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Abstract—A new method is presented to identify and to 

characterize voltage dips measurements from power quality 

survey. This method is based on the space vector transformation, 

which describes the three power system voltages by one complex 

variable – the space vector. Its representation in the complex 

plane is used to classify voltage dips. Indeed, for a not disturbed 

system voltages, the space vector represents a circle in the 

complex plane with a radius equal to the nominal voltage. It 

follows the same shape for balanced dips, but with a smaller 

radius. For unbalanced dips, this shape becomes an ellipse with 

parameters depending on the phase(s) in drop, dip severity and 

phase angle shift. Further, space vector characteristics and zero 

sequence voltage are used for a more precise determination of the 

voltage dip type. The developed algorithm for voltage dips 

classification is validated by EMTP simulations and measurement 

data. 

 
Index Terms—voltage dips (sags), characterization, 

classification, monitoring, power quality, power system, space 

vector. 

I.  INTRODUCTION 

OLTAGE dips are one of the most serious power quality 

problem and represent a major concern for the industry. 

They may cause interruption of industrial processes and may  

lead to economical losses and distorted quality products. 

During the last years, equipments used in industrial plants have 

become more sensitive to voltage dips as a result of 

technology improvement and increased use of power 

electronics devices [1,2]. Thus, the automatic analysis 

classification and characterization of voltage dips have 

become an essential requirement for power quality monitoring.  

Three phase voltage dips are mainly characterized by their 

duration, magnitudes and phase angle jumps. The last two 

parameters determine the dip type (signature), which is 

relevant for the dip severity, as well as for the dip origin and 

location. 

In order to determine the dip type, several methods are 

proposed in the literature. The most intuitive approach directly 

uses measured voltage waveforms for voltage dips 
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classification [3]. This method is easy to understand, but is not 

able to extract the characteristics of measured dips and 

consequently is not appropriate to automatic voltage dips 

analysis. 

Another method [4] compares the six RMS values of phase 

and phase-to-phase voltages after removing the zero sequence 

component. The dip type is determined from the lowest 

magnitude voltage. This method does not give any phase 

information and can not provide a full dip characterization. 

A recent method proposed in [5,6] is based on the theory of 

symmetrical components. It quantifies three phase unbalanced 

voltage dips using one complex variable called characteristic 

voltage. However, for a complete and precise dip 

classification, additional characteristics are used, like zero 

sequence voltage and PN factor.  

In this paper a new method for dip classification and 

characterization is developed. It is based on space vector 

transformation and leads to a more concise representation of 

voltage dips. The space vector methodology allows to extract 

characteristic features of the dip, to determine its type and 

evaluate its severity. 

One of the main advantages of this method is the use of only 

the space vector and zero sequence voltage for voltage dips 

analysis. In addition, it offers an exhaustive classification and 

complete characterization of three phase voltage dips. 

This paper is organized as follows: Section II describes the 

space vector transformation and its representation in the 

complex plane. Section III deals with voltage dips 

identification from space vector and zero sequence voltage. 

Finally, the complete method for voltage dips classification is 

described and illustrated with examples in section IV. 

II.  SPACE VECTOR DEFINITION AND CHARACTERIZATION 

Space vector transformation can be directly derived from the 

Clarke transformation [7], defined as:  
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,where the coefficient 
3

2
 is used to conserve magnitudes 

between the two coordinate systems. 

The first two components of the Clarke transformation form 
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the space vector (2) and the third one represents the zero 

sequence voltage (3) 
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In terms of first harmonic, the three system voltages can be 

viewed as sinusoidal quantities before, during and after the 

fault.  Under this assumption and using Euler’s formula, they 

can be represented as the sum of two contra rotating vectors 

with angular frequency ω . For example: 
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The space vector is derived from the previous voltages and 

consequently, can be described as the sum of positive and 

negative angular frequency phasors: 
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where px  and nx  are complex numbers: 
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When magnitudes and initial phases of positive and negative 

angular frequency phasors are different, the space vector 

follows an ellipse shape in the complex plane (Fig. 1). Major 

axis majr , minor axis minr  and inclination angle incϕ  of this 

ellipse depend on phasors magnitudes and phases [8]: 
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Fig.1 Representation of the space vector as the sum of two contra rotating 

vectors with positive and negative angular frequency, different magnitudes 

and initial phases 

 

Note that if positive and negative angular frequency rotating 

phasors have the same magnitudes, minr =0 and the space 

vector is a straight line in the complex plane. Moreover, if the 

magnitude of one of these phasors is zero, minr = majr  and the 

space vector becomes a circle. 

In order to quantify the shape followed by the space vector in 

the complex plane, a shape index is introduced as follows: 
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Its value indicates the correlation coefficient of the space 

vector shape to a circle: 

1=SI   : circle 

10 << SI  : ellipse 

0=SI   : straight line 

III.  VOLTAGE DIPS IDENTIFICATION 

In a balanced sinusoidal three phase system, the three voltages 

have same magnitudes and their relative phase angle shift is 

3

2π
. As a result, the space vector is only composed of the 

positive angular frequency phasor, and represents a circle with 

radius equal to the nominal voltage in the complex plane. 

Voltage dips lead to changes in the space vector form. This 

paragraph demonstrates that for a balanced dip, the space 

vector follows a circle with a radius smaller than the nominal 

voltage. On the contrary, the space vector is composed of 

positive and negative angular frequency phasors for 

unbalanced dips, and then represents an ellipse in the complex 

plane. In order to distinguish different types of unbalanced 

voltage dips, the ellipse parameters and the zero sequence 

voltage are used. 

A.  Unbalanced dips 

The following definitions are used: a dip with major voltage 

decrease in only one phase is called single phase dip; a dip 

with major drops on only two phases is denoted double phase 

dip. 

    1)  Single phase dips 

The voltage dips signature depends on several parameters: 

fault and measurement location, network and transformers 

grounding and type of measurements (phase to phase or phase 

to neutral). However, three types of single phase dips can be 

distinguished (Fig. 2). In the recent literature [9], they are 

denoted with letters B, D and F respectively. 
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Fig. 2. Single phase dips between phase a and the neutral 

 

The dip on Fig. 2a (type B) results from phase to neutral 

measurements at the fault location for grounded or low 

impedance grounded systems. For a major drop on phase a, 

this dip type is described by the following equations:  
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,where V  is the nominal voltage and d  is a coefficient 

representing the dip depth 10 ≤≤ d . 

By applying Euler’s formula on Eq. (8), the space vector and 

zero sequence voltage can be easily determined from (2) and 

(3) respectively:  
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In this case, the space vector is composed of positive and 

negative angular frequency phasors and describes an ellipse in 

the complex plane (Fig. 3a) with parameters obtained from (6). 

Its major axis is equal to the nominal voltage Vrmaj =  and its 

minor axis depends on the dip depth: Vdr 






 −=
3

2
1min . The 

inclination angle of this ellipse is 
2

πϕ =inc . 

For dips with major drops on phase b and c the space vector 

takes the same shape in the complex plane, but with different 

inclination angle: 
6

πϕ =inc  for a drop on phase b (Fig. 3b) and 

6

5πϕ =inc for a drop on phase c (Fig. 3c). 
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Fig. 3. Space vectors for a type B single phase dip on phase a, b and c 

respectively  

 

The zero sequence voltage for this type of dips can not be 

neglected: 
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, where n=1, 2, 3 for drops on phase a, b, c respectively. 

The dip type D shown on Fig. 2b usually results from phase to 

phase measurements of two phase faults at the fault location, 

or well, from phase to neutral measurements of two phase 

faults not at the fault location. It is characterized by a major 

drop on one of the phases and small drops and phase angle 

shifts for the other two phases. In this case, the space vector is 

the sum of positive and negative angular frequency phasors, 

and represents an ellipse with axis: 
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The ellipse inclination angles are 
6

5
,

6
,

2

πππϕ =inc  for a 

drop on phase a, b and c respectively. The zero sequence 

voltage is equal to zero. 

The dip type F usually results from two phase-to-ground faults 

not measured at the fault location. The corresponding space 

vector follows an ellipse shape with parameters:  
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The possible ellipse inclinations are the same as for the two 

previous dip types and the zero sequence voltage is equal to 

zero. 

The space vector characteristics and the zero sequence voltage 

value for the three previous single phase voltage dips are 

summarized in Table 1. In these three cases, the space vector 

represents an ellipse ( 1<SI ) with inclination 
36

5 ππ
n−  

( 3,2,1=n  corresponds to phase a, b, c respectively). The 

characteristics allowing the differentiation of the three types of 

single phase voltage dips are the zero sequence voltage and the 

ellipse major axis. 

 
TABLE 1 SINGLE PHASE VOLTAGE DIPS CHARACTERISTICS 
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    2)  Double phase dips 

The three main double phase dips are presented in Fig. 4 and 

their corresponding space vector characteristics and zero 

sequence voltage are given in Table 2. Note that for dip types 

C and G, the variable d is a function of the phase angle shift 

and the drop of the phases in fault, and does not exactly 

represent the dip depth. 
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Fig. 4. Double phase dips on phases b and c  

 
TABLE 2 DOUBLE PHASE VOLTAGE DIPS CHARACTERISTICS 

 

Space vector Type 

SI  incϕ  minr  majr  

Zero sequence voltage 

C d−1  ( )
3

1
π

n−  
( )Vd−1  V  0  

E ( )
d

d

−

−

3

13
 ( )

3
1

π
n−  

( )Vd−1  
V

d








−

3
1  ( ) 








−−+

3

2
1cos

3

πϕω ntV
d

 

G ( )
d

d

−

−

3

13
 ( )

3
1

π
n−  

( )Vd−1  
V

d








−

3
1  

0  

 

In these three cases, the space vector is represented by a sum 

of two contra rotating phasors, and describes an ellipse in the 

complex plane with inclination angle: 0=incϕ  for voltage 

drops on phases b and c, 
3

πϕ =inc  for drops on phases a and b 

and 
3

2πϕ =inc  for drops on phases a and c. Table 2 shows that 

the three types of double phase dips can be distinguished 

thanks to two parameters. The first one is the zero sequence 
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voltage, which is equal to ( )ϕω += tV
d

x cos
3

0  for dip type E 

and 00 =x  for the other two dip types. The other parameter is 

the ellipse major axis, which is equal to the nominal voltage 

for the dip type C and inferior to the nominal voltage for the 

other two dip types. 

 

    3)  Unbalanced dips classification 

For unbalanced dips, the space vector represents an ellipse in 

the complex plane with parameters depending on the dip 

signature. The angle made by the major axis of the ellipse with 

respect to the real axis indicates the phase(s) with major drop 

as shown in Fig. 5. Single phase dips are denoted with S, 

double phase dips with D, and phase(s) in drop are in lower 

case letters.  
Sa
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Fig. 5. Ellipse inclination angle for unbalanced dip 

 

The zero sequence voltage and the ellipse major axis 

contribute to the dip classification, differentiating the dip types 

with the same ellipse inclination. The ellipse minor axis 

depends directly on the dip depth and can be used for 

detection of dip, and characterization of the dip severity. 

Finally, it can be noted that the use of space vector for voltage 

dip analysis does not lead to a loss of information. Indeed, the 

voltage dip waveforms can be completely reproduced from the 

space vector and the zero sequence voltage. 

B.  Balanced dips 

Balanced dip is a three phase dip without phase angle shifts 

(Fig. 6a). The corresponding space vector is only formed by 

one positive frequency phasor: )()1()( ϕω +−= tjVedtP . It has a 

circle shape ( 1=SI ), with radius depending on the dip severity 

( Vdrr maj )1(min −== ). The other dip characteristics are 

presented in Table 3. 
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Fig. 6. Three phase balanced dip 

 
TABLE 3 THREE PHASE VOLTAGE DIP CHARACTERISTICS 

 

Space vector Type 

SI  incϕ  minr  majr  

Zero sequence voltage 

A V  - ( )Vd−1  ( )Vd−1  0  

IV.  METHOD FOR VOLTAGE DIPS CLASSIFICATION 

In this section the algorithm for voltage dips classification is 

given in details and applied to measurement data obtained 

from the monitoring program of Schneider Electric. This 

program is implemented in a large number of customers sites 

in order to identify power system disturbances and propose 

solutions for power quality improvement. 

A.  Algorithm 

The space vector method for voltage dips classification is 

presented in Fig. 7. It is assumed that the dip duration is over 

at least one cycle. 

Space vector
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incϕ

Real data

DFT

Dip type

0, xrmaj

np xx ,

 
Fig.  7 Space vector method for voltage dips classification 

 

The method is constituted by the following steps: 

1) Estimate the space vector from real data by using 

expression (2). 

2) Estimate positive and negative angular frequency phasors 

of the space vector for the fundamental frequency using 

complex-input discrete Fourier transform (DFT). The phasors 

are further used in order to obtain the space vector 

characteristics: ellipse axis and inclination (6), shape 

index (7). 

Instead of using the DFT, space vector characteristics could be 

directly determined by using the space vector shape in the 

complex plane. Although this technique is more simple and 

requires less computational efforts, it may introduce important 

errors in dips classification. Indeed, measured voltages are 

often disturbed (noise, harmonics) and the space vector 

projection in the complex plane is not an ideal ellipse. A direct 

estimation of the space vector characteristics in this case leads 

to inaccuracy in the voltage dips classification and 

characterization. 

This phenomenon can be illustrated with the example of the 

two-stage measured voltage dip presented in Fig. 8a. In both 

stages, dip voltages present a high harmonic distortion. The 

space vector shape and spectrum for the second stage dip are 

presented in Fig. 8b and Fig. 8c respectively. Projected in the 
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complex plane, the space vector represents a disturbed ellipse, 

and its spectrum confirms the presence of small harmonics and 

noise. 

 

 
Fig. 8 A measured voltage dip (a),  corresponding space vector projection in 

the complex plane (b) and space vector spectrum (c) 

 

The negative impact of additive noise and harmonic distortion 

can be avoided by directly applying the DFT to the space 

vector.  Indeed, the complex values given by the space vector 

spectrum at ±50Hz correspond to positive and negative 

fundamental angular frequency phasors xp and xn (see Eq. (5)). 

Their magnitudes are then used to calculate ellipse axis, and 

their phases determine ellipse inclination. 

3) Determine if the dip is balanced or unbalanced by using 

the shape index SI. 

Theoretically, the shape index is equal to 1 for three phase 

balanced dips and inferior to 1 for unbalanced dips. However, 

three phase measured dips usually present a shape index close, 

but inferior to these theoretical values due to the fact that 

phase voltage magnitudes often vary with respect to time. 

Therefore, a limit value of the shape index allowing the 

differentiation between unbalanced and balanced voltage dips 

should be estimated. 

By definition, a voltage dip is a decrease to between 0.1 and 

0.9 p.u. in rms voltage. Thus, the minimal dip depth is equal to 

%10  of the nominal voltage, which for unbalanced dips 

corresponds to a maximal shape index between 0.9 and 0.933 

depending on the dip type (see Table 1 and 2 with d=0.1). 

Therefore, voltage dip with shape index superior to 0.933 can 

be considered as three phase balanced dip, and shape index 

inferior to 0.933 classify the dip as unbalanced.  

4) For unbalanced dips, differentiate single and double 

phase dips and determine the phase(s) in drop by using the 

ellipse inclination angle as shown in Fig. 5. 

As the ellipse inclination is not always exactly an integer 

multiple of °30 , a rounded index 







°=

30

inc
roundk

ϕ
 is introduced 

in order to determine the dip type and facilitate the software 

implementation of the algorithm. Relations between the ellipse 

inclination, the index k  and the dip type are presented in 

Table 4. 

 
TABLE 4 DIP TYPE ESTIMATION BY USING THE ELLIPSE INCLINATION 

 

incϕ  °±° 150  °±° 1530  °±° 1560  °±° 1590  °±° 15120  °±° 15150  

k  0  1  2  3  4  5  

Dip Dbc Sb Dab Sa Dac Sc 

 

5) Determine the voltage dip type by using the zero 

sequence voltage and the major ellipse axis. 

As in the case of the shape index, limit values for the ellipse 

major axis and the zero sequence voltage should be 

determined. These values can be fixed and estimated by an 

observation of the monitored network. Another possibility is to 

calculate them for every dip as a function of its depth d, which 

can be estimated by using rmin. 

B.  Examples of algorithm applications 

The previous algorithm has been implemented in Matlab 

software and successfully applied to EMTP simulations in 

order to validate the proposed method. 

This section presents different results obtained by this 

algorithm applied on measured voltage dips. Measurements 

were mostly performed at the medium voltage network, the 

sampling frequency was kHz6,1 , and the three phases were 

acquired. Only dips with duration over one cycle are analyzed. 

Voltages during the fault are automatically isolated by a new 

space-vector-based segmentation algorithm, which will be 

detailed in a following paper. Zero sequence voltage and all 

space vector characteristics are given in p.u. 

The developed algorithm is first applied to the voltage dip 

presented in Fig. 9.  

 
Fig.  9 Single phase measured voltage dip 

 

The positive and negative fundamental frequency phasors are 

obtained from the DFT of the space vector: °−= 7091,0 j
p ex and 

°= 13309,0 j
n ex . The shape index 81,0=SI  indicates that the 

dip is unbalanced. The inclination angle °= 5,31incϕ  

corresponds to a single phase dip on phase b . The ellipse 

major axis 1max =r  and the zero sequence voltage magnitude 

02,00 =x  classify the dip as type D. The ellipse minor axis is 

82,0min =r , therefore the dip depth can be estimated to 

pud 18,0= . 

The space vector for the voltage dip represented in Fig.10 is 
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composed by a positive frequency phasor °−= 15878,0 j
p ex  and 

a negative frequency phasor °= 381,0 j
n ex . The shape index 

76,0=SI  classifies the dip as unbalanced. The ellipse 

inclination °=120incϕ  indicates that two phases are in drop: a  

and c . The major ellipse axis 88,0max =r  and the zero 

sequence voltage 05,00 =x  determine that the dip type is E. 

The minor ellipse axis 67,0min =r  indicates that the dip depth 

is pud 33,0= . 

 
Fig. 10 Double phase measured voltage dip 

 

The dip presented in Fig. 11 is characterized by a shape index 

94,0=SI  and is classified as a three phase balanced voltage dip 

since SI>0.933. Moreover, the dip depth is estimated to 

pud 5,0= . 

 
Fig. 11 Three phase measured voltage dip 

V.  CONCLUSION 

A new method for voltage dips classification has been 

developed in this paper. It uses the space vector parameters 

and the zero sequence voltage in order to extract the 

characteristic features of the voltage dips and to determine 

their type. The space vector characteristics can also be applied 

to determine the dip severity (depth and phase angle shift).  

The proposed method does not require many computational 

effort and is very appropriate for an automatic voltage dips 

analysis. The proposed algorithm was applied to EMTP 

simulation and measurements data and the obtained results has 

proved its accuracy. 
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