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Abstract: Elasticity theory calculations predict the number N of depressions that appear 
at the surface of a spherical thin shell submitted to an external isotropic pressure. In a 
model that mainly considers curvature deformations, we show that N only depends on the 
relative volume variation. Equilibrium configurations show single depression (N=1) for 
small volume variations, then N increases up to 6, before decreasing more abruptly due to 
steric constraints, down to N=1 again for maximal volume variations. These predictions 
are consistent with previously published experimental observations. 

 
PACS: 46.70.De (Beams, plates and shells), 46.32.+x (Static buckling and instability), 89.75.Kd (Patterns). 
 
 

 

Buckling of vessels under external 
pressure has been a problem adressed for a 
long time, as it is of utmost importance in 
designing tough containers in air and spatial 
navigation. The spherical symmetry, the 
simplest one that gives a close vessel, was 
investigated since early times [1]. Current 
works mainly focus on the onset of buckling 
and the difficulties due to non-ideality of 
materials [2]. For what concerns post-buckling 
shapes (i.e. adopted by the vessel when 
deformation keeps increasing after the critical 
stress), the general attention has turned to 
cylindrical geometry, more often encountered 
in applications. Recently, two papers reported 
about the observation of strongly buckled 
objects, originally porous hollow spherical 
shells filled with solvent, that buckle when the 
solvent evaporates [3, 4]. Buckling of a porous 
shell due to evaporation of an inner solvent is 
acknowledged as being of capillary origin, and 
macroscopically (i.e. at scales larger than the 
pore size) equivalent to the effect of an 
isotropic external pressure. These experiments 
therefore constitute a direct illustration of the 
postbuckling of hollow spheres under external 

pressure, for which, to our knowledge, no 
theoretical predictions exist. Surprisingly, 
conformations taken by the shells qualitatively 
differ between the two references [3] and [4]: 
as shown on Fig. 1, there is occurrence of 
either a single and quite deep depression [3] or 
several depressions distributed over the 
sphere’s surface, leading to a coarsely cubic 
shape [4]. The purpose of this paper is to 
determine whether this discrepancy could be 
interpreted through the equilibrium 
configurations of an elastic model, or if some 
drying artefacts should be invoked. 
 

We will use elasticity theory results 
related to thin shells submitted to external 
constraints in order to get an insight into the 
number of depressions expected for an 
equilibrium conformation. Let us first consider 
one depression in a spherical elastic shell, of 
radius R and thickness d. With E the Young 
modulus of the material, the curvature constant 
is ~ Ed3, and Ed the stretch modulus. We do 
not take into account energy variations linked 
to the gaussian curvature, as its integral on a 
closed surface depends only on the topology 



(Gauss-Bonnet theorem). It has been shown [5, 
6] that a depression corresponds to the 
inversion of a spherical cap, which avoids 
stretching energy (preponderant for shells of 
nonzero thickness) out of the circular ridge that 
joins the undeformed part and the inverted cap, 
defined by its half-angle α (Fig. 2). 
Minimization of the elastic energy 
concentrated in the ridge imposes its lateral 
extension δ ~ (Rd)1/2. Pauchard et al showed 
that the relevant curvature radius in this region 
is δ/tan α  [7]. The energy of a single 
depression therefore writes:  

 
U1  =  2 π  E d3 (d/R)-1/2  sin α   tg2 α      (1) 
 
This expression diverges when α  approaches 
π /2: then, stretching deformations are likely to 
release the high energy cost of a ridge with 
infinite curvature. However, as will appear 
obvious later, other considerations different 
from energetic ones prevail in this limit, and 
looking for a more accurate expression is 
unnecessary within the current work. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Different shapes obtained after 
evaporation of the solvent contained in a spherical 
porous shell. Left: silica/silicon « capsule » (N=1) 
observed by Zoldesi et al [3] (reproduced with 
author and editor permission). Right: more 
polyhedral shape (N~6) observed by Tsapis et al in 
shells made from aggregation of colloïdal particles 
at the surface of an evaporating droplet of colloidal 
suspension [4] (reproduced with author 
permission). 
 
 
The volume variation ΔV due to cap inversion 
is twice the volume of the spherical cap, hence 
the volume variation relative to the 
undeformed sphere volume: 
 
(ΔV/Vsph)1 depression = (1 – cos α )2 (2 + cos α )/2
          (2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Depression formed by inversion of a 
spherical cap. The circular ridge that allow a 
continuous jonction between the undeformed 
spherical part and the inverted cap has a lateral 
extension δ ~ (Rd)1/2 (where d is the thickness of the 
shell). The aperture of the depression is defined by 
the half-angle α that extrapolates (dotted line) the 
ridge thickness down to zero. 
 
 
In the case of N similar depressions, we have: 
UN  =  N U1           (3a) 
and  
ΔV/Vsphere = N (ΔV/Vsphere)1 depression (3b) 
 
We therefore have the expressions of both the 
elastic energy and the volume variation 
corresponding to N similar depressions formed 
by inversion of spherical caps of half-angle α. 
As the relative volume variation is the key 
parameter to appreciate the deformation 
intensity, it would be interesting to eliminate α 
in order to get the elastic energy UN as a 
fonction of ΔV/Vsphere, and then to discuss the 
relative stability of the conformations with 
different numbers N of depressions (“states”). 
 
Explicit expression for small depressions: 
For small inverted caps ( α  << 1), system (3) 
simplifies in: 
 

UN ~ 2 π  N E d5/2 R1/2 α 3 

and 
 ΔV/Vsphere = N α 4 / 8 

 
Which leads, for a given relative volume 
variation ΔV/Vsphere: 
 
UN ~ 813/12 π  N1/4 E d5/2 R1/2 (ΔV/Vsphere)3/4

           (4) 
 
For a given shell (determined E, d and R), the 
N1/4 dependence with ΔV/Vsphere clearly leads 
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N=1 at equilibrium. The conformation with a 
single depression is favorized in this regime, 

which corresponds to small deformations 
(ΔV/Vsphere << 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Reduced energy uN = UN / (2 π  E h3 (d/R)-1/2) as a fonction of ΔV/Vsphere, for different numbers N of 
similar depressions (inverted spherical caps). The curves are traced up to the maximum value (ΔV/Vsphere)max,N 
over which there would be an interpenetration between depressions. Black, green, pink, blue, red and yellow 
curves correspond respectively to N = 1 to 6. One recognizes the (ΔV/Vsphere)3/4 behaviour of eq. (4) for small 
ΔV/Vsphere, that correspond to small values of α . 

 
 
 

Implicit dependence for larger depressions: 
For larger values of α , a parametric plot of UN 
as a fonction of ΔV/Vsphere shows that N=1 is 

no longer the lowest energy state when 
ΔV/Vsphere increases, but N=2, then N=3 etc 
(Fig. 3). However, system (3) is not sufficient 

uN 

ΔV / Vsphere 



to describe the conformations adopted at high 
deformations, since equation (3b) is valid only 
if depressions do not interpenetrate each other. 
There is of course a maximum size (i.e. 
maximum α ) over which it is not possible to 
find an arrangement of N similar depressions 
that avoids interpenetration between two of 
them. For the sake of simplicity, we will 
neglect the thickness of the circular ridge, 
which corresponds to the case d<<R. Then the 
problem is a pure matter of geometry: how 
many similar spherical caps can be inverted 
without interpenetration at the surface of a 
sphere? 
A necessary condition is that the spherical caps 
themselves do not overlap before inversion. 
This amounts to search which maximum 
surface of a sphere can be covered with N 
similar spherical caps, which is another 
formulation of the so-called Tammes’ 
problem: maximize the minimum point-to-
point distance for a set of N points placed on a 
sphere [8]. The resolution of the Tammes’ 
problem is much less obvious than its 
formulation ; analytical or numerical solutions 
exist [9-12], that for our purpose allowed to 
calculate (ΔV/Vsphere)max for N ≥ 5 (Table 1).  
For up to N = 4, the necessary condition is not 
sufficient. This is obvious for N = 2: the caps 
corresponding to the solutions of the Tammes’ 
problem are two hemispheres (α=90°), which 
cannot be reverted both simultaneously. 
Interpenetration of two opposite depressions 
begins when they contact at the center of the 
sphere, which corresponds to a maximum 
value of the depression half-angle α: αmax,2 
= 60°. We will make the same sort of operation 
in what follows: keeping the centers of the 
spherical caps of the Tammes’ problem 
solutions at their positions, then decrease α up 
to a value for which there is not 
interpenetration. For N=3, the caps that solves 
the Tammes’ problem are centered on the 
vertices of an equilateral equatorial triangle 
(this can be easily understood, as the 
intersection between the plane defined by the 
three points and the sphere is a circle. Three 
points on a circle maximize their mutual 
separation with an equilateral spreading, and 
the point-to-point distance increases with the 
circle size, which is maximum when the circle 
is equatorial); three lines of trigonometric 

considerations show that interpenetration is 
avoided when α  reduces to α max,3 such as: 
cos α max,3 = 1/ 3  (Fig. 4). In a similar way, 
one can show for N=4 that 
cos α max,4 = 1 / (2 sin α T/2), where α T = 109° 
is the angle between two center/vertex 
directions in the tetrahedron. Hence the half-
angle defining a spherical cap reduces from 
54.59° (Tammes’ problem solution for N=4, 
with tetraedric symmetry) to 52.24° for the 
non-interpenetrating inverted caps. For higher 
values of N (N>4), the polyhedron holding the 
bases of the spherical caps present only right or 
obtuse angles between adjacent faces: there is 
therefore no risk of interpenetration as long as 
the caps bases do not overlap – and the 
Tammes’ condition is sufficient. 
With these values of α max,N, the maximum 
relative volume variation (ΔV/Vsphere)max could 
be calculated for each N, allowing the energy 
UN of the state with N depressions to be plotted 
only for relative volume variations that have, 
for each N, a physical meaning. This is shown 
on Fig. 3, for N=1 to 6. Higher values of N are 
not represented, since they all correspond to 
energies superior to U6 for physical values of 
ΔV/Vsphere (N.B.: for N higher than the values 
displayed on Table I, the asymptotic formula 
for upper limit α max,N (rad) = (2 π / 3 )1/2 N-1/2 
[13] shows that it keeps decreasing). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Equatorial section of the N = 3 
conformation: α max,3 = 54,74°. The solution to 
Tammes’ problem would correspond to slightly 
larger spherical caps ( α  = 60°) that could not 
revert without interpenetration. 

αmax,3



 

 
N 

 
α max 
(deg) 

 

 
maximum 
ΔV/Vsphere 

1 90 1 

2 60 0.625 

3 54.7 0.691 

4 52.2 0.785 

5 45 0.581 

6 45 0.697 

7 38.9 0.480 

8 37.4 0.474 

9 35.3 0.427 

10 33.1 0.373 

11 31.7 0.350 

12 31.7 0.382 

13 28.6 0.277 

14 27.8 0.270 

15 26.8 0.251 

 

Table I: Maximum values α N,max of the half-angle α 
that defines a spherical cap at the surface of a 
sphere, over which one cannot invert N similar 
caps without interpenetration. Values of α max for 
cases N=1 to 4 are treated in the text. Values for 
N=5 to 8 are given in reference [10], N=9 in 
reference [12], N=10 to 15 in reference [11]. As 
explained in the text, higher values of N will 
appeared as useless for our purpose. Third column: 
the corresponding volume variation for the N 
inverted caps. 
 
 
 
Looking for the lowest energy at every relative 
volume variation provides the phase diagram 
displayed on Fig. 5: in the early steps, the 
number of depressions increases with 
ΔV/Vsphere due to energetic considerations, 
from N=1 up to a quite stable cubic 
organization of the depressions (N=6). Such an 
evolution clearly is in accordance with 
observations by Gao et al [14] on 
polyelectrolytes capsules submitted to an 
increasing osmotic pressure. Then steric 
factors favorizes a tetraedric-related 
conformation (N=4), followed by the ultimate 
single depression state. It is interesting to note 

that the state N=1 for high relative volume 

variations is made compulsory by the 
geometry: this explains a posteriori why there 
is no point in refining the energy calculation in 
this limit. 
 
 
Figure 5: Equilibrium values of the number of 
similar depressions N at the surface of the sphere, 
as a function of the relative volume variation 
ΔV/Vsphere. The five first transitions occur at 
ΔV/Vsphere = 0.106, 0.185, 0.274, 0.341 and 0.418. 
The following “steric” transitions occur to values 
given in Table I for N=6 and N=4. 
 
 
 

In the model derived up to now, a 
single parameter (the total relative volume 
variation) happens to drive the conformations; 
this is worthwhile to be commented. As 
previously stated, we did not consider the 
extension of the circular ridge that 
continuously links the inverted cap to the 
spherical undeformed part. Taking it into 
account would (i) increase for each depression 
the volume variation by a term scaling in δ2 R, 
which means a correction in N(d/R) for 
ΔV/Vsphere (ii) lower the maximum surface 
compactness of depressions, by adding an 
excluded surface around the caps, which 
amounts to decrease dmax,N and then 
(ΔV/Vsphere)max,N for each N. If the prefactor of 
d/R in the volume correction varies slowly 
with α , the global effect of (i) will be a 
displacement of the transitions towards smaller 
values of ΔV/Vsphere, proportionnally to d/R. 
By affecting (ΔV/Vsphere)max,N, (ii) will cause an 
additional displacement of the “steric” 
transitions (i.e. transitions towards smaller 
values of N). Stretching energy has also been 
neglected by hypothesis. This could begin to 
be discussed for the most acute bendings that 
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occur at high relative volume variations, but 
we saw that in this limit the phase diagram is 
driven by steric, rather than energetic, 
considerations. 
 Another point of importance is that the 
present model is purely static. Like in 
numerous buckling problems, the system can 
be stucked in metastable states, especially here 
for steric transitions that need a high energy 
barrier merging of distinct depressions. This is 
likely to explain why the final N=1 state could 
be reached only for a few capsules in reference 
[14]. 
 

In conclusion, we showed that a quite 
simple model of curvature deformations at 
equilibrium is sufficient to make the first 
predictions concerning postbuckling 
conformations of a spherical shell submitted to 
an external pressure. In this model, the 
parameter that drives the transitions between 
different states (i.e. different number of 
depressions formed by inversion of a spherical 
cap) is the total relative volume variation. The 
buckled sphere exhibits a single depression for 
both small and important relative volume 
variations, and several depressions (up to 6, 
which leads to a cubic symmetry) for 
intermediate ones. These results are consistent 
with experimental observations: “capsules” 
with a nearly hemispheric single depression for 
important variations of the inner volume, 
observed by Zoldesi et al, or coarsely cubic 
shapes for weaker volume variations, observed 
by Tsapis et al. To make more accurate 
predictions, a more sophisticated model 
considering both the geometry of the ridge and 
stretching deformations is required. It should 
reveal, at higher orders, an influence of the 
relative shell thickness d/R on the boundaries 
of the phase diagram. 
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