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Abstract—Stator frame radial vibrations of an induction motor are com-
posed of the sum of three different components: aerodynamic, mechanical
and electromagnetic vibrations. The separation of these components could
be usefull in order to quantify their respective vibratory influence. More-
over, each of these components carrying different physical informations,
such a processing could be interesting to further analyze each component
independently, and finally diagnose induction machine faults more easily.
This paper deals with a new processing algorithm able to extract electro-
magnetic vibrations of an induction motor from measured signals. To this
end, a nonlinear quadratic optimal filter is used to estimate these vibra-
tory components from stator currents and radial vibrations measured at
one location on the stator frame. This algorithm is based on the physi-
cal quadratic link between stator currents and electromagnetic vibrations,
which is first detailed. The algorithm used to estimate the optimal nonlin-
ear quadratic filter is then determined and analyzed. Finally, the proposed
algorithm is applied to real signals, and is shown to be very efficient, what-
ever frequency band.

Index Terms—induction motor, radial vibrations, electromagnetic vi-
brations, nonlinear optimal filtering, diagnostic.

I. PROBLEM STATEMENT AND PHYSICAL MODELING

Radial vibrationsv(t, θ) of an electrical motor measured at
time t and angular positionθ on the stator frame are usually
modelized as the sum of three terms, each of which having a
different physical origin [1], [2]:

v(t, θ) = va(t, θ) + vm(t, θ) + ve(t, θ), (1)

where:
• va(t, θ) are aerodynamic vibrations, generated by pressure

variations in the air gap,
• vm(t, θ) are mechanical vibrations, due to the rotation of

different parts of the machine (rotor, bearings, . . . ),
• ve(t, θ) are electromagnetic vibrations, caused by the elec-

tromagnetic force related to the magnetic field in the air
gap.

In order to simplify radial vibrationsv(t, θ), and to quantify
the vibratory influence of the different physical phenomena, a
usefull processing would be to separate the three previous com-
ponents (va(t, θ), vm(t, θ) andve(t, θ)) from each other. The
present work can be considered as the first step of this process-
ing, since its aim is to extract electromagnetic vibrationsve(t, θ)
from radial vibrations.

To this end, the modelization of electromagnetic vibrations
has to be further detailed. Firstly, stator currentsis(t) supply-

ing the machine induces a magnetic fieldb(t, θ) in the air-gap.
Since this phenomenon is supposed to be linear in the present
work, these two quantities mostly have the same spectral con-
tent. Secondly, this field generates a radial force densityσ(t, θ)
between rotor and stator frame, which is quadratically related to
b(t, θ) thanks to the Maxwell stress method [3], [4]:

σ(t, θ) =
b2(t, θ)

2µ0
, with µ0 = 4π10−7. (2)

This equation shows that this force densityσ(t, θ) has the same
spectral content that squared stator currents. Finally, the sta-
tor frame is commonly modelized as a linear time-invariant
(LTI) mechanical system. Its input is the previous force den-
sity and its output the electromagnetic vibrations [1], [2]. From
the above considerations, we can state that electromagnetic vi-
brationsve(t, θ) are related to stator currentsis(t) through a
nonlinear quadratic system. Fig. I schematically represents the
structure of the quadratic nonlinear system chosen to modelize
radial vibrations of an electrical machine.
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Fig. 1. Physical modeling of radial vibrations of an induction machine

Stator currentsis(t) and radial vibrationsv(t, θ) are two eas-
ily measured quantities on real machines. The aim of this work
is to elaborate an optimal filter to estimateve(t, θ) from these
two measured quantities. The theoretical form of this optimal
filter (which has to be nonlinear as shown previously), and its
estimation algorithm are determined in the next section.

II. OPTIMAL NONLINEAR FILTERING

For the sake of simplicity, the dependence of the different sig-
nals on the angular positionθ will be omitted in the following.

The two only measured signals are one stator currentis(t),
and stator frame radial vibrationsv(t). They are sampled at
sampling frequencyfs, and their sampled versionsis(n) and



v(n) are supposed to verify Shannon’s sampling theorem. The
physical model given in section I and represented in Fig. I can
be used to determine the global structure of the algorithm nec-
essary to estimate electromagnetic vibrationsve(n) from is(n)
andv(n):

Step 1: determinei2s(n) from is(n),
Step 2: determine an optimal linear filter to estimate the LTI

system of Fig. I fromi2s(n) andv(n).
These two steps, detailed in the following subsections, allow to
estimate an optimal nonlinear quadratic filter in order to mod-
elize the nonlinear system described in the previous section.

A. Step 1: determinei2s(n) from is(n)

This first step is a nonlinear operation, which induces fre-
quency shifts in numerical signals. For example, if the signal
is(n) contains different frequency components between0 and
fs/2, the spectrum of its squared versioni2s(n) spreads from
0 to fs. This squared signal is subject to spectral overlapping
since it does not verify Shannon’s sampling theorem any more.
To prevent this phenomenon, the numerical signalis(n) can be
upsampled by a factor2 before the squaring operation. Indeed,
this upsampling confines the spectrum of the upsampled signal
between0 andfs/4 [5], which can be squared without any spec-
tral overlapping. In order to obtain a signal with a sampling fre-
quencyfs at the output of this nonlinear operation, the squared
signal has to be downsampled by the same factor2. This princi-
ple is illustrated in Fig. 3. The sampled signal given by this first
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Fig. 3. Numerical implementation of a squaring operation

step is a correct numerical version of the squared signali2s(t) in
the frequency band[0, fs/2].

B. Step 2: determine an optimal linear filter fromi2s(n) and
v(n)

This second problem is equivalent to estimate the transfer
function of the LTI system represented in Fig. I by using the
known signalsi2s(n) andv(n). Indeed, once this transfer func-
tion is known, electromagnetic vibrations are reconstructed by
applying this filter to the squared stator current. This problem
is solved by optimal filtering, also called Wiener filtering. This
theory were originally applied in [6] in the time domain, but
since stator currents are mostly periodic, this method is imple-
mented here in the frequency domain. This algorithm has been
extensively studied in the signal processing community, and a
simple introduction can be found in [7], [8] while a more theo-
retic approach is given in [9].

Two hypothesis are necessary to use this method:
1. the system to identify has to be linear and time invariant,
2. its input has to be uncorrelated to the additive noise

present on the measured signal.
The first hypothesis was already assumed during the develop-
ment of the physical model described in section I. Concerning
the second hypothesis, the input of the system isi2s(n), gener-
ated by the power supply (power network and inverter) of the

machine. The measured signal is radial vibrations, where ad-
ditive noise isva(n) + vm(n), generated by aerodynamic and
mechanical phenomena in the machine. Thanks to their com-
pletely different physical origin,i2s(n) andva(n) + vm(n) are
obviously uncorrelated, and the two previous hypothesis are fi-
nally satisfied.

Under these assumptions, the transfer function of the fil-
ter which best estimates electromagnetic vibrationsve(n) from
i2s(n) is given by:

Ho(f) =
γvi2

s

(f)

γi2
s
i2
s

(f)
, (3)

whereγi2
s
i2
s

(f) is the power spectral density (or power spec-
trum) ofi2s(n), andγvi2

s

(f) is the cross spectral density (or cross
power spectrum) betweenv(n) andi2s(n). This filter is called

the optimal filter or Wiener filter. Its output, noted̂ve(n), is the
best estimate ofve(n) in the least squares sense since it mini-
mizes the mean squared error between these two signals. This
filter is able to extract from measured vibrationsv(n) all the
components correlated withi2s(n), i.e. electromagnetic vibra-
tions.

The transfer function of Eq. (3) can be calculated from the
known signalsi2s(n) and v(n) by estimating their power and
cross spectral densities. In the following, these spectral quanti-
ties will be estimated through the Welch modified periodogram.

Fig. 2 schematically represents the complete algorithm pre-
viously established, which is applied on real signals in the next
section.

III. E XPERIMENTAL RESULTS

This experiment was carried out on a5 kW, four-pole, three-
phase induction motor with24 rotor slots. It was supplied by
a pulsewidth modulation (PWM) inverter, with a switching fre-
quencyfPWM = 5 kHz. The machine was in steady state, with
a fundamental supply frequencyf1 = 32 Hz, and a constant
rotating frequencyfr = 13.7 Hz. One stator current and radial
vibrations of the machine were measured by a current sensor
and an accelerometer placed in the middle of the stator frame.
These two signals were low-pass filtered between0 and12 kHz
by an antialiasing filter and sampled atfs = 25.6 kHz in order
to verify Shannon’s sampling theorem. The results obtained on
these real signals are shown in the following figures.

Fig. 4 represents the power spectral density (PSD) of the mea-
sured stator current between0 and7000 Hz in dB, such that even
small components are visible. This curve shows that this signal
contains the following important harmonic components :

• supply frequency harmonics, situated in the low frequency
band (0 − 300 Hz) and mainly constituted by the funda-
mental supply frequency (f1 = 32 Hz) and its5th and7th

harmonics,
• slot harmonics situated around multiples of≃ 1000 Hz,
• PWM inverter harmonics situated around the switching fre-

quency (4500 − 5500 Hz).
All these components should generate electromagnetic vibra-
tions because of the quadratic transfer function described in sec-
tion I. Therefore, radial vibrations, which contains electromag-
netic vibrations, should contain common spectral components
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Fig. 2. Schematic representation of the complete algorithm
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Fig. 4. PSD of one stator current

with squared stator currents. The PSD of these two signals are
compared in Fig 5, where strong common components appear,
particularly for slot and PWM harmonics.

These common components, contained in measured radial vi-
brations, should be identified by the algorithm presented in sec-
tion II as electromagnetic vibrations. The obtained results are
presented in Fig. 6, where the PSD of measured radial vibra-
tionsv(n) (blue curve) is compared with the PSD of estimated

electromagnetic vibrationŝve(n) (red curve) in the upper figure,
and with the PSD of estimated non-electromagnetic vibrations

̂va(n) + vm(n) (red curve) in the lower figure. The upper fig-
ure shows that the proposed algorithm correctly estimates PWM
components and slot harmonics as electromagnetic vibrations
which is a quite good result. In the lower figure, it can be seen
that all the previous components, induced by stator currents,
have been canceled from estimated non-electromagnetic vibra-
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Fig. 5. PSD of one squared stator current and radial vibrations

tions ̂va(n) + vm(n). This last signal is now mainly constituted
by a wide band component due to aerodynamic phenomena and
some spectral lines due to mechanical phenomena [1], [2].

In order to study these results more precisely, the previous
spectral quantities are analysed for three different narrow fre-
quency bands in the following figures.

First, the previous PSD are analyzed around the supply fre-
quency in Fig. 7,i.e. in the low frequency band (0 − 300 Hz).
The PSD of radial vibrations (blue curves) is composed of sev-
eral harmonics added with wide band components. These dif-
ferent components has the following physical origins [1], [2]:

• one mechanical harmonic with frequencyfr = 13.7 Hz,
due to the natural mechanical excentricity of the machine,

• one electromagnetic harmonic with frequency2 × fs =
64 Hz due to the squared stator current fundamental com-
ponent,

• some wide band components due to aerodynamic phenom-
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ena,
• other small harmonics.

After processing, the first harmonic (13.7 Hz) is well iden-
tified as a mechanical component since it has been removed
from the PSD of estimated electromagnetic vibrations (upper
figure, red curve), and is present in the PSD of estimated non-
electromagnetic vibrations (lower figure, red curve). On the
contrary, Fig. 7 shows that the proposed algorithm well iden-
tifies the second harmonic as an electromagnetic component. It
can be noted that a similar result is obtained for another small
harmonic component with frequency6 × fs = 192 Hz. This
last result comes from the fact that the transfer function be-
tween stator currents and electromagnetic vibrations is quadrat-
ically nonlinear, and induces cross products between different
stator currents components. Indeed, this particular term is cre-
ated by the cross product between the stator currents funda-

mental harmonic (frequencyfs) and its5th and7th harmonics
(5fs + fs = 7fs − fs = 6fs = 192 Hz). Finally, aerody-
namic wide band components (for example around250 Hz) are
correctly identified as non-electromagnetic vibrations.

The second analyzed frequency band is between1800 Hz and
2300 Hz (middle frequency band), and the corresponding PSD
are shown in Fig. 8. They contain three main spectral lines lo-
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Fig. 8. PSD of real vibration signals: middle frequency band

cated at frequencies1910 Hz, 1970 Hz and2035 Hz, which
can be identified as slot harmonics. Indeed, for this induction
machine, these harmonics are located atk × 24fr + n × 2f1

Hz (k integer,n = 0,±1) [1], [2], which corresponds to the
previous frequencies withk = 6. These components, clearly
visible in the DSP of the measured radial vibrationsv(n), have
an electromagnetic origin since they are generated by currents
slot harmonics. They are correctly estimated as electromag-
netic components by the proposed algorithm, and completely
removed from the DSP of estimated non-electromagnetic vibra-

tions ̂va(n) + vm(n). On the contrary, wide band component,
mainly due to aerodynamic vibrations, is correctly identified as
non-electromagnetic vibrations.

Third, Fig. 9 shows the results obtained aroundfPWM =
5 kHz, the switching frequency of the PWM inverter (high
frequency band). It is well known that such an inverter gen-
erates an important number of harmonics around its switch-
ing frequency. This figure shows that the proposed algorithm
identifies these harmonics as electomagnetic vibrations com-
ponents, and completely remove them from the estimated non-
electromagnetic vibrations PSD.

For the sake of clarity the previous results are presented in
the frequency domain. However, the proposed algorithm is able
to estimate electromagnetic and non-electromagnetic vibrations
signals in the time domain. Their time representations, given in
Fig. 10, show that measured radial vibrationsv(n) are mostly
composed of electromagnetic vibrationsve(n) at this location
on the stator frame. Indeed, the power ofve(n) can now be
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correctly estimated, and represents93% of the power ofv(n)
at this location. This is not surprising since the chosen location
is the middle of the stator frame, where electromagnetic effects
are predominant with respect to mechanical effects.

IV. CONCLUSION

The aim of this work was to develop an algorithm able to ex-
tract electromagnetic vibrations from radial vibrations and sta-
tor currents of an induction machine. This was done thanks
to the physical nonlinear model existing between these quan-
tities. The proposed algorithm estimates an optimal non-
linear filter thanks to classical spectral quantities (cross and
auto spectra), in order to modelize the previous nonlinear sys-
tem. This algorithm, able to estimate electromagnetic and non-

electromagnetic vibrations in the time domain, has been applied
to real signals, and the obtained results are very satisfactory. It
can be noted that this algorithm was developped for steady state
operating conditions, but can be easily extented to a nonstation-
ary context thanks to adaptive filtering techniques.

The obtained results are particularly interesting in order to
understand and analyze the vibratory influence of the inverter
PWM strategy used to control the machine. This algorithm can
also be viewed as a denoising operation applied to radial vibra-
tions in order to remove all electromagnetic vibrations. Indeed,
the denoised signal, constituted by estimated aerodynamic and

mechanical vibrations ̂va(n) + vm(n) can be further processed
in order to detect more easily mechanical or aerodynamic de-
fects such as bearing faults, rotor unbalanced, fan faults, etc.
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