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Abstract— Power system currents and voltages magnitudes are 
time variant due to continual changes in system configuration 
and load conditions. This paper deals with the statistical 
description of measured electrical signals. A matrix 
representation is chosen in order to preserve the information 
about the temporal evolution of the recorded signal. Two matrix 
forms are investigated: transitions probabilities (Markov) matrix 
and transitions number matrix. Their performance is further 
analyzed in the paper by investigating two of their applications – 
reconstruction and prediction. In deed, the availability of the 
information about the time evolution of the recorded data can be 
used to restore the original signal from its corresponding matrix 
form. Another possible application is the forecasting of the 
electrical signals behavior in the future. Both applications are 
illustrated on measurement data acquired from a real power 
network. 
 

Index Terms—data storage, Markov processes, matrix 
methods, power quality, power system harmonics, signal 
prediction, signal reconstruction, statistics, time varying systems 
 

I.  INTRODUCTION 
HE time-varying nature of currents and voltages is well 
known and ever present in power systems. It is mainly 

due to the variability of non-linear loads with varying 
operating point, or well to linear loads with fixed operating 
conditions, when switching on and off to the grid. 

Many recent research interests are focused on the non 
stationary behavior of electrical signals and especially on the 
time-varying nature of the harmonics, an important aspect of 
the power quality. As the FFT algorithm is not accurate in the 
harmonic estimation in case of random variations, different 
techniques for time-varying harmonics assessment have been 
proposed in the literature: wavelet transform [1], neural 
network [2], Min norm method and Wigner-Ville distribution 
[9]. Other recent publications are focused on the probabilistic 
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harmonic analysis, the harmonic summation and propagation 
in systems with multiple non linear loads [3,4]. Revision of 
standards is proposed [10] or even made [13] including 
probabilistic limits for time-varying harmonic currents and 
voltages. The application of the actual steady-state harmonic 
distortion limits to non stationary harmonics is also 
investigated in [11]. 

Another subject of research interests is the representation 
in statistical terms of recorded data showing time-varying 
distortions. The simplest approach describes recorded data by 
statistical measures: minimum value, maximum value, mean 
value and standard deviation [5]. More appropriate methods 
for statistical representation of a set of measurements are the 
probability density function and the probability distribution 
function. The probability density function indicates the 
frequency of occurrence of the recorded signal values in a 
vector form. Its accuracy can be improved by considering the 
signal as a sum of deterministic and random component [6]. 
The probability distribution function is the integral of the 
probability density function. It provides the same information 
and has the same advantages and drawbacks as the probability 
density function. 

The vector form representation is an easy and efficient 
way to describe random behavior of electrical signals. 
However, information about time evolution of the recorded 
data is completely lost. In order to take it into account, a 
matrix description of the recorded signal should be applied. 

This paper deals with the statistical matrix representation 
of time-varying electrical signals. Two matrix forms are 
investigated. The first one is the transition probability matrix, 
which terms represent the probability that the signal passes 
from one value to another. This matrix is also known as 
Markov matrix and is already applied in case of non stationary 
harmonics [7]. The second one is the transitions number 
matrix, which represents the number of times that the signal 
has passed from one value to another. The main advantage of 
the matrix representation with respect the previous vector 
form is that it contains information about the temporal 
structure of the recorded signal, which can be exploited to 
reconstruct this signal and to forecast its future behavior. 

This paper is organized as follows. Section II deals with 
the statistical matrix representation of recorded data. The 
derivation of the probability density function and the classical 
statistic measures from both matrices is also described. 
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Sections III and IV present two applications of the statistical 
matrix representation: signal reconstruction and signal 
prediction. In section III a signal is stored and then 
reconstructed from the Markov matrix, the state transitions 
matrix and the probability density function. In the three cases, 
the results are presented and analyzed. In section IV two 
methods for signal prediction are applied and the results are 
discussed. 

II.  MATRIX REPRESENTATION OF MEASURED DATA  
In this section recorded data are statistically described by 

Markov matrix and transitions number matrix. Both matrices 
are defined and their computation is given in details. Then, the 
probability density function and the most important statistical 
measures are derived from both matrices. 

A.  Matrices definitions 
The matrix of transition probabilities describes the 

behavior of Markov chains and for that reason is also called 
Markov matrix. Each element in this matrix represents the 
probability of transition from a particular state (the matrix row 
index) to the next state (the matrix column index). Being 
probabilities, the elements of the Markov matrix take values 
between 0 and 1. The sum of the probabilities in each row is 
exactly 1, because from anyone state the system either remains 
in this state or moves to one of the others: 

[ ] 10, ≤≤= ijij ppM  ∑ =
i

ijp 1              (1) 

An alternative of the Markov matrix is the transitions 
number matrix, which elements, as its name indicates, 
represent the numbers of transitions between the different 
states. The elements of the transitions number matrix are 
always positive or zero: 

[ ] 0, ≥= ijij rrR                    (2) 

B.  Matrices estimation 
The two previous matrices are easy to compute from 
successive data. In this section their computation is described 
and illustrated with an example.  

    1)  Transitions number matrix 
The transitions number matrix can be derived from the 
recorded data by increasing in each state transition the 
corresponding matrix element with an increment. The 
computational process is shown for the three-states system 
presented in fig.1, where states are denoted by S  and the 
number of transitions for state i  to state j  by ijr . When the 
data vector is achieved, an additional increment is added to the 
term corresponding of the transition between the last state and 
the first one. In deed, it is experimentally proved that this 
operation increases the accuracy of the matrix in its 
reconstruction and prediction applications. The elements ijr  
are arranged in a matrix form R ; the size of the matrix is 
determined by the number of signal states (values). 
 
 

S1

11212 += rr

S2 S1 S3 S2

11313 += rr

13232 += rr12121 += rr

12121 += rr

S1

11212 += rr

S2 S1 S3 S2

11313 += rr

13232 += rr12121 += rr

12121 += rr

 
Fig. 1.  Estimation of transitions number matrix 
 

    2)  Markov matrix 
The estimation technique applied for the Markov matrix is 

described in [8]. First the number of times ijr  that the signal 
has moved from state i  to state j  is calculated and arranged 
in a matrix form R  as previously explained. Then, the 
probability of transition from state i  to state j  is estimated by 
dividing each term ijr  by the sum of the elements in the i -th 
row: 

∑
=

= n

j
ij

ij
ij

r

r
p

1

,                       (3) 

where n is the states number. 
    3)  Example of matrices computation 

An example of the previous matrices computation is given 
in this paragraph. The recorded signal consists of the first 
voltage harmonic’s magnitude acquired at one point of a real 
power network. The sampling period is 10 min and 144 
samples are available, which corresponds to a duration of 24 
hours (fig.2). 

The recorded signal takes values from V536.227  to 
V346.237  during the 24 hours. Considering only its integer 

values, the signal is characterized by 10 states: 
{ }237236235234233232231230229228=x , the 

non integer signal values being rounded. The size of the 
matrices is determined from the number of states, here 10x10. 
Better accuracy can be achieved if a more important number 
of states is considered, but the size of the matrices will 
increase and more memory will be required.  

 

 
Fig.2  Recorded signal 
 
The computation of the matrices is realized as previously 
explained. Their structures are graphically presented in fig.3. 
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a)  

b)  
Fig.3 Graphical representation of a) the transitions number matrix and b) the 
Markov matrix 
 

C.  Available information from the statistical matrices  
The universal methods for data storage can be derived 

from the transition matrices. The determination of the 
probability density function ip  from both matrix forms is 
presented in (4).  
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By knowing the vector of signal states ix  and the 
probability density function ip , the statistical measures: mean 

)(xE  and standard deviation σ  can be calculated: 

i
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ii xExpσ                   (6) 

The information about the probability or the frequency of 
occurrence of the transitions between the states can be used to 
reconstruct the signal and to forecast its future evaluation, as 
described in the next two sections. 
In addition to the information provided by classical methods 
of statistical data storage, the statistical matrices take into 

account the temporal evolution of the signal. Their structure is 
relevant for the signal variations: if most part of the matrix 
elements are situated on or near the main diagonal, the signal 
is characterized by slow variations. On the contrary, if the 
main matrix elements are not localized close to the main 
diagonal, the signal magnitude is characterized by sudden and 
strong variations. Concerning the signal presented in fig. 2, 
the corresponding matrices (fig.3) have almost a diagonal 
structure, which shows that the signal varies slowly. 

The statistical matrices represent an efficient and 
interpretable way to store recorded data without lost of 
important information. The information about the probability 
or the frequency of occurrence of the transitions between the 
states can be used to reconstruct the signal and to forecast its 
future evaluation, as described in the next two sections. 

III SIGNAL RECONSTRUCTION 
In this section, recorded data are first described by 

probability density function, Markov matrix and transitions 
number matrix. Secondly, these three statistical quantities are 
used to reconstruct the original signal and their performance is 
compared and discussed.  

A Algorithms 
As the probability density function does not contain 

information about the time distribution of the recorded data, 
the reconstruction of the signal using this quantity is realized 
by generation of random numbers having the corresponding 
probability distribution. 

The signal reconstruction using the transitions number 
matrix begins from an arbitrary-chosen matrix term. Every 
following signal state is derived from the last one and the 
matrix element on the corresponded row containing the 
highest transitions number. For every reconstructed point, the 
matrix term used for its determination decreases by an 
increment equal to 1. The described algorithm is the opposite 
of the one used for the transition numbers matrix estimation 
shown in fig.1. 

The algorithm of signal reconstruction using Markov 
matrix is analogous to the one applied in the case of 
transitions number matrix. The reconstruction of the stored 
signal starts from the term with the highest probability. After 
each point determination, the matrix term employed for the 

reconstruction decreases by an increment value 
sa

st
N
N , where 

stN  is the states number and saN  is the samples number of 
the stored signal.  

B Results 
The wave-forms of real and reconstructed signals are 

compared in fig.4 and their corresponding probability density 
functions are shown in fig.5. The deviations between real and 
reconstructed signals in the three cases are presented in Table 
1 by relative errors in the wave forms, in the probability 
density functions and in the statistical measures (mean value 
and variance). In order to compare the dynamics of the 
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different signals, another important parameter is introduced in 
Table 1: the number of state changes. 

The reconstructed signal from the probability density 
function is random and does not have the same dynamics as 
the real signal. The deviation between the two wave forms is 
important. However, the reconstructed signal has very similar 
probability density function and statistical measures than the 
real signal. 

The reconstructed signal from the Markov matrix has a 
wave form similar to the wave form of the real signal, but it 
doesn’t have the same probability density function. It is due to 
the fact that the terms of Markov matrix represent the 
probability that the system passes from one state to another, 
but they do not provide information about the frequency of 
occurrence for the different signal states. The deviation 
between the statistical measures of real and reconstructed 
signals is also important. 

Fig. 4  Real and reconstructed signals using the probability density function, 
the Markov matrix and the transitions number matrix 

 
In the signal reconstruction the transitions number matrix 

combines the advantages of Markov matrix and probability 
density function. The restored signal has the same dynamics 
as the real signal and very similar probability density function 
and statistical measures. 

The performance of the transitions number matrix can also 
be analyzed thanks to Table 1, where the results from the three 
signal reconstruction methods are compared. The signal 
reconstructed from the transitions number matrix has minimal 
errors in the wave-form as well as in the probability density 
function and almost the same dynamics as the real signal. 

 

a)  

b)  

c)  
Fig. 5  Probability density function for:   a) the real signal    b) the 
reconstructed signal from Markov matrix   c) the reconstructed signal from 
transitions number matrix 

 
TABLE I 

ERRORS IN THE RECONSTRUCTION FROM PROBABILITY DENSITY FUNCTION, 
MARKOV MATRIX AND TRANSITIONS NUMBER MATRIX  

Reconstructed signal  Real 
signal Probability 

density function 
Markov 
matrix 

Probability 
matrix 

Minimal value 228 228 228 228 
Maximal value 237 237 237 237 
Average value 231.972

2 
232.2222 232.4236 231.9097 

Mean relative error for 
the wave form [%] 

- 1.17 1.09 0.63 

Mean relative error for 
the prob. distribution 

[%] 

- 2.73 39.4 3.44 

Number of states 
changes  (dynamics) 

62 144 61 63 

  

IV SIGNAL PREDICTION 
Classical signal prediction methods give usually good 

results, but only for few time steps in the future. They are 
usually based on the correlation function of the signal (linear 
prediction, Kalman filter) and give worse results after certain 
number of time steps, when the correlation disappears. 
Markov probabilities are also applied in time series prediction 
[12], but only for real time forecasting, where the originally 



 5

forecast values are updated or modified as measured data 
become available. 

Power system harmonics prediction is a subject of interest 
only if an important number of samples are predicted. In this 
section, transitions matrices are applied to forecast the 
harmonics future behavior in a long term. 

The prediction of a large number of samples from the 
presented in this paper transitions matrices is investigated. A 
stochastic and a deterministic approaches based on the 
transitions matrices are proposed. Both methods are applied in 
the case of Markov matrix, the prediction from transitions 
number matrix being analogous. 

The deterministic approach is similar to the method used 
for signal reconstruction. The prediction of the signal begins 
from the last measured point of the real signal. Every 
following signal state is determined from the last state and the 
term with high probability on the corresponded row. After 
each signal point prediction, a new matrix is computed, 
decreasing by an increment the matrix term used for the last 
signal point generation. The value of the increment may vary 
in order to obtain better results. 

In the stochastic approach the signal prediction is 
effectuated by a generation of random variables with Gaussian 
probability distribution. Every next state is found by a 
generation of a random number with Gaussian probability 
distribution corresponding of the previous state. In other 
terms, by supposing that the signal is in the state i , the next 
state j  is determined by: 

iij randnx μσ += )1( , where                (8) 
randn : function generating random numbers with normal 
distribution with mean zero, variance 1 and standard deviation 
1 

iμ  mean value for the state i  

iσ  standard deviation for the state i  
One of the advantages of the stochastic approach is that it 

does not need a new matrix computation after each point 
determination. Although, an important error may be induced 
due to the fact that the signal is supposed to have a Gaussian 
distribution in anyone of its states, which is not always valid. 

The results obtained from the deterministic and the 
stochastic approach are presented in fig.6 and fig.7 
respectively. In the chosen example, 1 hour worth data are 
used, the sampling time is 6 seconds. The signal behavior is 
predicted for 1 hour (600 points). 

As it can be seen from table II, the deterministic method 
gives better results than the stochastic one. In both cases the 
predicted signal is closer to the real signal for small periods of 
time. 

The methods applied for signal prediction from Markov 
matrix can be used in the case of transitions number matrix. In 
fact, the transitions number matrix may be reduced to a 
Markov matrix using equation (3), which allows the 
application of the same prediction techniques as in the case of 
Markov matrix. 

 
Fig.6  Signal prediction by deterministic approach 
 

 
Fig.7  Signal prediction by stochastic approach 
 
 

TABLE II 
MEAN RELATIVE ERROR IN THE SIGNAL PREDICTED FROM THE DETERMINISTIC 

AND THE STOCHASTIC APPROACH  
Mean relative error for Approach 

300 time steps 600 time steps 
Deterministic  0.16 % 0.18 % 

Stochastic  0.23 % 0.27 % 

V CONCLUSION 
The objective of the statistical description is to compress a 
large volume of data and to present it into a compact and easy 
to exploit form without loosing important information.  
The Markov matrix and the transitions number matrix present 
an efficient way to store the recorded data. In addition to the 
usual methods for data storage, these statistical matrices take 
into account the temporal evolution of the signal, which 
allows the restitution of the stored signal and the prediction of 
its future behaviour. They can be successfully applied for the 
statistical description of power quality disturbances like power 
system harmonics, voltage variations and voltage dips. 
The use of transitions number matrix is recommended, 
because it gives better results in the signal reconstruction. 
Moreover, it can be easily reduced to a Markov matrix, the 
inverse process is not realizable. 
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