved. Here, we provide

another guideline :let most of the source signal be protected by extra paths. Based on this

guideline, we propose, in next section, a naive SAF scheme and we show that this scheme

actually achieves the upper-bound (5) for some particular cases.

IV. THE NAIVE SAF SCHEME

As previously stated, the NAF scheme is optimal in the single-relay case, due to the half-duplex

constraint. We consider the multiple-relay case in the restof the paper.

Let us consider the following naive SAF scheme. First of all,the source must transmit during

all theM slots. Then, from the beginning of the second slot, in each slot, there is one and only

one relay forwarding a scaled version of what it received in the previous slot. In such a way,

M − 1 slots out ofM slots of the source signal are forwarded by at least one relay. Here, we

can see that this is only possible when we have more than one relay, where different relays can

alternatively help the source. Thus, we haveÑ , M − 1 effective relays̃r1, . . . , r̃Ñ during the

transmission of a specific source. The mapping between the real relays and the effective relays

March 24, 2006 DRAFT
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Fig. 2. Frame structure and relaying procedure of NAF and naive SAF, solid box for transmitted signal and dashed box for

received signal.

is accomplished by relays scheduling that will be discussedlater on. The frame structure and

the relaying procedure are illustrated in Fig. 2, compared to the NAF scheme.

A. Equivalent Linear Fading Channel

In SAF schemes, there’s no difference in data processing fordifferent symbols within the

same slot. Thus, we can consider one symbol from a slot, without loss of generality. With the

previous description of the naive SAF scheme, we have the following signal model :






yd,i =
√

πi SNR g0 xi +
√

π̄i SNR g̃i−1 b̃i−1 yr,i−1 + ui

yr,i =
√

πi SNR h̃i xi +
√

π̄i SNR γ̃i−1,i b̃i−1 yr,i−1 + vi

(7)

wherexi is the transmitted symbol from the source in thei th slot;yr,i andyd,i are the received

symbols at thei th effective relay and at the destination, respectively, inthe i th slot; ui’s and

vi’s are independent AWGN with unit variance;h̃i and g̃i, i = 1, . . . , Ñ , are the channel gains

from the source to thei th effective relay and from thei th effective relay to the destination,

respectively;̃γi−1,i is the channel gain between thei− 1 th and thei th effective relay;̃bi is the

processing gain at thei th effective relay subject to the power constraintEuuu,vvv

∣

∣

∣
b̃i yr,i

∣

∣

∣

2

≤ 1. The

power allocation factorsπi, π̄i, i = 1, . . . , M , are independent of the channel coefficients and

satisfy
∑M

i=1(πi + π̄i) = M. Finally, by definition, we havēπ1 = 0 and b̃0 = 0.

By carefully treating the signal part and the noise part, we can express the signal model of

M slots in the vectorized form

yyyd =
√

SNRHHHxxx + zzz.
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The equivalent channel matrix and the noise are in the following form :

HHH = diag (
√

πi g0) + TTT diag (
√

πi hi) (8)

zzz = uuu + TTT vvv, (9)

where2 TTT , UUUccc(I −UUUddd)
−1, andUUUccc, UUUddd areM × M matrices defined as

UUUccc ,





000T 0

diag(ci) 000





UUUddd ,





000T 0

diag(di) 000





with ci ,
√

π̄i SNR g̃i b̃i and di ,
√

π̄i SNR γ̃i,i+1 b̃i for i = 1, . . . , Ñ . Both UUUccc and UUUddd are

forward-shift like matrices. From (9), the covariance matrix of the noise isΣΣΣzzz = I + TTTTTT †.

We can show that the largest and smallest eigenvalues ofΣΣΣzzz satisfy λmax (ΣΣΣzzz)
.
= λmin (ΣΣΣzzz)

.
=

SNR
0, which implies that the DMT of the proposed scheme depends only on HHH and not on

ΣΣΣzzz. Unfortunately, the complex form of the equivalent channelmatrix HHH (8) prevents us from

obtaining the closed-form DMT in the general case. Nevertheless, in some particular cases, we

can have the closed-form DMT and furthermore, it achieves the upper-bound (5).

B. Isolated Relays

Let us consider a special scenario where the relays have weakinterconnections. In this case,

we can assume that the relays are isolated from each other. Then, the DMT of the naive SAF

scheme can be obtained explicitly.

Proposition 1: When the relays are isolated from each other,i.e., γ̃i,i+1 = 0, ∀i, the DMT (5)

is achievable with the naive SAF scheme.

We prove this proposition in the following paragraphs. Withthe assumption of relay isolation,

we haveTTT = UUUccc andHHH is therefore a bidiagonal matrix. The special form ofHHH allows us get

the following lemma that is crucial to the proof.

2We can get the signal part recursively by the matrixUUUddd, where we use the identityI + UUUddd + UUU
2
ddd + · · · = (I−UUUddd)

−1.
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Lemma 2:

det (I + SNRHHHHHH†) ≥̇
(

1 + SNR |g0|2
)M

+

Ñ
∏

i=1

(

1 + SNR

∣

∣

∣
g̃ih̃i

∣

∣

∣

2
) (10)

Proof: The matrixI + SNRHHHHHH† being tridiagonal, we can use the recursive determinant

formula to get the RHS of (10) in the high SNR regime. See Appendix C for details.

Inspired by the RHS of (10), we propose the following two scheduling strategies :

• Dump scheduling: For Ñ = kN with k being any integer, the relays help the source in a

round-robin manner,i.e., r̃i = r(i−1)N +1. For Ñ = kN + m with m ∈ [1, N − 1], we first

order the relaysr1, . . . , rN in such a way that

min{|g1 h1| , . . . , |gm hm|} ≥ max{|gm+1 hm+1| , . . . , |gN hN |}.

Then, we apply the round-robin scheduling.

• Smart scheduling: First, select the two “best” relays in the sense that they have largest

|gi hi|. Then, we apply the dump scheduling on these two relays, as ifwe were in the

two-relayM-slot case.

These two scheduling strategies maximizestatistically the RHS of (10) in the high SNR

regime, so that upper-bound (5) is achieved. The detailed proof is provided in Appendix D.

Even though both schemes achieve DMT (5) under the relay isolation assumption, the smart

scheme outperforms the dump scheme in a general case, without relay isolation. The basic idea

of the smart scheduling is to avoid using the “bad” relays, where the noise level is higher than

the other relays in average. Therefore, inM slots, noise amplification is less significant with the

smart scheduling than with the dump scheduling. The impact is investigated in the next section,

with the simulation results.

As an example, Fig. 3 shows the DMT of different cooperative schemes for a three-relay

channel, with relay isolation assumption. ForM = 2, the DMT of the proposed scheme coincides

with that of the NAF scheme. With increasingM , the proposed scheme is approaching the MISO

bound, which makes it asymptotically optimal.

C. Two-Slot with Arbitrary Number of Relays

Note that for the particular casesM = 2, i.e., k = 0 and m = 1, the above analysis is valid

whether the relays are isolated from each other or not.This is because a2×2 triangular matrix

March 24, 2006 DRAFT
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Fig. 3. D-M tradeoff of different three-relay schemes with isolated relays.

is also a bidiagonal matrix. Therefore, the achievability of (5) for M = 2 and arbitraryN is

proved. And the proposed scheme is actually the single-relay NAF scheme combined with the

relay selection scheme [7].

D. Two-Relay and Three-Slot

Proposition 2: The two-relay three-slot naive SAF scheme achieves the DMTsof Fig.4, where

the relay ordering is such that|h2|2 ≥ |h1|2, i.e., the relay with worse source-relay link transmits

first.

Proof: The DMTs are obtained with the same method as previously, by expressing explicitly

the determinantdet (I + SNRHHHHHH†). See Appendix E for details.

As shown in Appendix E, even though we have the closed-form determinant expression, we can

only have a lower-bound on the DMT because of the complex determinant form. Unfortunately,

the lower-bound we get does not coincide with the upper-bound (5) for r < 0.5. By adding a

relay ordering procedure (|h2|2 ≥ |h1|2), we finally get a lower-bound equal to the upper-bound.
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However, this does not necessarily mean that the relay ordering improves the performance, as

we will show in the next section.

As shown in Fig. 4, the naive SAF scheme (with or without relayordering) outperforms the

two-relay NAF scheme. Since with the three-slot structure we protect2
3

of the source signal, we

can beat the non-cooperative scheme for0 ≤ r ≤ 2
3
. It is therefore the best AF scheme known

for the two-relay case. To further improve the DMT, we shouldincrease the number of slots.

E. Practical Considerations

To implement the naive SAF schemes, the relay ordering is essential for the smart scheduling

and theÑ 6= kN case of the dump scheduling. If we have the reciprocity for the forward and

the backward relay-destination links,i.e., the channel gains are the same (gi) for the forward and

backward links, an intelligent way to implement the relay ordering is similar to the RTS/CTS

scheme proposed in [7]. First, the relays measure the source-relay channel quality|hi| by the

reception of theRTS(Ready-to-Send) frame from the source. Then, the destination broadcasts a
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relay-probingframe, from which the relays can estimate the relay-destination channel|gi|. Each

relay calculates the product gain|gihi| and reacts by sending anavailability frame afterti time

which is proportional to|gihi|. Therefore, the relay with the strongest product gain is identified

as relay 1, and so on. Finally, based on the order, the destination decides a scheduling strategy

and broadcasts the parameters (e.g., the relay ordering for the relays and number of slotsM for

the source, etc...) in theCTS(Clear-to-Send) frame. When there is no reciprocity for therelay-

destination links, we modify the last three steps as follows. Each relay quantizes the source-relay

gain and sends it in theavailability frame to the destination using its own signature. Then, the

destination can estimate the relay-destination links quality |gi| and also gets the estimates|hi|
by decoding the signal. Finally, the destination decides the order based on the product gains and

broadcasts theCTS frame.

Since we only consider slow fading channels, the ordering would not be so frequent and the

signaling overhead is negligible in both cases (the overhead issue is mentioned in [7]). In the

worst case where the above signaling is impossible, a cooperation order for the relays should be

predefined and we apply the dump scheduling with a slot numberM such thatM − 1 = kN .

In this case, the same DMT is achieved.

V. NUMERICAL RESULTS

In this section, we investigate the numerical results obtained by Monte-Carlo simulations. By

default, we consider a symmetric network, where all the channel coefficients are i.i.d. Rayleigh

distributed with unit variance. There is therefore noa priori advantage of the source-relay links

over the source-destination link. The power allocation factors areπi = π̄i = 0.5 for i = 2, . . . , M

and π1 = 1. Information rate is measured in bits per channel use (BPCU). We compare the

proposed naive SAF scheme to the NAF scheme and the non-cooperative scheme in both small

network scenarios (2 relays) and large network scenarios (12 relays).

A. Two-Relay Scenario

1) Three-Slot Case:Fig. 5 shows the performance of the proposed two-relay three-slot scheme

for different spectral efficiencies. Note that with a low spectral efficiency (2 BPCU), the proposed

schemes have almost the same performance as the NAF scheme. However, when increasing

the spectral efficiency, the gain of our schemes compared to the NAF strategy increases. For
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Fig. 5. Outage probabilities for the non-cooperative, NAF and naive SAF scheme with three slots. Two-relay symmetric

network. Considered information rates:2, 6 and10 BPCU.

10 BPCU, the NAF scheme barely beats the non-cooperative scheme. Also note that in all cases,

the scheme with relay ordering proposed in Sec. IV-D is not better than the one without relay

ordering. Based on that observation, we conjecture that we can achieve the DMT (2) even without

relay ordering in the two-relay three-slot case.

Then, we consider the error rate performance of NVD codes (i.e., achieving the DMT) under

ML decoding. For the two-relay NAF scheme, we use the optimalcodeC2,1 (QAM) proposed

in [14]. For the naive SAF scheme, we use the perfect3 × 3 code construction proposed in

[15], based on QAM constellations, the best known3× 3 real rotation [16] and the “non-norm”

elementγ = 1+2i
2+i

. The vectorized code (frame) lengths are8 and 9 QAM symbols for the

NAF and the naive SAF, respectively.4-QAM and 64-QAM uncoded constellations are used,

corresponding to the2 BPCU and6 BPCU counterpart in the outage performance. The frame

error rate (FER) is shown in Fig. 6(a). It is surprising to seesuch a similarity between code

performance and outage performance: for a given probability (error or outage respectively), all

SNR differences between the compared schemes are almost thesame. We have a power gain of
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(a) Frame Error Rate
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(b) Symbol Error Rate

Fig. 6. Error rate performance: naive SAFvs.NAF scheme. Two-relay symmetric network, perfect3×3 code for the three-slot

SAF scheme andC2,1 for the NAF scheme for the NAF.4- and64-QAM for 2 and6 BPCU, respectively.

more than3 dB for FER lower than10−3 with 64-QAM. For fairness of comparison between

different frame length, we also show the symbol error rate performance in Fig. 6(b).

As stated in theorem 1, we can always construct optimal codesfor a given SAF scheme. To

focus on the cooperative scheme itself, we only consider theoutage probability hereafter.

2) Impact of the Number of Slots:Fig. 7 shows the outage performance with different numbers

of slots. For2 BPCU, the difference is minor (within1 dB). However, for6 BPCU, the power gain

compared to the three-slot scheme increases to2 and3 dB for 5 slots and13 slots, respectively.

The increasing SNR gain shows the superiority of the schemeswith a larger number of slots in

terms of DMT, even without the relay isolation assumption.

3) Inter-Relay Geometric Gain:In Fig. 8, we show the impact of the inter-relay geometric

gain (defined asE |γij|2 /E |hj|2) on the outage performance. In this scenario, all paths have

the same average channel gain (0 dB), except for the inter-relay channels whose channel gains

vary form−20 dB (bad interconnection) to20 dB (good interconnection). The y-axis represents

the power gain to the non-cooperative scheme with6 BPCU and outage probability of10−3.

The x-axis represents the inter-relay geometric gain. As shown in Fig. 8, the NAF scheme is

independent of the geometric gain since there is no inter-relay communication at all in the NAF
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Fig. 7. Outage probability of the naive SAF scheme with3, 5, 9 and13 slots. Two-relay symmetric network.

scheme. In the bad interconnection regime (< 0 dB), the naive SAF scheme is not sensitive

to the geometric gain and we always have a better performanceby increasing the slot number.

However, in the good interconnection regime (> 0 dB), the performance degrades dramatically

with the increase of inter-relay gain and the increase of thenumber of slots. Intuitively, the task

of the i th effective relay is to protect the source signalxxxi, transmitted in thei th slot. A strong

interconnection between the(i−1) th relay and thei th relay makesxxxi drowned in the combined

signal ofxxx1, . . . ,xxxi−1 from the (i − 1) th relay.

B. Large Network : Dumbvs. Smart Scheduling

Now, we consider a large symmetric network with12 available relays. We compare the

proposed scheme to the NAF scheme. To ensure fairness, the considered NAF is combined

with the relay selection scheme,i.e., the source is only helped by the best relay (with largest

|gi hi|). For the naive SAF scheme, both the dumb and the smart schedulings are considered.

Obviously, with3 slots, the dumb scheduling is the same as the smart scheduling. As shown in

Fig. 9, the power gain increases with spectral efficiency, showing the superiority of our scheme
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Fig. 8. Power gain to the non-cooperative scheme : impact of the inter-relay geometric gain. Two-relay network. Target

information rate :6 BPCU. Target outage probability :10−3.

in terms of DMT. The increase is more significant with a largerslot number. With the same slot

number, the curve of the dump scheduling is parallel to that of the smart scheduling, meaning

the same DMT for the same slot number. The power gain is up to8 and 16 dB for 6 BPCU

and10 BPCU, respectively. For2 BPCU, the 13-slot dump scheduling scheme is worse than the

NAF, since the noise amplification is significant. As we see, the smart scheduling is always better

than the dump scheduling. In the considered cases, the5-slot smart scheduling outperforms the

13-slot dump scheduling. Since the optimal codes are respectively of length52 and132 for the

5 slot and the13 slot cases, the use of smart scheduling can dramatically reduce the decoding

complexity.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the class of slotted amplify-and-forward schemes. We first derived,

for the SAF schemes, an upper-bound of the DMT which asymptotically (when the framelength

grows to infinity) achieves the MISO bound. Then, we proposedand analyzed a naive SAF

scheme for which the DMT upper-bound is achieved in some special cases. In particular, the two-
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Fig. 9. Power gain to the NAF scheme with selection : dumpvs.smart scheduling. Symmetric network with12 relays. Target

outage probability :10−3.

relay three-slot naive SAF is optimal within theN = 2, M = 3 class and therefore outperforms

all previously proposed two-relay AF schemes.

The superiority of the naive SAF scheme over the previously proposed AF schemes lies in the

fact that it exploits the potential diversity gain in the high multiplexing gain regime (r > 0.5),

whereas all previously proposed AF schemes do not beat the non-cooperative scheme forr > 0.5.

An important guideline for the design of AF schemes was then proposed : let most of the source

signal be protected by extra paths. We also showed that, by using a smart relay scheduling, the

complexity of decoding can be dramatically reduced. Numerical results on both the outage and

error rate performance reveal a significant gain of our scheme compared to previously proposed

AF schemes. Since we can always find optimal codes of finite length for any SAF scheme

and the code construction is independent of the number of relays, the proposed scheme is a

combination of efficiency and flexibility.

Even though we showed that the naive SAF scheme is asymptotically optimal in some

particular cases, the DMT for the general case is unknown. Itwould also be interesting to

find a new SAF scheme, more sophisticated than the naive one inorder to improve the statistical
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properties of the equivalent channel matrix.

APPENDIX

A. Preliminaries

For any linear fading Gaussian channel

yyy =
√

SNRHHH xxx + zzz

wherezzz is an AWGN withE
{

zzzzzz†
}

= I andxxx is subject to the input power constraint Tr{E [xxxxxx†]} ≤
1, the DMTdHHH(r) can be found as the exponent of the outage probability in the high SNR regime,

i.e.,

Pout(r log SNR)
.
= Prob

{

log det (I + SNRHHHHHH†) ≤ r log SNR
}

= Prob
{

det (I + SNRHHHHHH†) ≤ SNR
r
}

.
= SNR

−dHHH(r). (11)

Lemma 3 (Calculation of diversity-multiplexing tradeoff): Consider a linear fading Gaussian

channel defined byHHH for which det (I + SNRHHHHHH†)) is a function ofλ, a vector of positive

random variables. Then, the DMTdHHH(r) of this channel can be calculated as

dHHH(r) = inf
O(α,r)

ε(α)

whereαi , − log vi/ log SNR is the exponent ofvi, O(α, r) is the outage event set in terms of

α andr in the high SNR regime, andε(α) is the exponential order of the pdfpα(α) of α, i.e.,

pα(α)
.
= SNR

−ε(α).

Proof: This lemma can be justified by (11) using Laplace’s method, asshown in [9].

Lemma 4:Let X be aχ2-distributed random variable with2t degrees of freedom andY be

a uniformly distributed random variable in an interval including 0. Define ξ , − log X
log SNR

and

η , − log|Y |2

log SNR
, then we have

pξ
.
=











SNR
−∞ for ξ < 0,

SNR
−tξ for ξ ≥ 0;

and

pη
.
=











SNR
−∞ for η < 0,

SNR
−η/2 for η ≥ 0.
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B. Proof of Lemma 1

Any (n + 1) × (n + 1) lower-triangular matrix, denotedHHHn+1 can be written as

HHHn+1 =





HHHn 000

vvv†

n g





Let us defineDn+1 , det
(

I + SNRHHHn+1HHH
†

n+1

)

andC , 1 + SNR |g|2. Then, we have

Dn+1 = C det

(

I +
SNR

C
vvvnvvv

†

n + SNRHHH†

nHHHn

)

(a)

≤ C

(

1 + SNRλ1 +
SNR

C
‖vvvn‖2

) n
∏

i=2

(1 + SNRλi)

= C Dn + SNR‖vvvn‖2
n
∏

i=2

(1 + SNRλi)

(b)

≤ C Dn + SNR‖vvvn‖2

(

1

n − 1

n
∑

i=2

(1 + SNRλi)

)n−1

≤ C Dn +
(

1 + SNR‖vvvn‖2) (1 + SNR ‖HHHn‖2
F

)n−1

≤̇C Dn +
(

1 + SNR |gmax|2
)n

with λi the i th smallest eigenvalue ofHHHnHHH
†

n. The inequality (a) comes from the fact thatvvvnvvv
†

n

has only one nonzero eigenvalue and that for any nonnegativematrix AAA and BBB, det(AAA + BBB)

is maximized when they are simultaneously diagonalizable and have eigenvalues in reverse

order. (b) uses the arithmetic-geometric means inequality. And the last asymptotic inequality

holds because‖vvvn‖ ≤̇ |gmax|2 and‖HHH‖2
F ≤̇ |gmax|2. The above result leads directly to (6) in a

recursive manner.

C. Proof of Lemma 2

For any(k + 1) × (k + 1) bidiagonal matrixGGG with Gii = x0 and Gi+1,i = xi, the matrix

MMMk+1 , I + GGGGGG† is a tridiagonal matrix in the form




















1 + |x0|2 x0x
∗
1 · · · 0

x∗
0x1 1 + |x0|2 + |x1|2 . . .

...

...
. . . . . . x0x

∗
k

0 · · · x∗
0xk 1 + |x0|2 + |xk|2





















.
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Define Xi , |xi|2 for i = 0, . . . , k, Dk , det(MMMk) and use the formula for the calculation of

the determinant of a tridiagonal matrix [17], we have

Dk+1 = (1 + X0 + Xk)Dk − X0XkDk−1

= (1 + X0)Dk + Xk(Dk − X0Dk−1).
(12)

Let us rewrite the last equation as

Dk+1 − X0Dk = Xk(Dk − X0Dk−1) + Dk (13)

and defineBk , Dk − X0Dk−1, from (12) and (13), we get




Dk+1

Bk+1



 =





1 + X0 Xk

1 Xk









Dk

Bk



 . (14)

First, it is easy to show thatD2 = X2
0 + 2X0 + (X1 + 1) andB2 = X0 + X1 + 1. Then, from

(14), it is obvious that, as a polynomial of(X0, . . . , Xk), Dk+1 has nonnegative coefficients for

any k. Finally, as a polynomial ofX0, Dk+1’s coefficients can be found recursively using (12)

and we have

Dk+1(X0) = Xk+1
0 +

k
∏

i=1

(1 + Xi) + P (X0).

whereP (X0) ≥ 0 is a polynomial ofX0 and is always nonnegative. Thus, we have

Dk+1(X0) ≥ Xk+1
0 +

k
∏

i=1

(1 + Xi)

which can be used to get (10).

D. Lower-bound on the DMT with Isolated Relays

1) Dump scheduling:In the Ñ = k N case with any integerk, a round-robin scheme is

optimal since theÑ slots are equally protected by all the relays. The RHS of (10)becomes

(

1 + SNR |g0|2
)M

+

N
∏

i=1

(

1 + SNR |gi hi|2
)k

. (15)

We carry out the same calculations as in section III with somemodifications. Defineα ,

[αg0 . . . αgN
αh1 . . . αhN

]. By applying Lemma 3 on (15), we have

dHHH(r) = inf
O(α,r)

(

αg0 +
N
∑

i=1

(αgi
+ αhi

)

)
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with

O(α, r) =

{

M(1 − αg0)
+ < r;

k
∑N

i=1 (1 − αgi
− αhi

)+ < r

}

.

Note that by using the variable changesα′
gi

, αgi
+ αhi

for i = 1, . . . , N , we get a linear

programming problem with symmetry ofα′
g1

, . . . , α′
gN

. The optimum must satisfyα′
g1

= . . . =

α′
gN

= β, and the optimization problem reduces to

dHHH(r) = inf
O(αg0 ,β,r)

(αg0 + Nβ) (16)

with

O(αg0, β, r) =

{

M(1 − αg0)
+ < r;

(M − 1)β < r

}

.

Solving this problem, we get exactly (5).

In the Ñ = kN + m case, the RHS of (10) is directly revised as
(

1 + SNR |g0|2
)M

+

(

N
∏

n=1

(

1 + SNR |gn hn|2
)k

)

m
∏

i=1

(

1 + SNR |gi hi|2
)

.
(17)

Then, we have the same optimization problem (16) with different constraints, due to the relay

ordering. Using the same variable changes, we have

O(α, r) =



























M(1 − αg0)
+ < r;

k
N
∑

i=1

(1 − α′
gi
)
+

+
m
∑

i=1

(1 − α′
gi
)
+

< r;

max{α′
g1

, . . . , α′
gm
} ≤ min{α′

gm+1
, . . . , α′

gN
}



























.

The second and the third constraints together are equivalent to
{

k

N
∑

i=1

(1 − α′
gi
)
+

+

m
∑

i=1

(1 − α′
gS(i)

)
+

< r, ∀ S ⊆ {1, . . . , N} and |S| = m

}

, (18)

from which we get a symmetric problem forα′
gi

, i = 1, . . . , N . We can then prove the same

result as the previous case.

2) Smart scheduling:Using the two “best” relays, we can arrive at (18) withN = 2. Since

our definition of “best” also corresponds to minimum value ofα′
gi

, it is not difficult to verify that

the outage region in this case is included in the region (18).Thus, the DMT is lower-bounded

by that of the dump scheduling and the achievability is proved.
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E. Proof of Proposition 2

Fact 1: Let fff ,
[

f1 f2

]

T

, UUU ,

[

u11 0

u21 u22

]

andHHH be a3× 3 upper-triangular matrix defined by

HHH ,





UUU 000

fff T g





with g being a scalar. Then, we have

det(I + SNRHHHHHH†) = (1 + SNR |g|2) det
(

I + SNRUUUUUU †
)

+ SNR ‖fff‖2 + SNR
2 |f2u11|2

+ SNR
2 |u22f1 − u21f2|2 .

(19)

Since non-zero multiplicative constants independent of SNR do not appear in the high SNR

regime analysis, from (8), we consider the following matrix

HHH =













g0 0 0

g1 h1 g0 0

g2 γ12 h1 g2 h2 g0













, (20)

where the coefficients
√

SNR b1 and
√

SNR b2 are neglected (SNR |bi|2 .
= SNR

0). With (19), we

can now obtain the outage event set, in terms of the entries ofHHH.

In order to apply lemma 3, however, we must get the outage event set in the high SNR regime,

in terms ofα. To this end, we must rewrite|u22f1 − u21f2|2 in (19) in a more convenient form

of positive variables. Let us use the notationV = |v|2 for v being any variable. Then, from (19)

and (20), we have

F1
.
= G2H1Γ12; F2

.
= G2H2;

U11
.
= U22

.
= G0; U21

.
= G1H1.

Let us rewrite

|u22f1 − u21f2|2 = U22F1 + U21F2 − 2
√

U21U22F1F2 cos θ

= (1 − cos θ)(U22F1 + U21F2)

+ cos θ
∣

∣

∣

√

U22F1 −
√

U21F2

∣

∣

∣

2
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with θ uniformly distributed in[0, π] and is independent of the other random variables. The

outage probability conditioned onθ is maximized whenθ is close to0+, where1 − cos θ ≈ θ2

2
.

In this region, we have

|u22f1 − u21f2|2 .
=

θ2

2
(U22F1 + U21F2)

+
∣

∣

∣

√

U22F1 −
√

U21F2

∣

∣

∣

2
(21)

Then, from (19) and (21), we have the outage regionO(HHH, r)


















































(1 + SNRG0) det(I + SNRUUUUUU †) ≤̇ SNR
r

1 + SNR(F1 + F2) ≤̇ SNR
r

1 + SNR
2F2U11 ≤̇ SNR

r

1 + SNR
2θ2(U22F1 + U21F2) ≤̇ SNR

r

1 + SNR
2
∣

∣

√
U22F1 −

√
U21F2

∣

∣

2 ≤̇ SNR
r



















































(22)

The last inequality in (22) implies

1 + SNR
2(U22F1 + U21F2) ≤̇ SNR

r + 2SNR
2
√

U21U22F1F2,

which means that, in the high SNR regime, the outage regionO(HHH, r) is included3 in the region

O(α, r) defined by





































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




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


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
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























3(1 − αg0) ≤ r

(1 − αg0) + (1 − αg1 − αh1) ≤ r

2 − αg0 − αg2 − αh2 ≤ r

1 − αg2 − αγ12 − αh1 ≤ r

2 − αg0 − αg2 − αγ12 − αh1 − αθ ≤ r

2 − αg1 − αg2 − αh1 − αh2 − αθ ≤ r

2 − αg0 − αg2 − αγ12 − αh1 ≤ max {r, φ(α)}

2 − αg1 − αg2 − αh1 − αh2 ≤ max {r, φ(α)}










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














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










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


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3In this case, we haveO(HHH, r) ⊆ O(α, r) but O(α, r) * O(HHH, r)
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with φ(α) , 2 − 1
2
(αg0 + αg1 + αγ12 + αh2) − αh1 − αg2. Let us define

OT (α, r) , O(α, r) ∩ T (α, r)

OT (α, r) , O(α, r) ∩ T (α, r)

with

T (α, r) , {α : r ≤ φ(α)} .

SinceO(α, r) = OT (α, r) ∪ OT (α, r), we have

inf
O(α,r)

ε(α) = min

{

inf
OT (α,r)

ε(α), inf
OT (α,r)

ε(α)

}

,

with ε(α) = αg0 + αg1 + αg2 + αh1 + αh2 + αγ12 + 1
2
αθ by lemma 4 and the independence

between the random variables. Thus, the DMT can be obtained with two linear optimizations.

This problem can be solved numerically using sophisticatedlinear programming algorithms or

softwares. If the relay ordering is such that|h2| > |h1|, we addαh1 > αh2 to the constraints and

carry out the same optimization problem. We can finally get the DMTs of Fig. 4.
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